The Rate Monotonic Scheduling Algorithm:
Exact Characterization And
Average Case Behavior

John Lehoczky!, Lui Sha? and Ye Ding!
Department of Statistics!
Department of Computer Science?
Carnegie Mellon University

Abstract

This paper presents an exact characterization of the ability
of the rate monotonic scheduling algorithm to meet the
deadlines of a periodic task set. In addition, a stochastic
analysis is presented which gives the probability
distribution of the breakdown utilization of randomly
generated task sets. It is shown that as the task set size
increases, the task computation times become of little
importance, and the breakdown utilization converges to a
constant determined by the task periods. For uniformly
distributed tasks, a breakdown utilization of 88% is a
reasonable characterization of the breakdown utilization
level. An interesting case is presented in which the
average case breakdown utilization reaches the worst case
Liu and Layland lower bound.!

1. Introduction

The problem of scheduling periodic tasks with hard
deadlines equal to the task periods was first studied by Liu
and Layland [3] in 1973. In their classic paper, they
derived the optimal static priority and dynamic priority
scheduling algorithms and determined their worst case
behavior. This was accomplished by first identifying the
worst case phasing of a task set and then deriving for each
n the worst case task set of size n. This is the task set
having the smallest processor utilization for which all
deadlines are met, but if the processing requirement for
any single task were increased by any amount, a deadline
would be missed. The optimal fixed priority algorithm
was shown to be the rate monotonic algorithm in which a
task with a shorter period is given a higher priority than a
task with a longer period. Ties are broken arbitrarily. The
worst case utilization bound was shown to be n(2(1)-1), a
quantity which decreases monotonically from .83 when
n=2 to log,2 = .693 as n — oo, This result shows that any

periodic task set of any size will be able to meet all

UThis work was sponsored in part by the Office of Naval Research
under contract N00014-84-K-0734, in part by Naval Ocean Systems
Center under contract N66001-87-C-0155, and in part by the Systems
Integration Division of IBM Corporation under University
Agreement YA-278067.

deadlines all of the time if the rate monotonic algorithm is
used and the total utilization is not greater than .693.

Liu and Layland [3] also found that the optimal dynamic
scheduling algorithm was the nearest deadline algorithm.
This algorithm was shown to have a worst case bound of
1.000. Consequently, it can meet all the deadlines of all
periodic tasks up to full processor utilization. In spite of
the apparent dominance of the nearest deadline algorithm
over the rate monotonic algorithm, the rate monotonic
algorithm is of great practical importance [1,2, 5, 6, 10].
First, it can be used to ensure that the timing requirements
of the most important tasks are met when a transient
overload occurs. Second, it provides a convenient way to
offer fast response times to aperiodic tasks while still
meeting the deadlines of the periodic tasks using the
deferrable server algorithm [2], the sporadic server
algorithm [10] or the extended priority exchange
algorithm [8]. Third, it can be modified to handle task
synchronization requirements by using the priority ceiling
protocol [S]. Fourth, it can be conveniently used to
schedule tasks where imprecise computation is
permitted [4]. Finally, it is easy to implement in
processors, in I/O controllers and in communication
media [9, 11]. Consequently, it provides an approach to
system-wide timing integration.

In common practice, the rate monotonic algorithm can
often successfully schedule task sets having total
utilization higher than .693. Indeed, it is not uncommon
for large periodic task sets with total utilization around .90
to be schedulable using the rate monotonic algorithm. This
suggests that the average case behavior is substantially
better than the worst case behavior. The behavior is
strongly dependent upon the relative values of the periods
of the tasks comprising the task set. The purpose of this
paper is to give an exact characterization of the ability of
the rate monotonic algorithm to meet the deadlines of a
given periodic task set. In addition, we present a stochastic
analysis of the performance of the algorithm when task
sets are generated randomly. Specifically, a task set is
generated randomly, and the computation times are scaled
to the point at which a deadline is first missed. The
corresponding task set utilization is a breakdown
utilization. This breakdown utilization is presented and an
asymptotic analysis is given. We only consider the case in
which task deadlines are given by the arrival of the next

CH2803-5/89/0000/0166/$01.00 © 1989 IEEE

’ T

job of that task; however, the analysis presented here
extends to the case of more general deadlines.

