I/O, Peripherals,

I HW/SW Interface
Forrest Brewer

Chandra Krintz

I/O Device Interface

Interface is composed of:
Driver (SW), bus and HW peripheral, physical HW device

Overall, the interface introduces an abstraction layer (or
several) simplifying the process of making use of the physical
(or virtual) device.

e File I/O in linux/windows looks like byte stream or record I/O

* Network officially uses 7 layers of abstraction
Typically:

e Driver implements:

e Device Initialization and Reset

e Initialization of Data Transfers and Management of Data Flow
e Device Shutdown and Removal

e QOften two driver interfaces: data channel and device control

I/O device: software side

e Memory Map

» Hardware Glue is used to create a physical address space
which is serviced by dedicated hardware as if it was memory

e Conceptually Simple from program viewpoint

e Potentially Breaks Memory Paradigm
e Memory values change w/o CPU activity...

e I/O port
e Use two or more address spaces
e Ports can be written or read, but are not Memories
e Sometimes special I/O instructions or Status Bit

e Jssues

o Kernel time limited — but
e CPU protection modes
e Coherence atomicity

e Preservation of Device State
e Minimal Kernel state for synchronization/modal behavior

I I/O Device: hardware side
e Physically must decode Memory address bus or I/O
port address, then manage physical data transfer to

device

o Data formats and rates may be very different

e EG SPI based A/D is a bit-serial interface with rates between 20kHz and
50+MHz, yet CPU is expecting a Byte or Word parallel transfer on its
event timing.

» Physical device usually has own idea about time and who is boss...

e Usually CPU is forgiving about adding ‘wait’ states or delaying trasnfers

e Device operation timescales can be much faster or much
slower than CPU software events, yet a reliable, efficient
interface is needed.

e Minimal: HW synchronization from event to CPU Bus
e Often, buffering FIFO and interrupt generation as well as protocol

Efficient Interfacing

e Service dozens of peripherals, each with own time scale
 How to keep data transfers coherent?

e How to prevent slow devices from slowing down system?
o (lassically, two kinds of Interface

e Polling (Program Driven I/0)

e CPU polls the device addresses and takes action when needed

e Simple to build HW, but CPU needs to poll often — so may not be efficient if lots
of devices

e Sequential program flow is maintained

e Interrupts (Event Driven 1/0)
e Set up event, then go off and do other things until signaled
e On signal, drop everything, service need and resume other things
e Allows for preempt of CPU as events dictate, but
e Breaks sequential program flow

Buses

Shared communication link (one or more wires)

Types of buses:
eprocessor-memory (short, high speed, DDR, LVDS)
ebackplane (longer, high speed, PCI, PCIe, ISA, PLB)
*I/O (longer, different devices, e.qg., USB, Firewire)
eNetwork (Very long, standardized e.g. Internet, Phone..)
Bus length refers to
MicroBlaze supports PLB, OPB, MLB, SPI, I°C...
eEach needs hardware physical peripheral and
eSoftware device driver
Synchronous vs. Asynchronous
ePractically all buses are somewhat Asynchronous but
eSimulate synchronous behavior to avoid rendezvous signals

P

User
space

Kernel
space

String to
be printed

l

ABCD
EFGH

Printed
page

l

(a)

Printed
page
Next A
Y
ABCD
EFGH
(b)

Steps in printing a string

rogrammed (Polled) I/0

=

Next 5

Y
ABCD
EFGH

AB

(c)

Programmed I/O Example

Writing a string to a (RS-232) serial output

CopyFromUser (virtAddr, kernelBuffer, byteCount) ;
for(i = 0; i<byteCount; i++) {
while (*serialStatusReg != READY) ;
*serialDataReg = kernelBuffer[i];

}

return;

Called “"Busy Waiting” or “Polling”
Simple and reliable, but CPU time and energy waste

This is what happens when you talk to slow devices (like Board
LCD) with 1 control thread...

| Better Programmed I/O

e Idea— don't wait locally for events, doing nothing else

e Instead, poll for multiple events by merging local
loops into larger one.
e Leads to ‘grand loop’ designs
e Works only if devices are slow compared to CPU
o If devices are really slow— wastes CPU power

e Can be generalized if you know something about the
pattern of arriving signals.

e Maybe better idea is to use hardware to do the ‘scan’
for change of I/O state?

