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Abstract

The XPIC

by

Scott Frederick Masch

This thesis describes a fast high level design flow and design of a Microchip

PIC compatible micro controller. The design executes in RAM and uses a four

stage pipeline for high performance and indeed achieves substantially better

performance than any comparable micro controller in comparable technology.

The design flow made use of a regular expression based controller synthesis tool

which enables rapid design alteration and validation, and simplified the bug

fixing in the verification. The design was fabricated in 0.5µm CMOS technology

and achieved 100+ MHz performance at 3.3V.
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Chapter 1

Introduction

This thesis describes the design, implementation and test of a PIC compat-

ible [4] microcontroller. This controller was chosen as a test bench for a new

processor design flow based on a new high level representation of the design. To

enable a fair benchmark of the new methodology, the processor maintains binary

compatibility with the PIC standard [3] while providing a rich set of peripherals

and processor extensions. First, the processor has high performance, being de-

signed as a 4-stage pipeline architecture. Second, the controller supports a small

set of instruction extensions which greatly improve table lookup performance

and make possible read/write access to program memory. Third, the controller

has two channels of high performance pulse rate modulation based digital to

analog conversion. (Pulse rate modulation has much better noise characteristics

at high speed than pulse width modulation, which is why it is used.) Fourth,

the controller has a set of timer and control peripherals adherent to the PIC

standard. Fifth, the controller has two high speed serial communication ports

for multi-Mb/s 2-wire communication capability. Finally, the contoller is de-

signed to operate at 100+ MHz clock rates (in 0.5µm technology) and achieves

an IPC of nearly 1.0, making it the fastest processor of its type available. (It

has roughly 20x the native performance of a high speed commercial version from

Microchip[3] and nearly 2x the performance of the Ubicom (formerly Scenix)

1



version of the part[10]). This performance is partly enabled by execution out of

RAM versus EPROM or EEPROM storage, but is also partly due to the design

methodology.

There were several goals in this design project. First, we wanted to demon-

strate a professional quality design constructed largely by direct synthesis. The

design had to be compatible with a commercial product in order to show that

a synthesis based flow could indeed compete with professional design in similar

technologies. We needed to show that the high level flow could be constrained

to construct a high performance and not just functionally correct design. Fi-

nally, we wanted to validate that design change, debugging and update could be

accomplished with ease in an applicative language based on extended regular ex-

pressions. The essential notion of the specification strategy is the identification

of desired execution sequences and direct implementation of the controller from

a non-deterministic specification format. This model allows for directed sequen-

tial optimization which helps to prevent critical path formation through the con-

troller. This synthesis model is discussed in ”Clairvoyant: A Synthesis System for

Production-based Specification” [11]. An additional goal of the design is to con-

struct a complete set of design views from very high level, RTL, gate-level, circuit

and layout level for a working practical design. These views are made available

via the web at: http://bears.ece.ucsb.edu/research-info/XPIC/index.html.

The design flow consisted of using Synopsys Protocol Compiler in a non-

traditional way to synthesize a VHDL based controller. This controller comprised

the majority of the design. Additional portions of the design were manually

written in VHDL (these comprised the data-path, serial ports and some of the

peripherals). This VHDL model was simulated via Mentor Graphics’ Model

Sim tools and was synthesized via Synopsys Design Compiler. Chip assembly

and layout was done in Duet technology’s Epoch back end layout tools with

final verification, DRC and LVS using Mentor Graphics’ Designer Checkmate.

During the design process, a substantial portion of design work was devoted to

test features of the design, including built-in functional test in the ROM. Test

2
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was built in at such a low level to enhance the probability of useful results from

the fabrication in case there had been a substantive design or fabrication error.

The ROM code also contains initialization and boot loader code for a two wire

I2C interface to a serial EEPROM containing the desired program. This code

was instrumental in providing a base for testing the processor at high speeds and

for SCHMOO plotting of the fabricated chips. The ROM code was built using

a slightly extended gpasm assembler. Fabrication, wafer probe and packaging of

the die was performed by MOSIS.

There has been some previous work in designing hardware using high-level

specifications. First, there was a similar PIC design several years ago by Nan-

dakumar Sampath at UC Santa Barbara that also used Synopsys Protocol Com-

piler to synthesize the processor core of a chip. While this chip only ran the

12-bit PIC instruction set and did not have interrupts or timers, it was used as

a base design in some of the early versions of the XPIC. Another example of

work in using high-level specifications is in a cycle-accurate simulator that uses

a high-level design specification [1]. Like Protocol Compiler, the language for

this tool was designed to make short, cycle-accurate specifications of a design;

although this tool was designed for simulation and not for synthesis. Other work

in [2] explored the use of operation-centric hardware descriptions in hardware

development. Here, the design is specified using a Term Rewriting System no-

tation that effectively specifies a finite state machine. The language used here is

related to Frame Modeling Language, and has also been used to write complex

processors in a short specification.
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Chapter 2

User Manual

2.1 XPIC Overview

The XPIC is a microcontroller compatible with the Microchip PIC line of 14-

bit microcontrollers[4]. Figure 2.1 shows a simplified block diagram of the XPIC.

The pin diagram of the XPIC is shown in Figure 2.2. The XPIC is four stage

pipelined and can execute most instructions at the rate of one instruction per

clock. The XPIC has separate data and program memories. Program memory is

used primarily for executing program code, but it can be read and written by a

program using the table read/write mechanism. Data memory is used primarily

for general purpose data storage, although there are several control registers,

known as Special Function Registers (SFRs), in this space. Most XPIC data

instructions act on a working register, known as WREG, and either a literal

value or a data memory location. The XPIC has interrupt capability and can

accept interrupts from several sources.

There are 18 general purpose I/O pins on the XPIC. These pins can be

individually made inputs or outputs. Two 16-bit pulse rate modulators provide

D/A conversion capability. An 8-bit timer with a 7-bit programmable prescaler

is included. Two serial links are provided for high-speed communication with

other XPICs.
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The ROM is used for booting the XPIC by loading a program from a serial

EEPROM and running it. The ROM has several helper functions to read and

write I2C devices, perform multiplications, and to provide a cosine function.

There is also a self test routine in the ROM to assist in testing the XPIC.

2.2 Compatibility

The XPIC is designed to be compatible with the Microchip 14-bit PIC

microcontrollers[4]; however, there are differences. This section summarizes

these differences and was written primarily for those who are familiar with PICs.
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2.2.1 Program Memory

14-bit PICs have their entire program memory as built-in EPROM or Flash,

and most are programmed using special programming hardware controlled by

an external programmer [7](although some newer models can be programmed

from a running program[6]). The XPIC has a 1024 word program ROM and

a 1024 word program RAM. Programs are stored on an external 24LC32 serial

EEPROM and are executed from program RAM. Figure 2.3 shows the program

memory map. The ROM is used for booting the XPIC, which involves reading

a program from a serial EEPROM into RAM and then executing the program.

Section 2.10.4 describes the serial EEPROM boot process. It should also be

noted that program RAM can be loaded at any time, meaning a program can

be paged in and out of a serial EEPROM as needed.

2.2.2 Data Memory

The XPIC has only a single data memory page, as opposed to the 2-4 pages

in 14-bit PICs. The XPIC has 96 bytes of general-purpose data memory. The

data memory map for the XPIC is shown in Figure 2.4. The SFR (Special

Function Register) mapping has changed somewhat, the new SFR map is shown

in Table 2.1. Some of the notable differences are that the Digit Carry (DC) flag in

STATUS is not present (this was because of problems in getting an intermediate

carry signal), the PCLATH register is mapped to the upper bits of STATUS

(instead of having its own register), and the I/O port registers are in different

places.

2.2.3 Indirect Addressing

Indirect data memory addressing works the same way on the XPIC as it does

on other PICs. However, there is a known bug in the XPIC implementation:

whenever INDF is read or written immediately after an instruction that writes

7



FSR, INDF will still appear as the old address, not the new address. Adding

an instruction (such as a NOP) between the FSR write and the INDF access will

work around the problem.

2.2.4 Instruction Set

The XPIC instruction set is extremely similar to the 14-bit PIC instruction

set. The XPIC does not implement the SLEEP or CLRWDT instructions, these

instructions are treated like NOP. The TRIS and OPTION instructions are also not

implemented; MOVWF can be used as an alternative. The XPIC has three new

instructions: TBLRD, TBLRDT, and TBLWT. These instructions are used to read and

write the program memory and are discussed in Section 2.4.5.

2.2.5 Pulse Rate Modulators

The XPIC has a pair of pulse rate modulators. Pulse rate modulation per-

forms a function similar to pulse width modulation, but the output is much

better suited for D/A conversion. See Section 2.7 for details on how to use the

pulse rate modulators.

2.2.6 Serial Links

The XPIC has a pair of serial links for communicating with other XPICs.

These links are point to point interfaces and transmit data at 1/16 of the clock

speed. See Section 2.9 for details on how to use the serial links.

2.2.7 ROM Software

There are several programs and functions available in the ROM to perform

tasks such as multiply, cosine, and serial EEPROM read/write. The ROM soft-

ware is discussed in Section 2.10.
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RAM Start Vector

Interrupt Vector

Reset Vector

000h

008h

400h

7FFh

3FFh

ROM

RAM

401h

009h

Figure 2.3: XPIC program memory
map

SFR

RAM

7Fh

00h

20h
1Fh

Special Function
Registers

General Purpose
Data Memory

Figure 2.4: XPIC data memory map

2.3 Memory

This section describes the memories on the XPIC and how they are used.

2.3.1 Program Memory

The XPIC has 1k×14 of program RAM and 1k×14 of program ROM. Pro-

gram code for execution is read from the location specified by the Program

Counter (PC), which normally increments every clock cycle. During reset, the

PC is loaded with the reset vector, which is address 400h (beginning of ROM).

An interrupt causes 008h to be loaded to PC, which is the interrupt vector.

User programs are started at location 000h (discussed in Section 2.10.4). The

program memory map is shown in Figure 2.3.

2.3.2 Data Memory

The XPIC has 128 bytes in the data memory address space. The upper 96

bytes are general-purpose data memory locations. The remaining space is used

for the special function registers (SFRs), which are used to control and read the

9



status of the CPU and the integrated peripherals. The map of the data memory

space is shown in Figure 2.4. The map of SFRs is shown in Table 2.1. Some of

the CPU related SFRs are described below.

2.3.2.1 STATUS

The STATUS register holds the ALU status bits, the PCLATH bits, and

the Global Interrupt Enable (GIE) bit. The PCLATH bits are used in indirect

jumps (discussed in Section 2.3.3). The GIE bit is set to enable interrupts, or is

cleared to disable them. It is cleared upon entering an interrupt routine and is

restored from its previous state when the interrupt handler returns. The Carry

(C) and Zero (Z) bits are updated by many arithmetic and logic operations.

Writing to either of these bits with any instruction that otherwise affects either

of these bits will have the write disabled to these bits.

2.3.2.2 Option

The OPTION register contains several bits controlling various resources. The

Interrupt Edge Select bit (INTEDG) is used to select which edge will be detected

from the INT pin (port B, bit 2). The Timer Enable (T0EN) and Timer Prescaler

Select (TPSx) bits are discussed in Section 2.8. The Pulse Rate Modulator

Enable bits (PRM1EN and PRM2EN) are discussed in Section 2.7.

2.3.2.3 INT

The INT register holds the interrupt flags and interrupt enable bits. The in-

terrupt flags are External Interrupt (EINT), Timer Interrupt (TINT), and Serial

Link Interrupt (SINT). The interrupt enable bits correspond to the interrupt flag

bits and are EEN, TEN, and SEN. Whenever an interrupt event occurs, the flag

for that interrupt is set in the INT register. If the enable bit for that interrupt

is set and the GIE bit (in STATUS) is also set, an interrupt will occur. The

flags must be cleared in software or else the interrupt will reoccur as soon as the

10



00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

0Ah

0Bh

0Ch

0Dh

0Eh

0Fh

10h

11h

12h

13h

14h

15h

16h

17h

18h

19h

1Ah

1Bh

1Ch

1Dh

1Eh

1Fh

INDF

PCL

STATUS

TBLATH
�

TBLPTL
�

TBLPTH
�

SCONTROL

STATREG

MSGLEN

TMR0
�

FSR

INT

PORTA

TRISA

OUTA

PORTE

PRM1H

PRM1L

PRM2H

PRM2L

TXBUF
�
RXBUF

PRMSPEED

OUTB

TRISB

PORTB

OPTION

PCLATH2 PCLATH1 PCLATH0 GIE Z
�

C

T0EN
�

INTEDG PRM2EN PRM1EN TPS2 TPS1 TPS0

EEN TEN
�

SEN EINT TINT
�

SINT

TE1 T1 RE1 R1 TE0 T0 RE0 R0

MASK1 MASK0 READ LK CS

Unimplemented location, reads are undefined

Unimplemented location, reads are undefined

Unimplemented location, reads are undefined

Unimplemented location, reads are undefined

Unimplemented location, reads are undefined

Serial Link Transmit Data Register

Serial Link Receive Data Register

Read/Write buffer for upper 6 data bits of TABLE operations

1 Pointer for indirect data memory accesses

Lower 8 bits of Program Counter (PC)

Lower 8 address bits for TABLE operations

Upper 3 addr bits for TABLE ops

Port A Data Direction Register

Read Port A pins, Write Port A Output Latch

Read/Write Port A Output Latch

Upper 8 bits for Pulse Rate Modulator 1

Lower 8 bits for Pulse Rate Modulator 1

Upper 8 bits for Pulse Rate Modulator 2

Lower 8 bits for Pulse Rate Modulator 2

Read Port B pins, Write Port B Output Latch

Port B Data Direction Register

Read/Write Port B Output Latch

SDATSCLTSDASCL

Timer Register
�
Accesses Data Memory location pointed to by FSR (Not a physical register)

PRMSP2 PRMSP1

R0LEN0R0LEN1T0LEN0T0LEN1R1LEN0R1LEN1T1LEN1 T1LEN0

Bit 6Bit 7 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0NameAddr

0 0

0 0 0 0 0

0 0

00

0000

0 0 0 0 0 0

0 0 0

Unimplemented location, read as value specified or else undefined.  Writes have no effect.

Table 2.1: Special Function Register (SFR) memory map.
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interrupt is reenabled.

2.3.3 Indirect Jumps

The XPIC can perform indirect jumps through the PCL (program counter

low) register and the PCLATH (program counter latch high) bits in STATUS.

Reading PCL will read the lower 8 bits of the PC (the address of the next

instruction). Writing to PCL will write the result to the low 8 bits of the PC,

and the PCLATH value is written to the upper 3 bits of PC. This action causes

a jump to the new PC value and will cause the instruction to take three cycles.

2.3.4 Stack

The XPIC has an 8-level, 11-bit hardware return stack. The current PC

value is pushed onto this stack whenever the CALL instruction is executed. The

stack is popped to the PC whenever a RETURN or RETLW instruction is executed.

Unlike the PIC16C devices, the XPIC does not use this stack for interrupts or

the RETFIE instruction; there is a separate storage space for these events as

discussed in Section 2.5. There is no mechanism for detecting a stack overflow

or underflow. There is also no mechanism to manually push or pop values from

the stack.

2.3.5 Indirect Addressing

Indirect addressing to data memory is done by writing the desired address

to FSR, then reading or writing the data through INDF. INDF acts like the

register referenced by FSR. This can be used to read or write any data memory

address. When FSR is zero (the INDF address), INDF always reads as zero and

writes are made to the bit bucket. There is one known implementation issue

on the XPIC regarding FSR and INDF: writing FSR does not take immediate

effect. One instruction cycle is needed between a write to FSR and a read/write

12



through INDF. This was done because of chip area problems and performance

issues.

2.3.6 Table Read and Write

The table read/write system enables reads and writes to program memory

by a running program. There are three registers associated with the table mech-

anism: TBLATH, TBLPTL, and TBLPTH. TBLATH holds the upper 6 bits of

data for reading or writing. TBLPTL holds the lower 8 bits of the address for

TBLRD and TBLWT instructions. TBLPTH holds the upper 3 address bits. This

mechanism is described in detail in Section 2.4.5.

2.4 Instruction Set

The XPIC can execute 36 different instructions. The instruction set is sum-

marized in Tables 2.2 and 2.3. Table 2.2 shows the instructions that read and

write data memory. Table 2.3 shows the literal, control, and table instructions.

