
The XPIC

Scott Masch

November 1, 2001



1 Introduction

The XPIC is a high speed microcontroller that is capable of running at
100MHz while executing one instruction per clock. It has 36 different in-
structions, and it uses a superset of Microchip Technology’s 14-bit PIC in-
struction set which is used in their PIC16C6X series microcontrollers. Pro-
gram memory is split between a 1K x 14 bit ROM (used for booting and test
routines) and a 1K x 14 bit RAM (used for user programs and additional
data storage). 96 bytes of memory are provided in the data address space
for general purpose use. The processor itself is organized as a four stage
pipelined for high performance. This design was fabricated in HP 0.5um
CMOS (HP14TB) by the MOSIS fabrication service. We gratefully thank
MOSIS for their support for this project.

The XPIC was thoroughly tested for functionality, performance, and
power consumption. Functionality testing verified proper operation of all
parts of the chip. Performance testing was done to find the maximum clock
frequency of the chip at various voltages. The power consumption of the
XPIC was also measured at various clock frequencies and voltages.

1



2 Design

The top level design of the XPIC is shown in Figure 1. This figure shows
all of the major blocks of the chip.

2.1 Design Methods

The processor core of the XPIC was designed using Synopsys Protocol Com-
piler, which is a high level synthesis tool that uses a regular expression like
input syntax and can generate VHDL, Verilog, or C output. Everything
was converted into a netlist and technology mapped using Synopsys Design
Compiler. Layout, routing, static timing analysis, and module building (for
ROMs, RAMs, etc.) was done by Epoch from Cascade Design Automation
(no longer in existence). Most of the simulation was performed using Model
Sim. The boot code was tested using a serial EEPROM model generated
with Synopsys MemPro. Finally, DRC and LVS checking was performed
with Mentor Graphics CheckMate.

2.2 Processor

The XPIC is designed to run the Microchip 14-bit PIC instruction set with
a few modifications. Four instructions have not been implemented; these are
SLEEP (enter sleep mode), CLRWDT (clear watchdog timer), TRIS (write
TRIS (data direction) register), and OPTION (write OPTION register).
SLEEP and CLRWDT are not implemented because hardware support was
never added, and TRIS and OPTION can already be implemented using
MOVWF loc, where loc is the TRIS or OPTION register.

Three instructions have been added; these are TBLRD (table read),
TBLRDT (table read using WREG), and TBLWT (table write). All of
these instructions are used for reading and writing the program memory.

It is designed to run most instructions at the rate of one instruction per
clock.

2



Port�
E

�
PE0/SDA

PE1/SCL

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB7
PB6
PB5
PB4
PB3
PB2/INT

PB0/PRM1
PB1/PRM2

PRM�
1,2

Port�
A

�

Port�
B�

Serial�
Links�
1,2

S1 Out

S1 In

S2 Out

S2 In

Register
File

16x8 each

Timer�

Data In

Read Addr

Data Out

Write Addr

Interrupt�
Controller�

1k x 14	
ROM


1k x 14	
RAM

� Addr
�
Data In

Data Out

Write Enable
�

XPIC
Core

Reset

Clock

Vdd

Vss

Figure 1: Top level design of the XPIC.

3



Data Read

ALU Decode
�

Program�
Memory

Data�
Addr�
Calc�

3 to 8 Decode
�

Local�
Registers�

iswreg�

isstatus�
Addr�
Clear�

st
at

us�

w
da

ta	

w
re

g


Local�
Registers�

Data�
Write�

ad
dr	

L
at�

L
at�

L
at�

L
at�

L
at�

ir
1


Figure 2: The XPIC datapath

2.2.1 Pipelining

In order to execute code at the rate of one instruction per clock, the XPIC
uses a four stage pipeline. The structure of this pipeline is shown in Figure
2. The four stages are fetch, read/decode, execute, and write.

Fetch The fetch stage reads data from the program memory and latches
it for the next stage.

Read/Decode The data needed for the instruction fetched is read from
memory and latched. This is done regardless of whether the instruction
needs the data or not, or if the instruction will even be executed. The data
address is normally the low 7 bits of the instruction, however, if the address
is zero (INDF), the actual address is the value contained in the FSR (File
Select) register. For the data memory read, the test for a zero address is
only done on the upper 4 bits of the address to allow more time for the
data memory read. If this read is done unnecessarily because of a bypass
or because data is not needed, the data will simply be ignored in the next
stage.