Interrupt Signalling

| | | | This signal tells the MP that
 — __ serial chip needs service

— | Serial [— -
— | Port [S L
HER — mp |—

— |Network| / B B

— |Interface Interrupt request pins
— ThiS sig'rhells the MP that network chip needs service

Interrupt-Driven I/O

o (etting the I/O started:

CopyFromUser (virtAddr, kernelBuffer, byteCount) ;
EnableInterrupts() ;

i=20; - -

while (*serialStatusReg != READY); LIfEtlme Of an Interrupt
*serialDataReg = kernelBuffer[i++]; | e External hardware signa|s
sieep ()7 request

- here, device signals that data

e The Interrupt Handler: in serialStatusReg has been sent

if (i == byteCount)

Wake up the user process » CPU
else{ B Checks if interrupt can be
*serialDataReg = kernelBuffer[i] taken
LR S .
} B Jumps to interrupt handler
Return from interrupt B Executes handler

B Returns to interrupted task

Hardware support for interrupts

I Interrupt 1. Device is finished

CPU 3 CPU acks controller

interrupt

2. Controller
X issues

11

If there are many devices, an interrupt controller can do the work instead
of the CPU using multiple I/O pins.

Connections between devices and interrupt controller actually use
interrupt lines on the bus rather than dedicated wires

Interrupt driven I/O Issues

e Problem:
o CPU is still involved in every data transfer
e Interrupt handling overhead is high
e Overhead cost is not amortized over much data

e Overhead is too high for fast devices
e Gbps networks
e Disk drives

Direct Memory Access

e Get data in and out of systems quickly
e Direct Memory Access (DMA)

Reads data from I/O devices, writes it to memory
Reads data from memory, writes it to the I/O device
Without software and MP intervention

i.e. Very simple ancillary processor

o Potential problems

e Must not interfere with MP on the bus (address/data lines)
e Often does, of course— idea is to keep the overhead low...

DMA

.|_

Address bus, READ, WRITE

MP Data Bus | RAM
BUSREQ
BUSACK
DMA DMAACK I /O

DMAREQ

Direct Memory Access (DMA)

CPU

1.CPU

programs DMA

the DMA controller

controller
/'__—\

Count

iy
X

@/ Drive

Disk
controller
Purg Bufter
4. Ack
/'—'\\
A

2. DMA requests

L

Interrupt when
done

J'

L

transfer to memor

)

Main
memory

_3' Data transferred)

-«—Bus

DMA

.|H—

ow does the DMA know to transfer additional bytes after the
first has been transferred?

e Edge triggered

e DMA transfers a byte each time it sees a rising DMAREQ edge
e /O must re-raise (possibly immediately) DMAREQ for each byte
e CPU gets control back between bytes
o Inefficient transfer though

e Level triggered
e Burst mode

e DMA transfers bytes as long as DMAREQ is high

e I/O must lower DMAREQ explicitly when it is done
e CPU without bus for longer periods
e Interrupt service may not be timely

e DMA can have other implementations

DMA (Alternative Architecture)

Address bus. READ WRITE |
MP | Data Bus s RAM
BUSRE
BUSACK
b >
DMA I/O0
DMAREQ

e When I/O wants to write to memory, it instead writes to DMA (internal

register storage)
» Simplifies I/O device, makes DMA device more complicated
» Transfer time doubles since two bus transfers are being performed

Sample I/O Devices:

I Programmable clocks

LI

J Counter is decremented at each pulse

Holding register is used to load the counter

e One-shot mode:
e Counter initialized then decremented until zero
e At zero a single interrupt occurs
e Square wave mode:
o At zero the counter is reinitialized with the same value
e Periodic interrupts (called “clock ticks") occur

Time

e <86 seconds to exhaust 32-bit at 50MHz
e How can we remember what the time is?
e 64-bit clock is good for >11,000 years...

e Backup clock
e Similar to digital watch
e Low-power circuitry, battery-powered
e Periodically reset from the internet
e UTC: Universal Coordinated Time
e Unix: Seconds since Jan. 1, 1970
e Windows: Seconds since Jan. 1, 1980

Goals of embedded clocks

e Prevent processes from dominating CPU
e Timestamp external events (such as A/D
conversion events).

e Can provide hardware register with value of clock at
reporting (or interrupt) time of device

e Can correct sample value by interpolation to expected
value at desired (not quite real) sample time.

e Provide for timely task or process switching
e Provide event timing for external devices