2.4.1 Byte Instructions

The byte instructions are shown in Table 2.2 and operate on a data mem-

ory location and/or WREG. The general form is 00 iiii dfff ffff, where i

selects the instruction, d selects the destination for the result, and f selects a

data memory address to operate on. The destination (d) bit is clear to write

the result to WREG, and set to write the result to data memory. Some of the

byte instructions modify the Carry and Zero bits in STATUS, the affected bits

are shown in the far right column in Table 2.2. All byte instructions execute

in one clock cycle, except for DECFSZ and INCFSZ which take two clock cycles if

the result is zero. The execution pattern for single cycle instructions is shown

in Figure 2.5. The execution pattern for DECFSZ and INCFSZ when they cause a

skip is shown in Figure 2.6.
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ADDWF
�

ANDWF
�

CLRF

CLRW

COMF

DECF

DECFSZ

INCF

INCFSZ

IORWF

MOVF

MOVWF

RLF

RRF

SUBWF

SWAPF

XORWF
�

f, d
�

f, d
�

f, d
�

f, d
�

f, d
�

f, d
�

f, d
�

f, d
�

f, d
�

f, d
�

f, d
�

f, d
�

f, d
�

f, d
�

f
�

f
�

Rotate f left through Carry

Rotate f right through Carry

1,2

1,2

Cycles

00 0111 dfff ffff

00 0101 dfff ffff

00 0001 1fff ffff

00 0001 0xxx xxxx

00 1001 dfff ffff

00 0011 dfff ffff

00 1011 dfff ffff

00 1010 dfff ffff

00 1111 dfff ffff

00 0100 dfff ffff

00 1000 dfff ffff

00 0000 1fff ffff

00 1101 dfff ffff

00 1100 dfff ffff

00 0010 dfff ffff

00 1110 dfff ffff

00 0110 dfff ffff

C,Z

C,Z

Z
�

Z
�

Z
�

Z
�

Z
�

Z
�

Z
�

Z
�

Z
�

C

C

Status

dest = f - WREG
�

dest = f AND WREG
�
dest = f + WREG

�

f = 0
�

WREG = 0
�

dest = ~f
�

dest = f - 1
�

dest = f+1
�

dest = f+1, skip if zero
�

dest = f OR WREG
�

dest = f
�

f = WREG
�

BCF

BSF

BTFSC

BTFSS

f, b
�

f, b
�

f, b
�

f, b
�

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1,2

1,2

Set bit b in f

Clear bit b in f

Skip if bit b in f is clear

Skip if bit b in f is set

dest = f - 1, skip if zero
�

dest = f XOR WREG
�

01 00bb bfff ffff

01 01bb bfff ffff

01 10bb bfff ffff

01 11bb bfff ffff

Data Memory Bit Operations

Data Memory Byte Operations
Operands
Mnemonic,

Description Opcode

Swap nibbles in f

Legend: f
�

d
�

b

Data memory address (00h to 7Fh)
Destination Select (0=WREG, 1=data memory)
Bit select (0 to 7)

x Don’t care value

:
:
:
:

Table 2.2: The XPIC Instruction Set: Data Memory Operations
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NOP

Cycles Status

No Operation

ADDLW
�

ANDLW
�

IORLW

MOVLW

RETLW

SUBLW

XORLW
�

TBLRD
�

TBLRDT
�

TBLWT
�

CALL

GOTO

RETFIE

RETURN

lit

lit

lit

lit

lit

lit

lit

lit

lit

3

2

1

1

1

1

1

1

1

1

2

3

3

3

3

Z
�

Z
�

Z
�

C,Z

C,Z

WREG = lit + WREG
�

WREG = lit AND WREG
�

WREG = lit OR WREG
�

WREG = lit
�

WREG = lit, return from sub
�

WREG = lit - WREG
�

WREG = lit XOR WREG
�

Table Read
�

Table Read using WREG
�

Table Write
�

Call Subroutine at lit

Goto address lit

Return from Subroutine

Return from Interrupt

11 111x kkkk kkkk

11 1001 kkkk kkkk

11 1000 kkkk kkkk

11 00xx kkkk kkkk

11 01xx kkkk kkkk

11 110x kkkk kkkk

11 1010 kkkk kkkk

10 0kkk kkkk kkkk

10 1kkk kkkk kkkk

00 0000 0xxx 0100

00 0000 0xxx 0101

00 0000 0xxx 0110

00 0000 0xxx 1000

00 0000 0xxx 1001

00 0000 0xxx 0000

Literal Operations

Table Operations

Control Operations

Operands
Mnemonic,

Description Opcode

Legend:
x Don’t care value

:
:

k Literal value; data or jump address

Table 2.3: The XPIC Instruction Set: Literal, Table and Control Operations
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MOVWF
�

PRM1H

MOVF
�

prod1,W� MOVWF
�

PRM1H

MOVF
�

prod1,W�

MOVWF
�

PRM1H

MOVF
�

prod1,W�

MOVWF
�

PRM1H

MOVF
�

prod1,W�

WriteExecuteRead/DecodeFetch

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Figure 2.5: Execution pattern for byte, bit, and literal instructions.

btfss
�

TMR0, 6

movwf PRM2L

btfss
�

TMR0, 6

goto

movwf PRM2L

aud_w1

btfss
�

TMR0, 6

movwf PRM2L

btfss
�

TMR0, 6

movwf PRM2L

Skipped

Skipped

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

WriteExecuteRead/DecodeFetch

goto aud_w1

Figure 2.6: Execution pattern for DECFSZ, INCFSZ, BTFSS, and BTFSC when a
skip is triggered. The BTFSS instruction will cause the GOTO aud w1 instruction
to be skipped.

2.4.2 Bit Instructions

The bit instructions are shown in Table 2.2 and operate on a bit in a data

memory location. The general form is 01 iibb bfff ffff, where i selects the

instruction, b selects the bit, and f selects a data memory address to operate

on. All bit instructions execute in one cycle, except for BTFSC and BTFSS which

take two clock cycles if the selected bit is clear or set respectively. The execution

pattern for single cycle bit instructions is shown in Figure 2.5. The execution

pattern for BTFSS and BTFSC when they cause a skip is shown in Figure 2.6.

2.4.3 Literal Instructions

The literal instructions are shown in Table 2.3 and operate on WREG using

a literal value provided in the instruction. The general form is 11 iiii kkkk
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cos_zeroGOTO

BCF STATUS,C

cos_zeroGOTO

BCF STATUS,C

cos_zero

0x80

GOTO

XORLW

BCF STATUS,C cos_zeroGOTO

BCF STATUS,C

Flush

Flush Flush

Flush

WriteExecuteRead/DecodeFlush

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Flush

0x80XORLWMOVWF
�

PORTA

Figure 2.7: Execution pattern for writes to PCL and the GOTO, CALL, and RETURN

instructions. The GOTO instruction causes the next two instructions to be flushed.

kkkk, where i selects the instruction and k is an 8-bit literal value to be used in

the operation. Some of the literal instructions modify the Carry and Zero bits

in STATUS, the affected bits are shown in the far right column in Table 2.3. All

literal instructions execute in one cycle, except for RETLW which takes three. The

execution pattern for literal instructions except for RETLW is shown in Figure 2.5.

2.4.4 Control Instructions

The control instructions are shown in Table 2.3. The NOP instruction performs

no operation and executes in one cycle. The other instructions, as well as RETLW

and any instruction that writes to PCL, all cause a jump and take three cycles

to execute. The execution pattern for these instructions is shown in Figure 2.7.

2.4.5 Table Instructions

The table instructions are shown in Table 2.3. These instructions are used to

read and write program memory. These instructions use the WREG, TBLATH,

TBLPTL, and TBLPTH registers.
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TBLRDT

MOVWF
�

BCF

prod1�

STATUS,C

TBLRDT

MOVWF
�

BCF

prod1�

STATUS,C

TBLRDT

MOVWF
�

BCF

prod1�

STATUS,C

TBLRDT

MOVWF
�

BCF

prod1�

STATUS,C

Table Read Data

Table Read Data

Table Read Data

Table Read Data

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

WriteExecuteRead/DecodeFetch

Figure 2.8: Execution pattern for TBLRD and TBLRDT. The TBLRDT instruction
causes the fetch to read user data instead of an instruction.

2.4.5.1 TBLRD and TBLRDT

The TBLRD and TBLRDT instructions are used to read program memory. For

TBLRD, the lower 8 bits of the address to read is taken from TBLPTL, and the

upper 3 bits of the address is taken from TBLPTH. For TBLRDT, the lower 8

bits of the address are taken from WREG, and the upper 3 bits are taken from

TBLPTH. Both instructions place the lower 8 bits of the data read in WREG and

the upper 6 bits in TBLATH. These instructions normally take two clock cycles

to execute. The execution pattern for these instructions is shown in Figure 2.8.

Note that the instruction immediately after the table instruction is executed:

this means that if the table operation is followed by an instruction that causes

a jump (like CALL or RETURN), the table operation will effectively take one clock

cycle. This is because the pipeline bubble created by the table read operation

will be absorbed by the pipeline flush of a jump operation.

There are a few known bugs in this mechanism. First, interrupts must be

disabled during the table read operation. This is because WREG will not be

properly backed up by the interrupt logic if an interrupt occurs during a table

read. This can be worked around by disabling interrupts (clearing the GIE bit)

during the table read.

One instruction cycle is needed between writing TBLPTH and the table

instruction, otherwise the old TBLPTH value will be used. Also, one instruction
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TBLWT

BSF

CLRF

OUTB,2

TMR0

TBLWT

BSF

CLRF

OUTB,2

TMR0

TBLWT

BSF

CLRF

OUTB,2

TMR0

TBLWT

BSF

CLRF

OUTB,2

TMR0

Table Write DataTable Write Data

Table Write Data

Table Write Data Table Write Data

Table Write Data Table Write Data

Table Write Data

WriteExecuteRead/DecodeFetch

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Figure 2.9: Execution pattern for TBLWT. Since program memory is being written,
instruction fetches cannot take place.

cycle is needed between the table instruction and a read of TBLATH, otherwise

the old TBLATH value will be read. (WREG is updated immediately after a

table instruction.) For TBLRD, TBLPTL must either be written immediately

before the TBLRD instruction, or there must be at least two instruction cycles

between the write to TBLPTL and the TBLRD instruction. (TBLRDT does not

have this problem, as it does not use TBLPTL.)

2.4.5.2 TBLWT

The TBLWT instruction is used to write program memory. The low 8 bits

of the address to write is taken from TBLPTL, and the upper 3 bits of the

address is taken from TBLPTH. The low 8 bits of the value to write is taken

from WREG, and the upper 6 bits are taken from TBLPTH. This instruction

normally takes three clock cycles to execute. The execution pattern for TBLWT

is shown in Figure 2.9. Note that the instruction immediately after the TBLWT

instruction is executed: this means that if the table operation is followed by

an instruction that causes a jump (like CALL or RETURN), the TBLWT operation

will effectively take one clock cycle. This is because the pipeline bubble created

by the table write operation will be absorbed by the pipeline flush of a jump

operation.
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There are several known bugs with TBLWT, One instruction cycle is needed

between writing TBLPTH or TBLATH and the TBLWT instruction, otherwise

the old TBLPTH or TBLATH value will be used. TBLPTL must either be

written immediately before the TBLWT instruction, or there must be at least two

instruction cycles between the write to TBLPTL and the TBLWT instruction.

Also, skip instructions will not work immediately after a TBLWT instruction, as

the skip will simply not be taken.

2.5 Interrupts

Interrupts occur whenever the GIE bit in STATUS is set and both an inter-

rupt flag and its corresponding interrupt enable bit in the INT register are both

set. Interrupts always take three clock cycles between when the interrupt event

occurs and when the first instruction of the interrupt handler is executed. When-

ever an interrupt occurs, the PC, STATUS, and WREG values are all saved to

shadow registers and do not have to be backed up by the user. The PC is then

set to 008h (the interrupt vector), and the GIE bit in STATUS is cleared.

An interrupt routine is ended with the RETFIE instruction. This instruc-

tion restores the previous values of PC, STATUS, and WREG from the shadow

registers.

2.6 I/O Ports

There are 18 general purpose I/O pins on the XPIC. Each pin can be used

as either an input or an output. Ports A and B have 8 pins each, while Port E

has 2 pins.
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2.6.1 Port A

There are three SFR addresses for Port A: PORTA, OUTA, and TRISA.

These are shown in Table 2.1. The PORTA address writes to the Port A Output

Latch and reads the actual pin state. The OUTA address reads and writes the

Port A Output Latch. The TRISA address reads and writes the Port A Data

Direction Register. Setting a bit in this register makes the corresponding pin an

input while clearing a bit makes a pin an output. This register is set to all ones

during reset.

2.6.2 Port B

There are three SFR addresses for Port B: PORTB, OUTB, and TRISB.

These are shown in Table 2.1 and have the same function as the Port A SFRs

of the similar name. Port B also has the pulse rate modulator outputs and the

external interrupt input.

2.6.2.1 PRM Output

Pins 0 and 1 of Port B are also the pulse rate modulator outputs for PRM1

and PRM2 respectively. The pulse rate modulators are discussed in detail in

Section 2.7. To use the PRMs, the pin must be configured as an output in

TRISB, and the output value must be set to low (otherwise the output will be

held high).

2.6.2.2 External Interrupt Input

Pin 2 of Port B is the external interrupt input. The interrupt is edge trig-

gered. The edge is selectable through the INTEDG bit in the OPTION register:

setting this bit will trigger on a rising edge of this pin, while clearing this bit will

trigger on a falling edge. When the edge is detected, the EINT bit in the INT

register is set. This will cause an interrupt if the EEN and GIE bits are set.
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1/3

1/2

1/4

3/4

2/7

Figure 2.10: Example of pulse rate modulator output for various duty cycles.

2.6.3 Port E

Port E is a two pin port used primarily to read and write I2C serial EEPROMs

and to determine the boot mode. There is one SFR address for Port E: PORTE.

The bits in this register are named after the two I2C signal lines: SDA and SCL.

The SDA and SCL bits read the pin states and write the output latch. The

SDAT and SCLT read and write the data direction latch. Writing a one to one

of these bits makes the pin an input, while writing a zero makes the pin an

output.

2.7 Pulse Rate Modulators

Pulse rate modulation generates an output with a desired duty cycle. The

output is transitioned as quickly as possible, placing most of the noise generated

by the modulation near one half of the clock frequency. This is easy to filter out

using a low pass filter, making pulse rate modulation suitable for D/A conversion.

Some pulse rate modulation examples are shown in Figure 2.10. The hardware

to do pulse rate modulation is also rather simple, it is shown in Figure 2.11.

The XPIC has two 16-bit Pulse Rate Modulators (PRMs). Each PRM has
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Adder
�

AccumulatorDuty Cycle�

16

16
16

Carry

Output�

Figure 2.11: Simplified version of the pulse rate modulators used in the XPIC.

two SFR addresses to specify the 16-bit duty cycle (PRMxL and PRMxH),

one enable bit (PRMxEN) in the OPTION register, and one speed control bit

(PRMSPx) in the PRMSPEED register. The PRMxH register sets the high 8

bits of the duty cycle, and the PRMxL register sets the low 8 bits. When the

enable bit PRMxEN is set, the output is enabled, otherwise it is held low. The

speed control bits PRMSPx set the clock speed for each PRM. Setting this bit

will run the PRM at 1/2 the core clock speed, clearing it will run the PRM at

1/510 the core clock speed (this divisor is achieved with an 8-bit LFSR). The

PRM outputs are on Port B, see Section 2.6.2.1 for how to configure the port

for PRM output.

2.8 Timer

The XPIC has an 8-bit timer with a 7-bit prescaler. The timer is clocked by

the instruction clock. The timer value is mapped in the SFR space as TMR0 and

can be both read and written. The timer will only increment when the T0EN

bit in the OPTION register is set.
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TPS2 TPS1 TPS0 Timer Prescale Ratio

0 0 0 1:1
0 0 1 1:2
0 1 0 1:4
0 1 1 1:8
1 0 0 1:16
1 0 1 1:32
1 1 0 1:64
1 1 1 1:128

Table 2.4: Timer Prescaler ratios for various TPS bit settings

2.8.1 Prescaler

The prescaler can decrease the timer increment rate by 1, 2, 4, 8, 16, 32, 64,

or 128. The amount is controlled by the TPS bits in the OPTION register as

shown in Table 2.4. The prescaler value cannot be read by software. Whenever

the timer value is written, the value in the prescaler is cleared.

