BN

synchronous Data Flow

a—

EDWARD A. LEE, MEMBER, IEEE, AND DAVID G. MESSERSCHMITT, FELLOW, IEEE

Data flow is a natural paradigm for describing DSP applications
for concurrent implementation on parallel hardware. Data flow
programs for signal processing are directed graphs where each
node represents a function and each arc represents a signal path.
Synchronous data flow (SDF) is a special case of data flow (either
atomic or large grain) in which the number of data samples pro-
duced or consumed by each node on each invocation is specified
a priori. Nodes can be scheduled statically (at compile time) onto
single or parallel programmable processors so the run-time over-
head usually associated with data flow evaporates. Multiple sam-
ple rates within the same system are easily and naturally handled.
Conditions for correctness of SDF graph are explained and sched-
uling algorithms are described for homogeneous parallel proces-
sors sharing memory. A preliminary SDF software system for auto-
matically generating assembly language code for DSP micro-
computers is described. Two new efficiency techniques are intro-
duced, static buffering and an extension to SDF to efficiently
implement conditionals.

I. DATA FLow AND SYNCHRONOUS DATA Frow: AN
INTRODUCTION :

For concurrent implementation, a signal processing task
is broken into subtasks which are then automatically, semi-
automatically, or manually scheduled onto parallel pro-
cessors, either at compile time (statically) or at run-time
{dynamically). Automatic breakdown of an ordinary se-
quential computer program is an appealing concept[1], but
the success of techniques based on traditional imperative
programming is limited; imperative programs do not often
exhibit the concurrency available in the algorithm. If the
programmer provides the breakdown as a natural conse-
quence of the programming methodology, we should
expect more efficient use of concurrent resources.

Synchronous data flow (SDF) is a special case of data flow
[2-[6], a hardware and software methodology popular
among computer scientists for parallel computation. Under
the data flow paradigm, algorithms are described as
directed graphs where the nodes represent computations
(or functions) and the arcs represent data paths. A second-
order recursive digital filter described as a data flow graph
1s shown in Fig. 1. In that example, an essentially infinite

Manuscript received August 29, 1986; revised March 13, 1987.

is research was sponsored in part by an IBM faculty develop-
Ment grant and by the National Science Foundation under Grant
£Cs-8211071.

The authors are with the Department of Electrical Engineering
and Computer Science, University of California, Berkeley, CA
4720, USA.

IEEE Log Number 8716426.

FEEDFORWARD
\ CUTSET

Fig. 1. A data flow graph for a second-order recursive dig-
ital filter. The empty circles are “fork’’ nodes, which simply
replicate each input sample on all output paths. The “D” on
two of the arcs indicates delay, and the *'1” adjacent to each
node input or output indicates that a single token is con-
sumed or produced when the node fires.

stream of input data is expected, so the nodes specify com-
putations performed infinitely often. This s typical of signal
processing applications, and is an important property often
lacking in more general applications.

The data flow principle is that any node can fire (perform
its computation) whenever input data are available on its
incoming arcs. A node with no input arcs may fire at any
time. This implies that many nodes may fire simultaneously,
hence the concurrency. Because the program execution is
controlled by the availability of data, data flow programs are
said to be data-driven [7}. To preserve the integrity of the
computation, nodes must be free of side effects. For exam-
ple, a node may not write to a memory location which is
later read by another node unless the two are explicitly con-
nected by an arc. The only influence one node has on
another is the data passing through the arcs.

InFig. 1, each inputand output of each node has the num-
ber 1 adjacent to it, which in our notation indicates that
when the node fires, a single sample (or token) will be con-
sumed or produced on each arc. A synchronous data flow
graph is one for which these numbers may be specified for
every node a priori. That is, the number of tokens produced
or consumed must be independent of the data. We expect
that most nodes for signal processing applications will be
synchronous, and we can take advantage of this dominant
synchrony. Asynchronous nodes, as shown in Fig. 2, can be
used to get conditional execution of a subgraph of a data
flow graph. It is equivalent to the functional statement

z = if (x) then f(y) else g(y).

The asynchronous nodes are the switch and select nodes.
Although describing an important capability, the graph in

J 0018-9219/87/0900-1235$01.00 © 1987 IEEE

QCEEDINGS OF THE IEEE, VOL. 75, NO. 9, SEPTEMBER 1987

1235

Fig. 2. Two asynchronous nodes are shown used in a con-
ditional construct analogous to an if-then-else. The switch
routes tokens to one of two output paths depending on a
control input and the select selects tokens from one of two
inputs depending on the control token. The notation (0, 1)’
~ indicates thatwhen the node fires, either zero or one sample
will be produced or consumed.

Fig. 2 is not an SDF graph; nonetheless, we show later (Sec-
tion V) that it can be handled efficiently in at least one appli-
cation, code generation for DSP microcomputers.

We call the graph in Fig. 1a homogeneous SDF graph, to
indicate that all nodes produce or consume a single sample
on each input or output arc in each invocation. It may be
implemented by constructing a schedule that invokes each
node once and then repeats indefinitely. To understand
how to construct such a schedule we need to understand
precisely the meaning of the delay “D’’ on two of the arcs.

Theterm delay is used in the signal processing sense, cor-
responding to a sample offset between the input and the
output. We define a unit delay on an arc from node A to
node B to mean that the nth sample consumed by B will be
the (n — M)th sample produced by A. This implies that the
first sample B consumes is not produced by A at all, but is
part of the initial state of the arc buffer. Indeed, a delay of
d samples on an arc is implemented in our model simply
by initializing the arc buffer with d zero samples. The
inscription dD will be placed near the arc to illustrate the
delay.

Nodes cannot fire in an arbitrary order. The precedences
between invocations of the nodes are illustrated in Fig. 3.

/

N

N

!

@@@(ﬁi@?

(@ (b)
Fig. 3. Precedence graphs for one cycle of a blocked peri-
odic schedule for the SDF graph of Fig. 1. The graph in (b)
assumes that unit delays have been put on the feed-forward
cutset shown with a dotted line in Fig. 1. The ““fork”’ nodes
are assumed to run in zero time, and so are omitted.

A schedule determines when and where (on which Pro.
cessor) nodes fire. A blocked schedule is a periodic scheg.
ule where each cycle terminates before the next cycle
begins. The SDF graph of Fig. 1 can be implemented witp,
any blocked schedule for which each cycle satisfies the
precedences of Fig. 3. (For a different approach that permj
overlapped cycles, see [8]-[11].) Blocked schedules for three
processors that satisfy the precedences of Fig. 3 are illys,
trated in Fig. 4. For the moment we are ignoring interprq.

@ ®
@ | @

@@

(a) - (b)

Fig. 4. One cycle of blocked schedules for three proces-
sors; the schedules satisfy the precedences of Fig. 3 without
(a) and with (b) pipelining. A multiplication is assumed to
take the same amount of time as a three-input addition.
Again, the “forks’” are assumed to take zero time.

1 W ®®
DD
3| @

.

ROuymOOR™W
[\°)

RoOwwmOAOR=T
()

W

cessor communication time, and we are boldly assuming
that the “fork’”” nodes have zero execution time. Also, we
assume that a single multiplication takes as long as an addi-
tion with three inputs.