A 3-to-8 decoder is used to create a 1-of-8 value for use in the bit oper-
ations (BSF, BCF, BTFSS, and BTFSC). The ALU operation bits are also
calculated and latched in this stage.

4



Execute The execute stage uses a single-cycle ALU to compute the de-
sired output value. The WREG (working register) value is always read and
written to in this stage. The STATUS register is a special register that is
also read and written to in this stage because it changes in (and is often
read after) many arithmetic and data movement operations. The PCL reg-
ister is written to in this stage to minimize delay in the jump that takes
place because of the change of the program counter. The FSR register is
also written here so that it is available for later instructions to use it as an
indirect address.

This stage also selects if a write will take place during the write stage.
If the current instruction is not being executed, or the current instruction
does not write to memory, the address value for the write is converted to a
location that does not write during the write stage. The two locations that
are used are 0x03 (status register, written during the execute stage) and
0x07 (unused).

Write This final stage writes data back to memory. All locations are
written in this stage except for INDF (not a real register), PCL (program
counter low, written during execute), STATUS (written during execute),
and FSR (also written during execute). As mentioned before, if a write is
not needed, the write address is set to a location that is not written in this
stage. This was done to reduce the number of bits that have to be tested to
determine if a write should take place to a particular location and was found
to reduce the area requirements of the chip compared to having a separate
write flag.

2.2.2 Hazards

The XPIC core has several bypasses built in. There are two for read after
write operations: one for a read immediately after a write and one for a read
two cycles after a write. The latter is actually not necessary at lower speeds
because the write to data memory can complete in time for the read to get
the new data. However, above about 70 MHz (estimated from the timing
data) this path is not fast enough so the internal bypass is needed. There
are also hazards associated with some of the special function registers, these
are discussed in the sections on these modules.

5



2.2.3 Interrupts

The XPIC has three interrupt sources: external edge, timer overflow, and
serial link event. When any of these events occur, the corresponding bit in
the INT register is set. If the enable bit for that event is set and interrupts
are enabled in the STATUS register, an interrupt occurs. Interrupts take
3 clock cycles between when the first instruction is flushed and when the
first interrupt routine instruction is executed. During these three cycles,
the WREG and STATUS registers are backed up to shadow registers and
the address of the first executable instruction during these three cycles is
saved. This is needed in case a multicycle instruction (such as GOTO) is
being executed, as we may not be executing the instruction currently in the
execute phase. This means the interrupt and the multicycle instruction can
share flush cycles and provide a slight performance improvement.

Interrupt routines are terminated by a RETFIE instruction. This in-
struction restores the STATUS, WREG, and program counter registers to
their original states.

2.2.4 Special Function Registers

The special function registers (SFRs) and their locations are summarized in
Table 1. These registers are used for controlling various parts of the chip.
Details on SFRs specific to the processor core are as follows.

INDF/FSR The INDF and FSR registers are used for indirect addressing.
Reading INDF reads the address referenced by FSR, and writing INDF
writes the address referenced by FSR. FSR can be read or written to like any
other register (it can even be read or written through INDF), although the
topmost bit is fixed to one. When FSR is zero (the INDF address), reading
INDF returns all zeros, and writing INDF effectively performs no operation
(although STATUS bits may still be affected). There is one problem with the
implementation of this on the XPIC: writing FSR does not take immediate
effect (like it should). Instead, it takes one extra instruction cycle, meaning
that at least one instruction must exist between a write of FSR and a read
of INDF. (This is a well known bug, this was done because of chip area
limitations and the desire to go fast.)

6



INDF
�

TMR�
PCL�

STATUS�
FSR�

INT�

TBLATH�
TBLPTL

TBLPTH

PORTA�
TRISA�
OUTA	

PORTE�

PRM1H�
PRM1L�
PRM2H�
PRM2L�
PORTB�
TRISB�
OUTB	

PRMSPEED�
RXBUF

TXBUF


MSGLEN�

STATREG�

SCONTROL�

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

0x10

0x11

0x12

0x13

0x14

0x15

0x16

0x17

0x18

0x19

0x1A

0x1B

0x1C

0x1D

0x1E

0x1F

Unimplemented location, read
values and write effects are�
undefined.

1

Note 1: INDF is not a physical register.

OPTION�

Table 1: Summary of Special Function Registers in the XPIC.