2.8.2 Interrupt on Overflow

Whenever the timer overflows (increments from FFh to 00h) the TINT bit

(timer interrupt flag) in the INT register is set. If the TEN (timer interrupt

enable) bit is set, and the GIE bit in STATUS is also set, an interrupt will

occur. The TINT bit must be cleared in software.

2.9 Serial Links

The XPIC has two bidirectional serial links, which are point to point serial

interfaces. The serial links can be used to communicate with other XPICs. Each

serial link consists of two unidirectional lines which transmit at a rate of 1/16

the core clock speed. The lines in either direction are independent, so it is

possible to transmit and receive simultaneously for full-duplex operation, as well

as communicate on each serial link independently.
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2.9.1 Protocol

The protocol defined on these serial links is that a processor may transmit

one packet at a time, each containing a two bit header and eight bits of data.

Synchronization is done by the receiver upon seeing the first bit of the packet

header. The receiver must reply to each packet received with a two bit acknowl-

edgement pulse before the transmitter can send the next packet. At full speed,

it takes approximately 14 serial clock cycles or 224 processor clock cycles to

complete the transmission and acknowledgement of one packet. Thus, when the

processor is running at 90 MHz, the speed of the serial links is 400 KB/s or 3.2

Mbps.

If a processor transmits a packet along a serial link, it expects to receive an

acknowledgement within 16 serial clock cycles. If it does not receive acknowl-

edgement within this time, the transmission is considered a failure. At this

point, the byte is dropped, an error signal is sent to the processor, and the next

packet is readied for transmission. Retransmission in the presence of errors must

be done manually. Some instances in which a transmission error may occur is

if there is noise on the line, causing the receiver to not interpret the incoming

packet correctly, or if the receiver cannot accept the data because of a full buffer.

The second condition will also cause an error signal to be sent to the processor

on the receiver side.

Internally, each end of each line in the serial link is connected to a 4-byte

FIFO. Each link can be programmed to send or receive messages of 1 to 4 bytes

of data before signalling the processor. Such signalling can be done with an

interrupt or by polling a bit in the serial link status register. Thus, it is possible

to send or receive multi-byte packets with no processor intervention.

2.9.2 Transmission

A byte is transmitted by selecting the link with the LK bit in SCONTROL

(clear for link 0, set for link 1), and writing a byte to the TXBUF register. The
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TxLEN bits in the MSGLEN register select the number of bytes that will be

sent before the Tx bit in STATREG is set. Up to four bytes can be queued for

transmission. Writing more bytes will result in lost data (and is not reported).

If an error occurred in transmission, the TEx bit is set. Both Tx and TEx must

be cleared by the program.

2.9.3 Reception

A byte is received by selecting the link with the LK bit in SCONTROL (clear

for link 0, set for link 1), reading the byte from RXBUF, and writing a one to

the READ bit in SCONTROL. (Writing a one to the READ bit was needed to

finish a read because the XPIC performs speculative reads.) The RxLEN bits

in the MSGLEN register select the number of bytes that will be received before

the Rx bit in STATREG is set. Up to four bytes can be received before the

input FIFO overflows. A receive FIFO overflow will cause the REx bit to be set.

Errors in reception can also cause the REx to be set. Both Rx and REx must

be cleared by the program.

2.9.4 Interrupts

The serial links can generate an interrupt whenever a bit in STATREG is

set. To use these interrupts, the GIE bit in STATUS must be set, the SEN bit

in INT must be set, and the MASKx bits for the desired serial links must be

set. The MASKx bits select which serial links interrupts will be enabled for. An

interrupt will occur whenever the enable bits are set and any of the Tx, TEx,

Rx, or REx bits in STATREG are set. To clear an interrupt, first the flags in

STATREG must be cleared, then the SINT bit in INT must be cleared.
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Port E.1 Port E.2 Program to Run
SCL SDA

Low Low Self Test
Low High Sine Wave Generation
High X Boot from Serial EEPROM

Table 2.5: Port E states at reset and the program that will be run.

2.9.5 Loopback

Setting the CS bit in SCONTROL will connect the transmit line of each

serial link to the receive line of the other serial link. This is done entirely on

the XPIC. Any data sent from one serial link is received by the other serial link.

Clearing the CS bit will return the serial links to their normal state. This feature

was used for testing the serial links in the ROM Self Test (Section 4.1.1).

2.10 ROM Software

The XPIC ROM contains several programs for testing and booting, as well

as several functions to make programming the XPIC easier.

2.10.1 Initialization

When the XPIC comes out of reset, it starts executing code at the beginning

of ROM. The XPIC has a short (12 words) initialization routine here that resets

some of the registers and starts the desired program. The program to run can

be either Self Test (Section 2.10.2), Sine Wave Generation (Section 2.10.3), or

Serial EEPROM Boot (Section 2.10.4). The program to start is selected by the

Port E state immediately after Reset. The Port E states and the program that

will be run is shown in Table 2.5.
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2.10.2 Self Test

The Self Test program is a series of programs to test most of the internal

features of the chip. This is discussed in detail in Section 4.1.1.

2.10.3 Sine Wave Generation

This program uses the cosine function (Section 2.10.5.4) to generate sine

waves on the two pulse rate modulators. The first PRM has a single sine wave

at full amplitude running with a frequency of fclk/32768. The second PRM

has two sine waves digitally mixed together each at half amplitude and with

frequencies of fclk/32768 and fclk/163840. This program is 47 words long, not

including the cosine function or table. The sine wave output can be viewed with

an oscilloscope through a low pass filter connected to the PRM pin.

2.10.4 Boot (Serial EEPROM)

This program reads a program from a serial EEPROM connected to Port E,

saves it to the program RAM, and executes the program. The serial EEPROM

must be compatible to a 24LC32 and it must be configured to address zero [5].

(It is possible to have other I2C devices or other serial EEPROMs connected

to Port E; only a serial EEPROM with address zero can be read by the boot

routine.) The serial EEPROM must have a weak pullup on the SDA line (this

is a requirement for any I2C implementation), but SCL is fully driven by the

XPIC and a pullup resistor is only needed for boot mode selection.

A program on a serial EEPROM must be stored in the format shown in

Table 2.6. The first byte (I2C speed) sets the I2C bit rate. The bit rate is

approximately

bit rate =
fclk

4120− 16n

where n is the I2C speed value. Initially, the bit rate is set to zero, the slowest

speed possible. This was done to minimize boot times while keeping speed
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Address Value Description

0000h ssssssss I2C speed
0001h 00dddddd High 6 bits of program RAM address 0
0002h dddddddd Low 8 bits of program RAM address 0
0003h 00dddddd High 6 bits of program RAM address 1
0004h dddddddd Low 8 bits of program RAM address 1

...
...

...
2n+ 1 00dddddd High 6 bits of program RAM address n
2n+ 2 dddddddd Low 8 bits of program RAM address n
2n+ 3 01xxxxxx End of transfer byte
2n+ 4 xxxxxxxx User defined data (continues to end of device)

Table 2.6: Serial EEPROM format used in booting the XPIC.

compatibility at a maximum. Next, pairs of bytes are read from the serial

EEPROM and loaded into program RAM starting at address 0. This is done

with the program load function (Section 2.10.5.1). Data after the end of transfer

byte is not used during boot and can contain user data.

2.10.5 Helper Functions

There are several other functions that are included in the ROM that are

likely to be used by a user program. There are functions to read and write serial

EEPROMs, perform multiplications, and find the cosine of a value.

2.10.5.1 Serial EEPROM routines

These are high-level routines to read and write the serial EEPROM [5]. There

are three functions: program load, data load, and data save. These functions all

use the I2C routines (Section 2.10.5.2).

Program Load (Address 6CCh) This function is used by the serial EEPROM

boot program (Section 2.10.4) and reads in byte pairs from a serial EEPROM to

program RAM. This function reads the high 6 bits, then the low 8 bits. For the
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first byte of a pair, bit 6 is normally cleared. When this bit is set, this function

stops the I2C connection and returns to the calling program. This function

assumes that the serial EEPROM is ready to be read, and that TBLPTL and

TBLPTH contain the starting address to write.

Data Load (Address 6BBh) This function reads bytes from the serial EEP-

ROM and writes them to data memory starting at the address pointed to by

FSR. The number of bytes to read is equal to the value in data memory ad-

dress 24h (prod0). After the data is read, the I2C connection is stopped and the

function returns. This function assumes that the serial EEPROM is ready to be

read.

Data Save (Address 6B3h) This function reads bytes from data memory

(starting at FSR) and writes them to the serial EEPROM. The number of bytes

written is equal to the value in data memory address 24h (prod0). After the

data is written, the I2C connection is stopped and the function returns. This

function assumes that the serial EEPROM is ready to be written. Note that

most (if not all) serial EEPROMs can only write to one page at a time, this

restriction must be handled by the calling program.

2.10.5.2 I2C Functions

The I2C functions perform the basic I2C functions: start, restart, stop, byte

read, and byte write. These functions are used by all ROM routines that deal

with a serial EEPROM [5]. Four data memory locations are used by these

functions. Location 20h is cleared by I2C delay, which is used by all of the I2C

functions. Location 23h is cleared by the byte read and byte write functions.

Location 21h, known as iic delay val, sets the I2C bit rate to

bit rate =
fclk

4120− 16n
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where n is the value in iic delay val. Location 22h, known as iic rw val, contains

the value to write to or read from the I2C bus. Also, the carry flag in STATUS

contains the acknowledge bit to write or that was read.

I2C Start and Restart I2C Start (Address 6DBh) is used to begin an I2C

transfer. An I2C start is defined as a high-to-low transition on the SDA line

while SCL is high. I2C Restart (Address 6DAh) is used to send a new control

byte when the I2C bus is active. It does the same thing as I2C start except that

a delay is added to the beginning to meet bus timing constraints.

I2C Stop I2C Stop (Address 6EAh) is used to end an I2C transfer. An I2C

stop is defined as a low-to-high transition on SDA while SCL is high.

I2C Byte Read I2C Byte Read (Address 71Ah) reads a byte from the I2C

device on Port E. The data is written to iic rw val (22h). This function also

sends the acknowledge bit; this must be supplied in the carry flag. Data memory

location 23h is cleared by this function.

I2C Byte Write I2C Byte Write (Address 711h) writes a byte to the I2C

device on Port E. The data to be written is taken from iic rw val (22h). This

function also gets the acknowledge bit; it is stored in the carry flag. Data memory

location 23h is cleared by this function.

I2C Delay This function (Address 6D5h) generates the delays needed for I2C

bus operation and is used by all of the other I2C functions. This function uses

iic delay val (21h) to set the delay. The delay is 1030 − 4n clock cycles long,

where n is the value of iic delay val. The value in iic delay val is preserved by

this function, while data memory location 20h is cleared.
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2.10.5.3 8x8 Multiply

(Address 74Bh) This function takes two 8-bit values, one in WREG and

the other in value0 (data address 23h), and multiplies them (both values are

considered to be unsigned). The product is written to prod0 (high byte, data

address 24h) and prod1 (low byte, data address 25h). This function uses the

right-shift algorithm and the loop is completely unrolled. It takes 37 clock cycles

to execute (plus the call to this function) and is 35 words long. There is a known

bug in this function in that if the carry bit is set and bit 0 of value0 is clear,

erroneous values may be produced. This can be worked around by making sure

carry is clear before calling this function.

2.10.5.4 Cosine Function

(Address: 72Ch, 8-bit; 72Dh, 9-bit) The cosine function reads an 8- or 9-bit

value and returns the cosine of this value in prod0 (high byte, data address 24h)

and prod1 (low byte, data address 25h). For 8-bit values, the function returns:

prod0 : prod1 = cos

(
value× π

128

)
× 32766

where value is the value in value0 (data address 23h). For 9-bit values, the

carry bit functions as the LSB below value0. The value is returned in two’s

complement form in the range −32766 to 32766 (which are equivalent to −1 and

+1 respectively). This function uses the cosine table (Section 2.10.7) to obtain

cosine values.

2.10.6 User Text

This is a small (17 words) block of memory which contains the text “Scott

Masch,Jon Hsu,Forrest Brewer” in packed ASCII format at address 76Eh. These

were the three primary people involved in designing the XPIC.
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2.10.7 Cosine Table

This is a 128-entry quarter cosine table located between addresses 780h and

7FFh in the ROM. It is used by the cosine function (Section 2.10.5.4).
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Chapter 3

XPIC Design

3.1 Design Methodology

3.1.1 Hardware

The processor core of the XPIC was designed using Synopsys Protocol Com-

piler [9], which is a high level synthesis tool that uses a regular expression like

input syntax and can generate VHDL, Verilog, or C output. The language used

in Protocol Compiler will be discussed in more detail in Section 3.2. Everything

was converted into a netlist and technology mapped using Synopsys Design Com-

piler. Layout, routing, static timing analysis, and module building (for ROMs,

RAMs, etc.) was done by Epoch from Cascade Design Automation (no longer

in existence). Most of the simulation was performed using Model Sim. The

boot code was tested using a serial EEPROM model generated with Synopsys

MemPro. Finally, DRC and LVS checking was performed with Mentor Graphics

CheckMate.

3.1.2 Software

The ROM code and other test programs were written in assembly and were

assembled using GPASM. GPASM is a GPL’d assembler for PICs, and was used
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with the XPIC with no modification aside from a special include file. This include

file was needed to set the memory mapping and to add the table instructions.

There were several other programs that were written (in C) to create the ROM.

One program took the output of GPASM and generated the ROM image file for

Epoch. Another took the output of GPASM and generated a serial EEPROM

boot image.

3.2 Frame Modeling Language

Frame Modeling Language (FML)[8] is a regular expression based language

used to specify control structures. While FML has some characteristics (like

registers and I/O ports) common to other HDLs such as VHDL or Verilog, FML

has an advantage over other HDLs in that control mechanisms can be written

and modified easily. One example of a modification of the XPIC will be described

in Section 3.4, where the TBLWT timing was changed.

FML can be compiled into Verilog, VHDL, and C. A simple example of FML

is shown in Figure 3.1. This example detects the sequence “1101” on a, then

sets b high. The following sections describe how FML works.

3.2.1 Frames

Frames are roughly analogous to functions in other languages such as C.

Initially, the top level frame receives a single token immediately after reset. This

token then gets passed to the terminals (these are surrounded by [ and ]) in

the frame. When a terminal receives a token, it tests the condition defined in

the brackets, and if the condition is true it performs any actions associated with

it and passes the token in the next clock cycle. The two simplest terminals are

[0] (which absorbs a token and otherwise does nothing) and [1] (which always

passes a token and does the associated actions). The condition can be more

complicated: the example in Figure 3.1 tests the state of a in its terminals.
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frame Top_example

{

repeat(+)

{

// Generate an infinite supply of tokens

{ [1] }

// Detect the sequence "1101" on a, set

// b when sequence detected

{

[a == "1"]

[a == "1"]

[a == "0"]

[a == "1"]

set(b);

}

}

}

Figure 3.1: A simple example of FML

Terminals are always executed in sequence within a block (surrounded by {
and }). However, it is possible to have multiple blocks, which is two or more

blocks adjacent to each other. This is also known as an alternative block. In this

case, a token that reaches the first block will enter all of the blocks. Whenever

any of the blocks returns a token, a token is passed from the bottom of the last

block. The example in Figure 3.1 has two blocks within the repeat block.

It is possible for a design to have multiple frames. This is much like having a

program with multiple functions: one top level function can call other functions,

and these functions can call other functions, and so on. In FML, another frame

is called by simply using its name followed by a semicolon. This called frame

behaves like the code from the called frame was placed where the call was made.

The XPIC uses this primarily to help keep the code readable. The top frame of

the XPIC code in Figure 3.2 shows how other frames are called.
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3.2.2 Actions

Actions are often associated with terminals (although the default action list

also has actions). They can be data movement operations, setting or clearing

of bits, or conditional operations. The syntax used is very similar to that of

VHDL or Verilog, and should be self explanatory. The only tricky part is the if

operator. Its syntax is if(cond,then,else). Basically, if the condition cond is

true, the action then is performed, otherwise the action else is performed.