In Fig. 3(b), we have-assumed that unit delays have been
put on the arcs in the cutset marked with a dotted line in
Fig. 1. These delays affect only the first output sample. For
computations that repeat infinitely often, there is very little
penalty for putting delays on feed-forward cutsets. This is
called pipelining, and often results in multiprocessor
schedules with greatly enhanced computation rates
(throughput). The schedules shown are static becuse they
are generated at compile time and do not vary at run-time.
Static scheduling is possible for all correctly constructed
SDF graphs (more about this later). 1

For this example, the iteration period is the length of one
cycle of a blocked schedule and is the reciprocal of the
throughput. For many applications we will try to minimize
the iteration period. The iteration period is bounded from
below because of directed loops. The iteration period‘
bound for homogeneous SDF graphs has been shown to be
the worst case (over all directed loops) of the total com-,
putation time in a loop divided by the number of delays in
the loop{9], [12]. This assumes that pipelining is acceptable.
The iteration period bound for Fig. 1 is two, and is met by
the schedule in Fig. 4(b).

We have ignored interprocessor communication time, as
well as any other overhead associated with invoking anode.
Although the overhead associated with a static schedule is
likely to be less than a dynamic schedule, it is likely to be
nontrivial, particularly for parallel implementations, which
have interprocessor communication time. (Efficient single
processor implementations can be generated as shown
below.) The nodes in Fig. 1 are very simple, most likely ele-
mentary indivisible operations in a programmable proces
sor. Such SDF graphs are said to be atomic (from the Greek
atomos meaning indivisible). Since the execution time o
each nodeis short, any overhead associated with each node
invocation will add up to a substantial portion of the CO"‘"

i
1

ANGULAR
ERROR IN

=]

INPUT SIGNAL

2 TO EQUALIZER

1 DEMODULATED
2 ouTPUT

>

B A

R

-2 conjugate of its input, and the multiplier is a complex multiplier.

putation time. A larger granularity would reduce the over-
head. The SDF graph of Fig. 5 has two nodes which are sec-
“ond-order recursive filters. The second-order filters may
7 themselves be implemented using the SDF graph of Fig. 1,
. or they may be considered elementary operations, imple-
¥ mented, for example, in assembly language. If the granu-
'giarity is at the level of signal processing subsystems (sec-
Zond-order sections, FIR filters, LMS adaptive filters,
 ; trigonometric functions, etc.), the paradigm is called /arge
¢ grain data flow (LGDF) [6], [13]-[15]. The term SDF applies
to both atomic and large grain synchronous data flow.

;

H

L i

Since a recursive digital filter stores state variables, self-
% loops are required, as shown in Fig. 5. The computation
2 within the node can, therefore, be free of side effects, with
3 Its state being fed back over the self-foop. The graph in Fig.
§S represents the computation in the PLL node of the voice-
. band data modem illustrated in Fig. 6. It describes an imple-
1§ mentation of a 2400-bit/s, 600-Bd, frequency-division-mul-
% tiplexed, full-duplex data modem with band-splitting filters
and a fractionally spaced passband adaptive equalizer {16]-
- 18]

Hierarchical graphical descriptions of applications are
, EXtremely appealing. A designer could begin with atop-level
4, Construction like that of Fig. 6, and develop the details by
, building graphs such as Fig. 5. Once all the nodes are
defined, a static schedule can be generated, and a parallel
: iImplementation deployed. An experimental graphical
, Interface for such construction is described by Hait [19].

v

Fongh

£

9600Hz 1200Hz

fig-5. A large-grain SDF graph describing part of the computation in a voice-band data
* modem (the PLL in Fig. 6); it uses two second-order recursive digital filters. Several of the
¥ signals in this graph are complex, implemented as the real part followed by the imaginary
¥ cart. For example, the node marked e’ computes the cosine and sine of the input and
%E'outputs them as real and imaginary parts, respectively. A complex signal has twice the
&4 sample rate of a comparable real signal, therefore. Note that a multiplicity of sample rates
is easily handled under the SDF paradigm. The node marked x* computes the complex

The SDF paradigm permits multiple sample rates in the
same system. This is a significant departure from previous
models, and is an important consideration for most prac-
tical DSP systems. The modem in Fig. 6 explicitly shows three
sample rates, as well as both real and complex signal paths.
Complex signals are implemented as alternating real and
imaginary parts on the same arc. Systems where all sample
rates are rational multiples of all other sample rates are
called synchronous in the signal processing literature. Syn-
chronous DSP systems are easily described using the SDF
paradigm, hence the name for the paradigm.

The above introduction has skirted several important
issues. It has implied that static scheduling is possible for
SDF graphs, so that the overhead usually associated with
the dynamic scheduling of data flow graphs evaporates. But
it is possible for SDF graphs to be incorrectly constructed,
in which case static schedules cannot be found. After
reviewing some related work, we describe an analysis tech-
nique for SDF graphs which yields necessary and sufficient
conditions for correctness of the graph and shows how to
proceed with the scheduling. We then use a simple sched-
uling algorithm to construct a parallel implementation of
the voice-band data modem. An experimental software SDF
programming system called Gabriel is briefly described.

Il. ReLtATED PARADIGMS AND PROGRAMS

Many so-called ““block diagram languages’”” have been
developed to permit programmers to describe signal pro-

IN: INPUT 2D
FILT: FRONT-END FILTER

HIL: HILBERT FILTER

EQ: ADAPTIVE EQUALIZER

PLL: PHASE LOCKED LOOP

DECI: DECISION
DECO: DECODER
OUT: OouTPUT

i ¢ NI A1

R

4

EE AND MESSERSCHMITT: SYNCHRONOUS DATA FLOW

——> REAL SAMPLES
C——> COMPLEX SAMPLES

'8.6. An SDF graph showing a voice-band data modem. Note the multiplicity of sample
fates. For empbhasis, signal paths that carry complex signals are shown with double lines,
am'lOUgh these arcs are no different from the arcs carrying real signals.

1237

cessing systems more naturally. Some examples are BLODI
[20], PATSI [21], BLODIB [22], LOTUS [23], DARE [24],
MITSYN [25], Circus [26], and TOPSIM [27]. These examples
are mostly simulation programs, not intended for real-time,
cost-sensitive implementation. They are based on updating
the state of the system according to some time increment,
and hence are time-driven. Simulators using data-driven
dynamic control have also been developed [28]-[30], but the
overhead of dynamic control is often excessive. SDF avoids
these costs by static scheduling.

Signal flow graphs, special cases of SDF graphs, have been
used to describe linear, single-sample-rate systems for static
parallel implementation [31]. The scheduling method in [31]
does not consider the periodic nature of a desired sched-
ule, and therefore does not always identify the best sched-
ules. It also does not support multiple sample rates. In spite
of these deficiencies, this representation has been endorsed
by others [32], [33]. Multiprocessor implementations of
algorithms specified as homogeneous atomic SDF graphs
have been explored in [8]-[11], where overlapped cycles of
period schedules are permitted. This admirable work has
some deficiencies in some applications, however. Primar-
ily, it has no provision for multiple sample rates, thus
restricting the range of applications. Also, the complexity
of the scheduling technique may become unmanageable
for some important target architectures. Finally, 5. Y. Kung
et al. are investigating the use of hierarchical flow graphs
for VLSI array processors [34].