2. Problem Formulation

Consider a set of n periodic tasks 1,,..., T,. Task 7;hasa
period T;, a computation requirement, C;, and a phasing
relative to 0, I, with 0 < I, < T;. This means that jobs
corresponding to task T; are initiated at times L, + kT;, k >
0. The job initiated at time I, + kT; has L, + (k+1)T,; as its
deadline, the initiation time of the next job. We label the
tasks so that T\ <T,<...<T,. Consequently, T;
receives priority i. We assume tasks are ready to run at
their initiation times, tasks can be preempted instantly (and
so ignore all blocking) and ignore all overhead such as task
swapping times.

Liu and Layland proved that the worst case phasing
occurs when I; = 0 for 1<i<n. This is called a critical
instant in which all tasks are simultaneously instantiated.
Using this concept, Liu and Layland also proved that the
task set is schedulable (all deadlines of all jobs of every
task are met) using the rate monotonic algorithm if the first
job of each task can meet its deadline when it is initiated at
a critical instant. Theorem 1 gives a necessary and
sufficient condition for the first job of each task to meet its
deadline under the worst case phasing. To determine if a
task can meet its deadline under the worst case phasing, we
need to consider the processor demands made by the task
set as a function of time. If we focus on tasks Ty, ..., T
then the expression

W,'(t) = chrlﬂ}l
j=1

. J= .
gives the cumulative demands on the processor made by
these tasks over [0,t] when O is a critical instant. For later
notational convenience, we define

Lty=W{oOh,
Li=min (o, <1 yLi0);
L=max (; ¢;<nli
Given this notation, we can conveniently express the
exact criterion for a task or task set to be schedulable by
the rate monotonic algorithm.

Theorem 1: Given periodic tasks Ty, ..., T,

L.t can be scheduled for all task

phasings using the rate monotonic
algorithm if and only if L, < 1.

2. The entire task set can be scheduled
for all task phasings using the rate
monotonic algorithm if and only if L
<1

Proof: Given the worst case phasing was
proved by Liu and Layland to be a critical instant
and we require schedulability for all task
phasings, we can restrict attention to the worst
case. Given the assumptions of perfect
preemption, no blocking, no overhead and jobs

are ready at their initiation mes, two
conclusions follow. First, jobs of 1; will be
preempted only by higher priority jobs, and they
will preempt any lower priority jobs. Thus only
T, ... need be considered to determine if T;
can be scheduled. Second, starting at a critical
instant, the processor will not idle before either
the first job of 7, is finished or it misses its
deadline, whichever occurs first.

Task 1, completes its computation requirement
attime ¢t € [0,T;], if and only if all the requests
from all the jobs with priority higher than i and
C, the computation requirement of T;, are
completed at time 1. The total of such requests is
given by W;(¢), and they are completed at ¢ if and
only if W,(¢) = t and W(s) > s for 0 <s<t.
Dividing by ¢, we find equivalently L;() = 1. It
follows that a necessary and sufficient condition
for T, to meet its deadline is the existence of a ¢
€ [0,T] such that L; = 1. Consequently, a
necessary and sufficient condition for T; to meet
its deadline under all phasings is L; < 1. This
proves the first assertion.

The second assertion follows directly from the
first. The entire task set is schedulable if and
only if each of the tasks is schedulable. This
means that L; < 1 for each i. Equivalently, L <
1 is necessary and sufficient for the task set to be
schedulable.

The characterization of schedulability given in Theorem

1 requires a minimization over the continuous variable t €
[0, T;l. In fact, only a finite number of times need to be

checked. The function Ly(t) is piecewise monotonically
decreasing, that is [/T, is strictly decreasing except at a
finite set of values called the rate monotonic scheduling
points. When t is a multiple of one of the periods T,

1<j<i, the function has a local minimum, is _left
continuous and jumps to a higher value to the right.
Consequently, to determine if ; can meet its deadline one

need only search over these local minima, the multiples of
Tj < T;for 1 <j<i. Specifically, let
$;=(kT;| =L k=1, LTYTH).

The elements of S; are the scheduling points for task i,
the deadline of task i and the arrival times of tasks of
priority higher than i before the deadline of task i assuming
a critical instant phasing. For example, suppose we
consider three tasks with periods T, =5, T, = 14,and T, =
30. The scheduling points are given by S, = {5}, S, = (5,
10, 14} and S5 = {5, 10, 14,15, 20, 25, 28, 30}. It follows
that

L;=min (te si}L‘(t).
One can modify the criteria of Theorem 1 to give
T

RS 1Y

Theorem 2: Given periodic tasks T,, ..