3.2.3 Repeats

The repeat operator will repeat as long as the condition within the block is

true. A token passed to a repeat block will enter the block. If and when the

block returns a token, the repeat block will pass a token and pass another token

to the beginning of the block. There are several different versions of repeat.

repeat (+) will only pass a token whenever the block inside it returns a token.

repeat (*) will both pass a token whenever the block inside it returns a token

and will immediately pass the initial token through immediately (also known as

an optional repeat). In the example, the repeat block is used to generate an

infinite supply of tokens.

The interrupt logic of the XPIC also uses the repeat operator to wait for a

condition to become true. The code in Figure 3.15 shows repeat (*) operator

being used to wait for an interrupt event.

3.2.4 Other Features

FML has other features that have counterparts in other languages such as

VHDL or Verilog. There are I/O ports and variables in FML. Default actions

(and reset actions) are always performed and behave like operations in VHDL

or Verilog. There are also expressions, they behave like the #define directive

in C. These features are discussed in the comments in the XPIC FML source in
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frame Top

{

//Pipelined version of a PIC16C6X.

{

repeat (+)

{

{ data_hazards; }

{ execute; }

{ [1] }

}

}

{ interrupt; }

}

Figure 3.2: Top level FML frame for the XPIC

Appendix A.

3.3 XPIC Core

The XPIC core is written as a combination of default actions and frames.

Default actions are used extensively in the XPIC for optimization reasons (mostly

to eliminate unneeded reset logic). The top level frame for the XPIC is shown in

Figure 3.2. This frame passes a single token to the interrupt frame (discussed

in Section 3.3.14), and an infinite string of tokens to the data hazards frame

(Section 3.3.6) and the execute frame (various places). The entire FML source

of the XPIC is shown in Appendix A. The following sections describe the details

of how the XPIC works and how it was written.

3.3.1 Pipeline Flags

There are several pipeline flags that are used to control if an instruction is

executed. These are do1, do2, and x2. do1 is normally set but can be cleared to

stop execution of the instruction currently in the fetch stage. Clearing do1 will
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Figure 3.3: The Fetch hardware.

clear do2, x2, and pmem addr con in the next cycle. x2 (execute 2) is normally

set but can be cleared to prevent execution of the instruction currently in the

read/decode stage. do2 is normally the same as x2 and is used by the interrupt

logic (Section 3.3.14) to determine if an instruction would have been executed.

A fourth flag, pmem addr con, is set by the table instructions, but is cleared by

any instruction that clears x2.

3.3.2 Fetch

A block diagram of the Fetch stage is shown in Figure 3.3. When the

pmem addr con flag is clear (normal case), the instruction at the PC (Program

Counter) address is read and latched into ir1 (instruction register 1). The Pro-

gram Counter is usually incremented, although there are several events (such

as interrupts and jumps) that will cause other values to be written to the Pro-

gram Counter. When pmem addr con is set (table read or write), the data at

TBLPTR is read and latched into ir1.

3.3.3 Data Read

Most operation involving data (except moves) have two operands. These two

operands are generated over the Read cycle and part of the Execute cycle. These

two operands are fed to the ALU during the Execute stage. ALU operand A is

either a value from data memory or a literal value. ALU operand B is either

WREG or a value from the 3-to-8 decoder.

39



3.3.3.1 ALU Operand A

The first ALU operand comes from either the low 8 bits of the instruction

(literal instructions) or from a data memory location (bit and byte data memory

instructions). A block diagram of this mechanism is shown in Figure 3.4. This

read operation is split between the Read/Decode cycle and the Execute cycle.

Read/Decode First, the read address is calculated. Normally this will be the

low 7 bits of the instruction, but if the read is from INDF (address 00h) the actual

read address will be taken from FSR. This is done with the two NOR/MUX pairs

in Figure 3.4. The lower NOR/MUX pair performs an abbreviated version of

this calculation by testing only the upper four bits of the address. This is only

used for data memory reads outside of the core, which begins at address 0Ch.

The result of this read is stored in register a.

The upper NOR/MUX pair performs the full calculation and is the real read

address (also known as address1). This value is saved in address2 and is used for

local reads (addresses 01h to 0Bh, not including 04h (STATUS)). By default, the

result of this read is stored in register alt. If the instruction currently writing

back is writing to the address we are reading (address1 equals dmem waddr),

the data in dmem wdata is stored in register alt. If the instruction is a literal

instruction (upper bit of instruction is a one), a MOVWF instruction (needed for

simulation because of unknown propagation problems), or a CLRx instruction

(CLRW or CLRF, also needed for simulation), the lower 8 bits of the instruction

from ir1 are stored in register alt.

The alu a sel bits are also set in this stage. This will be discussed in the next

section.

Execute There are four possible sources for the first ALU operand: regis-

ter a, register alt, STATUS, and dmem wdata. The value to use is selected by

the alu a sel register, which is set during the Read/Decode cycle. By default,

alu a sel is set to use register alt as the operand source. If the read was from
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Figure 3.5: Read mechanism for ALU operand B.

data memory (defined in the expression DATA HAZ DMEM), register a will be

set as the source. If the instruction currently writing back is writing the data

we need, dmem wdata will be the source. If the STATUS register is being read,

the STATUS register will be the source.

3.3.3.2 ALU Operand B

The second ALU operand is either WREG (most instructions), a value from

the 3-to-8 decoder (all bit instructions), or the low 8 bits of ir1 (immediately

after a TBLRD or TBLRDT instruction). A block diagram of this mechanism is

shown in Figure 3.5. This read operation is also split between the Read/Decode

cycle and the Execute cycle.
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Read/Decode The 3-to-8 decoder takes bits 7 through 9 from ir1 (the bit

select field in bit instructions) and generates a one-of-eight output. This value

is latched in decode latch. The alu b sel bits are also set in this stage, and will

be discussed in the next section.

Execute There are three sources for the second ALU operand: WREG, de-

code latch, and the low 8 bits of ir1. The value to use is selected by alu b sel.

By default, WREG is used. If the previous instruction was TBLRD or TBLRDT,

the low 8 bits of ir1 is used (this was done to make WREG appear to update

immediately after these instructions). If this instruction is a bit instruction.

decode latch will be the source.

3.3.4 ALU Operation

The ALU operation is split across the Read/Decode and the Execute stages.

The ALU operation is determined in the Read/Decode cycle. The ALU operation

takes place during the Execute cycle.

3.3.4.1 Decode

The ALU operation is determined entirely by the upper 6 bits of the instruc-

tion. The ALU opcode is generated with the VHDL entity alu decode using

a WITH...SELECT table. The ALU decode operation was written in VHDL

instead of in FML because VHDL can handle don’t care conditions, which can

lead to a much more optimal design. The 8 bit opcode is saved in alu op.

3.3.4.2 Execute

The ALU opcode from alu op and the operands from the data read opera-

tion (Section 3.3.3) are processed in the ALU in this stage. The result of this

operation is written to alu result and is latched in dmem wdata. The ALU also

outputs Carry and Zero flags which may be written to the STATUS register.
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3.3.5 WREG

The WREG register is used as a source or destination operand in many in-

structions. The ALU result is frequently written to this register. The ww (write

WREG) flag is set in the Decode cycle if the instruction is either a literal instruc-

tion or a byte instruction with the destination bit cleared (write to WREG). In

the Execute cycle, the ALU result is written to WREG if ww and x2 are both

set.

There are two other ways WREG can be written. A RETFIE instruction will

cause the value in iswreg (interrupt shadow WREG) to be written to WREG;

see Section 3.3.12 for details on this operation. A TBLRD or TBLRDT instruction

may write the low 8 bits from ir1 to WREG; see Section 3.3.13 for details on

this operation.

3.3.6 STATUS

The STATUS register holds the ALU status bits, the GIE (Global Interrupt

Enable) bit, and the PCLATH bits. This section will describe the interaction

between the ALU and the STATUS register. Handling of STATUS during in-

terrupts is discussed in Section 3.3.14. Restoration of STATUS with RETFIE is

discussed in Section 3.3.12. Use of the PCLATH bits is discussed in Section

3.3.8.

3.3.6.1 STATUS Mask and ALU Status

The status mask register is a two bit register that controls which ALU status

bits will be written if the instruction executes. The status mask value is calcu-

lated from ir1 during the Decode stage. A bit is set when that bit should be

updated, and cleared when it should be held. During Execute, if the x2 flag is

set, the ALU Status bits that have their bit in status mask set will be updated.

Figure 3.6 shows the hardware used to update STATUS by this method.
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Figure 3.6: Mechanism for writing the STATUS register and updating the ALU
Status flags C and Z.

3.3.6.2 STATUS Writes

STATUS can be read or written, just like any other SFR. However, whenever

STATUS is both written to and updated by the ALU (because one or more

status mask bits are set), all ALU Status bits will behave as if the write was not

made to STATUS. The FML to deal with a write (and a read from) to STATUS

is shown in Figure 3.7, and the hardware is shown in Figure 3.6. In the Decode

stage, the STATUS read is detected and alu a sel is set to read STATUS. In

the Execute stage, the upper bits of STATUS are written and the lower bits are

written if status mask is clear.

3.3.7 Data Write

The write operation is split across the Execute and Write stages, although

some actions take place during Decode. The data write mechanism is shown in

Figure 3.8.
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expression STATUS_HAZ = ir1[13] == "0" &&

address1 == "0000011" &&

ir1[13:9] != "00000";

frame data_hazards

{

{

//Status Hazards:

//ir1 is being tested in the decode phase

// (rather than testing dmem_waddr in

// execute phase) to minimize delays in

// writing to alu_a. Should override

// anything else.

// test for the Status Hazard condition

[STATUS_HAZ]

// write to alu_a_sel latch

alu_a_sel = "11";

// wait until execute phase

[1]

// write result to upper bits of Status if writing

if(wx2 == "1", status[5:2] = alu_result[7:4]);

// write result to lower bits of Status if writing

// and instruction does not affect these bits

if(wx2 == "1" && status_mask[1:0] == "00",

status[1:0] = {alu_result[2], alu_result[0]});

}

}

Figure 3.7: FML code to handle STATUS reads and writes.
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Figure 3.8: Data Write mechanism.

3.3.7.1 Decode

Two things happen during Decode: the write address is determined (de-

scribed in Section 3.3.3), and the w2 (write 2) flag is set. The w2 flag is set if

the instruction is a data memory byte instruction with the destination bit set.

The w2 flag is also set for the BCF (bit clear) and BSF (bit set) instructions.

Otherwise, w2 is clear (indicating data memory will not be written).

3.3.7.2 Execute

In this stage, the write address may be modified if there is not a write, and

some of the local registers are written. dmem wdata is set to the ALU result and

will be the data to write. A write will take place if both w2 and x2 are set. If

these bits are both set, dmem waddr is set to the value of address2. Otherwise,

the upper 4 bits of dmem waddr are cleared and the lower 2 bits are set, which

will effectively write to either 03h (STATUS, but written during Execute) or 07h

(unused).

Some registers are written during Execute (instead of waiting for the Write

cycle). These are FSR, STATUS, and PCL. FSR is written whenever w2 and x2

are both set and address2 equals 04h (the FSR address); this was done to help

minimize the delay between when FSR is written and when INDF will function

correctly. Writing to STATUS is discussed in Section 3.3.6. Writing to PCL
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causes a jump and is discussed in Section 3.3.8.

3.3.7.3 Write

The value in dmem wdata is written to the address in dmem waddr. As

discussed above, dmem waddr can be set to don’t care values to disable writes.

3.3.8 PCL Writes

Writing to the PCL register causes a jump to the address written, with

the upper address bits coming from the PCLATH bits in STATUS. Figure 3.9

shows the FML code to handle these events. This is handled entirely during the

Execute cycle. Whenever an instruction addresses PCL (address2 is 02h), writes

to data memory (w2 is set) and is being executed (x2 is set) the low 8 bits of

the Program Counter (PC) are set to the ALU result and the upper three bits

are set to the upper three bits of STATUS (the PCLATH bits). The x2, do2,

and do1 bits are cleared to flush the pipeline. pmem addr con is also cleared to

make sure the next program memory read is an instruction fetch and not a table

operation.

3.3.9 Skip Instructions

The BTFSS, BTFSC, INCFSZ, and DECFSZ instructions can all conditionally

generate a skip. A skip is created in the XPIC by clearing the execute flags

(do2 and x2) of the next instruction in the pipeline. The FML code is shown

in Figure 3.10. The Skip instruction is detected in the Decode stage. In the

Execute stage, a skip is taken if and only if the result from the ALU is zero. The

ALU operations for BTFSC and BTFSS are set to only provide a zero result if the

selected bit is clear or set, respectively.
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expression PCL_HAZ = address2 == "0000010" && w2 && x2;

frame execute

{

...

{

[PCL_HAZ]

//New PC value

pc = {status[5:3], alu_result};

//Clear execute flags

clear(x2);

clear(do2);

clear(do1);

clear(pmem_addr_con);

}

...

}

Figure 3.9: FML code to handle PCL writes

3.3.10 Goto and Call Instructions

The GOTO and CALL instructions both force a jump to an address defined

in the instruction. In addition, the CALL instruction saves the PC of the next

instruction on the stack. The FML code to perform these actions is shown in

Figure 3.11. The first block of code writes ir2 (the low 11 bits of what was

previously ir1) to the PC and clears the execution flags. The instruction register

bits are tested in the Decode stage, and the GOTO action takes place during

Execute. The second block of code pushes the next PC value onto the stack.

The CALL instruction is tested in the Decode stage, and the push takes place

during Execute.
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expression SKIP = ir1[13:11] == "011" ||

ir1[13:8] == "001-11";

frame execute

{

...

{

//This is used in all of the skip instructions

//(BTFSC, BTFSS, INCFSZ, DECFSZ)

[SKIP]

[x2]

// Flush next inst. if result is zero

if(alu_z == "1", clear(do2));

if(alu_z == "1", clear(x2));

if(alu_z == "1", clear(pmem_addr_con));

// Special Case: after TBLRD or TBLRDT

if(alu_z == "1" && do1 == "0", clear(do1));

}

...

}

Figure 3.10: FML code to handle the skip instructions
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expression CALL = ir1[13:11] == "100";

frame execute

{

...

{

//This handles all of the GOTO actions, as

//well as some of the CALL actions.

[ir1[13:12] == "10"]

[x2]

//Write to PC

pc = ir2;

//Clear execution flags

clear(x2);

clear(do2);

clear(do1);

clear(pmem_addr_con);

}

{

//Push the stack for CALL instructions

[CALL]

[x2]

stack8 = stack7;

stack7 = stack6;

stack6 = stack5;

stack5 = stack4;

stack4 = stack3;

stack3 = stack2;

stack2 = stack1;

stack1 = spc;

}

...

}

Figure 3.11: FML code to handle the GOTO and CALL instructions
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3.3.11 Return Instructions

There are two return instructions: RETURN and RETLW (Return with literal

in WREG). Executing either of these instructions causes the return stack to

be popped to the Program Counter. The FML code is shown in Figure 3.12.

The return instruction is detected in the Decode stage. The stack is popped

to the Program Counter and the pipeline is flushed (execution flags cleared) in

the Execute stage. The write to WREG by RETLW is not done in this code: it

is handled the same way other literal instructions are handled. This code also

does not handle the RETFIE instruction, see Section 3.3.12 for details on how

that instruction is handled.

3.3.12 RETFIE Instruction

The RETFIE (Return From Interrupt) instruction is used to return from an

interrupt routine. Executing this instruction will restore WREG, STATUS, and

the Program Counter. The FML code is shown in Figure 3.13. The RETFIE

instruction is detected in the Decode cycle. In the Execute stage, PC, WREG,

and STATUS are restored from the shadow registers ispc, iswreg, and isstatus,

respectively. The pipeline is also flushed (execution flags cleared).

3.3.13 Table Instructions

The TBLRD and TBLRDT instructions read data from program memory, while

TBLWT writes data to program memory. TBLRD takes the address in TBLPTL

(low 8 bits) and TBLPTH (high 3 bits) and writes the data to WREG (low 8

bits) and TBLATH (high 6 bits). TBLRDT does the same thing, except that the

low 8 bits of the address comes from WREG. TBLWT writes the data in WREG

(low 8 bits) and TBLATH (high 6 bits) the the address in TBLPTL (low 8 bits)

and TBLPTH (high 3 bits). (There is a TBLWTT instruction, but it gets both the

low 8 bits of the address and the low 8 bits of the data from WREG, making this
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expression RETURNS = ir1 == "0000000---1000" ||

ir1[13:10] == "1101";

frame execute

{

...