PCL Program Counter Low (PCL) contains the lower 8 bits of the 11 bit
program counter. When read, it reads the address of the current instruction
plus one. Writing this register causes a jump to STATUS[7:5]:PCL[7:0].
This can be used for indirect jumps. Since any instruction that writes PCL
causes a change in the Program Counter, the instruction takes three cycles
to execute and flush the pipeline.

STATUS The Status register holds the ALU status bits, the upper bits to
write to the Program Counter during a write to PCL (discussed in section
2.2.4), and the Global Interrupt Enable bit. The bits of this register are

7



PCLATH2
�

PCLATH1
�

PCLATH0
�

GIE Z
�

C�DC

bit 7 bit 0

R-0R/W-0 R/W-0 R/W-0 R/W-0 R-0

R
W

�

x� = unknown

= Readable bit
= Writable bit
= Reset value-n

R/W-x R/W-x

bit 7-5: PCLATH: Program Counter Upper Bit Latch
Holding register for the upper 3 bits of the Program Counter

bit 4: GIE: Global Interrupt Enable
1 = Interrupts are enabled
0 = Interrupts are disabled

bit 3: Unimplemented, read as zero.
bit 2: Z: Zero Bit

1 = An arithmetic or logic operation result was zero
0 = An arithmetic or logic operation result was not zero

bit 1: DC: Digit Carry Bit
Digit Carry is not implemented in the XPIC and always reads as
zero.

bit 0: C: Carry/Not Borrow Bit
1 = A carry occurred on the last arithmetic operation
0 = A carry did not occur on the last arithmetic operation
Note: the rotate instructions also modify the carry bit

Figure 3: Status Register

shown in Figure 3. The Global Interrupt Enable bit enables and disables
all interrupts. It is automatically cleared when an interrupt occurs and is
restored to its previous value when the RETFIE instruction is executed. The
Carry and Zero bits are updated by many arithmetic and logic operations.
Writing to either of these two bits with any instruction that otherwise affects
either of these bits will have the write disabled to these bits.

OPTION The OPTION register contains several bits controlling various
resources and is shown in Figure 4. The Interrupt Edge Select bit is used
to select which edge will be detected from the INT pin (Port B, bit 2). The
T0EN and TPS bits are discussed in section 2.4 (Timer) and the PRM1EN
and PRM2EN bits are discussed in section 2.3.3 (Pulse Rate Modulators).

INT The INT register contains both the interrupt flags and interrupt en-
able bits. This is shown in Figure 5. Whenever an interrupt event occurs,
the interrupt flag for that source is set, regardless of the state of the Global
Interrupt Enable bit (in Status) or the enable bit for that source. An inter-
rupt occurs whenever the Global Interrupt Enable bit is set, an interrupt

8



bit 7 bit 0

R/W-0 R/W-0 R/W-0 R/W-0

R
W

�

x� = unknown

= Readable bit
= Writable bit
= Reset value-n

T0EN� INTEDG� PRM2EN� PRM1EN� TPS2 TPS1 TPS0

R/W-0 R/W-0 R/W-0R-0

bit 7: T0EN: Timer Enable
1 = Enables the timer
0 = Stops the timer

bit 6: INTEDG: Interrupt Edge Select
1 = Interrupt on rising edge of PB2/INT pin
0 = Interrupt on falling edge of PB2/INT pin

bit 5: PRM2EN: Pulse Rate Modulator 2 Enable
1 = Enable Pulse Rate Modulator 2
0 = Disable Pulse Rate Modulator 2

bit 4: PRM2EN: Pulse Rate Modulator 1 Enable
1 = Enable Pulse Rate Modulator 1
0 = Disable Pulse Rate Modulator 1

bit 3: Unimplemented, read as zero.
bit 2-0: TPS: Timer Prescaler Select

111 = Divide by 128
110 = Divide by 64
101 = Divide by 32
100 = Divide by 16
011 = Divide by 8
010 = Divide by 4
001 = Divide by 2
000 = Divide by 1 (prescaler disabled)

Figure 4: Option Register

flag is set, and the interrupt enable for that source is set.

TBLATH The TBLATH (Table Latch High) register stores the upper 6
bits of data for a TABLE operation. For a TBLRD or TBLRDT operation,
the upper 6 bits of data read are loaded into this register. For a TBLWT
operation, the upper 6 bits of data written are taken from this register. The
lower 8 bits are read from/written to WREG. The upper two bits of this
register are unimplemented and read as zero.