Interrupts and Interrupt Handling

Interrupt Request (IRQ)

e When an IRQ is asserted

e MP stops doing what it was doing (executing instructions)
o Completes execution of the instruction that is executing
» flush the instructions currently pending execution

e Create new stack frame (after any required context switch)
e Saves the next address on the stack
o Like a return address when a CALL instruction is executed
e However the "CALL' is done automatically

e Jumps to interrupt routine
e Interrupt handler or service routine (ISR)

e Very short, fast subprogram
e Interrupts live in real-time, often on system SW

Interrupt Routine/Handler

.|—

o Interrupt handler, Interrupt service routine (ISR)

Very short, fast code
Implemented like a subprogram

All used registers must be saved and restored
e Saving the context
 Handled by _interrupt_handler_ function attribute

Any latency in service routine shows up in every
event response.

Interrupt Routines

e Notice: Interrupt can occur between any two instructions
e CALL instruction: compiler knows what code came before and after

the call
e Compiler can write code to save/restore registers used in the callee

e The compiler (when generating code for interrupt handler)
e Or assembly programmer

e (Can not know when interrupts will occur

e Therefore ALL non-volatile registers used by the interrupt handler
must be saved and restored to ensure register preservation

Disabling Interrupts

o Every system allows interrupts to be disabled in
some way
e Devices can be told not to interrupt
e MP can be told to ignore interrupts
e In addition, the MP can ignore some subset of interrupts

e Commonly individual interrupts can be disabled

o If an interrupt occurs while turned off, the MP
remembers
o Deferred, not really disabled
e Runs immediately after return from interrupt

Disabling Interrupts

e Nonmaskable interrupt
e An interrupt that cannot be turned off ever

e Used for exceptional circumstances
* Beyond the normal range of ordinary processing
e (Catastrophic event
* Power failure

e How do you reset Mars Rover if gets stuck in an
infinite loop?

I Interrupt Nesting

e When an interrupt occurs while an interrupt handler
IS executing

e For some systems, this is the default behavior

* When priorities are used - only a higher priority interrupt can interrupt
the handler

o If a lower priority IRQ is raised, the current handler completes before
the low-priority IRQ is handled

e For others, special instructions are inserted into interrupt
routines to indicate that such behavior can occur

e For this case, all interrupts are automatically disabled whenever an
interrupt handler is invoked

e MicroBlaze chose this way...

Interrupt Priorities

Each interrupt request signal (IRQ) can be assigned a
priority
Programs can set the lowest priority it is willing to
accept
e By setting this priority higher, a program effectively
disables all interrupts below this priority

e Most systems use prioritized interrupts and allow individual
interrupts to be turned off

When multiple IRQs are raised at the same time

e MP invokes the handler of each according to (highest)
priority

Worst-Case Interrupt

I Response
e Consider a system with 3 levels of interrupt priority:

e 400uS latency in highest priority level handler
e 4mS latency in middle priority level handler
e 10mS latency in lowest priority level handler

o What is worst case response time for highest priority interrupt?
e Might guess 400uS— but...

If system just started servicing a low priority interrupt, interrupts are
disabled so scheduler cannot alter program flow until end of
handler. So high priority handler completion could happen after
10.4mS...

o Worst case response time for middle priority interrupt?
e Forever!

Interrupt Handlers Code

I Location
e Commonly, a table is used

» Holds addresses of interrupt handler routines
e Interrupt vectors

Called an interrupt vector table
Indexed by a unique number assigned to each interrupt
Rarely changes - implemented with crt0.c initialization

Location
e Known/fixed location
e Variable location w/ known mechanism for telling the MP where it is

e When an IRQ is raised
e MP looks up the interrupt handler in the table
e Uses the address for to branch to handler

e Handler lookup and dispatch can be part of interrupt or can
be done in hardware

Interrupt-Driven I/O

Getting the I/O started:

CopyFromUser (virtAddr, kernelBuffer, byteCount);

EnableInterrupts() ;

i=20;

while (*serialStatusReg != READY) ;
*serialDataReg = kernelBuffer[i++];
sleep ()

The Interrupt Handler:

if (i == byteCount)
Wake up the user process

else{
*serialDataReg = kernelBuffer[i]
it++;