{

//Used in return from subroutine functions

[RETURNS]

[x2]

//Pop stack to Program Counter

pc = stack1;

stack1 = stack2;

stack2 = stack3;

stack3 = stack4;

stack4 = stack5;

stack5 = stack6;

stack6 = stack7;

stack7 = stack8;

//Clear execute flags

clear(x2);

clear(do2);

clear(do1);

clear(pmem_addr_con);

}

...

}

Figure 3.12: FML code to handle the RETURN and RETLW instructions
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expression RETFIE = ir1 == "0000000---1001";

frame execute

{

...

{

//RETFIE pops the interrupt stack and

// returns to the previously running

// program. Note that the GIE flag in

// STATUS is not manually set: this is done

// when the previous STATUS value is loaded.

[RETFIE]

[x2]

pc = ispc;

wreg = iswreg;

status = isstatus;

//Clear execute flags

clear(x2);

clear(do2);

clear(do1);

clear(pmem_addr_con);

}

}

Figure 3.13: FML code to handle the RETFIE instruction
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instruction mostly useless.) The FML for handling these instructions is shown

in Figure 3.14. These instructions execute over the Decode, Execute, and Write

cycles.

3.3.13.1 Decode

The table instruction is detected in the Decode cycle. If the instruction looks

like it might be executed (do1 is set) the pmem addr con flag is set. If the next

instruction clears x2, pmem addr con will also be cleared by that instruction.

The low 8 bits of the read address are also calculated here. By default, this will

be the ALU address. If this is a TBLRDT instruction and the previous instruction

is not writing to WREG, the value in WREG will be used as the low 8 bits of

the address. If this is a TBLRD instruction and the previous instruction is not

writing to TBLPTL, the TBLPTL value will be used as the low 8 bits of the

address.

3.3.13.2 Execute

In the Execute cycle, all table instructions clear the do1 flag and hold the

Program Counter (PC does not increment) because a Fetch is not taking place.

The TBLWT instruction generate a program memory write pulse and will set

pmem addr con again to continue the write for a second cycle. The TBLRD and

TBLRDT instructions change alu b sel so that a read of WREG in the next cycle

will come from the low bits of ir1, effectively making the new WREG value

immediately available.

3.3.13.3 Write

The TBLWT instruction continues the write to program memory by clearing

the do1 flag and holding the Program Counter. Again, this is because a Fetch is

not taking place during the program memory write. The TBLRD and TBLRDT in-

structions finish the read operation by writing the upper bits of ir1 to TBLATH.
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frame execute

{

{

[ir1 == "0000000---01--"]

if(do1 == "1", set(pmem_addr_con));

tblptr[7:0] = alu_result;

if((x2 == "0" || ww == "0") && ir1[0] == "1",

tblptr[7:0] = wreg;

if((wx2 == "0" || address2 != "0001010") &&

ir1[0] == "0", tblptr[7:0] = tblptr_l);

{

//Common operations

[x2]

pc = pc;

clear(do1);

}

{

//Write operations (now three cycle)

[x2 && ir2[1]]

pmem_we = Clock | !ir2[1];

set(pmem_addr_con);

[1]

pc = pc;

clear(do1);

}

{

//Read operations

[x2 && !ir2[1]]

set(alu_b_sel[0]);

[1]

if(ww == "0" || x2 == "0", wreg = ir1[7:0]);

tblath = ir1[13:8];

}

}

...

}

Figure 3.14: FML code to handle the TBLRD, TBLRDT, and TBLWT instructions
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These two instructions also write the low 8 bits of ir1 to WREG if the currently

executing instruction is not writing to WREG.

3.3.14 Interrupt Logic

Interrupts are generated whenever the GIE bit in STATUS is set and both

the enable and flag bits are set for an interrupt source. The interrupt logic must

be able to stop instruction execution, save the state of the CPU, and start an

interrupt handler. The FML code to handle this is shown in Figure 3.15. Unlike

most of the FML frames on the XPIC, this frame does not get a continuous

string of tokens: it only gets a token at reset and will loop with the repeat (+)

operator. Initially, the code loops waiting for an interrupt event. When an

interrupt event occurs, two things are done: the processor state is saved and the

pipeline is flushed so the interrupt handler can be started.

3.3.14.1 Pipeline Flush

Here, the x2 and pmem addr con flags are held clear for three cycles. This

flushes the pipeline. In the second cycle, the Program Counter value is set to

008h, which is the interrupt vector.

3.3.14.2 State Backup

This is where the difference between x2 and do2 become important. While

x2 is cleared by the pipeline flush operation and prevents any more instructions

from executing, the do2 flag will still be set or cleared as if the interrupt never

occurred. The address of the first executable instruction (has do2 set) after we

start flushing the pipeline will be the return address. (ipc is the address of the

instruction currently in the Execute stage. It is the PC value delayed by two

cycles.) This address is saved to ispc. WREG and STATUS are also saved at

this point to iswreg and isstatus, respectively. Finally, the GIE flag in STATUS

is cleared to prevent this interrupt handler from being restarted.
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expression INT_EVENT = status[2] == "1" &&

(pie & pir) != "000";

frame interrupt

{

repeat (+)

{

//Wait for an interrupt event

repeat (*)

{ [!INT_EVENT] }

[INT_EVENT]

clear(x2);

clear(pmem_addr_con);

{

//Wait for an executable instruction

repeat (*)

{ [!do2] }

[do2]

//Save the PC of this instruction

ispc = ipc;

iswreg = wreg;

isstatus = status;

clear(status[2]);

}

{

//Flush the pipeline

[1]

clear(x2);

clear(pmem_addr_con);

pc = "00000001000";

[1]

clear(x2);

clear(pmem_addr_con);

[0]

}

}

}

Figure 3.15: FML code to handle interrupts
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One interesting rule about the state backup mechanism is that at least one

out of every three instructions that pass through the pipeline must be executable.

In other words, one of the instructions that pass through the Execute stage dur-

ing the pipeline flush must be executable (do2 is set). This is why no instruction

takes more than 3 cycles (or 2 flushes) to execute. For example, if the interrupt

occurs during a GOTO operation, the return address will be the destination of the

GOTO. If the interrupt occurs when a GOTO was about to start, the address of the

GOTO will be stored.

3.4 FML In Practice

As previously mentioned, one of the key advantages of FML is that it can

be modified easily. One example of how FML can be quickly modified is when

the TBLWT instruction was extended from using two cycles to using three cycles

(this was because of timing problems). The original version of the table code

did not have a “write operations” block; the write operation was handled totally

as default actions. The pmem addr con flag also did not exist; the program

memory address was changed directly in the “common operations” block. The

pmem addr con flag had to be added to prevent glitches on the program memory

address lines during a write.

It took about half an hour to make the changes in the FML code, and about

three hours to rerun the design flow. The new version was then simulated, and

the modifications worked first time. The new version of the code is shown in

Figure 3.14.
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Chapter 4

Testing

4.1 Test Software

4.1.1 ROM-Based Self Test

This is a series of programs intended to test most of the internal features

of the chip. It includes tests for the execution unit, data memory, program

memory, timer, interrupt, and serial links. For all of these tests, the Pulse Rate

Modulators (PRMs) are both running in slow mode with PRM1 running with a

1/3 duty cycle and PRM2 running with a 2/7 duty cycle. A value indicating the

current section of the code is written on Port B at various points in the code,

while other current information is periodically written on Port A.

4.1.1.1 Core Test

This is a long test that performs all sorts of basic arithmetic and logic op-

erations, skips, direct and relative jumps, calls (using all 8 stack levels), direct

and indirect memory accesses, and status register tests. These tests output an

extensive amount of information on the I/O ports as failures here are likely to

cause problems in later tests.
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4.1.1.2 Memory Tests

The program memory and data memory tests are very similar, so they will

be discussed together. In the first test, pseudo-random data generated from a

software based LFSR (9 bits wide for data memory, 17 bits wide for program

memory) is written to all locations. Then this data is verified by re-running the

LFSR routine and comparing the values. The second test is a variation of the

March algorithm where alternating 1’s and 0’s are written to and later read from

each location. (The only problem with this is that it is only performed at the

word level, and not at the bit level.)

4.1.1.3 Timer Test

This is a simple test where the timer is started, the program loops for a known

amount of time, and then the value in the timer is verified with the correct value.

This is done for the 1:1, 1:16, and 1:128 prescaler values.

4.1.1.4 Interrupt Test

For the interrupt tests, a GOTO instruction is loaded at the interrupt vector

(in program RAM) so that the interrupt routine in ROM will be used. The

interrupt routine sets a register in data memory to indicate which interrupts

have occurred, clears the interrupt flags, and returns. First, the timer is turned

on and the timer interrupt is enabled. The main loop waits for a length of time

while counting the interrupts. This part of the test passes if the proper number

of interrupts is generated before the time limit is exceeded. For the next test,

timer interrupts are disabled and the external interrupt is enabled and high-to-

low edge sensitivity is selected. A high-to-low edge is generated on the interrupt

pin and the execution of an interrupt is verified. This is repeated for low-to-high

edge sensitivity.
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4.1.1.5 Serial Link Test

All of these tests are first performed for transmission from serial port 1 to

serial port 2, then for transmission from serial port 2 to serial port 1. This is

done using the internal loopback. First, each byte is sent in sequence from 0

to 255, and reception of each byte is verified on the other side. Next, 5 bytes

of data is sent without reading any of the received bytes, causing the receive

FIFO (4 bytes deep) to overflow. This causes an error, which is verified before

continuing. Last, the receive buffer is cleared, the loopback is turned off, and a

byte is sent. This causes an error on the transmit side, which is verified.

4.1.2 RAM-Based Self Test

This is almost identical to the ROM-based self test, except that part of the

self test code is present in program RAM. Actually, most of the self test code

is still run from ROM, only the top level loop and the program memory test

routine is in RAM. Unlike the ROM-based test, this version also toggles one of

the serial EEPROM lines upon successful completion of a test loop as a simple

pass/fail indication. The program memory test loop from the ROM was not

used because this memory test is a destructive test, and would destroy the test

program in RAM. The new program memory test only tests the upper 75% of

the program memory leaving the test routine in the lower part of RAM alone.

4.1.3 I/O Port Test

This is a RAM-based program that performs a loopback test on the I/O

ports. For this test, Port A and Port B must be externally connected together.

First, Port A is set so all bits are outputs and then all combinations of outputs

are written onto the port. For each output combination, Port B is sampled to

check for the correct value. Incorrect values are flagged and are later written out

serially on Port E (the serial EEPROM port) for observation. This test is then
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repeated with the output latch on Port A set to zero and the data direction,

TRIS, written. This causes the pins to only be driven low or be left floating.

Since there are weak pullups on each pin (on the circuit board), each pin will be

pulled high when the pin is an input. Like before, all possible combinations are

written to Port A, and incorrect values are looked for on Port B. This procedure

is repeated for sending from Port B to Port A.

4.1.4 Sine Wave Generation

This is a ROM-based program that generates sine waves on both of the

PRM ports. The first PRM port has a single sine wave running at fclk/32768.

The second PRM port has two sine waves each of equal amplitude running at

fclk/32768 and fclk/163840. These sine waves are generated in software and use

the quarter cosine table present in the ROM. Since the sine waves are generated

with the PRM units (in fast mode), an external low pass filter is needed to be

able to see the sine wave on an oscilloscope.

4.2 Test Setup

A printed circuit board (PCB) was made for testing the XPIC. This circuit

board has a ZIF socket for the XPIC, extensive power supply decoupling, a

socket for the serial EEPROM (for program code), connectors for all of the I/O

and serial ports, a clock buffer, and a reset circuit. Figures 4.1 and 4.2 show

these features of the PCB.

4.2.1 Test Socket

The XPIC was mounted using a ZIF socket (Aries Electronics #52-536-11).

This socket was used because it was the only one we could find that could handle

a 52 pin LCC device. Actually, this socket was made for PLCC chips and a block
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Figure 4.1: The XPIC test board.

of foam (visible in Figures 4.4 and 4.5) had to be used to keep sufficient force

on the pins.

4.2.2 Power Supply

A large number of decoupling capacitors were installed on the board to help

keep the power supply stable at 100 MHz. These capacitors are chip capacitors

mounted on the bottom of the board and are visible in Figure 4.2. The larger

capacitors are 0.1µF and are scattered throughout the board. The smaller ca-

pacitors (located directly underneath the XPIC) are both 0.01µF and 0.001µF

and were added because of suspected power supply noise problems. The top

layer of the board (shown in Figure 4.3 without any parts mounted) is primarily

a ground plane, while the area around the XPIC is primarily a power plane;
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Figure 4.2: Bottom of the XPIC test board.

this was done to keep power supply impedance to a minimum. There is also a

68µF capacitor mounted on the board to filter any low frequency noise, this is

shown in Figure 4.2 and is located along the lower edge to the right of the reset

circuit. Power enters the board through a three pin connector on one corner of

the board.

4.2.3 Reset

The reset circuit consists of a pushbutton, a resistor, a capacitor, and a

Schmitt Trigger inverter. It will generate a 0.3 second reset pulse to the XPIC

on power up and whenever the reset button is pressed. The reset circuit is shown

in Figure 4.2. The 5-pin device on the right side of the reset circuit is a single

Schmitt Trigger inverter (Fairchild #NC7S14).

64



Figure 4.3: Top layer of the XPIC board without any components.

4.2.4 Clock

The XPIC board has a 4-pin oscillator socket that can accept standard half-

size oscillators. The clock line of this socket is connected through an inverter

(Fairchild #NC7SZ04) to the clock input of the XPIC. This inverter is shown in

Figure 4.2.

For most of the testing, a variable frequency clock source was used. For

earlier parts of the testing, a high speed function generator was simply connected

between the clock and ground lines of the oscillator socket. Later on, an RF

generator was used, which required a DC block in order to be connected to the

XPIC board. The DC block module is shown in Figure 4.1. It is constructed

on Vector board, plugs directly into the 4 pin oscillator socket, and has an RG-

58 cable soldered to it which connects to the RF generator. A 47Ω resistor
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terminates the cable while a 0.01µF capacitor couples the clock signal to the

XPIC board (both are surface mount parts on the bottom of the DC block

board). A variable resistor and inductor sets the DC bias on the XPIC side of

the DC block.

4.2.5 I/O Ports

Ports A and B (shown in Figure 4.1) can both be accessed via two connectors:

a male header designed for connection to a logic analyzer and a female connector

that can accept wires for easy connection. Each port pin has 47kΩ pullup resistor

to hold the pin high when it is otherwise left floating.

4.2.6 Serial EEPROM/Boot Mode Selection

The serial EEPROM (shown in Figure 4.1) is mounted in a 8 pin DIP socket

and can be removed for programming. These serial EEPROMs use a two wire

I2C interface. The pullup resistors for I2C are mounted on the board. The boot

mode selection jumpers are just below the serial EEPROM. In the figure, one of

the pins has a jumper to select Sine Wave Generation.

4.2.7 Serial Ports

The three-pin connectors on each side of the board allow connection to the

XPIC serial ports. The three pins are transmit, receive, and ground. The receive

lines are pulled up through resistors on the board.

4.3 Test Results

4.3.1 Functionality

Most of the functionality testing was performed with the ROM-based self

test. For these tests, a logic analyzer was connected to ports A and B. This
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Figure 4.4: Another view of the test board showing the inside of the test socket.

Figure 4.5: The test board with an XPIC chip in position in the socket.
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provides enough information to verify proper operation of the entire self test

and can also provide some debugging information if necessary. All of the chips

were able to pass this test.

The I/O port test was also run. All ports were observed to be working

correctly from port E data. Each loopback wire was then briefly removed: this

causes a failure for that pin on each port, this was also observed on port E. For

each port pair, a pull down resistor was briefly connected. This causes the drive

low/high impedance test for both ports to fail, but it does not affect the fully

driven test. These results are observed on port E. All chips were able to pass

this test.

4.3.2 Performance

The maximum clock frequency for each of the 12 chips tested is shown in

Figure 4.6. The maximum speed was found by running the RAM-based self test

and adjusting the clock frequency up to the point where the device quit working

properly, then adjusting the frequency back down until the device was stable.

This frequency was considered to be the maximum frequency. This was repeated

for each of the 12 chips and from 2.5 to 3.7 volts in 0.1 volt increments.