TBLPTL and TBLPTH TBLPTL (Table Pointer Low) provides the
low 8 bits and TBLPTH (Table Pointer High) provides the high 3 bits
used in TBLRD and TBLWT operations. For TBLRDT, only TBLPTH is

9



bit 7 bit 0

R/W-0 R/W-0 R/W-0

R
W

�

x� = unknown

= Readable bit
= Writable bit
= Reset value-n

EEN� TEN� SEN� EINT� TINT� SINT�
R-0 R/W-x R/W-x R/W-x R-0

bit 7: EEN: External Interrupt Enable
1 = Enables the external interrupt
0 = Disables the external interrupt

bit 6: TEN: Timer Interrupt Enable
1 = Enable the timer overflow interrupt
0 = Disable the timer overflow interrupt

bit 5: SEN: Serial Link Interrupt Enable
1 = Enable the serial link event interrupt
0 = Disable the serial link event interrupt

bit 4: Unimplemented, read as zero.
bit 3: EINT: External Interrupt Flag

1 = The external interrupt occurred
0 = The external interrupt did not occur

bit 2: TINT: Timer Interrupt Flag
1 = The timer overflowed
0 = The timer did not overflow

bit 1: SEN: Serial Link Interrupt Flag
1 = A serial link event occurred
0 = A serial link event did not occur

bit 0: Unimplemented, read as zero.

Figure 5: Interrupt Register

used; the low 8 bits come from WREG. The upper 5 bits of TBLPTH are
unimplemented and read as zero.

2.3 I/O Ports

There are 18 general purpose I/O pins on the XPIC. Each pin can be used
as either an input or an output.

2.3.1 Port A

There are three SFR addresses associated with Port A. The PORTA address
writes to the output latch that sets the output port state and reads the actual
port state. The OUTA address writes to the output latch like PORTA but
reads the output latch value. This is useful in read-modify-write instructions

10



Adder
�

AccumulatorDuty Cycle�

16

16
16

Carry

Output�

Figure 6: Simplified version of the pulse rate modulators used in the XPIC.

as this prevents bits from being erroneously changed while the port is an
input. The TRISA address sets the direction for each pin of the port. One
bits make pins inputs, while zeros make pins outputs.

2.3.2 Port B

There are three SFR addresses associated with Port B. These are PORTB,
OUTB, and TRISB; and they all have the same functionality as the Port A
addresses of the similar name.

2.3.3 Pulse Rate Modulators

There are two pulse rate modulators multiplexed with Port B. First of all,
pulse rate modulation is similar to pulse width modulation in that there is
a register that contains a desired duty cycle of an output pin. However, un-
like pulse width modulation, the output pin transitions far more often (up
to once per clock cycle) and often produces a cleaner output. A simplified
version of the pulse rate modulators used in the XPIC is shown in Figure
6. The duty cycle is set with PRM1L and PRM1H for the first PRM and
PRM2L and PRM2H for the second PRM. By design, the pulse rate mod-
ulators only run at half the core clock speed, and can be divided down to
1/510 of the core speed using an 8 bit LFSR. The speed is selected using the
PRMSPEED register. The PRMs are enabled through the PRM1EN and
PRM2EN bits in the OPTION register. Also, in order for the PRMs to do
anything, the corresponding pins must be set as outputs and driven low.

11



2.3.4 Port E

Port E is a two pin port used primarily to read and write serial EEPROMs
and to determine the boot mode. It has one register associated with it:
PORTE. It has four active bits: two are equivalent to the PORT bits and
two are equivalent to the TRIS bits.

2.4 Timer

The XPIC has a single 8-bit timer with a 7-bit prescaler. The timer is
clocked by the instruction clock. The prescaler is capable of division by
1, 2, 4, 8, 16, 32, 64, and 128. The timer settings are controlled by the
OPTION register, these are shown in Table 4. The timer is mapped to the
data address space and can be read or written to at any time. When the
timer overflows (from 0xFF to 0x00), the TINT bit in the INT register is
set, causing an interrupt if interrupts are enabled.

2.5 Serial Links

The XPIC can communicate with other XPICs through one of two point-
to-point serial interfaces on the chip. One serial link consists of two unidi-
rectional lines which transmit at a rate 1/16 of core clock speed. The lines
in either direction are independent, so it possible to transmit and receive
simultaneously for full-duplex operation, as well as communicate on each
serial link independently.

