
Accumulator Tutorial

Accumulator Tutorial

SRC Deliverables Draft, Fall 2009
1. Introduction..1

1.1. Take-Away...1
2. The Design Stage...1

2.1. The First Steps..1
2.2. Reset Semantics...2
2.3. Constraints File..4

1. Introduction
In this tutorial, we will be creating a PyTDL design that is capable of counting tokens

The goal of this tutorial is show how to create persistent data and the associated reset pattern.

1.1. Take-Away
PyTDL does not support explicit persistence of data, but it does provide enough mechanism via token
links to introduce loops. Our aim is to demonstrate this ability.

2. The Design Stage
The requirements for the design are:

• Wait for an input token and keep a running sum of the token's payload.

• Output the sum everytime it is updated.

2.1. The First Steps
The first step is to describe the problem in terms of actions that need to be performed. We will map
each action into a rule:

• Rule to dispatch input token/data

• Rule to accept input token/data and a current sum, add the two together

The first pass will be:

1

Accumulator Tutorial

from Int import GlobalIn, GlobalOut
This will not synthesize correctly
class Accumulator:

def __init__(self):
self.sum = Int(32)
self.sum_out = GlobalOut(32)
self.value = GlobalIn(32)

def accumulate(self, trigger="tInput and tSum"):
self.sum = self.sum + self.value
create(tSum)

def create_output(self, trigger="tSum"):
self.sum_out = self.sum
create(tOutput)

We have translated the rule descriptions above into PyTDL. You
can see that there is a token loop here – the accumulate rule
both creates tSum and accepts it as a trigger.

Note that we follow the convention requirement that outputs
have their own variable – in this case, we use sum_out. If we
didn't, we'd have to declare sum as both input and output (as
you will see later in this tutorial). For now, we assert it as a
sound design practice.

There are a few issues with this design: first, by setting the rule
to contain the conjunction of tInput and tSum, we have
introduced a Join arbiter. This in and of itself is unremarkable
and is expected behavior. However, further analysis will show
that we are attempting to use only parts of the data payloads
from each token – the sum comes from tSum and the value
from tInput. As of now, PyTDL does not support this type of
disambiguation, so the user needs to modify the output Verilog.

Before we do that, however, we have a second issue to consider:
reset semantics. There is no way to initialize the tSum value.
This is covered in the next sub-section.

2.2. Reset Semantics
In order to reset the running sum, we need some way of
interrupting the loop. That is, we need a mechanism to insert a
token which contains the reset value of the sum after we have
asserted the circuit's generic reset. We do this by introducing a
rule merge_sum, which will accept either a new token tReset,
or the running sum token tSum. We then create an intermediate token tSumReady which essentially
lets accumulate know which value of sum to add to.

2

Figure 1: This is the basic design
without any reset.

Accumulator Tutorial

The modified code is:

from Int import GlobalIn, GlobalOut
class Accumulator:

def __init__(self):
self.sum = GlobalIn(32)
self.sum_out = GlobalOut(32)
self.value = GlobalIn(32)

def merge_sum(self, trigger="tReset or
tSum"):

create(tSumReady)
def accumulate(self, trigger="tInput

and tSumReady"):
self.sum = self.sum + self.value
create(tSum)

def create_output(self,
trigger="tSum"):

self.sum_out = self.sum
create(tOutput)

This code will now synthesize in PyTDL correctly, but will not
generate working Verilog.

We will now go back to the first design issue mentioned – the
data selection of the Join arbiter.

First, look at the source code for the top-level Verilog module
Accumulator.v. If you scroll down towards the bottom, you
should see a section labeled “DATA NETWORK.” Here, you
should see something similar to the following:

/* -- JOIN -- */
// tInput -> join0x0
assign join0x0_sum_i0 = sum;
assign join0x0_value_i0 = value;

// tSumReady -> join0x0
assign join0x0_sum_i1 = tSumReady_sum;
assign join0x0_value_i1 = tSumReady_value;

This is the Join arbiter inputs. We can see that it assigns the dummy variable sum to its first input,
attached to token tInput, while the second input's value is tied to tSumReady. What we want instead is
the sum result to come from tSumReady and the value result from the tInput token. We simply make
the following change:

/* -- JOIN -- */
// tInput -> join0x0
assign join0x0_sum_i0 = tSumReady_sum;
assign join0x0_value_i0 = value;

3

Figure 2: The accumulator with reset.
All data attached to tokens has been
annotated.

Accumulator Tutorial

// tSumReady -> join0x0
assign join0x0_sum_i1 = tSumReady_sum;
assign join0x0_value_i1 = value;

Now, no matter which data set it decides to choose (doing so randomly), it will be correct.

We can now test the design with the packaged test bench to verify that it correctly accumulates the
tokens.

2.3. Constraints File
The final component before we can synthesize the design is the constraints file, which lets PyTDL
know which data I/O is associated with which token.

The syntax is detailed in the Reference Guide, so we defer any details to that document.

Even without reading the syntax rules, the constraints file is straightforward and easy to understand:

input = (tInput[value], tReset[value, sum])
output = (tOutput[sum_out])

We associate value to tInput. Token tReset also accepts a value and sum result, but these can simply
be tied to zero externally and optimized out. If we exclude the value data on the tReset token, then
the tools will not arbitrate correctly between tReset and the internal tSumReady token.

Output value sum_out is attached to token tOutput.

4

	1. Introduction
	1.1. Take-Away

	2. The Design Stage
	2.1. The First Steps
	2.2. Reset Semantics
	2.3. Constraints File