Three of the chips (numbers 6, 8, and 10) quit working before reaching the

2.5 volt lower limit. This is believed to be because the RAM sense amps ceased

to work below some power supply voltage.

4.3.3 Power Usage

The power consumption of the XPIC was measured both during performance

testing at maximum speed and later at a fixed frequency but variable voltage.

During performance testing (described above in 4.3.2) each time the maximum

frequency was found, the current at this frequency was also recorded. The results

of this are shown in Figure 4.7. For the fixed frequency testing, a constant clock

signal at 50 MHz was applied while the voltage was adjusted from the minimum
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operating voltage of the device to a little over 3.7 volts. The results of this test

is shown in Figure 4.8.

69



506070809010
0

11
0

12
0

2.
6

2.
8

3
3.

2
3.

4
3.

6

Freq (MHz)

�

V
ol

ts

#1 #2 #3 #4 #5 #6 #7 #8 #9 #1
0

#1
1

#1
2

Figure 4.6: Maximum clock frequency at various voltages for each chip.
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Chapter 5

Conclusion

This design definitely showed that regular expression languages can be used

in practical control-dominated design scenarios, and that such designs could have

competitive performance with at least semi-custom design flows. The methodol-

ogy was difficult at first, but showed its utility when bugs were found and fixes

needed to be implemented. In many cases, changes altered one or two lines of

code, in stark contrast to conventional VHDL RT-level flows in which the be-

havior of a pipeline stage is typically spread across several modules. This was

particularly true in the case of the table write timing error and in modifications

for performance tuning at the end of the design cycle.
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Appendix A

FML Source Code

This is the FML source code for the XPIC. It is somewhat different from the

original Synopsys Protocol Compiler version of FML [8]. The original version

uses a rather ugly, hard-to-type syntax; while this version is much cleaner and is

modeled after the Protocol Compiler graphical interface. The Protocol Compiler

specific stuff has also been removed, as this section is focusing on the specification

of the design, not on vendor-specific implementation issues.

This code has been commented to describe the syntax of the code, as well as

what is going on. The comment character is “//”, and comments continue to

the end of the line. For a complete description of FML, take a look at Section

3.2.
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// I/O Port Definitions:

// Format: "port" name dir type [attribute(attrib[,...])]

// dir is either in or out

// type is std_logic or std_logic_vector[size]

//

// Attribute "clock" makes this port a clock input

port Clock in std_logic attribute(clock = "rising_edge");

// Attribute "reset" makes this port the reset input

port Reset in std_logic attribute(reset = "active_high");

// Attribute "unregistered" omits the output latch

// This makes the port update as soon as it is written, instead

// of updating in the next cycle

port pmem_addr out std_logic_vector[10:0]

attribute(unregistered = "true");

port pmem_wdata out std_logic_vector[13:0]

attribute(unregistered = "true");

port pmem_rdata in std_logic_vector[13:0];

// Attribute "default_value" sets the value of the port when it

// is not otherwise written

port pmem_we out std_logic

attribute(unregistered = "true", default_value = "set");

port dmem_waddr out std_logic_vector[6:0];

port dmem_raddr out std_logic_vector[6:0]

attribute(unregistered = "true");

port dmem_wdata out std_logic_vector[7:0];

port dmem_rdata in std_logic_vector[7:0];

port dmem_we out std_logic attribute(unregistered = "true");

port alu_a out std_logic_vector[7:0]

attribute(unregistered = "true");

port alu_b out std_logic_vector[7:0]

attribute(unregistered = "true");

port alu_op out std_logic_vector[7:0];

port alu_cout in std_logic;

port alu_z in std_logic;

port alu_result in std_logic_vector[7:0];

port alu_statusc out std_logic attribute(unregistered = "true");

port int_in in std_logic;

port int_ext in std_logic;

port prm1en out std_logic attribute(unregistered = "true");

port prm2en out std_logic attribute(unregistered = "true");

//
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// Variable Definitions

// like port definitions, but these values are not exported

//

// Attribute "reset_value" sets the reset value for the register

variable pc std_logic_vector[10:0]

attribute(reset_value = "10000000000");

variable tblptr std_logic_vector[10:0];

variable fsr std_logic_vector[6:0];

variable address2 std_logic_vector[6:0];

variable do1 std_logic

attribute(default_value = "set", reset_value = "set");

variable do2 std_logic;

variable x2 std_logic;

variable ww std_logic

attribute(default_value = "clear", reset_value = "clear");

variable w2 std_logic;

variable register_a std_logic_vector[7:0];

variable tmr std_logic_vector[7:0];

variable option std_logic_vector[6:0];

variable pir std_logic_vector[2:0]

attribute(reset_value = "clear");

variable pie std_logic_vector[2:0]

attribute(reset_value = "clear");

variable status std_logic_vector[5:0]

attribute(reset_value = "clear");

variable status_mask std_logic_vector[1:0]

attribute(default_value = "10", reset_value = "10");

variable ir2 std_logic_vector[10:0];

variable spc std_logic_vector[10:0];

variable ipc std_logic_vector[10:0];

variable prescaler std_logic_vector[6:0];

variable register_alt std_logic_vector[7:0]

attribute(default_value = "clear", reset_value = "clear");

variable decode_latch std_logic_vector[7:0]

attribute(default_value = "clear", reset_value = "clear");

variable ispc std_logic_vector[10:0];

variable iswreg std_logic_vector[7:0];

variable isstatus std_logic_vector[5:0];

variable stack8 std_logic_vector[10:0];

variable stack7 std_logic_vector[10:0];

variable stack6 std_logic_vector[10:0];
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variable stack5 std_logic_vector[10:0];

variable stack4 std_logic_vector[10:0];

variable stack3 std_logic_vector[10:0];

variable stack2 std_logic_vector[10:0];

variable stack1 std_logic_vector[10:0];

variable iel std_logic;

// Attribute "local" works like "unregistered", but is used for

// variables

variable address1 std_logic_vector[6:0] attribute(local = "true");

variable wx2 std_logic attribute(local = "true");

variable alu_b_sel std_logic_vector[1:0]

attribute(reset_value = "clear", default_value = "clear");

variable wreg std_logic_vector[7:0]

attribute(reset_value = "clear");

variable tblptr_l std_logic_vector[7:0];

variable tblath std_logic_vector[5:0];

variable iel2 std_logic;

variable ir1 std_logic_vector[13:0];

variable alu_op_temp std_logic_vector[7:0];

variable alu_a_sel std_logic_vector[1:0]

attribute(reset_value = "clear", default_value = "clear");

variable pmem_addr_con std_logic

attribute(reset_value = "clear", default_value = "clear");

//

// This line adds the alu_decode instance to our design. This

// works much the same way as instancing another design into

// VHDL or Verilog.

instance alu_decode U0(ir1[13:8], alu_op_temp)

attribute(package = "CONTROL_STUFF");

//

// The reset_actions are actions that are performed during reset.

// The vast majority of the actions here are duplicated in the

// default_actions section below. The reason for this is to

// eliminate unnecessary reset logic that otherwise be present

// (like, holding the value of a pipeline register just for

// reset). Anything not reset-specific will be discussed in

// the default_actions section.

reset_actions

{

if(ir1[6:0] == "0000000", address1 = fsr, address1 = ir1[6:0]);

if(ir1[6:0] == "0000000", address2 = fsr, address2 = ir1[6:0]);
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x2 = do1;

do2 = do1;

wx2 = x2 & w2;

dmem_wdata = alu_result;

ir1 = pmem_rdata;

ir2 = ir1[10:0];

dmem_waddr = address2;

if(wx2 == "0", dmem_waddr = {"0000", dmem_waddr[2], "11"});

ipc = spc;

spc = pc;

ww = ir1[13] & ir1[12] | !(ir1[13] | ir1[12] | ir1[7]);

if(ir1[12:7] == "000000", clear(ww));

w2 = ir1[7] & !ir1[13];

register_a = dmem_rdata;

incr(prescaler);

if(ir1[9:7] == "000", set(decode_latch[0]));

if(ir1[9:7] == "001", set(decode_latch[1]));

if(ir1[9:7] == "010", set(decode_latch[2]));

if(ir1[9:7] == "011", set(decode_latch[3]));

if(ir1[9:7] == "100", set(decode_latch[4]));

if(ir1[9:7] == "101", set(decode_latch[5]));

if(ir1[9:7] == "110", set(decode_latch[6]));

if(ir1[9:7] == "111", set(decode_latch[7]));

if(FSR_HAZ, fsr = alu_result[6:0]);

if(STAT_NZERO, clear(status_mask[1]));

if(STAT_CARRY, set(status_mask[0]));

if(address1[3:0] == "0001", register_alt = tmr);

if(address1[3:0] == "0010", register_alt = pc[7:0]);

if(address1[3:0] == "0100", register_alt = {"1", fsr});

if(address1[3:0] == "0101",

register_alt = {option[6:3], "0", option[2:0]});

if(address1[3:1] == "011", register_alt[7:1] = {pie, "0", pir});

if(address1[3:0] == "1001", register_alt[5:0] = tblath);

if(address1[3:0] == "1010", register_alt = tblptr_l);

if(address1[3:0] == "1011", register_alt[2:0] = tblptr[10:8]);

if(DATA_HAZ_2NEXT, register_alt = dmem_wdata);

if(ir1[13] == "1" || ir1[13:9] == "00000",

register_alt = ir1[7:0]);

if(dmem_waddr == "0000001", tmr = dmem_wdata);

if(dmem_waddr == "0000001", prescaler = "0000000");

if(dmem_waddr == "0000101",
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option = {dmem_wdata[7:4], dmem_wdata[2:0]});

if(dmem_waddr == "0000110", pir = dmem_wdata[3:1]);

if(dmem_waddr == "0000110", pie = dmem_wdata[7:5]);

if(dmem_waddr == "0001001", tblath = dmem_wdata[5:0]);

if(dmem_waddr == "0001010", tblptr_l = dmem_wdata);

if(dmem_waddr == "0001011", tblptr[10:8] = dmem_wdata[2:0]);

iel = int_ext;

iel2 = iel;

alu_op = alu_op_temp;

if(DATA_HAZ_DMEM, alu_a_sel = "01");

if(DATA_HAZ_NEXT, alu_a_sel = "10");

}

//

// The default_actions are performed every clock cycle when not

// in reset. Actions in a frame can override any action here.

// Also, an action further down this list can override an

// action higher up on this list.

default_actions

{

// Calculate the read address. This has to be done twice for

// some screwy reason, but it only results in one piece of

// logic

if(ir1[6:0] == "0000000", address1 = fsr, address1 = ir1[6:0]);

if(ir1[6:0] == "0000000", address2 = fsr, address2 = ir1[6:0]);

// Pipeline registers

x2 = do1;

wx2 = x2 & w2;

// Usually increment the PC

incr(pc);

dmem_wdata = alu_result;

// Select where pmem_addr will come from

pmem_addr = pc;

if(pmem_addr_con == "1", pmem_addr = tblptr);

// Instruction latches

ir1 = pmem_rdata;

ir2 = ir1[10:0];

// Data write address

dmem_waddr = address2;

// Are we performing a data write?

if(wx2 == "0", dmem_waddr = {"0000", dmem_waddr[2], "11"});

// More pipeline registers
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do2 = do1;

// Select operand A for the ALU

alu_a = register_alt;

if(alu_a_sel == "01", alu_a = register_a);

if(alu_a_sel == "10", alu_a = dmem_wdata);

if(alu_a_sel == "11",

alu_a = {status[5:2], "0", status[1], "0", status[0]});

// Select operand B for the ALU

alu_b = wreg;

if(alu_b_sel[0] == "1", alu_b = ir1[7:0]);

if(alu_b_sel[1] == "1", alu_b = decode_latch);

// Pipeline copies of PC

ipc = spc;

spc = pc;

prm1en = option[3];

prm2en = option[4];

// Determining if this is a write to WREG

ww = ir1[13] & ir1[12] | !(ir1[13] | ir1[12] | ir1[7]);

if(ir1[12:7] == "000000", clear(ww));

// Determining if this is a data mem write

w2 = ir1[7] & !ir1[13];

register_a = dmem_rdata;

pir[0] = pir[0] | int_in;

alu_statusc = status[0];

incr(prescaler);

// Data memory read address

dmem_raddr = ir1[6:0];

if(ir1[6:3] == "0000", dmem_raddr = fsr);

// 3 to 8 decode

if(ir1[9:7] == "000", set(decode_latch[0]));

if(ir1[9:7] == "001", set(decode_latch[1]));

if(ir1[9:7] == "010", set(decode_latch[2]));

if(ir1[9:7] == "011", set(decode_latch[3]));

if(ir1[9:7] == "100", set(decode_latch[4]));

if(ir1[9:7] == "101", set(decode_latch[5]));

if(ir1[9:7] == "110", set(decode_latch[6]));

if(ir1[9:7] == "111", set(decode_latch[7]));

// Status update by ALU

if(x2 == "1", status[1:0] = status_mask & {alu_z, alu_cout} |

~status_mask & status[1:0]);

// Write to WREG
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if((x2 & ww) == "1", wreg = alu_result);

// Write to FSR

if(FSR_HAZ, fsr = alu_result[6:0]);

// Determining the Status Mask

if(STAT_NZERO, clear(status_mask[1]));

if(STAT_CARRY, set(status_mask[0]));

// Local reads

if(address1[3:0] == "0001", register_alt = tmr);

if(address1[3:0] == "0010", register_alt = pc[7:0]);

if(address1[3:0] == "0100", register_alt = {"1", fsr});

if(address1[3:0] == "0101",

register_alt = {option[6:3], "0", option[2:0]});

if(address1[3:1] == "011", register_alt[7:1] = {pie, "0", pir});

if(address1[3:0] == "1001", register_alt[5:0] = tblath);

if(address1[3:0] == "1010", register_alt = tblptr_l);

if(address1[3:0] == "1011", register_alt[2:0] = tblptr[10:8]);

// Instruction in write is writing data we need

if(DATA_HAZ_2NEXT, register_alt = dmem_wdata);

// Literal instruction

if(ir1[13] == "1" || ir1[13:9] == "00000",

register_alt = ir1[7:0]);

// Data to (maybe) write to prog mem

pmem_wdata = {tblath, wreg};

// Edge triggered interrupt

pir[2] = pir[2] | option[5] & !iel & iel2 |

!option[5] & iel & !iel2;

iel = int_ext;

iel2 = iel;

// Artifact from when dmem_we was actually used

dmem_we = Clock;

// Local writes

if(dmem_waddr == "0000001", tmr = dmem_wdata);

if(dmem_waddr == "0000001", prescaler = "0000000");

if(dmem_waddr == "0000101",

option = {dmem_wdata[7:4], dmem_wdata[2:0]});

if(dmem_waddr == "0000110", pir = dmem_wdata[3:1]);

if(dmem_waddr == "0000110", pie = dmem_wdata[7:5]);

if(dmem_waddr == "0001001", tblath = dmem_wdata[5:0]);

if(dmem_waddr == "0001010", tblptr_l = dmem_wdata);

if(dmem_waddr == "0001011", tblptr[10:8] = dmem_wdata[2:0]);

// Even more pipeline registers
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alu_op = alu_op_temp;

// Setting the alu_a_sel bits for several hazards

if(DATA_HAZ_DMEM, alu_a_sel = "01");

if(DATA_HAZ_NEXT, alu_a_sel = "10");

}

//

// The list of expressions. This works kind of like #define

// statements in C code

expression CALL = ir1[13:11] == "100";

expression RETFIE = ir1[13:0] == "0000000---1001";

expression INT_EVENT = status[2] == "1" && (pie & pir) != "000";

expression FSR_HAZ = wx2 == "1" && address2 == "0000100";

expression SKIP = ir1[13:11] == "011" || ir1[13:8] == "001-11";

expression PCL_HAZ = address2 == "0000010" && wx2;

expression DATA_HAZ_NEXT = wx2 == "1" && ir1[13] == "0" &&

address2 == address1 && ir1[13:9] != "00000";

expression DATA_HAZ_2NEXT = ir1[13] == "0" &&

address1 == dmem_waddr;

expression DATA_HAZ_DMEM = (address1[6:4] != "000" ||

address1[3:2] == "11") && ir1[13] == "0" &&

address1 != dmem_waddr && ir1[13:9] != "00000";

expression STAT_NZERO = ir1[13:11] == "001" && ir1[9:8] == "11" ||

ir1[13:8] == "000000" || ir1[13:10] == "0011" ||

ir1[13:12] == "01" || ir1[13:12] == "10" ||

ir1[13:11] == "110";

expression STAT_CARRY = ir1[13:9] == "00110" ||

ir1[13:8] == "000111" || ir1[13:8] == "000010" ||

ir1[13:10] == "1111";

expression RETURNS = ir1 == "0000000---1000" ||

ir1[13:10] == "1101";

expression TMRINC = dmem_waddr != "0000001" && option[6] == "1" &&

(prescaler[0] == "1" || option[2:0] == "000") &&

(prescaler[1] == "1" || option[2:1] == "00") &&

(prescaler[2] == "1" || option[2:1] == "00" ||

option[2:0] == "0-0") && (prescaler[3] == "1" ||

option[2] == "0") && (prescaler[4] == "1" ||

option[2] == "0" || option[1:0] == "00") &&

(prescaler[5] == "1" || option[2] == "0" ||

option[1] == "0") && (prescaler[6] == "1" ||

option[2] == "0" || option[1] == "0" || option[0] == "0");

expression STATUS_HAZ = ir1[13] == "0" && address1 == "0000011" &&
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ir1[13:9] != "00000";

//

// The frames themselves

//

frame Top

{

//Pipelined version of a PIC16C6X.

