BDD Techniques for Graph Coloring and Related Problems

Steve Haynal

Department of Electrical and Computer Engineering
University of California, Santa Barbara

March 1997
Outline

- Problem Statements
- Why Solve These Problems?
- General Approach to Solutions
- Implementation Specifics
- Results
- Further Research Directions
- Conclusions
Problem Statements

- **Original Problem**
 - Find edges, which if added to an existing undirected graph, form odd (even) circuits
 - Original graph contains no odd circuits
 - Edges b and c would form odd circuits
 - Edge a would form an even circuit

- **Evolved Problems**
 - Find the chromatic number of an undirected graph
 - Chromatic number = 3
 - Find all valid colorings of an undirected graph
 - c could be blue
 - a could be red.......

![Diagram](image)
Why Solve These Problems?

- Coloring Solves General Scheduling
 - Committee scheduling
 - Engineering examples
 - Minimum width channel routing
 - Chip register/resource scheduling
 - Assignment of binary codes to state symbols

- Coloring is NP-complete - Challenging!
 - Set and compression properties of BDDs could be useful...
General Approach to Solutions: Finding Possible Odd (Even) Circuit Causing Edges

- **Theorem:** A graph can be 2-colored if and only if it does not contain a circuit of odd length
 - Any added edge that destroys 2-coloredness forms an odd circuit
 - Any added edge that preserves 2-coloredness and connects two vertices in the same graph forms an even circuit

- **Solution:**
 - Two-color the graph
 - For odd circuit causing edges, enumerate all edges between vertices in the same color set
 - For even circuit causing edges, enumerate all edges between vertices in opposite color sets that don’t exist in the original graph

![Graph Diagram]
General Approach to Solutions: Chromatic Numbers and Valid Colorings

- Two-coloring as a product of Boolean constraints
 - \((ab' \lor a'b) \land (ba' \lor b'a) = (ab' \lor a'b)\)

- Generalized to >2 colors

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>00</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>10</td>
<td>01</td>
<td>01</td>
</tr>
</tbody>
</table>

- Solution:
 - Write constraints for \(x\) colors on \(n\) vertices
 - Compute product
 - Existing minterms verify chromatic number \(x\)
 - Number of minterms indicate possible valid colorings
Implementation Specifics: Representing a Graph

- Each edge is a minterm
- Each minterms has only two 1’s - adjacent vertices

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Universe is a tuple
- Useful for partitioning
 - 00-0000----0000-
 - Intersect with graph
 - Returns all edges not adjacent to 0’s
- Strings of zeros in the BDD
 - 11 vertex, 18 edge graph
 - 38 nodes BDD
 - 23 nodes ZBDD
Implementation Specifics: Boolean Relations

- Construct a BDD which describes Boolean Relations among vertex colorings
- A path to one is a valid coloring
- Two-Coloring $= \prod_{j,k} (v_j \oplus v_k)$ where $(v_j, v_k) \in \text{edges}$
- 2^i-Coloring $= \prod_{j,k} \sum_i (v_{ji} \oplus v_{ki})$ where $(v_j, v_k) \in \text{edges}$
Implementation Specifics: Tighter Constraints

- Logarithmic color encoding - how to specify exactly 5 colors?
- Add additional constraints c_j and c_k
 - c_j and c_k are BDDs with i levels and minterms from 0 to $x-1$
 - x-Coloring = $\prod_{j,k} (c_j \cap c_k \cap \sum_i (v_{ji} \oplus v_{ki}))$
- Building this BDD is straightforward:
 - Contains 5 colors, 0-- and 100
Further Research

• Chromatic number and valid coloring techniques explode rapidly

• Needed:
 • Tighter constraints
 • Partitioning

• Many unexplored avenues
 • One possible partitioning:
 • Partition between high and low degree vertices
 • Color low degree side leaving sufficient “holes” for high degree side
 • Color high degree side
 • Check for compatible colorings
Conclusions

- Efficient two-coloring and odd-circuit producing edge finding techniques
 - Only 2 minterms in BDD
 - Maximum number of BDD nodes is roughly two times number of vertices
 - Time spent is on order of number of edges in original graph
- Chromatic numbering and valid colorings works for small cases
 - Explodes rapidly
 - Possibility of more constraints
 - Possibility of recursive partitioning