Implicit State Enumeration of Finite State Machines using BDD’s*

Hervé J. Touati
Robert K. Brayton

Hamid Savoj
Alberto Sangiovanni-Vincentelli

Bill Lin

Electrical Engineering and Computer Sciences Department
University of California, Berkeley, CA 94720, USA

Abstract

Coudert et al. have proposed in [4] an efficient method to compute
the set of reachable states of a sequential finite state machine using
BDD’s. This technique can handle larger finite state machines than
previously possible and has a wide range of applications in sequential
synthesis, testing and verification. At the heart of this method is an
algorithm that computes the range of a set of Boolean functions under
a restricted domain. Coudert et al. originally proposed a simpler and
more general algorithm for range computation that was based on rela-
tions, but dismissed it as impractical for all but the simplest examples.
‘We propose a new approach based on relations that outperforms Coud-
ert’s algorithm with the additional advantage of simplicity and wider
applicability.

1 Introduction

Efficient algorithms to perform state enumeration for finite state ma-
chines can be applied to a wide range of problems: implementation
verification (checking that an implementation conforms to its speci-
fication (4, 3]), design verification (e.g. checking that an implemen-
tation or a specification satisfies faimess and liveness properties [3]),
sequential testing and sequential synthesis.

Traditional state enumeration methods cannot handle machines with
more than a few million states. To break this limitation, Ghosh ez al.
[6] proposed an implicit enumeration technique based on cubes. Un-
fortunately, in their approach, sets of states can be manipulated as a
unit only if they can be represented as a cube in some binary encod-
ing. Coudert et al. [4] were first to recognize the advantage of rep-
resenting set of states with reduced ordered binary decision diagrams
(BDD’s) [2]. Their technique was initially applied to checking finite
state machine equivalence and was later extended by Burch ez al. to
the computation of temporal logic formulas [3]. Sequential testing of
non-SCAN designs and extraction of sequential don’t cares are other
immediate applications of this technique.

In all these applications, the solution can be obtained by iterative use
of one of two operations: the computation, for a given Boolean func-
tion, of the image of a subset of its domain, and the computation of
the inverse image of a subset of its co-domain. A conceptually simple
and elegant method to perform these operations, originally introduced
in [4], consists of forming a BDD representation of the state transi-
tion relation of a finite state machine (i.e. the single output function
f(z,1,y) which is equal to 1 if y is the state reached by the machine in
state = upon receiving input ¢). The image and reverse image of a set
of states by the transition function can be obtained from the transition
relation in one BDD operation.

Unfortunately the BDD for the transition relation can often grow

*This project is supported in part by Defense Advanced Research Projects Agency
under contract number N00039-87-C-0182 and NSF/DARPA contract MIP-8719546.

CH2924-9/90/0000/0130$01.00 © 1990 IEEE

130

too large to be practical. Coudert et al. in [4, 5] proposed a recursive
method for image computation that only requires the ability to com-
pute the BDD of the state-transition functions f(z,¢) = (f1,-.., fn)-
We propose a new method based on transition relations that only re-
quires the ability to compute the BDD for f; and outperforms Coudert’s
algorithm for most examples.

The main contributions of this paper are: in section 2 a simple nota-
tional framework to express the basic operations used in BDD-based
state enumeration algorithms in a unified way; in section 3 a set of
techniques that can speed up range computation dramatically, includ-
ing a new variable ordering heuristic and a new method based on tran-
sition relations. We present and discuss our experimental results in
section 4.

2 Terminology and Previous Work

2.1 Image and Inverse Image Computations
In what follows B designates the set {0,1}.

Definition 1 Lez f : B® — B™ be a Boolean function and A a subset
of B®. The image of A by f is the set f(A) = {y € B™ |y =
f(z), = € A}. If A = B™, the image of A by f is also called the
range of f.

Definition 2 Let f : B* — B™ be a Boolean function and A a sub-
set of B™. The inverse image of A by f is the set f~1(A) = {z €
B | f(z) =y, y € A}.

Example Let f(z,7): B" x B¥ — B™ be the next state function of a
finite state machine, where n is the number of state variables and & the
number of input variables. Let ¢, be the set of states reachable from
a set of initial states cg. ¢, can be obtained by repeated computation
of an image as follows

ciyr = ¢ U feix B)

Coo = € if cp1=0¢

The sequence is guaranteed to converge after a finite number of itera-
tions.