167

1.7; can be scheduled for all task
phasings using the rate monotonic
algorithm if and only if

L‘-= mlﬂ {IE S;}Wl'(t)/t <l1.

2. The entire task set is schedulable for
all task phasings using the rate
monotonic algorithm if and only if

L=ma.x“5‘-Sn)L‘. <l

We present a simple example to illustrate Theorem 2.
Suppose we have a task set with three periodic tasks for
which U; = C//T,

i

® Task t,: C; =20; T, =100 ; U; = 0.200
® Task 1,: C, =40; T, = 150 ; U, = 0.267
e Task 13: C3 =100 ; T3 = 350 ; U; = 0.286
The total utilization of these three tasks is 0.753, which
is below the Liu and Layland bound for three tasks: 3(2!73
— 1) = 0.779. Hence, we know these three tasks are
schedulable using the rate monotonic algorithm, i.c., they
will meet their deadlines if 1, is given the highest priority,
T, the next highest, and 1, the lowest. The remaining
24.7% processor capacity can be used for low priority

background processing. However, we can also use it for
additional hard real-time computation.

Suppose we replace T,’s computation with one that is
more accurate but requires 40 rather than 20 units of time.
The total processor utilization increases from 0.753 to
0.953. Since the utilization of the first two tasks is 0.667,
which is below the Liu and Layland bound for two tasks,

~2(2172 — 1) = 0.828, the first two tasks cannot miss their
deadlines. For task 74, we use Theorem 2 (part 1) to check
whether the task set is schedulable. Here i=3 and S, =

{100, 150, 200, 300, 350}.

Task 1, is schedulable if any of the following equations
holds:

Ci+Cy+C3<T, 40+40+100 > 100

or 20 +C,+C3<T, 80+40+100> 150

or 2C;+2C,+C; <27, 80+80+ 100 > 200
or 3C,+2C,+C; <27, 120+ 80+ 100 =300

or 4C;+3C,+C3;<T; 160+ 120+ 100 > 350

The analysis shows that task 1 is also schedulable, and
in the worst-case phasing will meet its deadline exactly at
time 300. Hence, we can double the utilization of the first
task from 20% to 40% and still meet all the deadlines. The
remaining 4.7% processor capacity can be used for either
background processing or a fourth hard deadline task,
which has a period longer than that of 15. Task 75 just
meets its deadline at 300, hence we cannot add a task with
a priority higher than that of task 1.

3. Stochastic Characterization

The necessary and sufficient conditions for
schedulability of a task set given in either Theorem 1 or 2
give an exact condition for the rate monotonic algorithm to
be able to schedule a given task set, but they do not, by
themselves, offer any insight into the conditions under
which the rate monotonic algorithm can exceed its worst
case utilization bound. One approach is to generate a task
set randomly and then use the conditions to determine the
utilization level at which it fully utilizes the processor. In
most average case analyses of algorithms, a simple
probability model is used to generate the cases from which
the average results are derived. For example, in bin
packing, one generally considers unit size bins and
uniformly distributed objects to pack. In the travelling
salesman problem, one usually picks cities uniformly in a
region, and in sorting algorithms, one usually assumes
uniformly distributed permutations of objects to sort. In
the case of the rate monotonic algorithm, it is possible to
consider a very general model of randomly generated task
sets. Specifically, we introduce a cumulative distribution
function (c.d.f.) Fp(t) for the task periods and a c.d.f. Fc(©)
for the task computation requirements. First, we draw a
random sample of task periods, T,....,T,,, from F(t). Next
we label them so that T) < T, <... < T,. Finally, we
draw a random sample of computation requirements,
Cy....iCy from Fe(c). The resulting pairs (C,,T}), ... ,
(C,..T,) constitute a random task set.

We think of the C;s and T;s as providing relative

computation requirements and periods. The task set must
be scaled to create an appropriate utilization. In particular,
we multiply each C; by a small factor A and systematically

increase A to a threshold value A* at which some task
deadline is missed assuming that the task phasing
corresponds to a critical instant. The associated utilization
of the task set at which a deadline is first missed is a
measure of the threshold at which the rate monotonic
algorithm misses a deadline. The quantity A is a random

variable as is the breakdown utilization, U:. We offer an
exact formula for A" and U,” and an approximate
characterization of the random variable, U:.