An immediate potential objection to the SDF paradigm
is that general SDF graphs can be expressed as simpler
homogeneous SDF graphs, where the number of samples
produced and consumed is always unity, as shown in Fig.
7(a). This means that the prior art applicable to homoge-

v

(a) (b)

Fig. 7. Two transformations of general SDF graphs into
homogeneous SDF graphs. The transformation is notalways
trivial.

neous SDF graphs can be applied to multiple-sample-rate
SDF graphs [9], [31]-[33], [35], [36]. However, the transfor-
mation is not always simple, as illustrated in Fig. 7(b), and
may require replicating some of the nodes. A systematic
method for performing this transformation is described in
[37] where the transformation is used to find the iteration
period bound for SDF graphs.

Reduced dependence graphs are specifications of sys-
tems in terms of periodic acyclic precedence graphs, where
only one period is illustrated, and its dependence on pre-
vious periods is done by indexing [38], [39]. The resulting
description is similar to homogeneous data flow graphs.
Reduced dependence graphs are used to describe regular
iterative algorithms, which can then be systematically

1238

»

mapped onto processor arrays. This approachis suitable for
descriptions of well-structured algorithms to be imple.
mented in systolic arrays. The range of applications is again
excessively limited for our objectives.

Computation graphs were introduced in 1966 by Karp ang
Miller [40] and were further explored by Reiter [41]. They
are essentially equivalent to SDF graphs, but our use of the
model differs significantly. Karp and Miller concentrate on
fundamental theoretical considerations, for example, proy.-
ing that computation graphs are determinate, meaning that
any admissible execution yields the same result. Such ,
theorem, of course, also underlies the validity of data flow.
Other early analysis using the general computation graph
model concentrates on graphs that terminate, or deadlock,
after some time. Most DSP applications, however, do not
terminate, so these results are not useful in this application,
Simplified versions of the model have been explored by
Commoner and Holt [35] and Reiter [36], but the restrictions
imposed on the model are excessive. Computation graphs
have been shown to be a special case of Petri nets [42]-[44)
or vector addition systems [45]. These more general models
can be used to describe asynchronous systems, but imple-
mentations generally require expensive dynamic control,

11!, IMPLEMENTATION ARCHITECTURES

Itis useful to consider the hardware which might be used
to implement a computation described by an SDF graph.
We consider three models,

+ a sequential processor,

« isomorphic hardware mapping, and

+ homogeneous parallel processors sharing memory
without contention.

The first model cannot take advantage of available con-
currency but does take advantage of the appealing pro-
grammer interface that is possible for SDF. In Section V we
describe an experimental system for SDF programming of
a single programmable DSP microcomputer.

The second model is a fancy name for an obvious imple-
mentation which has separate hardware for each node in
the graph. In this case, SDF is a description of hardware as
well as a description of the computation; the SDF graph is
isomorphic with the implementation architecture. In some
ways, SDF is useful as hardware description, but our intent
is that SDF be used primarily for functional description. In
this case, an isomorphic implementation architectureis not
likely to be efficient, in that much of the hardware is likely
to be idle much of the time.

The nodes of an SDF graph can be statically scheduled
onto parallel processor architectures. One class of parallel
architectures that we consider is homogeneous parallel
processors sharing memory without contention. A practical
programmable DSP of this type uses extensive pipelining
with interleaved concurrent programs [46]. We are cur-
rently investigating SDF programming of multiple com-
mercially available programmable DSPs. In this case, the
processors will not share memory without contention, 50
we will have to consider communication delays i an
attempt to optimize the schedule. .

With these target architectures in mind, we now consider
SDF in more detail.

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 9, SEPTEMBER 1987 i

o9igzm i i

LB AT AR 21

= IV VERIFYING CORRECTNESS AND SCHEDULING

we assume thatan SDF graph describesa repetitive com-
utation to be performed onan infinite stream of input data,
sothe desired schedule is periodic. Itis notalways possible
ruct a practical periodic schedule for an SDF graph,

mconst
der the SDF graph of Fig. 8(a). To start the

however. Consi

(@ (b)
fig. 8. (a)An exampleofa defective SDF graph with sample
rate inconsistencies. (b) A corrected SDF graph with con-
sistent sample rates. The flags attached to the arcs simply
identify them with a number.

computation, node1can be invoked becauseithas no input
ar¢sand hence needs no data samples. After invoking node
1,node2can be invoked, after which node 3 can beinvoked.
This sequence can be repeated. But node 1 produces twice
as many samples on arc 2 as node 3 consumes. An infinite
repetition of this schedule, therefore, causes an infinite
accumulation of samples in the buffer associated with arc
3.Thisimplies an unbounded memory requirement, which
is clearly not practical.

In a DSP sense, the SDF graph has inconsistent sample
rates. Node 3 expects as inputs two signals with the same
sample rate but getstwo signals with different sample rates.
The SDF graph of Fig. 8(b) does not have this problem. A
periodic admissible sequential schedule repeats the invo-
cations {1, 2, 3, 3]. Node 3 is invoked twice as often as the
other two. It is possible to automatically check for con-
sistent sample rates and simultaneously determine the rel-
ative frequency with which each node must be invoked. To
do this, we need a little formalism.

A. Formalism

An SDF graph can be characterized by a matrix similar to
the incidence matrix associated with directed graphs in
graph theory. Itis constructed by first numbering eachnode
and arc, as done in Fig. 8, and assigning a column to each
pode and a row to each arc. The (i, j)th entry in the matrix
!Sthe amount of data produced by node jon arc ieach time
itisinvoked. If node j consumes data fromarc i, the number
Is negative, and if it is not connected to arc i, then the num-
ber is zero. for the graphs in Fig. 8 we get

1 -1 0 1 -1 0
,=1{2 0 -1 r,=12 0 —-1j. M
0 1 -1 o 2 -1

This matrix is called a topology matrix, and need not be
square, in general.

If a node has a connection to itself (a self-loop), then only
Ofle entry in T describes this link. This entry gives the net
t#fference between the amount of data produced on this
I_mk and the amount consumed each time the node is
invoked. This difference should clearly be zero for a cor-
rectly constructed graph, so the T' entry describing a self-
loop should be a zero row.

u
£E AND MESSERSCHMITT: SYNCHRONOUS DATA FLOW

We can replace each arc with a FIFO queue (buffer) to
pass data from one node to another. The size of the queue
will vary at different times in the execution. Define the vec-
tor b(n) to contain the number of tokens in each queue at
time n.

For the sequential (single processor) schedule, only one
node can be invoked at a time, and for the purposes of
scheduling it does not matter how long each node runs.
Thus the time index n can simply be incremented each time
a node finishes and a new node is begun. We specify the
node invoked at time n with a vector v(n), which has a one
in the position corresponding to the number of the node
that is invoked at time n and zeros for each node that is not
invoked. For the systems in Fig. 8, v(n) can take one of three
values for a sequential schedule,

1 0 0
viny=|0]OR|1|OR |0 2
0 0 1

depending on which of the three nodes is invoked. Each
time a node is invoked, it will consume data from zero or
more input arcs and produce data on zero or more output
arcs. The change in the size of the queues caused by invok-
ing a node is given by

b(n + 1) = b(n) + Tv(n). (3)

The topology matrix T’ characterizes the effect on the buff-
ers of invoking a node.

To initialize the recursion (3) we set b(0) to reflect the
number of delays on each arc. The initial condition for the
queues in Fig. 9 is thus -

1
b0) = [] 4
2

Fig. 9. Anexample ofan SDF graph with delays on the arcs.