The protocol defined on these serial links is that a processor may transmit
one packet at a time, each containing a two bit header and eight bits of
data. Synchronization is done by the receiver upon seeing the first bit of
the packet header. The receiver must reply to each packet received with
a two bit acknowledgement pulse before the transmitter can send the next
packet. At full speed, it takes approximately 14 serial clock cycles or 224
processor clock cycles to complete the transmission and acknowledgement
of one packet. Thus, when the processor is running at 90 MHz, the speed
of the serial links is 400 KB/s or 3.2 Mbps.

If a processor transmits a packet along a serial link, it expects to receive
an acknowledgement within 16 serial clock cycles. If it does receive acknowl-
edgement within this time, the transmission is considered a failure. At this

12



point, the byte is dropped, an error signal is sent to the processor, and the
next packet is readied for transmission. Retransmission in the presence of
errors must be done manually. Some instances in which a transmission error
may occur is if there is noise on the line, causing the receiver to not inter-
pret the incoming packet correctly, or if the receiver cannot accept the data
because of a full buffer. The second condition will also cause an error signal
to be sent to the processor on the receiver side.

Internally, each end of each line in the serial link is connected to a 4-
byte FIFO. Each link can be programmed to send or receive messages of
1-4 bytes of data before signalling the processor. Such signalling can be
done with an interrupt or by polling a bit in the serial link status register.
Thus, it is possible to send or receive multi-byte packets with no processor
intervention.

From a programmer’s perspective, transmission is initiated by simply
writing the data to transmit into a transmit buffer register. If the serial link
is already busy, the data will wait in the transmit FIFO until the link is
free. If the transmit FIFO is full, any data written to the transmit buffer
register will be lost. On the receiving end, when a packet comes in, the
programmer is responsible for reading the data from a receive buffer, and
shifting out the data from the receive FIFO by writing a one to a bit in
the serial control register. Failure to do so will cause an error when the
receive FIFO overflows. The programmer is also responsible for clearing the
serial status bits once a successful or unsuccessful transmission/reception
has occurred.

2.6 Memory

The XPIC has 1k×14 of program ROM used for booting, testing, and various
miscellaneous subroutines. When the XPIC starts up, it begins executing
code from the beginning of ROM. This code resets some of the registers in
data memory and reads Port E to determine the desired mode of operation.
See Table 2 for the available settings. Two of the options are the ROM
Self Test and the Sine Wave Test: these are discussed in Section 3. The
third option is to boot from a serial EEPROM. In this mode, byte pairs are
read from the beginning of the serial EEPROM and are loaded starting at
the beginning of program RAM. This transfer is terminated and the loaded
program is executed when the “end” bit in the byte pair is set.

13



Port E2 Port E1
SDA SCL Run Mode

0 0 ROM Self Test
0 1 Boot from Serial EEPROM
1 0 Sine Wave Test
1 1 Boot from Serial EEPROM

Table 2: Port E pin states for boot mode selection.

The ROM also contains several “helper” subroutines for multiplication,
serial EEPROM operations, and sine/cosine operations. There is also a 128-
point quarter cosine table stored in program ROM to assist sine and cosine
functions.

The XPIC has 1k×14 of program RAM used for executing user programs
and storing general purpose data. Additionally, there are 96 bytes available
in a register file for general purpose data storage located between 0x20 and
0x7F. Unlike the program RAM which can only be accessed using the table
instructions, this data space can be directly accessed (or indirectly accessed
using INDF/FSR) by many instructions.

14



3 Testing

3.1 Test Software

3.1.1 ROM-Based Self Test

This is a series of programs intended to test most of the internal features
of the chip. It includes tests for the execution unit, data memory, pro-
gram memory, timer, interrupt, and serial links. For all of these tests, the
Pulse Rate Modulators (PRMs) are both running in slow mode with PRM1
running with a 1/3 duty cycle and PRM2 running with a 2/7 duty cycle.
A value indicating the current section of the code is written on Port B at
various points in the code, while other current information is periodically
written on Port A.

Core Test This is a long test that performs all sorts of basic arithmetic
and logic operations, skips, direct and relative jumps, calls (using all 8 stack
levels), direct and indirect memory accesses, and status register tests. These
tests output an extensive amount of information on the I/O ports as failures
here are likely to cause problems in later tests.

Memory Tests The program memory and data memory tests are very
similar, so they will be discussed together. In the first test, pseudo-random
data generated from a software based LFSR (9 bits wide for data memory,
17 bits wide for program memory) is written to all locations. Then this data
is verified by re-running the LFSR routine and comparing the values. The
second test is a variation of the March algorithm where alternating 1’s and
0’s are written to and later read from each location. (The only problem with
this is that it is only performed at the word level, and not at the bit level.)