2.2 Sets, BDD’s, and Characteristic Functions

Definition 3 Let F be a set and A C E. The characteristic function
of Ais the function x 4 : E — {0,1} defined by xa(z) = 1ifz € A,
x4(2) = 0 otherwise.

Characteristic functions are nothing but a functional representation of
a subset of a set. In the rest of this paper we will not make any distinc-
tion between the BDD representing a set of states, the characteristic
function of the set, and the set itself.

2.3 The Smoothing Operator

Definition 4 Let f : B® — B be a Boolean function, and z =

(%iys-- .- i) a set of input variables of f. The smoothing of f by
 is defined as in [8], with f, denoting the cofactor of f by literal a:
Szf = Say ...S,ikf
S-‘L'ijf = fz,’j +fﬁ

If f isinterpreted as a logical predicate, the smoothing operator com-
putes the existential quantification of f relative to the z variables. If f
is interpreted as the characteristic function of set, the smoothing oper-
ating computes the projection of f to the subspace of B" orthogonal
to the domain of the z variables. We will make use of the following
simple property of the smoothing operator (the Boolean and is denoted
by a dot):

Lemma 2.1 Let f : B>x B™ — Bandg: B™ — B be twoBoolean
functions. Then:

S:(f(z,9)-9(¥)) = S(f(z,9))-9(v) ¢)]

2.4 The Transition Relation Method

Definition 5 Let f : B® — B™ be a Boolean function. The transition
relation associatedwith f, F : B"x B™ — B, isdefinedas F(z,y) =
{(z,y) € B" x B™ | y = f(z)}. Equivalently, in terms of Boolean
operations:

I = 5=)

1<i<m

F(z,y) = @

We can use F' to obtain the image by f of a subset A of B", by
computing the projection on B™ of the set F' N (A x B™). In terms of
BDD operations, this is achieved by a Boolean and and a smooth. The
smoothing and the Boolean and can be done in one pass on the BDD’s
to further reduce the need for intermediate storage [3]:

f(A)y) = S(F(z,y)- Alz))
The inverse image by f of a subset A of B™ can be computed as easily:

A=) = Sy(F(=,y)- A(y))

©))

2.5 The Generalized Cofactor

The generalized cofactor is an important new operator that can be used
to reduce an image computation to a range computation. This operator
was initially proposed by Coudert ez al. in [4] and called the constraint
operator. Given a Boolean function: f = (fi,..., fm) : B* —» B™
and a subset of B™ represented by its characteristic function ¢, the gen-
eralized cofactor f. = ((fi)ey- -, (fm)c) is a function from B” to B™
whose range is equal to the image of ¢ by f. In addition, in most cases,
the BDD representation of f, is smaller than the BDD representation
of f. For a single output function f : B® — B, the pair (f,¢) can
be interpreted as an incompletely specified function whose onset is
f - c and don’t care set ¢. Under this interpretation, the generalized
cofactor f, can be seen as a heuristic to select a representative of the
incompletely specified function (f, c) that has a small BDD represen-
tation. The generalized cofactor f. depends in general on the variable
ordering used in the BDD representation. If ¢ is a cube the generalized
cofactor f, is equal to the usual cofactor of a Boolean function, and is,
in that case, independent of the variable ordering.

@

131

function cofactor(f,c) {
assert (c # 0) ;
if (c = 1 or is_constant(f)) returnf;
elseif (cz; = 0) return cofactor(f;,, ¢z,);
elseif (c;, = 0) return cofactor(£, ¢z7);
else return z;- cofactor(fz, , ¢z,)
+ 77~ cofactor(far, cz7)s

Figure 1: Generalized Cofactor Algorithm

Definition 6 Let ¢ : B® — B be a non-null Boolean function and
21 < T3 < ... < &, an ordering of its input variables. We define the
mapping 7. : B® — B" as follows:

if e¢(z)=1 w(z) = =
if c(z)=0 mz) = arg min d(z,y)
ye{y)=1
where d(z,y) = Y. lzi—wf2"
1<i<n

Lemma 2.2 =, is the projection that maps a minterm x to the minterm
y in the onset of ¢ which has the closest distance to x according to
the distance d. The particular form of the distance guarantees the
uniqueness of y in this definition, for any given variable ordering.