Because of these initial conditions, node 2 can be invoked
once and node 3 twice before node Tisinvoked atall. Delays,
therefore, affect the way the system starts up. Clearly, every
directed loop must have at least one delay, or the system
cannot be started.

Connections to the outside world are not considered, for
now. Thus a node with only inputs from the outside is con-
sidered a node with no inputs, which can be scheduled at
any time. The limitations of this approximation are dis-
cussed in [47].

B. Identifying Inconsistent Sample Rates

Inconsistent sample rates preclude construction of a
periodic sequential schedule with bounded memory
requirements. A necessary condition for the existence of
such a schedule is that rank () = s — 1, where s is the num-
ber of nodes. This is proven in [47], so we merely give the
intuition here. The topology matrix T, for the graph in Fig.

1239

8(a) has rank three, so no periodic admissible sequential b(0), the ith node is said to be runnable at a given ¢

schedule can be constructed. The topology matrixT',, for the ifithas notbeen run g;times and runningitwill notcatf £ Schn
graph in Fig. 8(b) has rank two, so a schedule can be con- a buffer size to become negative. A class S algorithm fea
structed. It is proven in [47] that a topology matrix with the for Sequential) is any algorithm that schedules a node;§ 1 o
proper rank has a strictly positive (element-wise) integer it is runnable, updates b(n), and stops (terminates) q, el
vector q in its right nullspace, meaning that I'q is the zero when no more nodes are runnable. If a class § algoritf putatii
vector. For Fig. 8(b), a set of such vectors is terminates before it has scheduled each node the nugf <ors. !
1 ber of times specified in the g vector, then it is said to] substé
deadlocked. <howtl
q=]]1 E can b
2 Class S algorithms construct static schedules by Si'ﬁu ror wil
) . lating the effects on the buffers of an actual run forone cyc get
for any positive integer /. Notice that the dimension of qis of a periodic schedule. That is, the nodes need not actygy SPRTATeS
s, the number of nodes. Notice further that q specifies the run. Any dynamic (run-time) scheduling algorithm becom Lonter
number of times we should invoke each node in one cycle a class S algorithm simply by specifying a stopping Cdg A b
of a periodic schedule. Node 3 gets invoked twice as often dition, which depends on the vector g. It is proven ingpf o list
as the other two nodes, for any positive integer /. That this thatany class Salgorithm will run to completion ifa period cesso
works is proved using (3) by observing that if each node is admissible sequential schedule exists foragivenSDFgraph § 1.11p
invoked the number of times specified by g, the amount of Hence, successful completion of the algorithm guarant of T'tl
data b(n) left in each buffer ends up equal to the amount that there are no directed loops with insufficient delay,} numit
before the invocations. Hence, the schedule can be suitable class S algorithm for sequential scheduling is I s
repeated infinitely often with finite memory. E theren
Valuable information is obtained from the topology 1) Solve for the smallest positive integer vector g e o} Uity
matrix. Its rank can be used toverify consistent sample rates, 2) Form an arbitrarily ordered list L of all nodes in the struc
and its nullspace gives the relative frequency with which system. g The
nodes must be invoked. 3) Foreachael,schedule «ifitis runnable, trying ea avoic
node once. ¥ detim
C. Insufficient Delays 4) If each node « has been scheduled g, times, STOp: the s
5) Ifnonodein L can be scheduled, indicate a deadloc grap!
Even with consistent sample rates, it may not be possible (an error in the graph). : cach
to construct a periodic admissible sequential schedule. Two 6) Else, go to 3 and repeat. rithm
examples of SDF graphs with consistent sample rates but : mera
no such schedules are shown in Fig. 10. Directed loops with The only question remaining for single processor sche S
ules is the complexity of the first step above. Our techniqux' o p
1 1 is simple. We begin with any node A inthe graphand assumg wem
itwill be run once in one cycle of the periodic schedule(i.éz sche
D let g4 = 1). Assume node B is connected to node A. We can o, =
find gg with a simple division, possibly getting a fraction, adm
22 but always getting a rational number. A node cannot be cliatw
Fig. 10. Two SDF graphs with consistent sample rates but invoked a fractional number of times, so we will have to
no admissible schedules. correct for this later. We do the same for any node Cadjaf
cent to B. A simple recursive algorithm computes these
insufficient delays are an error in the construction of the rational numbers in linear time (a linear function of the
SDF graph and must be identified to the user. It is shown number of arcs, not the.number of nodes). The resulting
in[47]thata large class of scheduling algorithms will always vector g has rational entries and is in the nullspace of T. To,
run to completion if a periodic admissible sequential get t-he smalle.st lnteggrvector in the nullspace of.I‘ we use
schedule exists, and will fail otherwise. Running such an Euclid’s algorithm to find the least common multiple of all
algorithm is a simple way of verifying the correctness of the the denominators. Actually, three simultaneous ObJeCt'VTS
SDF graph. The class of algorithms is described in the next are accort?pllsheq with one pass through the graph. Sample
subsection. rate consistency is checked, a vector (with rational entries)
in the nullspace of T'is found, and Euclid’s algorithm is used
to find the least common multiple of all the denominators.
D. Scheduling for a single Processor SDF offers concrete advantages for single processor
Givenapositive integer vector gin the nullspace of ', one implementations. The ability to interconnect m0dular '
cycle of a periodic schedule invokes each node the number blocks of code (nodes) in a natural way could CO“.S'derab'y
of times specified by q. A sequential schedule can be con- ease the task of programming high-performance signal pro-
structed by selecting a runnable node, using (3) to deter- cessors, even if the blocks of code themselves are pro-
mine its effect on the buffer sizes, and continuing until all grammed in assembly language. But a single processor
nodes have been invoked the number of times given by q. implementation cannot take advantage of the explicit C‘:F'
We define a class of algorithms. currency in an SDF description. The next section s de_ i
cated to explaining how the concu rrency in the description Fig.
Definition (Class S Algorithms): Given a positive integer can be used to improve the throughput of a multiprocessor e
vectorgsuchthatI'qg = 0 and an initial state for the buffers implementation. pre«
¢

1240

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 9, SEPTEMBER 1987 f.{:‘

LEE

é Scheduling for Parallel Processors

Clearly, if aworkable schedule for a single processor can
be enerated, then a workable schedule for a multipro-
cessor system can also be generated. Trivially, all the com-
putation could be scheduled onto only one of the proces-
sors. Usually, however, the throughput can be increased
substantially by distributing the load more evenly. It is
shown in [47] that the muttiprocessor scheduling problem
canbe reduced to afamiliar problem in operations research
for which good heuristic methods are available. We again

wve the intuition without the details. We assume for now
homogeneous parallel processors sharing memory without
contention, and consider only blocked schedules.

A blocked periodic admissible parallel schedule is a set
of lists {¥isi="1""", M)} where M is the number of pro-
cessors, and ¥; specifies a periodic schedule for processor
i\ pisthe smallest positive integer vector in the nullspace
of T then acycleof a schedule must invoke each node the
number of times given by ¢ = Jp for some positive integer
J.Jis called the blocking factor, and for blocked schedules,
there is sometimes a speed advantage to using J greater than
unity. If the “‘best” blocking factor is known, then con-
struction of a good parallel schedule is not hard.