Timer Test This is a simple test where the timer is started, the program
loops for a known amount of time, and then the value in the timer is verified
with the correct value. This is done for the 1:1, 1:16, and 1:128 prescaler
values.

Interrupt Test For the interrupt tests, a GOTO instruction is loaded
at the interrupt vector (in program RAM) so that the interrupt routine in

15



ROM will be used. The interrupt routine sets a register in data memory
to indicate which interrupts have occurred, clears the interrupt flags, and
returns. First, the timer is turned on and the timer interrupt is enabled. The
main loop waits for a length of time while counting the interrupts. This part
of the test passes if the proper number of interrupts is generated before the
time limit is exceeded. For the next test, timer interrupts are disabled and
the external interrupt is enabled and high-to-low edge sensitivity is selected.
A high-to-low edge is generated on the interrupt pin and the execution of
an interrupt is verified. This is repeated for low-to-high edge sensitivity.

Serial Link Test All of these tests are first performed for transmission
from serial port 1 to serial port 2, then for transmission from serial port 2
to serial port 1. This is done using the internal loopback. First, each byte is
sent in sequence from 0 to 255, and reception of each byte is verified on the
other side. Next, 5 bytes of data is sent without reading any of the received
bytes, causing the receive FIFO (4 bytes deep) to overflow. This causes an
error, which is verified before continuing. Last, the receive buffer is cleared,
the loopback is turned off, and a byte is sent. This causes an error on the
transmit side, which is verified.

3.1.2 RAM-Based Self Test

This is almost identical to the ROM-based self test, except that part of the
self test code is present in program RAM. Actually, most of the self test code
is still run from ROM, only the top level loop and the program memory test
routine is in RAM. Unlike the ROM-based test, this version also toggles
one of the serial EEPROM lines upon successful completion of a test loop
as a simple pass/fail indication. The program memory test loop from the
ROM was not used because this memory test is a destructive test, and would
destroy the test program in RAM. The new program memory test only tests
the upper 75% of the program memory leaving the test routine in the lower
part of RAM alone.

3.1.3 I/O Port Test

This is a RAM-based program that performs a loopback test on the I/O
ports. For this test, Port A and Port B must be externally connected to-
gether. First, Port A is set so all bits are outputs and then all combinations

16



of outputs are written onto the port. For each output combination, Port
B is sampled to check for the correct value. Incorrect values are flagged
and are later written out serially on Port E (the serial EEPROM port) for
observation. This test is then repeated with the output latch on Port A set
to zero and the data direction, TRIS, written. This causes the pins to only
be driven low or be left floating. Since there are weak pullups on each pin
(on the circuit board), each pin will be pulled high when the pin is an input.
Like before, all possible combinations are written to Port A, and incorrect
values are looked for on Port B. This procedure is repeated for sending from
Port B to Port A.

3.1.4 Sine Wave Generation

This is a ROM-based program that generates sine waves on both of the PRM
ports. The first PRM port has a single sine wave running at fclk/32768. The
second PRM port has two sine waves each of equal amplitude running at
fclk/32768 and fclk/163840. These sine waves are generated in software and
use the quarter cosine table present in the ROM. Since the sine waves are
generated with the PRM units (in fast mode), an external low pass filter is
needed to be able to see the sine wave on an oscilloscope.

3.2 Test Setup

A printed circuit board (PCB) was made for testing the XPIC. This circuit
board has a ZIF socket for the XPIC, extensive power supply decoupling,
a socket for the serial EEPROM (for program code), connectors for all of
the I/O and serial ports, a clock buffer, and a reset circuit. Figures 7 and 8
show these features of the PCB.

3.2.1 Test Socket

The XPIC was mounted using a ZIF socket (Aries Electronics #52-536-11).
This socket was used because it was the only one we could find that could
handle a 52 pin LCC device. Actually, this socket was made for PLCC chips
and a block of foam (visible in Figures 10 and 11) had to be used to keep
sufficient force on the pins.

17



Figure 7: The XPIC test board.