For the randomly generated and scaled task set, the
criterion developed in Theorem 2 indicates that the task set
is schedulable if and only if

L=max (g ;¢ min (¢ 513 ACTuT Ve <1(1)
or

AS[max (g pymin e 520 CTuT U1 @
The largest possible scaling factor, A*, is given by the
right side of (2):
A* =[max () ¢; < ,ymin (¢ S,.)Zl:=1 Cj-rt/Tﬂ/t]_l. 3)

If A is increased beyond A*, a deadline will be missed.
The utilization associated with the critical scaling factor is
the breakdown utilization of the randomly generated task
set. Itis given by

168

* .
U, = (20, U/ [max (y << ymin e 5) WO ()
where U; = C/T,.

The numerator is merely the total utilization of the task
set. The maximizing index i in the denominator picks the
task in the task set whose deadline will be missed if the
scaling factor is further increased, and the associated
minimizing ¢ picks the time at which that task will meet its
deadline. The form for the breakdown utilization given in
(4) is useful for conducting simulation studies of the
average case behavior of the rate monotonic algorithm.
Some simplifications of this formula are sometimes
possible. For example, if F(1) = 0 and F(2) = 1,s01 <
T /T, <2, then the maximum in the denominator occurs
when i = n. We formulate this as a theorem, one which
offers a simplification of the calculation of the breakdown
utilization in this case.

Theorem 3: Suppose 1<T;<...<T, <2
Then

U,= (3, Crmin e s.}; AP AT

Proof: We define

]
8=min |, s‘}; c;lur;n.
=

From the definition of S; and the fact that
LT,/T 1J=1, the minimum in §; must occur at
some T;, 1<j<i. We prove 3,239, for all i.
This will allow us to conclude that 8, >3, for all i
and will complete the proof of the theorem.

Suppose the minimum for §;,, is assumed at t
=T, where j <i. Then §;,;
=[2(Cy+. .. +Cj_1)+Cj+ . +Ci+1]/Tj
2 [2(Cy+ - .+Cj_1)+Cj+ .. .+C‘.)]/Tj
29,
since the latter is the t=T; component of 3.
Suppose instead that the minimum for §;,; is
assumed at t="T;,;. Then
=[2C+ ... 42CHC; 11/ Ty
2(Cy+... +C)IT,
239,
since T,,, < 2T, and G, 2 0.
In either case, §,,, 23, Consequently, the

maximum occurs when i = n, and attention can
be restricted to 8, which completes the proof.

Before giving an asymptotic analysis of U:, we present
a simple example.

169

3.1. Example 1
Assume n = 2, C; = C,, and the task periods are chosen

according to a Uniform [1,2] distribution. Let R =T /T,
so 1<R<2. It follows that

U, = (R+1)/min (2R3). (5)
The probability density function (p.d.f.) of R is given by
fr)=@/rH)-1, 1sr<2 ©
It is straightforward to find the p.d.f. of U: and its mean
value. In particular, its density function is given by
)]

and this p.d.f. has mean value equal to 917, which is larger
than the Lin and Layland bound of .828. Indeed, the
assumption C,; = C, increases the worst case bound to

833, larger than the usual bound of .828.

) = 12/(3x-1)245-2/(2x-1)?%, 3<x<1,

4. Asymptotic Approximation
*
The quantity U, is a random variable, one which is a
complicated function of the C;s and T;s. Liu and Layland

proved n(218-1) < U], < 1. We wish to offer insight into

the size of the random variable U: as a function of F(t)
and F(c). In this section, we present an asymptotic

approximation for this random variable as n—oo, that is
for large task sets.

The expression for U: given in (4) involves sums of
random variables. To simplify the presentation, we will
assume that the random variables C; and T; are bounded
and the largest period ratio is also bounded. Consequently,
we assume 1<T;<B for some finite B. In addition, we
assume that Fp has a density function which is strictly
positive over the interval [1,B].

The appearance of sums of random variables in the
numerator and denominator of (4) allows for the
application of convergence theorems from probability
theory. In particular, the numerator of (4) , after dividing
by n, is a sum_ of independent, identically distributed
utilization ratios, U; = C/T;. It follows that

> Uiln—>EU) = ECCYE(T) as. ®

The latter inequality holds by the presumed
independence of C; and T;. Although the periods have
been labeled to be in increasing order, since the sum
contains all the terms, it is independent of the particular
permutation used. Finally, the central limit theorem could
be used to create a normal approximation to the numerator.