The task of the scheduler is to construct a schedule that
avoids deadlocks and minimizes the iteration period,
defined more generally to be the run-time for one cycle of
the schedule divided by J. The first sfep is to construct a
graph describing the precedences in @ = Jp invocations of
each node. The graph will be acyclic. A precise class S algo-
rithm accomplishing this construction is given in [47] so we
merely illustrate it with the example in Fig. 11(a). Node 1
should be invoked twice as often as the other two nodes,
sop = [211]". Further, given the delays on two of the arcs,
we note that there are three periodic admissible sequential
schedules with unity blocking factor, ¢; = {1, 3, 1, 2},
é;= {3,1,1,2}, or ¢, = {1, 1,3, 2}. A schedule that is not
admissible is ¢, = {2, 1,3, 1,}, because node 2 is not imme-
diately runnable. Fig. 11(b) shows the precedences involved

ki

'8 11. (@)An SDF graph with self-loops. (b) An acyclic prec-

prer\ce graph for unity blocking factor, J = 1. (¢) An acyclic
ecedence graph for J = 2.

¢, LE
+ HEAND MESSERSCHMITT: SYNCHRONOUS DATA FLOW

in all three schedules. Fig. 11(c) shows the precedences
using a blocking factor of two (J = 2).

The self-loops in Fig. 11(a) imply that successive invo-
cations of the same node cannot overlap in time. Some
practical SDF implementations have such precedences in
orderto preserve the integrity of the buffers between nodes.
In other words, two processors accessing the same buffer
at the same time may not be tolerable, depending on how
the buffers are implemented. The self-loops are also
required, of course, if the node has a state that is updated
when itis invoked. We will henceforth assume that all nodes
have self-loops, thus avoiding the potential implementa-
tion difficulties.

If we have two processors available, a schedule for J =
1is

¥, = {3}
¥, = {1,1,2}.

When this system starts up, nodes 3 and 1 will run con-
currently. The precise timing of the run depends on therun-
time of the nodes. If we assume that the run-time of node
1 is a single time unit, the run-time of node 2 is two time
units, and the run-time of node 3 is three time units, then
the timing is shown in Fig. 12(a). The shaded region rep-

TIME —> TIME —>
2 ﬁ l 1y l 2, 3,
PROC. 2: 3 l 3 I3 | 1,

(@) (b)

Fig. 12. One period of each of two periodic schedules for
the SDF graph of Fig. 11. In @/ = 1 while in (b) / = 2.

PROC.1: | 1) l 1,

2

resents idle time. A schedule constructed for J = 2, using
the precedence graph of Fig. 11(c) will perform better. An
example is

i

¥,
¥,

{3,1, 3}
{1,1,2,1,2}

and its timing is shown in Fig. 12(b). There is no idle time,
so no faster schedule exists.

The construction of the acyclic precedence graph is han-
dled by the class S algorithm given in [47]. The remaining
problem of constructing a paraliel schedule given an acyclic
precedence graph is a familiar one. It is identical with
assembly line problems in operations research, and can be
solved for the optimal schedule, but the problem is NP com-
plete [48]. This may not be serious for small SDF graphs, and
for large ones we can use well studied heuristic methods,
the best being members of a family of “critical path” meth-
ods [49]. An early example, known as the Hu-level-sched-
uling algorithm [50], closely approximates an optimal solu-
tion for most graphs [49], [51] and is simple.

V. A PRELIMINARY SDF SysTem

We are developing an experimental SDF programming
system called Gabriel. It is written in Franz Lisp under Unix'
4.2bsd. Lisp was selected primarily because it eases the task
of rapid prototyping. The Franz Lisp dialect was selected

'Unix is a trademark of AT&T.

1241

because of its extensive support for foreign functions, so
hodes written in different languages can be intermixed in
asingle SDF graph, in prinicple. In this section we describe
the principles of Gabriel, emphasizing its use of the theory
described above. The details of the complete system will
be reported separately.

A. Simulation and Code Generation

In Gabriel, a programmer describes the topology of the
data flow graph (currently using ““connect” commands, but
graphically in the future). Gabriel then constructs a single-
processor schedule and invokes it for a specified number
of cycles. The systemis currently used intwo differentways.
First, the nodes that are invoked may perform signal pro-
cessing functions and display signals or results. This is the
simulation mode. Second, the nodes that are invoked may
generate code for a DSP microcomputer. This is the code
generation mode. The only difference between the two
modes is in the definition of the nodes.

A Gabriel node can have some or all of the following:

1) parameters (e.g., FFT order),

2) state variables (e.g., memory in a biquad),

3) inputs and outputs (Gabriel supplies the buffers),

4) an initialization routine (e.g., initialize state vari-
ables),

5) a run-time routine (e.g., compute FFT), and

6) a termination routine (e.g., clean-up).

The initialization routines for all the nodes that have them
are invoked once before the schedule is invoked. Then the
run-time routines are invoked according to the schedule.
After completing the specified number of cycles of the peri-
odic schedule, the termination routines for all nodes that
have them are invoked once.

The code generation mode is illustrated in Fig. 13 for a

. single processor. The Lisp routines associated with each of
the Gabriel nodes write DSP code into a file when invoked.
Gabriel begins by constructing a schedule, as shown. It pro-

SDF GRAPH ' GABRIEL ASSEMBLER CODE

SCHEDULE: {A,B,C,D,C,D)

INVOKE INIT. ROUTINES

INITIALIZE MEMORY

A RUNTIME ROUTINE

FETCH INPUT

B RUNTEME ROUTINE

INTERPOLATE
C RUNTIME ROUTINE o

CALLFILTER

D RUNTIME ROUTINE

INTERPOLATE

C RUNTIME ROUTINE

CALL FILTER

D RUNTIME ROUTINE

OUTPLUT

GOTO START

INVOKE TERM. ROUTINES

FILTER SUBROUTINE

Fig. 13. Anillustration of the mechanism by which Gabriel
generates code fora DSP microcomputer from an SDF graph.
First a schedule is constructed. Then the initialization rou-
tine for each of node that has one is run. In this example,
only the filter node has an initialization routine, and it gen-
erates code to initialize the state variable memory of the fil-
ter. Then the run-time routines are invoked according to the
schedule, and each generates code. In the case of the filter
node, the code generated at this time is merely a subroutine
call. The subroutine is then defined by the termination rou-
tine.

1242

ceeds by invoking initialization routines. In this case op|
the filter has an initialization routine, and that routine gen.
erates code to initialize memory for the state variables of
the filter. The run-time routines are then invoked accordin
to the schedule, for one cycle of the periodic schedule only,
Each run-time routine can either generate code directly to
perform its function or generate code to call a subroutine,
The only node here that calls a subroutine is the filter. This
node has a termination routine that generates the subrgy.
tine definition.

The first DSP microcomputers we have selected to target
are the Motorola DSP56000 and AT&T Bell Labs DSp 33,
These are state-of-the-art processors with manageable pipe-
lining. Using a small set of nodes we have verified the prin.
ciples described in this paper. To supporta new processor
all that is required is to generate a new set of nodes that
are code generating nodes for that processor. No changes
to Gabriel are required.

Itisimportant to ensure that it is easy to create new nodes,
but we expect that users will be strongly biased towards
using standard nodes outofa node library, rather than writ-
ing their own. For this reason, the node library mustbe care-
fully selected for its generality, efficiency, and simplicity.
Basic signal processing functions, such as digital filters, will
be part of any standard library. Furthermore, since the
nodes are code generators, considerable intelligence can
be built into them. For example, a filter node may incor-
porate a filter design and synthesis package. Its parameters
would be a description of the desired frequency response.