{

repeat (+)

{

{ data_hazards; }

{ execute; }

{ [1] }

}

}

{ interrupt; }

}

frame data_hazards

{

{

//Status Hazards: ir1 is being tested in the decode phase

// (rather than testing dmem_waddr in execute phase) to

// minimize delays in writing to alu_a. Should override

// anything else.

[STATUS_HAZ]

alu_a_sel = "11";

[1]

if(wx2 == "1", status[5:2] = alu_result[7:4]);

if(wx2 == "1" && status_mask[1:0] == "00",

status[1:0] = {alu_result[2], alu_result[0]});

}

{

[TMRINC]

incr(tmr);

if(tmr == "11111111", set(pir[1]));

}

}

frame interrupt

{
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//For this section to work properly, all of the bits tested

// in the INT_EVENT sections must be reset on startup. This

// is needed to run the simulator; it is probably not needed

// in reality.

repeat (+)

{

//Wait for an interrupt event

repeat (*)

{ [!INT_EVENT] }

[INT_EVENT]

clear(x2);

clear(pmem_addr_con);

{

//Wait for an executable instruction

repeat (*)

{ [!do2] }

[do2]

//Save the PC of this instruction

ispc = ipc;

iswreg = wreg;

isstatus = status;

clear(status[2]);

}

{

//Flush the pipeline

[1]

clear(x2);

clear(pmem_addr_con);

pc = "00000001000";

[1]

clear(x2);

clear(pmem_addr_con);

[0]

}

}

}

frame execute

{

{

[ir1 == "0000000---01--"]
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if(do1 == "1", set(pmem_addr_con));

tblptr[7:0] = alu_result;

if((x2 == "0" || ww == "0") && ir1[0] == "1",

tblptr[7:0] = wreg;

if((wx2 == "0" || address2 != "0001010") &&

ir1[0] == "0", tblptr[7:0] = tblptr_l);

{

//Common operations

[x2]

pc = pc;

clear(do1);

}

{

//Write operations (now three cycle)

[x2 && ir2[1]]

pmem_we = Clock | !ir2[1];

set(pmem_addr_con);

[1]

pc = pc;

clear(do1);

}

{

//Read operations

[x2 && !ir2[1]]

set(alu_b_sel[0]);

[1]

if(ww == "0" || x2 == "0", wreg = ir1[7:0]);

tblath = ir1[13:8];

}

}

{

[PCL_HAZ]

//New PC value

pc = {status[5:3], alu_result};

//Clear execute flags

clear(x2);

clear(do2);

clear(do1);

clear(pmem_addr_con);

}

{
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//This is used in all of the skip instructions

//(BTFSC, BTFSS, INCFSZ, DECFSZ)

[SKIP]

[x2]

// Flush next inst. if result is zero

if(alu_z == "1", clear(do2));

if(alu_z == "1", clear(x2));

if(alu_z == "1", clear(pmem_addr_con));

// Special Case: after TBLRD or TBLRDT

if(alu_z == "1" && do1 == "0", clear(do1));

}

{

//This is used in all of the bit instructions

//(BCF, BSF, BTFSS, BTFSC)

[ir1[13:12] == "01"]

w2 = !ir1[11];

set(alu_b_sel[1]);

}

{

//This handles all of the GOTO actions, as

//well as some of the CALL actions.

[ir1[13:12] == "10"]

[x2]

//Write to PC

pc = ir2;

//Clear execution flags

clear(x2);

clear(do2);

clear(do1);

clear(pmem_addr_con);

}

{

//Used in return from subroutine functions

[RETURNS]

[x2]

//Pop stack to Program Counter

pc = stack1;

stack1 = stack2;

stack2 = stack3;

stack3 = stack4;

stack4 = stack5;
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stack5 = stack6;

stack6 = stack7;

stack7 = stack8;

//Clear execute flags

clear(x2);

clear(do2);

clear(do1);

clear(pmem_addr_con);

}

{

//Push the stack for CALL instructions

[CALL]

[x2]

stack8 = stack7;

stack7 = stack6;

stack6 = stack5;

stack5 = stack4;

stack4 = stack3;

stack3 = stack2;

stack2 = stack1;

stack1 = spc;

}

{

//RETFIE pops the interrupt stack and returns to the

// previously running program. Note that the GIE flag

// in STATUS is not manually set: this is done when the

// previous STATUS value is loaded.

[RETFIE]

[x2]

pc = ispc;

wreg = iswreg;

status = isstatus;

//Clear execute flags

clear(x2);

clear(do2);

clear(do1);

clear(pmem_addr_con);

}

}
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Appendix B

ROM Source Code

B.1 main.asm

This file holds the initialization code and the main loop for the ROM self

test.
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PROCESSOR PIC16C64

RADIX dec

;#define test ;do not do long memory tests

include "xpic.inc"

ORG 0x400 ;new start of ROM

start:

clrf OPTN ;instead of making this a reset action

clrf TMR0 ;fix "undefined" error messages

clrf FSR

clrf iic_delay_val ;set iic speed

; movlw 0xE0

; movwf iic_delay_val

;Check to see if we want to boot, or if we want to test

;SCL is high for boot, low for test

;***Next two lines commented out for verification***

ifndef test

btfsc PORTE, SCL

goto boot

endif

;Okay, run the test routine...

;First, set up the ports

clrf PORTA

clrf TRISA

clrf PORTB

clrf TRISB

ifndef test

btfsc PORTE, SDA

goto audiotest

endif

;Start PRM

movlw 0x55

movwf PRM1H

movwf PRM1L

movlw 0x49

movwf PRM2H

movlw 0x24

movwf PRM2L

bsf OPTN, PRM1EN

bsf OPTN, PRM2EN

;Okay, unlike before, let’s only delay when a failure
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;occurs, rather than loop in this master routine

;indefinitely.

main_loop:

;Processor core test, part 1

call coretest

movwf PORTA ;Display WREG

clrf PORTB ;Set location ID to zero

xorlw 0

btfss STATUS, Z

call long_delay

;Data memory test

call dmemtest

movwf PORTA ;Display WREG

clrf PORTB ;Set location ID to zero

xorlw 0

btfss STATUS, Z

call long_delay

;Program memory test

call pmemtest

movwf PORTA ;Display WREG

clrf PORTB ;Set location ID to zero

xorlw 0

btfss STATUS, Z

call long_delay

;Timer test

call timertest

movwf PORTA ;Display WREG

clrf PORTB ;Set location ID to zero

xorlw 0

btfss STATUS, Z

call long_delay

;Interrupt test

call inttest

movwf PORTA ;Display WREG

clrf PORTB ;Set location ID to zero

xorlw 0

btfss STATUS, Z

call long_delay

;Serial link test

call serialtest ;need more info for this...

movwf PORTA ;Display WREG
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clrf PORTB ;Set location ID to zero

xorlw 0 ;test the value of WREG

btfss STATUS, Z

call long_delay ;delay to hold values on ports

goto main_loop

include "coretest.asm"

include "memtest.asm"

include "serial.asm"

include "audio.asm"

include "boot.asm"

include "iic.asm"

include "helpers.asm"

include "user_text.asm"

include "cosine.asm"

END
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B.2 coretest.asm

This contains the core test, timer test, and interrupt test portions of the

ROM self test.
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;**************************************************************

;* Processor test routines for the XPIC *

;* *

;* Written March 3, 2000 by Scott Masch *

;* Entry points: coretest - test of all literal, bit, and *

;* control instructions *

;**************************************************************

;Uses locations 1 to 8, errors 1 to 21

coretest:

;Identify our location...

bsf OUTB, 2 ;location 1 (assuming start at zero)

;logic tests

movlw 0xc3

movwf PORTA ;report what is going on...

andlw 0x66

movwf PORTA

xorlw 0x42

movwf PORTA

btfss STATUS, Z

retlw 1 ;error 1

iorlw 0x5a

movwf PORTA

xorlw 0x5a

movwf PORTA

btfss STATUS, Z

retlw 2 ;error 2

bsf OUTB, 3 ;location 2

clrw

;arith tests

addlw 0xff

movwf PORTA

btfsc STATUS, C

retlw 3 ;error 3

addlw 0x11

movwf PORTA

btfss STATUS, C

retlw 4 ;error 4

sublw 0x10

movwf PORTA

btfsc STATUS, Z
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goto coretest_2

retlw 5 ;error 5

coretest_2

;wreg is zero here

bcf OUTB, 2 ;location 3

call coretest_3

movwf PORTA

xorlw 0xc3

btfss STATUS, Z

retlw 6 ;error 6

movlw 7

call coretest_4

xorlw 70

btfss STATUS, Z

retlw 7 ;error 7

bsf OUTB, 4 ;location 4

bsf STATUS, PCLATH2

bcf STATUS, PCLATH1

bcf STATUS, PCLATH0

btfsc STATUS, PCLATH0

retlw 8 ;error 8

btfss STATUS, PCLATH2

retlw 9 ;error 9

movlw 1

addwf PCL

retlw 10 ;error 10

goto coretest2

retlw 11 ;error 11

coretest2:

bsf OUTB, 2 ;location 5

;logic tests

movlw 0xc3

movwf 0x20

movlw 0x66

andwf 0x20

movlw 0x42

xorwf 0x20

btfss STATUS, Z

retlw 12 ;error 12

movlw 0x5a

iorwf 0x20
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xorwf 0x20

btfss STATUS, Z

retlw 13 ;error 13

;arith tests

bcf OUTB, 3 ;location 6

movlw 0xff

addwf 0x20

btfsc STATUS, C

retlw 14 ;error 14

addwf 0x20

incf 0x20

btfss STATUS, C

retlw 15 ;error 15

subwf 0x20

btfsc STATUS, Z

goto coretest2_2

retlw 16 ;error 16

coretest2_2:

bcf OUTB, 2 ;location 7

movlw 0xC6

movwf 0x20

swapf 0x20

movlw 0x6C

xorwf 0x20, W

btfss STATUS, Z

retlw 17 ;error 17

decf 0x20

movlw 0x6B

xorwf 0x20, W

btfss STATUS, Z

retlw 18 ;error 18

decfsz 0x20

btfss STATUS, Z ;zero should still be set

retlw 20 ;error 20

bsf OUTB, 5 ;location 8

coretest2_3:

decfsz 0x20

goto coretest2_3

movf 0x20, F ;test the byte

btfss STATUS, Z

retlw 21 ;error 21
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retlw 0

coretest_4:

addlw 0xFF

movwf PORTA

btfss STATUS, Z

call coretest_4

addlw 0x0A

movwf PORTA

return

coretest_3:

retlw 0xC3

;timertest: locations 25 to 27, errors 48 to 51

;Can this be modified to use t_delay?

timertest:

movlw 0x54 ;Location 25

movwf PORTB

INTOFF ;interrupts are not enabled

movlw 0xB0 ;Set prescaler to 1:1 and

movwf OPTN ; start timer

movlw 0xC2

clrf TMR0

call t_delay ;delay loop

movf TMR0, W

movwf PORTA

xorlw 251 ;expected timer value

btfss STATUS, Z

retlw 48 ;error 48

bsf OUTB, 3 ;location 26

bsf OPTN, TPS2 ;set to divide by 16

movlw 0x02

clrf TMR0

call t_delay

movf TMR0, W

movwf PORTA

xorlw 63

btfss STATUS, Z

retlw 49 ;error 49

bcf OUTB, 2 ;location 27

bsf OPTN, TPS1 ;set to divide by 128
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bsf OPTN, TPS0

movlw 0x02

clrf TMR0

call t_delay ;delay loop

movf TMR0, W

movwf PORTA

xorlw 7

btfss STATUS, Z

retlw 50 ;error 50

movf TMR0, W

movwf PORTA

xorlw 8

btfss STATUS, Z

retlw 51 ;error 51

retlw 0

introutine:

movf INT, W

iorwf 0x22

movlw 0xF0 ;Clear the interrupt flags

andwf INT

; bsf STATUS, C

retfie

;nop

;nop

introutine_end:

;inttest: locations 28 to 33, errors 52 to 54

inttest:

;First step: copy the interrupt routine into RAM

movlw 0x48 ;Identify location 28

movwf PORTB

intoff

clrf TBLPTH

movlw 0x08

movwf TBLPTL

movlw (0x28|(introutine>>8))

movwf TBLATH

movlw (introutine & 0xFF)

tblwt

;OK, interrupt routine is where it should be, so let’s
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; begin. First for an internal interrupt

bsf OUTB, 2 ;location 29

clrf TMR0

clrf INT ;Clear all interrupt enables and flags

; bcf STATUS, C ;Just another test

clrf 0x20 ;Interrupts will be counted here

clrf 0x21 ;This sets up a timeout

clrf 0x22 ;Interrupts will be recorded here

movlw 0xF0

movwf OPTN ;Set prescaler to 1:1 and start timer

bsf INT, TEN ;Enable timer interrupt

inttest1:

INTOFF ;BEGIN CRITICAL SECTION

btfsc 0x22, TINT ;has the interrupt occured yet?

incf 0x20 ;count the interrupts!

bcf 0x22, TINT ;clear the interrupt flag

INTON ;END CRITICAL SECTION

btfsc 0x20, 3 ;have we had enough?

goto inttest2 ;stop the interrupts...

incfsz 0x21 ;timeout counter

goto inttest1

retlw 52 ;error 52: timer interrupt fail

inttest2:

INTOFF

bcf OUTB, 3 ;location 30

; movlw 0x90 ;Identify location

; movwf PORTB ; (bit 2 low for test)

;Now for an external interrupt

clrf 0x22

;bsf OPTN, 6 ;we already know this bit is set

clrf INT

bsf INT, EEN

INTON

bcf OUTB, 2 ;location 31 (high to low)

call long_delay ;;delay for pin to transition

bsf OUTB, 7 ;location 32

btfss 0x22, EINT

retlw 53 ;Error 53: low to high failure

bcf OPTN, 6

bsf OUTB, 2 ;location 33 (low to high)

clrf 0x22
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call long_delay

btfss 0x22, EINT

retlw 54 ;Error 54: high to low failure

INTOFF ;turn off interrupts

retlw 0 ;test successful!
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B.3 memtest.asm

This has the program memory and data memory tests for the ROM self test.
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;**************************************************************

;* Memory test routines for the XPIC *

;* *

;* Written March 3, 2000 by Scott Masch *

;* Entry points: dmemtest - tests data memory *

;* pmemtest - tests program RAM *

;**************************************************************

;These values control the test length and the LFSR compare value

ifdef test

dmemstart EQU 0xF0

dmemlfsr EQU 0xC8

pmemlfsr0 EQU 0x92

pmemlfsr1 EQU 0x49

else

dmemstart EQU 0x20

dmemlfsr EQU 0x13

pmemlfsr0 EQU 0x94

pmemlfsr1 EQU 0x38

endif

;dmemtest: locations 9 to 16, errors 22 to 29

dmemtest:

;Start with LFSR test

movlw 0x34 ;Identify location

movwf PORTB ;location 9

clrf 0x20

movlw dmemstart

movwf FSR

bsf STATUS, C

dmemtest_1:

movlw 1

rlf 0x20

btfsc 0x20, 4

xorwf 0x20

movf 0x20, W

movwf PORTA ;Write the contents of the LFSR value

movwf INDF ;if at 0x20, we just write what is

incfsz FSR ; already there

goto dmemtest_1

;Write complete, now time to read back
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bsf OUTB, 3 ;location 10

movlw dmemstart

movwf FSR

clrf 0x20

bsf STATUS, C

dmemtest_2:

movlw 1

rlf 0x20

btfsc 0x20, 4

xorwf 0x20

movf INDF, W

movwf PORTA ;write contents of memory location

xorwf 0x20, W

btfss STATUS, Z

retlw 23 ;error 23: indirect fail

incfsz FSR

goto dmemtest_2

movf 0x20, W

xorlw dmemlfsr

btfss STATUS, Z

retlw 24 ;error 24, lfsr fail

;Readback complete, begin next test...