}

Return from interrupt

Lifetime of an Interrupt

e External hardware signals

request
- here, device signals that data
in serialStatusReg has been sent

e CPU

B Checks if interrupt can be
taken

B Jumps to interrupt handler
B Executes handler
B Returns to interrupted task

Interrupt Nesting

e When an interrupt occurs while an interrupt handler
IS executing
e For some systems, this is the default behavior

e When priorities are used - only a higher priority interrupt
can interrupt the handler

o If a lower priority IRQ is raised, the current handler completes before
the low-priority IRQ is handled

e For others, special instructions are inserted into interrupt
routines to indicate that such behavior can occur
e disable(); enable(); disable(id); enable(id);

e For this case, all interrupts are automatically disabled whenever an
interrupt handler is invoked
Unless the instructions are present which re-enables interrupts

Shared Data Problem

e Very little should be done in the interrupt handler
e To ensure that interrupts are handled quickly
e To ensure that control returns to the task code ASAP

e Interrupt routine must tell task code to do followup
processing

e To enable this, the interrupt routine and the task code
communicate using shared variables.

Shared Data Problem

e Interrupt routine must tell task code to do followup
processing

e Via shared memory (variables)
e Used for communication between handler and task code
e Shared

e However, shared data is a well-known, difficult problem
e Handlers-tasks
o Across tasks
o Across threads

e Because two+ entities are interleaved - and each can
modify the same data!

Nuclear Reactor Monitoring

I System
e Monitors two temperatures that must

always be equal

static int iTemperatures[2];

void interrupt vReadTemperatures () {
iTemperatures[0] = //read value from hardware
iTemperatures[1] = //read value from ha.l:dm@re

by

void main() {
int iTemp0, iTempl; = Interrupt can occur

while(TRUE) { between any
iTemp0 = iTemperatures[0]; two instructions!

iTempl = iTemperatures[1]; A
if (iTemp0 !'= iTempl) {

//set off alarm!
}

}
)

Nuclear Reactor Monitoring

I System

static int iTemperatures[2];
void interrupt vReadTemperatures () {
iTemperatures[0] = //read value from hardware
iTemperatures[1] = //read value from hardware
¥
void main() {
int iTempO,
while(TRUE) {
iTemp0 = iTemperatures[0];
iTempl = iTemperatures[1];
if (iTemp0 !'= iTempl) {
//set off alarm!
¥

}
)

iTempl;

Problem!

/ Interrupt can occur

between any
two instructions!

Nuclear Reactor Monitoring

I System

static int iTemperatures[2];

void interrupt vReadTemperatures () {
iTemperatures[0] = //read value from hardware
iTemperatures[1] = //read value from hardware

¥

void main() {
while(TRUE) {
if (iTemperatures[0] != iTemperatures[1]) {
//set off alarm!
)

}
)

static int iTemperatures| 2];

void interrupt vReadTemperatures () {
iTemperatures[0] = //read value from hardware
iTemperatures[1] = //read value from hardware

y
void main() {
while(TRUE) {
if (iTemperatures[0] != iTemperatures[1]) {
//set off alarm!
y
y ; Same Problem!
PUSH AR3 Interrupt can occur
LDIU SP, AR3 between any
L11 LDIU @2E2h, RO two instructions!
CMPI @2E3h, RO
BZ L11

// code in if part of the branch (executed when not taken)
BU L11

Shared Data Problem

e Difficult because

e They don't happen every time the code runs

e In the previous example, the interrupt could happen at other points in main’s
execution and doesn’t cause a problem

e Events (interrupts) happen in different orders at different times
¢ Non-deterministic (not necessarily repeatable)

e Possible solution 1
e Disable interrupts whenever the task code uses shared data
e Possible Solution 2

e Perform Comparison in interrupt routine (when interupts are
disabled)

e (Can be cagey about which calls to the service routine do it...

static int iTemperatures| 2];
void interrupt vReadTemperatures () {
iTemperatures[0] = //read value from hardware
iTemperatures[1] = //read value from hardware
)
void main() {
int iTempO, iTempl;
while(TRUE) {
disable();
iTemp0 = iTemperatures[0];
iTempl = iTemperatures[1];
enable();
if (iTemp0 !'= iTempl) {
//set off alarm!
)