B. Static Buffering

An efficiency issue concerns the buffering of data
between nodes. Code must be generated for the DSP to
manage the buffers. Inimplementing an SDF graph, adirect
approach isto use FIFO queues, but these are costly, requir-
ing considerable run-time overhead even on processors
with efficient support for circular buffers. For full gener-
ality, we need a mechanism that is functionally equivalent
to a FIFO queue, but requiring less overhead. We accom-
plish this by statically computing the location of the input
samples and the destination of the output sam ples for each
invocation of a node. Thus the code that is generated merely
reads its inputs directly from specified memory locations
and writes its outputs directly to specified memory loca-
tions. We call this static buffering.

We now define static buffering precisely. Suppose that
asingle cycle of a periodic schedule contains g invocations
of the node A. Denote these invocations Ay, Az, ** "+ Ag
Recall that Gabriel invokes the code generator A;onlyonce
but the code generated will be run infinitely often on the
target processor. Static buffering means that every time the
code generated by A; runs it accesses the same locations
foritsinputs and outputs. This does notalways occur un}eSS
we take some care in the design of the buffers. Consider
the simple two-node system and its schedule in Fig. 14. Four
memory locations, arranged as a circular buffer, suffice to
buffer the data between nodes. If we use four locations,
however, the buffer will not be static. The first run of ?he
A, code writes its output data to locations 1 and 2. The first
run of A, writes to 3 and 4, and A3 to 1 and 2. The secon
run of the A; code, therefore, must write its output to loca-
tions 3 and 4. So the memory locations cannot be statically

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 9, SEPTEMB

ER 1997]
i F

i
u

2 3
° SCHEDULE: (A,,A;,B\,Al,ﬂl)

nun TENGTH ¢ BUREES

14, Forthis simpleexample, given the schedule shown,
 the maxiriry number of samples in the buffer at any one
gime is four, but the buffer must be of length 6 in order to
* gatisfy the static puffering condition.

LENGTH 4 BUFFER

" puiltinto the code. If a buffer of length 6 is used, however,
© every invocation of the A, code writes its data to locations
1and 2.
: We now show precisely the condition on the length of
" he buffer between two nodes so that the buffering is static.
There are many ways to do this, sowe selectadirect method.
Consider anode A that gets invoked g times and produces
isamplestoacircular buffer with total length N(the number
of memory locations allocated). Static buffering occurs if

and only if
iq = KN

for some integer K. This follows because there are iq sam-
ples written to the buffer between one invocation of A;and
the next. Thus ifabuffer oflength Nistobe static there must
exist an integer K such that

N = ig/K. ‘ ®)

in the example of Fig. 14, for node A, i =2and g = 3,50
static buffering requires that

N = 6/K

The only possible buffer lengths are 1, 2, 3, and 6, corre-
sponding to K equalto6,3,2, and 1. The Gabriel scheduler
supplies the information that the buffer must be at least of
length 4 (the number of data samples in the buffer at any
time is a function of the schedule, and for the schedule
shown the maximum is 4), so for static buffering the buffer
must be of length 6.

For a buffer to be static it must satisfy a similar condition
for the destination node (B in Fig. 14) as well as the source
f’Ode. Suppose that the destination node is invoked p times
in one cycle of the schedule and consumes j samples on
eachinvocation. Then for alength N buffer to be static there
must exist an integer L such that

N = pj/L.

F'_°"‘ the result in Section |V-B, however, we know that
Pi = iq so this condition is automatically satisfied if con-
dition (5) is satisfied.
SeY\ele can now summarize the static buffering strategy.
e ctthe smallest N in the admissible set (given by (5)) that
bg';t‘aterthan orequal tothe minimum buffer size supplied
(C):)n f?dscheduler. Occasionally, such an N will not exist
CaSesvlv er, for ex.ample, an arc with a large delay), in.which
bi k.e need to increase the blocking factor. Increasing the
ocking factor will increase q. It is expected that this sit-

uatj : o - :
c ion will be rare, and its impact on code efficiency is not
urrently clear.

5 . LEE
& AND MESSERSCHMITT: SYNCHRONOUS DATA FLOW

C. Asynchrony

ltwas mentioned in Section (that conditional operations
such as those shown in Fig. 2 are not possible within the
SDF model because they involve asynchronous nodes. The
special class of asynchronous graphs represented by Fig.
2 can be handled efficiently nonetheless. In this subsection
we propose a technique.

The graphin Fig.2can be divided into three synchronous
subgraphs. The first consists of the switch, select, and any
part of the system connected synchronously to them (not
shown). The other two subgraphs are represented by the
f(-)and g(*) nodes. Sincea hierarchy is natural, the f(+) and
g(+)ynodes may themselves be complicated graphs, possibly
with asynchronous nodes. Three schedules can be gen-
erated, one for each subgraph. The control signal into the
select comes through the switch as shown to ensure that
the switch is scheduled before the select in the subgraph
containing them. The code segment we wish to generate
has the form

if (x) then goto label;
code for g(*)
goto label2;

label1: code for f(*);

label2: code for select;

The switch is a special node that must have some knowl-
edge of Gabriel internals. When it is invoked, it generates
the code corresponding to the first line above. Then it
recursively calls the Gabriel supervisor to invoke the sched-
ule for g(). When one cycle of that schedule has been
invoked, Gabriel returns control to the switch node which
writes the third line, writes the label on the fourth line, and
invokes the schedule corresponding to f(*). When that
returns, the switch writes the label on the fifth line and is
finished; the main schedule proceeds. Interestingly, it also
appears possible to extend the parallel scheduler to effi-
ciently handle this type of graph. Thus with a slight exten-
sion of the SOF model we achieve generality by permitting
conditional constructs.

Although apparently equivalent to the if-then-else capa-
bility of functional languages, constructs of the type shown
in Fig. 2 are quite Jimited compared to the full potential of
data flow. The switch and select nodes must occur in pairs,
connected as shown. Furthermore, f(-) and g(-) subgraphs
cannot have any connection to each other, synchronous of
not, nor any connection to the rest of the system except
through the switch and select nodes. Any graph containing
switch and select nodes will have to be carefully checked
for errors. More general asynchronous techniques require
some study of the fundamentals of data flow. While there
has been some effort {52], much work needs to be done
before systematic asynchronous firing rules can be made
to work in their full generality.

D. Generating Parallel Programs

The next logical step is to support a parallel architecture.
For multiprocessor systems, given an SDF graph and the
run-times of the nodes, Gabriel constructs the schedules,
but does not execute the nodes or generate code, at this
point. Weuse the scheduling functions to estimate the per-
formance of an implementation of the modem of Fig. 6 on
a = processor [46]. The = processor is a practical homo-

geneous parallel programmable digital signal processor
with shared memory that has been proposed by the authors;
it uses interleaved independent processes in a deep pipe-
line. The complete SDF graph for the model contains 28
large grain and atomic nodes and three sample rates. Before
running the parallel scheduler we manually put delays on
some of the feed-forward cutsets. Using the Hu-level-
scheduling algorithm, up to seven parallel processors are
fully utilized (have no significant idle time in one cycle of
the periodic schedule). For seven processors, the iteration
bound is met, so adding more processors does not speed
up the schedule. We conclude that this application exhibits
surprising concurrency, and that relatively simple sched-
uling algorithms are adequate to exploit the concurrency.