The denominator of (4) requires more care. After
dividing by n, the denominator becomes
max (; < l-Sn)min (te S;lzl'=1 Cj‘rt/Tj-Vm.)

For fixed t and i, the Tj have been ordered to be non-

decreasing, so the sum in (9) involves the i smallest
periods. As such, the T, are no longer independent and

identically distributed. I*JIevertheless, the behavior of the
order statistics from a random sample is well understood
(see for example [7]). In particular, if we let i = Lo, then

-1
T;>Fr (o) as.
where

G(0)=F7 (0) = inf {x| Fy(X) 2 at}.
Moreover, T;....,T; is, for large n, approximately a
random sample from the c.d.f. of T conditioned on the
event (T<F7(a)).

4.1. Notation and Assumptioys
The asymptotic behavior of U, is derived using the law

of large numbers and the asymptotic behavior of the order
statistics of a random sample from Fr. In order to apply

these theorems, we adopt a series of assumptions
concerning Fr.

Assumptions

1, Fr has a strictly positive and continuous
density f on [1, B], i.e. F(1) =0, F(B)
=1.

2. The function h(x) = (1 + x)/F;\(x) has a
unique minimum x, € [1,B] and is
locally increasing on [x, , x, + 3] and
locally decreasing on [x5 — & , x] for
some § > 0.

3. The function h(x) defined in (2) above
satisfies a Lipschitz condition,

G)-h0c)l < Mix,—x;)|
for some M>0.
4.Let

w(0) = min {ISsSG(a)}I(s)
where

I(s)= j:‘r sIG(t) dfs.

Moreover, w(o) has a unique maximum
0, and is locally increasing on [0, - $,
0l and locally decreasing on [0, , 0 +
B] for some B > 0. In addition, w(c)
satisfies the Lipschitz condition
w(ae)-w(on)l < Kloy—o,)
for some K>0.
To simplify the notation, we define

h=min o, <1)Ax),

W =SUp (o< q<p)inf [G(O)Sssc(a))J:rS/G(uﬂ dus.

Using this notation, we have the following theorem.
Theorem 4:
1. Under Assumption 1 with B<2,

U;—)E(III‘)/h as n—oo, a.s.
2. Under Assumption 1 with B>2,

U:—)E(I/T)/w as n—oo, a.s.

3. For B>2 and under Assumptions 1
and 4 or if Fy is uniform [1,B], then

U ~EQT)w = 0,(n3)
for r>0.

4. For B<2 and under Assumptions 1
and 3,

U,-EQ/Mh = 0,(n~)
for r>0.

It is important to note the remarkable fact that the above
theorem indicates that the threshold of schedulability, U_",
converges to a constant as the task set size increases.
Furthermore, this constant depends only upon Fr, not on
Fc!' The distribution F does play a role when n is

relatively small; however, asymptotically it drops out.

Theorem 4 also indicates that the convergence rate is
nearly n"12), More analysis is needed to fully characterize
the asymptotic behavior of the breakdown untilization. In
particular one would expect

nV2U" ~ E(1/T)w) > N(0,0%)

where o2 is a complicated function of Fp and F. This is
commonly observed in simulations; however, it is not true
in general. One need only consider Example 2 with B =2
given in the next section. In this case, the limiting
breakdown utilization is the Liu and Layland lower bound.

Consequently, the random variable [U:—E(lfl')/w] is
strictly positive and cannot be normally distributed.

*
In many circumstances, it is possible to prove that U,

has an approximate normal distribution. In general,
however, the behavior can be more subtle and requires
working with a Brownian bridge approximation to the
empirical distribution function arising in the denominator
[7] as well as taking proper account of the potential
correlation between the numerator and denominator of (4).

170

4.2, Example 2

Suppose that the task periods are drawn from a uniform
(1,B] distribution with B<2. Both numerator and
denominator are easy to compute. In particular, E(1/T) =
[Log,(B))/(B-1) and min (0sx<1)h(x)=l. Consequently

U, - [Log,(B)/(B-1), 1SBL2, n—eo, aus.