¥
¥

Atomic Code

I e Shared-data problem

e Task code and interrupt routine share data

e Task code uses the data in a way that is not atomic
o Solution: Disable interrupts for task code that uses data

e Atomic code: Code that cannot be interrupted

e Critical section: set of instructions that must be
atomic for correct execution

e Atomic code

e Code that cannot be interrupted by anything that might
modify the data being used

e Allows specific interrupts to be disabled as needed
* And others left enabled

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime() {
if (++iSeconds >= 60) {

iSeconds = 0; -
if (++iMinutes >= 60) { Hardware timer
iMinutes = 0: asserts an IRQ
if (++iHours >= 24) { each second
iHours = 0; Invoking
} vUpdateTime
b e Where is the
¥ problem?
// update the HW as needed
}
long ISecondsSinceMidnight() {
return(

(((iHours*60)+iMinutes)*60)+iSeconds);

}

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime() {
if (++iSeconds >= 60) {
iISeconds = 0; e Hardware timer
I {Ersrllatiess = E1) asserts an IRQ
iMinutes = O;
if (++iHours >= 24) { each second
iHours = 0; } e Invoking
3 vUpdateTime
¥ Is this a
// update the HW as needed solution?
)
long I1SecondsSinceMidnight() {
disable();
return(
(((IHours*60)+iMinutes)*60)+iSeconds;
enable();
)

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime() {
if (++iSeconds >= 60) {
iSeconds = 0;
if (++iMinutes >= 60) {
iMinutes = O;
if (++iHours >= 24) {
iHours = 0; }
}
}
// update the HW as needed

}

long ISecondsSinceMidnight() {
disable();
long retn =

(((iHours*60)+iMinutes)*60)+iSeconds;

enable();
return retn;

}

e Hardware timer
asserts an IRQ
each second

e Invoking
vUpdateTime

e Is this a
solution?

static int iSeconds, iMinutes, iHours;
void interrupt vUpdateTime() {
if (++iSeconds >= 60) {

iSeconds = 0;
if (++iMinutes >= 60) {
iMinutes = O;
if (++iHours >= 24) {
iHours = 0; }
y

}
// update the HW as needed

}

long ISecondsSinceMidnight() {
disable();
long retn =

(((iHours*60)+iMinutes)*60)+iSeconds;

enable();
return retn;

}

e Hardware timer
asserts an IRQ each
second

e Invoking vUpdateTime
e Is this a solution?

e What happens if
|ISecondsSinceMidnight(
) is called from within a
critical section?:

disable();

ISecondsSinceMidnight
O;

enable();

e Check before
disabling

* Disadvantages?

Interrupt Latency

e Interrupt response time (per interrupt):

1.
2.

4.

Longest period of time (this/all) interrupts are disabled

Execution time for any interrupt routine that has higher
(or equal) priority than the currently executing one
1. Assumes that each one only executes once!

Context switching overhead by the MP

1. Time to sense the IRQ, complete the currently executing
instruction(s), build stack frame and invoke handler

Execution time of the current interrupt routine to the
point that counts as a “response”

Reducing response time

Short handlers, short disable time

Interrupt Latency

e Disabling interrupts
e Doing it often, increases your response time

e Real-time Systems require guarantees about
response time
e As you design the system you must ensure that such
guarantees (real-time or not) are met
e Often, you can avoid disabling interrupts
» Via careful coding, but...
» Makes code fragile
» Difficult to ensure that you've got it right

Interrupt Latency Example

e Task code disable time
« 125 ps to read temp values (shared with temp. hw)

« 250 ps to read time value (shared with timer interrupt)

e Interprocessor interrupt

« Another processor causes an IRQ
System must respond in 650 us
Handler requires 300 us

e Worst case wait response time for interprocessor IRQ

« Handler routine (300 pns)
« Longest period interrupts are disabled (250 pns)

« 550 us - meets (barely) the response requirement

Interrupt Latency Example II

Task code disable time

« 125 ps to read temp values (shared with temp. hw)

« 250 ps to read time value (shared with timer interrupt)
Interprocessor interrupt

« Another processor causes an IRQ
« System must respond in 650 us
< Handler requires 300 us

Network device
 Interrupt routine takes 150 ps

Worst case wait response time for interprocessor IRQ?
- Will interprocessor interrupt deadline be met?

Can you improve on this?

Interrupt Latency Example

Task code disable time

« 125 ps to read temp values (shared with temp. hw)

« 250 ps to read time value (shared with timer interrupt)
Interprocessor interrupt

« Another processor causes an IRQ
« System must respond in 650 us
< Handler requires 300 us

Network device
 Interrupt routine takes 150 ps

Worst case wait response time for interprocessor IRQ? 700uS
« Will interprocessor interrupt deadline be met? no

Can you improve on this?