VI. CONCLUSION

We have outlined a paradigm called synchronous data
flow for the description of digital signal processing algo-
rithms. The description permits interpolation and deci-
mation, and restricts neither the granularity (complexity) of
a node nor the language in which it is programmed. It is
hierarchical and encourages a structured methodology for
building a system. Most importantly, SDF graphs explicitly
display concurrency and permit automatic scheduling onto
parallel processors. We illustrated how the SDF paradigm
can be used to generate code for DSP microcomputers,
including the management of limited forms of asynchrony
that support conditionals. We also introduced the notion
of static buffering. Using these techniques, we believe that
compilers can be constructed which efficiently map SDF
descriptions onto a wide variety of hardware architectures,
thereby eliminating many of the costly translations from
onedescription to another that are necessary under current
methodologies.

REFERENCES

[1] D.A.Padua, D.). Kuck, and D. H. Lawrie, “High-speed mul-
tiprocessors and compilation techniques,” IEEE Trans. Com-
put., vol. C-29, no. 9, pp. 763-776, Sept. 1980.

[2] J.B.Dennis, “Dataflow supercomputers,” Computer, vol. 13,
no. 11, pp. 48-56, Nov. 1980.

[3] J.B.Dennisand D. P. Misunas, ‘’A computer architecture for
highly parallel signal processing,” in Proc. 1974 Nat. Comput.
Conf., pp. 402-409, 1974.

{4] I. Watson and J. Gurd, “A practical data flow computer,” .

Computer, vol. 15, no. 2, pp. 51-57, Feb. 1982.

[5] A. L. Davis and R. M. Keller, “Data flow program graphs,”
Computer, vol. 15, no. 2, pp. 26-41, Feb. 1982.

[6] W. B. Ackerman, “‘Data flow languages,” Computer, vol. 15,
no. 2, pp. 15-25, Feb. 1982.

[71 P.C.Treleaven, D. R. Brownbridge, and R. P. Hopkins, “Data
driven and demand driven computer architecture,” Univer-
sity of Newcastle upon Tyne, Newcastle upon Tyne, UK, Tech.
Rep., 1981.

[8] D.A.Schwartzand T.P. Barnwell, ll1, *’Cyclo-static solutions:
Optimal multiprocessor realizations of recursive algo-
rithms,” in VLSI Signal Processing, I, S-Y. Kung, R. E. Owen,
and J. G. Nash, Eds. New York, NY: IEEE PRESS, 1986.

[9] D.A.Schwartz, “Synchronous multiprocessor realizations of
shift-invariant flow graphs,” Ph.D. dissertation, Georgia Inst.
Technol. Tech. Rep. DSPL-85-2, july 1985.

[10] T.P.Barnwell, C.). M. Hodges, and M. Randolf, ““Optimum
implementation of single time index signal flow graphs on
synchronous multiprocessor machines,” in Proc. Int. Conf.
on Acoustics, Speech, and Signal Processing (May 3-5, 1982).

[11] T.P.Barnwell and D. A. Schwartz, “Optimal implementation
of flow graphs on synchronous multiprocessors,” in Proc.
1983 Asilomar Conf. on Circuits and Systems, Nov. 1983.

1244

[12]

[13]

(4]

[15]

[16]

[17]

18]

(191
[20]
[21]

(22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

(301

31]

32]

[33]

[34]

[35]
[36)

371

[38]

139

M. Renfors and Y. Neuvo, “The maximum samplin
digital filters under hardware speed constraints,” Jggg T
Circuits and Syst., vol. CAS-28, no. 3, pp. 196-202, Mar, 1‘;';&

8 rate of

A. L. Davis, “The architecture and system method of DDM .
A recursively structured data driven machine,” in prgc. 51:
Annu. Symp. on Computer Architecture, pp. 210-215 th
1978. + Apr.
J. Rumbaugh, A data flow multiprocessor,” IEEE Trans, ¢,
put., vol. C-26, no. 2, p. 138, Feb. 1977. --om-
R. G. Babb, ““Parallel processing with large grain data flow
techniques,” Computer, vol. 17, no. 7, pp. 55-61, July 19g4
G. Ungerboeck, “Fractional tap-spacing and consequgr‘ce‘s
for clock recovery in data modems,” /EEE Trans. Commun,
vol. COM-24, pp. 856-864, Aug. 1976. "
R. D. Gitlin and S. B. Weinstein, “Fractionally-spaced equql.
ization: An improved digital transversal equalizer,” Be/ Syst,
Tech. J., vol. 60, no. 2, Feb. 1981.

D. D. Falconer, “Jointly adaptive equalization and carrig,
recovery in two-dimensional digital communication sys-
tems,” Bell Syst. Tech. J., vol. 55, no. 3, Mar. 1976.

D.). Hait, “The BLOSIM simulation program,” U. C. Berkeley
Master’s Rep., Nov. 11, 1985. '
Kelly, Lochbaum, and Vyssotsky, “‘A block diagram compi.
ler,” Bell Syst. Tech. /., vol. 40, no. 3, May 1961.

B. Gold and C. Rader, Digital Processing of Signals. New
York, NY: McGraw-Hill, 1969.

B. Karafin, “The new block diagram compiler for simulation
of sampled-data systems,”” in AFIPS Conf. Proc., vol. 27, pp.
55-61, 1965.

M. Dertouzous, M. Kaliske, and K. Polzen, “On-line simy.
lation of block-diagram systems,” IEEE Trans. Comput., vol.
C-18, no. 4, pp. 333-342, Apr. 1969.

G. Korn, “High-speed block-diagram languages for micro-
processors and minicomputers in instrumentation, control,
and simulation,” Comput. Elec. Eng., vol. 4, pp. 143-159, 1977,
W. Henke, “MITSYN-AR interactive dialogue language for
time signal processing,”” MIT Res. Lab. Electron. Memo. RLE-
TM-1, Feb. 1975.

T.Crystaland L. Kulsrud, “Circus,” Inst. for Defense Analysis,
Princeton, NJ, CRD Working Paper, Dec. 1974.
Dipartimento di Elettronica, Politecnico di Torino, TOPSIM
IlI—Simulation Package for Communication Systems—User’s
Manual. Torino, Italy: Politecnico di Torino.

D. G. Messerschmitt, ““A tool for structured functional sim-
ulation,” IEEE J. Selected Areas Commun., vol. SAC-2, no. 1,
pp. 137-147, Jan. 1984.

——, “Structured interconnection of signal processing pro-
grams,” in Proc. Globecom84, Dec. 1984.

L. Snyder, ““Parallel programming and the Poker program-
ming environment,” Computer, vol. 17, no. 7, pp. 27-36, july
1984.

R. E. Crochiere and A. V. Oppenheim, “‘Analysis of linear dig-
ital networks,” Proc. IEFE,vol. 63, no. 4, pp. 581-595, Apr. 1975.
). P. Brafman,). Szczupak, and S. K. Mitra, “An approach to
the implementation of digital filters using microprocessors,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-26,
no. 5, pp. 442-446, Oct. 1978.