If B > 2, then the numerator is unchanged; however,
the denominator must be recomputed. It becomes

LBJ-1
d=[®B/LBly+ Y, 1il/B-1).
=2
Consequently, for B22 and as n —» o,

. 811
U, - log BVB/LBK Y, (1), as.

=2
The above example is particularly interesting, because it
provides an illustration of a situation in which the
asymptotic average case behavior coincides with the worst
case behavior. Specifically, when B = 1, the average case
asymptotic performance is 1 and decreases monotonically
until it reaches the level Log,2 when B = 2, the Liu and
Layland worst case bound. It then slowly increases to 1 as
B —>e. The following table presents the limiting
performance values, i.e. breakdown utilization values for

an assortment of values of B.

B Asymptotic
Performance
10 1.000
1.5 811
20 693
3.0 732
50 773
10.0 814
20.0 .844
40.0 .867
80.0 .885
100.0 .889

As B increases without limit, the limiting value of the
breakdown utilization converges to 1. Nevertheless, the
rate of convergence is quite slow. For randomly generated
task sets consisting of a large number of tasks whose
periods are drawn from a uniform distribution with largest
period ratio ranging from 50 to 100, 88% is a good
approximation to the threshold of schedulability for the
rate monotonic algorithm. The slow rate of convergence
means that a large task set is required for the breakdown
utilization to be essentially equal to the constant specified
in theorem 4. This underscores the importance of
developing normal approximations where possible to
sharpen the results in Theorem 4.

5. Summary and Conclusion

In this paper, we have provided an exact
characterization and a stochastic analysis for a randomly
generated set of periodic tasks scheduled by the rate
monotonic algorithm. The stochastic analysis has shown
that the average scheduling bound is usually much better

than the worst case behavior as suggested by simulations.
The formula of exact characterization can be used to check
if a given task set is schedulable. The analysis can be
generalized to allow for more general task deadlines, in
particular when task deadlines need not be at the end of the
task period. The analysis can also be applied to the case in
which task synchronization must be considered, and when
the priority ceiling protocol is used. Finally, the analysis
can be carried out when there is insufficient priority
granularity, that is, when there are fewer priority levels
available than there are task periods. This arises in real-
time communication where the number of priority bits is
inherently limited.
References

1. Lehoczky, J. P. and Sha, L. "Performance of Real-
Time Bus Scheduling Algorithms". ACM Performance
Evaluation Review, Special Issue Vol. 14, No. 1 (May,
1986).

2. Lehoczky, J. P., Sha L. and Strosnider, J. "Aperiodic
Scheduling in A Hard Real-Time Environment”. Proc.
IEEE Real-Time Systems Symp. (1987), 261-270.

3. Liu, C. L. and Layland J. W. "Scheduling Algorithms
for Multiprogramming in a Hard Real Time Environment".
JACM 20 (1) (1973),46 - 61.

4. Liu, J. W.S., K. J. Lin and S. Natarajan. "Scheduling
real-time, periodic jobs using imprecise results”.
Proceedings of the IEEE Real-Time Systems Symposium
(1987), 252-260.

5. R. Rajkumar. Task synchronization in real-time
systems. Ph.D. Th., Carnegie Mellon University, August,
1989.

6. Sha, L., Lehoczky, J. P. and Rajkumar, R. "Solutions
for Some Practical Problems in Prioritized Preemptive
Scheduling”. IEEE Real-Time Systems Symposium
(1986).

7. Shorack, G. and J. Wellner. Empirical Processes with
Applications to Statistics. John Wiley, New York, 1986.

8. Sprunt, B., Lehoczky, J. and L. Sha. "Exploiting
unused periodic time for aperiodic service using the
extended priority exchange algorithm". Proceedings IEEE
Real-Time Systems Symposium (1988), 251-258.

9. Sprunt, B., Kirk, D. and L. Sha. "Priority-driven
preemptive 1/O controllers for real-time systems".
Proceedings of 15th International Symposium on
Computer Architecture (1988), 152-159.

10. Sprunt, B., Sha, L., and J. Lehoczky. "Aperiodic task
scheduling for hard-real-time systems”. Real-Time
Systems (1989), 27-60.

11. Strosnider, J. K., Marchok, T. and J. Lehoczky.

" Advanced real-time scheduling using the IEEE 802.5
Token Ring". Proceedings of the IEEE Real-Time Systems
Symposium (1988), 42-52.

171