Proof Let y and y' be two minterms in the onset of ¢ such that
d(z,y) = d(,y’). Each of the expressions d(z, y) and d(z, y") can
be interpreted as the binary representation of some integer. Since the
binary representation is unique, |z; — y;| = |¢i — ¢y for1 < i< n
andthusy = y'. m

Definition 7 Let f : B — B andc: B* — B, withc # 0. The
generalized cofactor of f with respect to c, denoted by f., is the func-
tion f. = f o (ie. fo(z) = f(x())). If f : B* — B™, then
fe : B® — B™ is the function whose components are the cofactors by
¢ of the components of f.

The generalized cofactor can be computed very efficiently in a single
bottom-up traversal of the BDD representations of f and c by the al-
gorithm given in Figure 1.

Lemma 2.3 Ifcis a cube (i.e. ¢ = cicy...co wherec; = {0,1,%}),
. is independent of the variable ordering. More precisely, if y satisfies

y=0 if ¢=0
p=1 10 =1
yi=x; if ci=+%

theny = w.(z) and f, = f o . is the usual cofactor of a Boolean

function by a cube.

Proof Any minterm y in B™ such that ¢(y’) = 1 is orthogonal to =
in at least the same variables as y. Thus y minimizes d(z,y) overc. m
In addition, the generalized cofactor preserves the following important
properties of cofactors:

Proposition 2.1 Letg: B™ — Band f : B — B™. Then(gof). =
go fe. Inparticular the cofactor of a sum of functions is the sum of the
cofactors, and the cofactor of an inverse is the inverse of the cofactor.

Proof (gof).=(gof)om.andgo fo=go(fom.). m

Proposition 2.2 Let f : B x B™ — Bandc: B® — B be two

Boolean functions, with ¢ # 0. Then:

SI(f(z,y)c(x)) = SI(fC(:DYy)) (5)
Proof If c¢(z) = 1, then fe(z,y) = f(z,y). Thus f(z,y)-c(z) C
felz,y) and So(f(z,y) - e(2)) C Su(fe(z,y)). Conversely, if y is
such that Sy(f.(z,y)) = 1, there exists an = such that f.(z,y) =
1. Thus f(7.(z),y) - c(7c(2)) = fe(z,y) = 1, which implies that

S:(f(z,y)-c(z))=1.m

Proposition 2.3 Ler f be a Boolean function, and ¢ a non-null
Boolean function. Then c is contained in f if and only if f. is a tautol-

0gy.

Proof Suppose that ¢ is contained in f. Let = be an arbitrary
minterm. y = 7.(z) is such that ¢(y) = 1. Thus f.(z) = f(y) = 1
which proves that f. is a tautology. Conversely, suppose that f, is
a tautology. Let z be such that ¢(z) = 1. Then 7.(2) = z and
f(z) = f(re(z)) = fe(z) = 1, which proves that ¢ is contained
infm

Corollary 2.4 Let f be a Boolean function, and ¢ a non-null Boolean
function. Then c(z) = 1implies that f(z) = fo(z).

Lemma 2.5 Ifc is the characteristic function of a set A then f.(B™) =
f(A), that is the image of A by f is equal to the range of the cofactor
Je.

Proof 7.(B™)isequal to the onset of ¢, which is 4. Thus f.(B") =
fom(B") = f(A).m

2.6 The Recursive Image Computation Method

Coudert et al. [4, 5] introduced an alternate procedure to compute the
image of a set by a Boolean function that does not require building the
BDD for the transition relation. This procedure relies on lemma 2.5 to
reduce the image computation to a range computation, and proceeds
recursively by cofactoring by a variable of the input space or the output
space. We use the abbreviation 7¢(f) to denote the range of a multiple
output function f = [f1,..., fm]:

()W) = yi-rg((fos-o s fulp) + 77 9([f2, ...
() = rg(fi,-- s fmle) +79((1, -, Frulzr)

The procedure can be sped up dramatically by caching intermediate
range computations, and detecting the case where, at any step in the
recursion, the functions [fi,. .., fm] can be grouped into two or more
sets with disjoint support. The range computation can proceed inde-
pendently on each group with disjoint support. This reduces the worst
case complexity from 2™ t0 2% +. . .4 2%, where (sq, . . ., s) are the
sizes of the groups (s1 + ...+ s = m).