Interrupt Latency Example

Task code disable time

« 125 ps to read temp values (shared with temp. hw)

« 250 ps to read time value (shared with timer interrupt)
Interprocessor interrupt

« Another processor causes an IRQ
« System must respond in 650 us
< Handler requires 350 pus

Network device

 Interrupt routine takes 100 ps

- Lower priority than interprocessor interrupt
Worst case wait response time

« For the interprocessor IRQ?

- For the network device?

Interrupt Latency Example

Task code disable time

« 125 ps to read temp values (shared with temp. hw)

« 250 ps to read time value (shared with timer interrupt)
Interprocessor interrupt

« Another processor causes an IRQ
« System must respond in 650 us
< Handler requires 350 pus

Network device

 Interrupt routine takes 100 ps

- Lower priority than interprocessor interrupt
Worst case wait response time

 For the interprocessor IRQ? 600

- For the network device? 700

Interrupt Latency Example

e Task code disable time
« 125 ps to read temp values (shared with temp. hw)
« 250 ps to read time value (shared with timer interrupt)

e What happens if two disable periods happen back to
back?

e How to avoid?

Volatile Variables

e Most compilers assume that a value in memory never changes
unless the program changes it
o Uses this assumption to perform optimization

e However, interrupts can modify shared data
e Invalidating this assumption

e Holding memory values in registers is a problem

e An alternate solution to disabling interrupts is to identify single
piece of data that is shared with interrupt routines

* Make sure that the compiler performs NO optimizations on

instructions that use the data
o All reads and writes are executed even if they seem redundant

e Force a memory read each time the variable is used

Memory

int flag = 500;
foo() { 0x1002 oo
"t =&flag
while (flag !'= 10) {...;}
Raise_alarm();
¥
(0
LDIU 1002h, AR4 p LDIU 1002h, AR4
L11 ... I LDIU *AR4, R7
CMPI 10h, *AR4 m |11 ...
BEQ L11 I CMPI 10h, R7
CALL &Raise_alarm Z BEQ L11
E CALL &Raise_alarm

int flag = 500; HEHE R

foo() { 0x1002 1

;A;h.ile (flag '=10) {...;}
Raise_alarm();

LDIU 1002h, AR4 LDIU 1002h, AR4

L11 LDIU *AR4, R7

CMPI 10h, *AR4 L11
BEQ L11

CALL &Raise_alarm

CMPI 10h, R7
BEQ L11
CALL &Raise_alarm

ran-lzll-l—l'UO

volatile int flag = 500;
foo() {

;A;h.ile (flag '=10) {...;}
Raise_alarm();

LDIU 1002h, AR4

L11 e
CMPI 10h, *AR4
BEQ L11
CALL &Raise alarm

Memory

0x1002 1

LDIU 1002h, AR4

*AR4, R7

‘volatile” Keyword

e Many compilers support the use of the keyword volatile
o Identifies variables as those that are shared
o Tells the compiler to NOT store the variable value in a register

e Ensures that the value is the most recent

e There is no problem of inconsistency between a register and memory location
that both refer to the same variable

e Reads and Writes to volatile variables are ordered and the order is
retained in the compiled program flow
o Upshot: volatile forces the compiler to use a sequential direct to
memory map model
e Similar to forcing a “write-through” cache

 Number and order of original reads and writes specified in the code
is conserved

Interrupts, Traps, and

I Exceptions
e Interrupt - a raised CPU signal

e External - raised by an external event
* Internal - generated by on-chip peripherals
e (Can happen any time -- asynchronous interrupts

e Trap - software interrupt (synchronous interrupts)
e Mechanism that changes control flow
* Bridge to supervisor mode (system calls)

* Requires additional data to be communicated
e Parameters, type of request
e Return values (status)

e Exception - unprogrammed control transfer
e General term for synchronous interrupts
e On some machines these include internal async interrupts

Interrupts, Traps, and

I Exceptions
e External Interrupts - a raised CPU signal

e Asynchronous to program execution
e May be handled between instructions
e Simply suspend and resume user program

e Traps (and exceptions)
o Exceptional conditions (overflow)
e Invalid instruction
e Faults (non-resident page in memory)
e Internal hardware error
e Synchronous to program execution
e Condition must be remedied by the handler