3.2.2 Power Supply

A large number of decoupling capacitors were installed on the board to
help keep the power supply stable at 100 MHz. These capacitors are chip
capacitors mounted on the bottom of the board and are visible in Figure
8. The larger capacitors are 0.1µF and are scattered throughout the board.
The smaller capacitors (located directly underneath the XPIC) are both
0.01µF and 0.001µF and were added because of suspected power supply
noise problems. The top layer of the board (shown in Figure 9 without any
parts mounted) is primarily a ground plane, while the area around the XPIC
is primarily a power plane; this was done to keep power supply impedance to
a minimum. There is also a 68µF capacitor mounted on the board to filter
any low frequency noise, this is shown in Figure 8 and is located along the
lower edge to the right of the reset circuit. Power enters the board through
a three pin connector on one corner of the board.

18



Figure 8: Bottom of the XPIC test board.

3.2.3 Reset

The reset circuit consists of a pushbutton, a resistor, a capacitor, and a
Schmitt Trigger inverter. It will generate a 0.3 second reset pulse to the
XPIC on power up and whenever the reset button is pressed. The reset
circuit is shown in Figure 8. The 5-pin device on the right side of the reset
circuit is a single Schmitt Trigger inverter (Fairchild #NC7S14).

3.2.4 Clock

The XPIC board has a 4-pin oscillator socket that can accept standard
half-size oscillators. The clock line of this socket is connected through an
inverter (Fairchild #NC7SZ04) to the clock input of the XPIC. This inverter
is shown in Figure 8.

For most of the testing, a variable frequency clock source was used.
For earlier parts of the testing, a high speed function generator was simply
connected between the clock and ground lines of the oscillator socket. Later

19



Figure 9: Top layer of the XPIC board without any components.

on, an RF generator was used, which required a DC block in order to be
connected to the XPIC board. The DC block module is shown in Figure
7. It is constructed on Vector board, plugs directly into the 4 pin oscillator
socket, and has an RG-58 cable soldered to it which connects to the RF
generator. A 47Ω resistor terminates the cable while a 0.01µF capacitor
couples the clock signal to the XPIC board (both are surface mount parts
on the bottom of the DC block board). A variable resistor and inductor sets
the DC bias on the XPIC side of the DC block.

3.2.5 I/O Ports

Ports A and B (shown in Figure 7) can both be accessed via two connectors:
a male header designed for connection to a logic analyzer and a female
connector that can accept wires for easy connection. Each port pin has
47kΩ pullup resistor to hold the pin high when it is otherwise left floating.

20



Figure 10: Another view of the test board showing the inside of the test
socket.

3.2.6 Serial EEPROM/Boot Mode Selection

The serial EEPROM (shown in Figure 7) is mounted in a 8 pin DIP socket
and can be removed for programming. These serial EEPROMs use a two
wire I2C interface. The pullup resistors for I2C are mounted on the board.
The boot mode selection jumpers are just below the serial EEPROM. In the
figure, one of the pins has a jumper to select Sine Wave Generation.

3.2.7 Serial Ports

The three-pin connectors on each side of the board allow connection to the
XPIC serial ports. The three pins are transmit, receive, and ground. The
receive lines are pulled up through resistors on the board.

21



Figure 11: The test board with an XPIC chip in position in the socket.

3.3 Test Results

3.3.1 Functionality

Most of the functionality testing was performed with the ROM-based self
test. For these tests, a logic analyzer was connected to ports A and B. This
provides enough information to verify proper operation of the entire self test
and can also provide some debugging information if necessary. All of the
chips were able to pass this test.

The I/O port test was also run. All ports were observed to be working
correctly from port E data. Each loopback wire was then briefly removed:
this causes a failure for that pin on each port, this was also observed on
port E. For each port pair, a pull down resistor was briefly connected. This
causes the drive low/high impedance test for both ports to fail, but it does
not affect the fully driven test. These results are observed on port E. All
chips were able to pass this test.

22



3.3.2 Performance

The maximum clock frequency for each of the 12 chips tested is shown in
Figure 12. The maximum speed was found by running the RAM-based self
test and adjusting the clock frequency up to the point where the device quit
working properly, then adjusting the frequency back down until the device
was stable. This frequency was considered to be the maximum frequency.
This was repeated for each of the 12 chips and from 2.5 to 3.7 volts in 0.1
volt increments.

Three of the chips (numbers 6, 8, and 10) quit working before reaching
the 2.5 volt lower limit. This is believed to be because the RAM sense amps
ceased to work below some power supply voltage.