J. Zeman and G. S. Moschytz, *’Systematic design and pro-
gramming of signal processors, using project management
techniques,”” IEEE Trans. Acoust., Speech, Signal Processing.
vol. ASSP-31, no. 6, pp. 1536-1549, Dec. 1983. .
S.Y.Kung, J. Annevelink, and D. Dewilde, “Heirarchical iter-
ative flowgraph integration for VLS| array processers,” in vLS!
signal Processing, P. R. Capello et al., Eds. New York, NY:
IEEE PRESS, 1984, pp. 294-305. .
F. Commoner and A. W. Holt, “Marked directed graphs.
J.Comput. Syst. Sci., vol. 5, pp. 511-523, 1971.

R. Reiter, ““Scheduling parallel computations,” J. Assoc. Com-
put. Mach., vol. 14, pp. 590-599, 1968.

E.A. Lee, A coupled hardware and software architecturé for
programmable digital signal processors,” Ph.D. dissertation.
Memo. UCB/ERL M86/54, EECD Dept., UC Berkeley, 1986.
R. M. Karp, R. E. Miller, and S. Winograd, “‘The organnzatloﬂ
of computations for uniform recurrence equations,”’ J. ASSoC-
Comput. Mach., vol. 14, pp. 563-590, 1967.

5. K. Rao, “Regular iterative algorithms and their implemer-
tations on processor arrays,” Ph.D. dissertation, Informat.
Sys. Lab., Stanford Univ., Stanford, CA, Oct. 1985.

PROCEEDINGS OF THE IEEE, VOL. 75, NO. 9, SEPTEMBER 1987

rate of
“Trans.
- 1981,
DDMT:
oc. 5th
3, Ap:.

5. Com.

ta flow
v 1984,
uences
nmun.,

equal-
|l Syst.

carrier
N Sys-

rkeley,
compi-
New

wlation
27, pp.

©osimi-
1., vol.

© micro-
ontrol,
9,1977.
age for
no. RLE-

nalysis,

OPSIM
-User's

al sim-
no. 1,

g pro-

ogram-
36, july

ar dig-
- 1975,
ach to
ssors,”

SP-lo,

d pro-
ement
288INE.

al iter-
in\VLS!
k., NY:

aph~"
- Com-
ure tof
taton.
1986.

izaton

AssoC.

lemen-
ormat.

R 1987

®

.M. KarpandR.E. Miller, ““Properties of a model for parallel

computations: Determinacy, termination, queueing,” SIAM

, vol. 14, pp. 13901411, Nov. 1966.

n R. Reiter, “A study of a model for parallel computations,”
ph.D. dissertation, Univ. Michigan, Ann Arbor, 1967.

m]). L pPeterson, “petri nets,” Comput. Surv.,vol. 9, no. 3, Sept.

1977.

W — petri Net Theory and the Modeling of Systems.
wood Cliffs, NJ: Prentice-Hall, 1981.

4 T. , “/Putting Petri nets to work,”” Computer, vol. 1,
no. 1, pp- 85-94, Dec. 1979.

R. M. Karp and R. E. Miller, “Parallel program schemata,” J.

Comput. Syst. Sci., vol. 3, no. 2, pp- 147-195, May 1969.

E.A.lLee and D.G. Messerschmitt, “Pipeline interleaved pro-

rammable DSP’s: Parts | and i1, IEEE Trans. Acoust., Speech,

Signal Processing, vol. ASSP-35, pp- 1320-1333 and 1334-1345,

Sept. 1987.

E.A. Lee and D. G. Messerschmitt, ‘“Static scheduling of syn-

chronous data flow programs for digital signal processing,”

JEEE Trans. Comput., vol, C-36, no. 2, pp. 24-35, Jan. 1987.

@8 E G Coffman, Jr., Computer and Job Scheduling Theory.

New York, NY: Wiley, 1976.

T. L. Adam, K. M. Chandy, and J. R. Dickson, ‘A comparison

of list schedules for parallel processing systems,”” Commun.

Assoc. Comput. Mach., vol. 17, no. 12, pp. 685-690, Dec. 1974.

50} T.C.Hu, parallel sequencing and assembly line problems,”
Operations Res., vol. 9, no. 6, pp. 841-848, 1961.

511 W.H. Kohler, ““A preliminary evaluation of the critical path
method for scheduling taskson multiprocessor systems,” [EEE
Trans. Comput., vol. C-24, pp. 1235-1238, Dec. 1975.

{52] K-M. Kavi, B. P. Buckles, and U. N. Bhat, “‘A formal definition
of data flow graph models,” JEEE Trans. Comput., vol. C-35,
no. 11, pp. 940-948, Nov. 1986.

ol
Engle-

146)

47

(49]

Edward A. Lee (Member, |EEE) received the
B.S. degree from Yale University, New
Haven, CT, in 1979, the S.M. degree from
MIT, Cambridge, MA, in 1981,and the Ph.D.
degree from U.C. Berkeley, Berkeley, CA,
in 1986.

From 1979 to 1982 hewasa Member of the
Technical Staff at Bell Labs in the Advanced
Data Communications Laboratory, where
he did exploratory work in voice-band data
modem techniques and simultaneous voice

LEE
EEAND MESSERSCHMITT: SYNCHRONOUS DATA FLOW

and data transmission. Since July 1986 he has beenan assistant pro-
fessor at U.C. Berkeley. His research interests include architec-
tures and software techniques for programmable digital signal pro-
cessors, parallel computation, real-time software, and digital
communications. He has taught a short course at U.C. Santa Bar-
bara on programmable digital signal processor development and
has consulted in industry. He wasa recipient of the 1987 NSF Pres-
idential Young Investigator Award, an IBM Faculty Development
Award, the 1987 Sakrison award at U.C. Berkeley, and IBM Fel-
lowship, a GE Fellowship, and the samuel Silver Memorial Schol-
arship Award atU.C. Berkeley. He has several publications andone

patent.
Dr. Lee is a member of Tau Beta Pi.

David G. Messerschmitt (Fellow, [EEE)
received the B.S. degree from the Univer-
sity of Colorado, Boulder, in 1967, and the
M.S. and Ph.D. degrees from the University
of Michigan, Ann Arbor, in 1968 and 1971,
respectively.

Heis a Professor of Electrical Engineering
and Computer Sciences at the University of
California, Berkeley. From 1968 to 1977 he
was a Member of the Technical Staff and
later Supervisor at Bell Laboratories, Holm-
del, NJ, where he did systems engineering, development, and
research on digital transmission and digital signal processing (par-
ticularly relating to speech processing). His current research inter-
estsinclude analog and digital signal processing, adaptive filtering,
digital communications (on the subscriber loop and fiber optics),
architecture and software approachesto programmable digital sig-
nal processing, communication network design and protocols, and
-computer-aided design of communications and signal processing
systems. He has published over70 papers and has 10 patentsissued
or pending in these fields. Since 1977 he has also served as a con-
sultant to a number of companies. He has organized and partic-

ipated in a number of short courses and seminars devoted to con-
tinuing engineering education.

Dr. Messerschmitt is a member of Eta Kappa Nu, Tau Betta Pi,
and Sigma Xi, and has several best paper awards. He is currently
a Senior Editor of IEEE COMMUNICATIONS MAGAZINE, and is past Editor
for Transmission Systems of the IEEE TRANSACTIONS ON COMMUNI-
camions and past member of the Board of Governors of the IEEE

Communications Society.

1245