Restarting After a

I Synchronous Interrupt

e Restart - start the instruction over
e May require many instructions to be restarted to ensure that
the state of the machine is as it was
e Continuation - set up the processor and start at the
point (midstream) that the fault occurred
e Process state is so complete that restart is not necessary

e A second processor handles the interrupt so the first
processor can simply continue where it left off

Traps - Implementing System

I Calls
e Operating System

e Special program that runs in priviledged mode and has
access to all of the resources and devices

e Manages and protects user programs as well as resources
* Via keeping user programs from directly accessing resources
» Uses a separate user mode for all non-OS related activities

e Presents virtual resources to each user

e Abstractions of resources are easier to use
files vs. disk sectors
Virtual memory vs physical memory

e Traps are OS requests by user-space programs for
service (access to resources)
e Begins at the handler

MicroBlaze Interrupt Handlers

* MicroBlaze uses the GNU conventions which specify a
function attribute for a defined interrupt handler:

void function_handler () __attribute__ {{interrupt_handler}};

e Note: attribute is applied to the function prototype — not it definition!!
e Interrupts might call subroutines — they need to be volatile-safe this can be done:

void function_subhandler () __attribute__ {{save_volatiles}};

Attributes | Functions

interrupt handler This attribute saves the machine status register and all the
volatiles, in addition to the non-volatile registers. rtid returns
from the interrupt handler. If the mterrupt handler function isa
leaf function, only those volatiles which are used by the function
are saved.

save volatilas This attribute is similar to interrupt handler, butit uses
rtsd toreturn to the interrupted function, instead of rtid.

MicroBlaze Interrupts

e Only a single bit of interrupt for MB
* Need a controller to manage multiple sources
e Fortunately controllers are part of the library

Processor Processor

Interrupt Interrupt F’rogre_lmmhle
Port te——| Programmable Port fe— Interrupt Timer
Controller
- .
Interrupts without an Interrupts with an
Interrupt Controller Interrupt Controller
Ethemet MAC

I MB Interrupt flow

e Enable Interrupts in MSR
e Hardware disables Interrupts

e Handler saves registers onto stack; saves return from
Vector dispatch table

e Transfer to user handler

Interrupt controller is managed by this handler — typically
vectored dispatch to specific interrupt handler for given
source

e Device-specific handler manages device then returns

e Stack is unwound by successive returns to final return from
interrupt— which re-enables interrupts

MB Interrupt Flow

User Program

(- I

INTR | =*°*° 0x000_0008 microblaze_interrupt_handler.c
__interrupt_handler()
- Branch to OS / ™ Siits B }:ir:tc.c n—
s 0x000_00 10 | INTRhandier [~ ntc_DevicelnterruptHandier()
sasaa Lookup the ' ™~ user or peripheral
0x000_00 18 interrupt handler interrupt handier
a registered with — Foi st astiva function
0x000_00 20 the O and kg interrupt, call
to it. the registered EE—-
interrupt S
handler.
-
%, & a

MB_InterruptVector

Table {
Xlnte_DevicelnterruptHandler() T —
registered with the h HandierTabis{ User or peripheral
OS Layer ' interrupt handlers
registered with the
interrupt

controller driver

X11020

Interrupt Conclusions

o Interrupts allow possibility of preemption of tasks
e Add greatly to complexity of programming

e Enable designers to split work - modularity

e Background work (tasks performed while waiting for interrupts)
e Unaware of foreground work

e Foreground work (tasks that respond to interrupts)
e Very strong reasons to minimize time spent in handlers

e They can be
e Precise — programmed system response to known event

o Imprecise — reset or abort behavior to known state; usually
fault or catastrophic event

e Asynchronous — obeying only physical limits of timing

| Reactive System Reprise
e Game Plan: Spend absolute minimum time in interrupt handlers

e Treat program flow as extended finite automata

e Computation parts broken into fragments that must be done given
current state and current events

» Control-flow follows next state transition (event and state
dependent), often a bit of prologue and epilogue code to ensure
state independence.

e Interrupt handler triggers updates to FSM state

e Use vector dispatch (I.e. function pointers or computed go-to)
to minimize transition time

e Upshot: worst case response time could be much lower
e Never allow handler long run-time for any event
e Issue: requires alternative view of program organization...