3.3.3 Power Usage

The power consumption of the XPIC was measured both during perfor-
mance testing at maximum speed and later at a fixed frequency but variable
voltage. During performance testing (described above in 3.3.2) each time
the maximum frequency was found, the current at this frequency was also
recorded. The results of this are shown in Figure 13. For the fixed frequency
testing, a constant clock signal at 50 MHz was applied while the voltage was
adjusted from the minimum operating voltage of the device to a little over
3.7 volts. The results of this test is shown in Figure 14.

23



506070809010
0

11
0

12
0

2.
6

2.
8

3
3.

2
3.

4
3.

6

Freq (MHz)

�

V
ol

ts

#1 #2 #3 #4 #5 #6 #7 #8 #9 #1
0

#1
1

#1
2

Figure 12: Maximum clock frequency at various voltages for each chip.

24



3040506070809010
0

11
0

2.
6

2.
8

3
3.

2
3.

4
3.

6

Current (mA)

�

V
ol

ts

#1 #2 #3 #4 #5 #6 #7 #8 #9 #1
0

#1
1

#1
2

Figure 13: Current consumption at the maximum clock frequency.

25



25303540455055

2
2.

2
2.

4
2.

6
2.

8
3

3.
2

3.
4

3.
6

3.
8

Current (mA)

�

V
ol

ts

#1 #2 #3 #4 #5 #6 #7 #8 #9 #1
0

#1
1

#1
2

Figure 14: Current Consumption at 50 MHz from the minimum operating
voltage to about 3.7 volts.

26



4 Conclusion

The XPIC seems to be functioning as it was designed. It runs slightly faster
than we simulated. Late in the design phase, simulations showed the chip
could run as fast as 92 MHz at 3.3 volts, while tests of the actual chip ran
in excess of 100 MHz. This was probably because of process improvements
since the timing models in Epoch were built. This could be compared to
current professional designs – PIC offers a 40MHz part (0.25 IPC) and Scenix
offers a similar part – running currently at 75MHz with an IPC of about
1.0. Our design uses more power than the Microchip design but offers 10X
the performance, and beats the Scenix design in performance and power
dissipation. We believe that this success is largely due to RT level design
flow improvements which made possible rapid turnaround of architectural
changes in the design. Back end flow used the Duet (Formerly Cascade
Design Automation) Epoch tool which unfortunately is now defunct. This
tool provided a very efficient (in design time) mechanism to handle low level
changes. The design changed from 74 to 92 MHz in simulation by judicious
floorplanning, buffering and low level placement changes.

Fairly extensive tests were run on the design at speeds requiring a custom
circuit board assembly. Decoupling of this board was facilitated by numer-
ous chip scale capacitors mounted at low inductance sites. In early stages
of testing we had problems getting a clock into the chip without causing ex-
cessive power supply noise (about 330 mV P-P at 100 MHz). This problem
did not appear when running a local crystal oscillator on the board. The
problem was traced to line coupling and signal reflection at the termination.
Accordingly, a D.C. blocking capacitor and resistive terminator were added,
as well as a CMOS inverter acting as a clock buffer. The total noise was
reduced to below 100 mV P-P over the test frequencies.

The core of the design was written using Synopsys Protocol Compiler,
a high level tool, which allowed considerable freedom in automatic finite
state machine synthesis. While this did take extra time in the beginning
to learn the tool, it allowed for rapid design changes which were important
to accommodate bypassing for the pipelined design. Further, the rapid
turnaround made bug fixing easier since bugs could usually be confined to
relatively small portions of the code.

This design contained a substantial amount of ROM to provide for boot
and program loading (eprom was not an option in this process). The ROM
also provided a convenient location for substantial built-in test code for

27



functional verification of the processor. This greatly simplified the creation
of SHMOO plots since the test code provided a fast boot of the go-nogo
functional test. This feature will doubtless be incorporated in future designs.

28


	Introduction
	Design
	Design Methods
	Processor
	Pipelining
	Hazards
	Interrupts
	Special Function Registers

	I/O Ports
	Port A
	Port B
	Pulse Rate Modulators
	Port E

	Timer
	Serial Links
	Memory

	Testing
	Test Software
	ROM-Based Self Test
	RAM-Based Self Test
	I/O Port Test
	Sine Wave Generation

	Test Setup
	Test Socket
	Power Supply
	Reset
	Clock
	I/O Ports
	Serial EEPROM/Boot Mode Selection
	Serial Ports

	Test Results
	Functionality
	Performance
	Power Usage


	Conclusion