3 Heuristics

3.1 Variable Ordering Heuristics

Variable ordering heuristics are known to have a dramatic effect on
BDD sizes. Good variable ordering heuristics have been developed
for BDD representations of combinational circuits [7]. For sequen-
tial circuits, the variable ordering influences not only the size of the

132

BDD representation of the transition function but also the size of the
BDD representation of the set of reachable states. In addition, both
for the transition relation method and the recursive image computa-
tion method, we usually need to use an ordering that interleaves input
and output variables.

Our variable ordering heuristics are extensions of the heuristics de-
scribed by Malik ef al. in [7]. We first determine a good order-
ing of the next state variables (y1,...,9,), or equivalently the cor-
responding next state functions (fi,..., fn). We then use Malik’s
heuristics to order the supports of the functions f;, supp(f;), individ-
ually. Finally we interleave the input and output variables as follows:
supp(f1), 91, - -+, 5upp(fn) — Ut<icn—15upp(i), Y.

To order the output functions, we want to use some permutation o of
the output functions that minimizes the following cost function, where
| 4] denotes the number of elements of set A:

S U supe(fs;)l

1<i<n 1<5<H

cost(c) =

Unfortunately, finding the optimal permutation is difficult in general.
The best algorithm we could find is based on dynamic programming
and has complexity O(2"). To find an approximate solution to this
problem, we use a simple greedy algorithm with bounded look-ahead
k. This algorithm computes all possible choices for the first £ func-
tions, and for each choice, completes the ordering by selecting for £,
¢ 2 k + 1, the function that minimizes | Ui¢;<; supp(fs;)|. Exper-
imentally, a look-ahead of 2 may yield significantly better orderings
than a look-ahead of 0, and look-aheads or 3 or more are not practi-
cal for large examples. We use this variable heuristics in all exam-
ples reported in this paper except the MINMAX examples, for which
amanual ordering yields significantly better results.

3.2 Partial Product Heuristics

Computing the transition relation may require too much memory to be
feasible in some examples. However, to perform an image computa-
tion as in equation 3, we do not need to compute the transition relation
explicitly. Using propositions 2.1 and 2.2, we can rewrite equation 3
as follows:

So(F(z,y)- A(z)) = So(] (wi=(f)ala)

1<i<m

One efficient way to compute the product is to decompose the Boolean
and of the m functions (gi(z,y) = v = (fi)a(z)) into a balanced
binary tree of Boolean and. Morever, after computing every binary
and p of two partial products p; and p;, we can smooth the z variables
that only appear in p. As for equation 3, the smoothing and the and
computations can be done in one pass on the BDD’s to reduce storage
requirements. This algorithm strictly dominates all the other range
computation algorithms presented in this paper, in the sense that it can
handle all the examples the other techniques can handle, and a few
more.

3.3 Heuristics for Iterative Image Computation

In most applications we need to iterate image computations until we
reach a fixed point. We use two techniques to speed up this iterative
computation. The first technique was suggested to us by R. Rudell [9],
the second was originally introduced by Coudert et al. in [4].

Reordering the Variables of the Image In the transition relation

method, the image is obtained in terms of the next state variables. To circuit || #latches | #size | #states | depth || trans | recur | prod
use the image as initial set for the next iteration, we need to express sand 6 | 1310 32 4 60.8 165 | 169
it in terms of the present state variables. An efficient way to perform sof 8 | 2208 115 16 642 188 187
this computation is to order the present state variables and the next s34 L 26 2623 ! 384 413 346
putation 15 | P | yatiab: 444 21| 352 8865 | 151 1267 | 1205 | 1867

state variables in pairs, and perform the substitution in one pass over 526 21| 445 §863 151 385 1 1338 | 1261
the BDD representing the image. s713 19 [591 1544 7 279.0 90.3 63.7
$953 29 766 504 11 || spaceout 43.1 70.2

L L. $1238 18 | 1042 2616 3 98.7 108.3 43.6

Next State Heurllstllgs Let C; be the set of states reachable in ¢ steps cbp324 3| 480 | 4290509 0 160 318 a1
or less from the initial state. To compute C;y1, we do not need to minmax32 96 | 1874 | 1.32e+28] 901.8 | timeout | 444.4
compute the image of C;. We simply need to compute the image of sbe 28 | 1670 | 154593 10 || spaceout | fimeout | 2903.7
any set ¢; such that C; — C;_y C ¢; C C;. Cyyq is then obtained by key 228 | 3865 | 1.35e+68 17 1778.6 | timeout | 5706.2

computing the union of C; and the image of ¢;. We only care about the

. X Table 1: Performance of Sequential Verification
value of ¢; outside C;_1. Thus we can choose for ¢; any representative

of the incompletely specified function (C;, C;_1). Thisis anideal case #latches: number of state variables

of application of the generalized cofactor. By choosing (c;)z— as the #size: number of literals in factored form

set of states to consider for the next image computation, we can reduce #states: number of reachable states

. R depth: number of iterations in breadth-first traversal

in practice often quite dramatically the time required to enumerate all trans: using the transition relation method (seconds)

reachable states. recur: using the recursive range computation method (seconds)
prod: using the partial product method (seconds)

timeout set to 6000 seconds of CPU time
4 Results and Discussion

We present in this section some results comparing the recursive method Multiple-Level Logic Optimization System. In IEEE Transactions on

proposed by Coudert et al. [4, 5], the transition relation method pro- Computer Aided Design of Integrated Circuits and Systems, pages 1062—

posed by Burch et al. [3] and the new method described in sec- 1081, November 1987.

tion 3.2. All iable ordering heuristi ted

iilozec[ion 31 methods use the variable ordering heuristics presente [2] R. E. Bryant. Graph Based Algorithms for Boolean Function Manipula-
For each '0% these three methods, we measured the time required o tion. JEEE Transactions on Computers, C-35(8):677-691, August 1986.

perform the verification of two identical copies of a finite state machine [3] J.R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Cir-

cuit Verification Using Symbolic Model Checking. In 27th ACM/IEEE
Design Automation Conference, Orlando, June 1990.

O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Ma-
chines Based on Symbolic Execution. In Proceedings of the Workshop
on A ic Verification Methods for Finite State Systems, Grenoble,
France, 1989.

using the breadth-first traversal technique described in [4]. The two

copies keep their state variables independent, but share the external

input wires. The verification starts from an initial state, and impliciily [4

enumerates all reachable states by doing a breadth-first traversal of the

state transition diagram of the product machine. At each step in the

verification, the outputs of the two machines are checked for equal-

ity. We report the time to perform the entire computation, including (5] O.Coudert,J. C. Madre, and C. Berthet. Verifying Temporal Properties of

parsing the input files and computing the product machine. Run times Sequential Machines Without Building their State Diagrams. In Worshop

were measured on an DEC-5400. The program was implemented as on Computer-Aided Verification, Rutgers, June 1990.

an extension of misII [1] and the reported time was obtained using the [6] A.Ghosh, S. Devadas, and A. R. Newton. Test Generation for Highly Se-

misll time command. quential Circuits. In JEEE International Conference on Computer-Aided
We use several ISCAS sequential benchmarks (sand, scf, Design, pages 362365, November 1989.

s344, s444, s526, s713, s953, s1238), an accumu- [7] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli.

lator made out of a 32 bit carry-bypass adder (cbp. 32 . 4), a circuit Logic Verification Using Binary Decision Diagrams in a Logic Synthesis

computing the minimum and the maximum of a sequence of 32-bit in- Environmems. In IEEE International Conference on Computer-Aided

tegers (minmax32), a circuit computing the encryption key used in a Design, pages 6-9, November 1988.

VLSI implemention of the data encryption standard key, and sbc, the [8

snooping bus controller for the SPUR multiprocessor. Except for the Combinational Logic Circuits. PhD thesis, U.C. Berkeley, November

minmax32 example, the variable ordering was performed automati- 1989.

cally. The partial product method was the only one able to complete [9] R. Rudell. private communication, 1990.

the verification of key and sbc; it is a clear winner for the large ex-

amples, and performs adequately well for the smaller ones. As can be

observed from these examples, the computation times are very weakly

related to the number of states visited. We also compared our results

with the method introduced by Ghosh et al. [6]. All three methods in

the table outperform the one in [6] when applied to most large finite

state machines.

=

P. McGeer. On the Interaction of Functional and Timing Behavior of

References

{1] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS:

133