;Write all zeros, incrementing

movlw dmemstart

movwf FSR

bcf OUTB, 2 ;location 11

dmemtest_3:

clrf INDF

incfsz FSR

goto dmemtest_3

;read all zeros, then write all ones (incrementing)

movlw dmemstart

movwf FSR

bcf OUTB, 4 ;location 12

dmemtest_4:

movf INDF, W ;test for zeros

movwf PORTA

btfss STATUS, Z

retlw 25 ;error 25: nonzero readback

comf INDF ;write 0xFF

incfsz FSR
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goto dmemtest_4

;read all ones, then write all zeros (incrementing)

movlw dmemstart

movwf FSR

bsf OUTB, 2 ;location 13

dmemtest_5:

movf INDF, W

movwf PORTA

comf INDF, F ;test for ones and write zeros

btfss STATUS, Z

retlw 26 ;error 26: non one readback

incfsz FSR

goto dmemtest_5

;read all zeros (incrementing)

movlw dmemstart

movwf FSR

bcf OUTB, 3 ;location 14

dmemtest_6:

movf INDF, W ;test for zeros

movwf PORTA

btfss STATUS, Z

retlw 27 ;error 27: nonzero readback

incfsz FSR

goto dmemtest_6

;read all zeros, then write all ones (decrementing)

;FSR starts out at 0x80...

bcf OUTB, 2 ;location 15

dmemtest_7:

decf FSR

nop

movf INDF, W ;test for zeros

movwf PORTA

btfss STATUS, Z

retlw 28 ;error 28: nonzero readback

comf INDF, F ;write ones

; this is needed because of destructive test

movlw (dmemstart | 0x80)

xorwf FSR, W ;compare values

btfss STATUS, Z

goto dmemtest_7

;read all ones, then write all zeros (decrementing)
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;FSR starts out at dmemstart

bsf OUTB, 6 ;location 16

clrf FSR

dmemtest_8:

decf FSR

nop

movf INDF, W

movwf PORTA

comf INDF, F ;test for ones

btfss STATUS, Z

retlw 29 ;error 29: non one readback

; this is needed because of destructive test

movlw (dmemstart | 0x80)

xorwf FSR, W ;compare values

btfss STATUS, Z

goto dmemtest_8

;anything else?

retlw 0

;pmemtest: locations 17 to 24, errors 32 to 45

pmemtest:

movlw 0x64 ;location 17

movwf PORTB

clrf 0x20

clrf 0x21

bsf STATUS, C

clrf TBLPTH

clrf TBLPTL

pmemtest_1:

movlw 0x80 ;needed for the effective XOR

rrf 0x20

rrf 0x21

btfsc 0x20, 4

xorwf 0x20

;LFSR section complete, now to write the data

movf 0x21, W

movwf PORTA ;echo data to the port

movwf TBLATH

movf 0x20, W

tblwt ;write the data

movwf PORTA ;echo the rest of the data to the port
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call pmem_inc

ifdef test

btfss TBLPTL, 4 ;short test

else

btfss TBLPTH, 2 ;long test

endif

goto pmemtest_1

clrf 0x20

clrf 0x21

bsf STATUS, C

bsf OUTB, 3 ;location 18

clrf TBLPTH

clrf TBLPTL

pmemtest_2:

movlw 0x80

rrf 0x20

rrf 0x21

btfsc 0x20, 4

xorwf 0x20

tblrd ;TBLRD

movwf PORTA

xorwf 0x20, W

btfss STATUS, Z

retlw 32 ;fail low byte

movf TBLATH, W

movwf PORTA

xorwf 0x21, W

andlw 0x3F

btfss STATUS, Z

retlw 33 ;fail upper byte

;For full length test:

call pmem_inc

ifdef test

btfss TBLPTL, 4 ;short test

else

btfss TBLPTH, 2 ;long test

endif

goto pmemtest_2

movf 0x20, W

xorlw pmemlfsr0

btfss STATUS, Z

107



retlw 34 ;lfsr lower byte fail

movf 0x21, W

xorlw pmemlfsr1

btfss STATUS, Z

retlw 35 ;lfsr upper byte fail

;The second half of the memory tests...

;Write all zeros, incrementing

bcf OUTB, 2 ;location 19

clrf TBLPTH

clrf TBLPTL

pmemtest_3:

clrf TBLATH

clrw

tblwt ;TBLWT

call pmem_inc

ifdef test

btfss TBLPTL, 5

else

btfss TBLPTH, 2

endif

goto pmemtest_3

;read all zeros, then write all ones (incrementing)

bsf OUTB, 4 ;location 20

clrf TBLPTH

clrf TBLPTL

pmemtest_4:

tblrd ;TBLRD

movwf PORTA

xorlw 0 ;test for zeros

btfss STATUS, Z

retlw 36 ;error 36: nonzero readback

movf TBLATH, W ;test for zeros

movwf PORTA

btfss STATUS, Z

retlw 37 ;error 37: nonzero readback

comf TBLATH, F

movlw 0xFF

tblwt

call pmem_inc

ifdef test

btfss TBLPTL, 5
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else

btfss TBLPTH, 2

endif

goto pmemtest_4

;read all ones, then write all zeros (incrementing)

bsf OUTB, 2 ;location 21

clrf TBLPTH

clrf TBLPTL

pmemtest_5:

tblrd ;TBLRD

movwf PORTA

xorlw 0xFF ;test for ones and write zeros

btfss STATUS, Z

retlw 38 ;error 38: non one readback

movf TBLATH, W

movwf PORTA

xorlw 0x3F

btfss STATUS, Z ; and write zeros

retlw 39 ;error 39: non one readback

clrf TBLATH

clrw

tblwt

call pmem_inc

ifdef test

btfss TBLPTL, 5

else

btfss TBLPTH, 2

endif

goto pmemtest_5

;read all zeros (incrementing)

bcf OUTB, 3 ;location 22

clrf TBLPTH

clrf 0x20

pmemtest_6:

movf 0x20, W

tblrdt ;had to try this...

movwf PORTA

xorlw 0x0 ;test for zeros

btfss STATUS, Z

retlw 40 ;error 40: non zero readback

movf TBLATH, W ;test for zeros
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movwf PORTA

btfss STATUS, Z

retlw 41 ;error 41: non zero readback

incf 0x20

btfsc STATUS, Z

incf tblpth

ifdef test

btfss TBLPTL, 5

else

btfss TBLPTH, 2

endif

goto pmemtest_6

;read all zeros, then write all ones (decrementing)

;Why did we have to decrement too??!!!

;TBLPTR starts out at 0x400...

bcf OUTB, 2 ;location 23

call pmem_dec

pmemtest_7:

tblrd ;TBLRD

movwf PORTA

xorlw 0x0 ;test for zeros

btfss STATUS, Z

retlw 42 ;error 42: nonzero readback

movf TBLATH, W ;test for zeros

movwf PORTA

btfss STATUS, Z

retlw 43 ;error 43: nonzero readback

comf TBLATH, F

movlw 0xff ;write 0xFF

tblwt ;TBLWT

call pmem_dec

btfss TBLPTH, 2

goto pmemtest_7

;read all ones (decrementing)

;FSR starts out at 0x7FF

bcf TBLPTH, 2

ifdef test

bcf TBLPTL, 5

bcf TBLPTL, 6

bcf TBLPTL, 7

clrf TBLPTH ;temporary stuff...
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endif

bcf OUTB, 5 ;location 24

pmemtest_8:

tblrd ;TBLRD

movwf PORTA

xorlw 0xff ;test for ones and write zeros

btfss STATUS, Z

retlw 44 ;error 44: non one readback

movf TBLATH, W

movwf PORTA

xorlw 0x3F

btfss STATUS, Z ; and write zeros

retlw 45 ;error 45: non one readback

;movlw 0x0

;tblwt ;TBLWT

call pmem_dec

btfss TBLPTH, 2

goto pmemtest_8

;anything else?

retlw 0

111



B.4 serial.asm

This is the serial link test for the ROM self test.
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;Serial test routines for the XPIC

;serialtest: locations 36 to 46, errors 56 to 68

serialtest:

movlw 0xD8 ;location 36

movwf PORTB

clrf MSGLEN

movlw 0x01 ;Tx from link 0 (Loopback Mode)

movwf SCONTROL

call serialtest_1

xorlw 0

btfss STATUS, Z

return

;Second Link

movlw 0xE8 ;location 44

movwf PORTB

movlw 3

movwf SCONTROL

call serialtest_1

xorlw 0

btfsc STATUS, Z

retlw 0

iorlw 0x04

return

serialtest_1:

clrf STATREG

clrf 0x20

serialtest_2:

clrf 0x21 ;timeout counter

movf 0x20, W ;data to write

movwf TXBUF ;send the data

btfsc SCONTROL, LK ;skip if writing first link

goto serialtest_2b

bsf SCONTROL, LK

serialtest_2a:

btfsc STATREG, R1

goto serialtest_3

incfsz 0x21

goto serialtest_2a

retlw 56
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serialtest_2b:

bcf SCONTROL, LK

serialtest_2c:

btfsc STATREG, R0

goto serialtest_3

incfsz 0x21

goto serialtest_2c

retlw 56

serialtest_3:

movf RXBUF, W

movwf PORTA

bsf SCONTROL, READ

clrf STATREG

xorwf 0x20, W

btfss STATUS, Z

retlw 57

movlw 0x02

xorwf SCONTROL

nop ;change the timing slightly

ifndef test

incfsz 0x20

goto serialtest_2

endif

;Test overflow capability

bsf OUTB, 2 ;location 37/45

clrf 0x21

bsf 0x21, 2

serialtest_4:

movwf TXBUF

decfsz 0x21

goto serialtest_4

serialtest_5:

incfsz 0x21

goto serialtest_5

movwf TXBUF

btfsc SCONTROL, LK ;skip if writing first link

goto serialtest_6b

bsf SCONTROL, LK

serialtest_6a:
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btfsc STATREG, RE1

goto serialtest_7

incfsz 0x21

goto serialtest_6a

retlw 58

serialtest_6b

bcf SCONTROL, LK

serialtest_6c:

btfsc STATREG, RE0

goto serialtest_7

incfsz 0x21

goto serialtest_6c

retlw 58

serialtest_7:

movf STATREG, W

andlw 0x88

btfss STATUS, Z

goto serialtest_7a

decfsz 0x21

goto serialtest_7

retlw 59

serialtest_7a:

clrf STATREG

bsf SCONTROL, READ

bsf SCONTROL, READ

bsf SCONTROL, READ

bsf SCONTROL, READ

movlw 0x02

xorwf SCONTROL

;Turn off loopback and try transmitting

bcf OUTB, 3 ;location 38/46

clrf 0x21

bcf SCONTROL, CS ;turn off loopback

movwf TXBUF

btfsc SCONTROL, LK ;skip if writing first link

goto serialtest_8b

serialtest_8a:

btfsc STATREG, TE0
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goto serialtest_9

incfsz 0x21

goto serialtest_8a

retlw 64

serialtest_8b:

btfsc STATREG, TE1

goto serialtest_9

incfsz 0x21

goto serialtest_8b

retlw 64

serialtest_9:

clrf STATREG

retlw 0
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B.5 audio.asm

This is the demonstration program that generates sine waves on the PRM

ports.
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;This routine generates a sine wave on PRM1 with a period of

; 2**15 clocks. This is about 2.75 kHz at 90 MHz.

;PRM2 also generates this sine wave mixed with another sine

; wave with 1/5 the frequency.

v1 EQU 0x30

v2 EQU 0x31

vcount EQU 0x32

l1h EQU 0x33

l1l EQU 0x34

l2h EQU 0x35

l2l EQU 0x36

audiotest:

movlw 0xB0 ;turn on the timer

movwf OPTN

movwf FSR

movlw 0x07

movwf TBLPTH ;location of cosine table

comf PRMSPEED ;set to fast PRM mode

p1: ;easy way to reset all the registers

clrf INDF

incfsz FSR

goto p1

audio_loop1:

movlw 5

movwf vcount

incf v2

audio_loop2:

movf v2, W

movwf value0

call cosine_64

rrf prod0, W

xorlw 0x40

movwf l2h

rrf prod1, W

addwf l1l, W ;Add lower values

btfsc STATUS, C

incf l1h

;wait for timer

audio_w1:
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btfss TMR0, 6

goto audio_w1

movwf PRM2L

movf l2h, W

addwf l1h, W

movwf PRM2H

;Now for the other (primary) sine wave

incf v1

movf v1, W

movwf value0

call cosine_64

rrf prod0, W ;Store the value for mixing

xorlw 0x40

movwf l1h

rrf prod1, W

movwf l1l

movlw 0x80 ;Prepare to write to the PRM

xorwf prod0, W

;Wait for the timer

audio_w2:

btfsc TMR0, 6

goto audio_w2

;wait complete, now write new values

movwf PRM1H

movf prod1, W

movwf PRM1L

;Now for second PRM

decfsz vcount

goto audio_loop2

goto audio_loop1
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B.6 boot.asm

This contains the boot code as well as the serial EEPROM routines to read

and write blocks of data.
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;Boot routines:

boot_fail:

call iic_make_stop ;terminate connection...

boot:

btfss PORTE, SDA ;make sure the data line is not

goto boot_fail ; driven by a SEEP

call iic_start ;start connection

movlw 0xA0 ;Set up first device for write

movwf iic_rw_val

call iic_write_byte ;write it

;C should be zero if successful

btfsc STATUS, C

goto boot_fail ;loop if no ACK bit

clrf iic_rw_val ;address zero

call iic_write_byte

btfsc STATUS, C

goto boot_fail

call iic_write_byte

btfsc STATUS, C

goto boot_fail

call iic_restart ;Restart connection for read

movlw 0xA1 ;Set up first device for read

movwf iic_rw_val

call iic_write_byte

btfsc STATUS, C

goto boot_fail

clrf TBLPTH ;Clear the table pointers

clrf TBLPTL

;First, get the IIC speed

call iic_read_byte

movf iic_rw_val, W

movwf iic_delay_val

;Now start reading the data...

call seep_pload

goto 0x0 ;Goto startup vector

seep_dsave:

;This routine saves bytes to the seep starting at FSR.

;Writes number of bytes found in prod0

;Returns zero in prod0
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movf INDF, W

movwf iic_rw_val

incf FSR

call iic_write_byte

decfsz prod0

goto seep_dsave

call iic_stop

return

seep_dload:

;This routine loads bytes from the seep starting at FSR

;Writes number of bytes found in prod0

;Returns zero in prod0

bcf status, c

seep_dload_1:

call iic_read_byte ;get a byte

movf iic_rw_val, W

movwf INDF

incf FSR

decfsz prod0

goto seep_dload_1

bsf STATUS, C

call iic_read_byte ;read a byte without ACK

call iic_stop ;end transmission

return

seep_pload_1:

;This routine assumes the seep is ready to be read.

;Continues reading until bit 6 of the high byte is

;zero. Reads high byte[13:8], then low byte[7:0].

;Data is written at TBLPTR

movf iic_rw_val, W

movwf TBLATH

call iic_read_byte ;get the low byte

movf iic_rw_val, W

tblwt

call pmem_inc ;increment the table pointer

seep_pload:

bcf STATUS, C

call iic_read_byte ;get the high byte

btfss iic_rw_val, 6 ;test for EOF
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goto seep_pload_1

;Now to stop transmission and start running

bsf STATUS, C

call iic_read_byte ;read a byte without ACK

call iic_stop ;end transmission

return
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B.7 iic.asm

This contains the low level I2C routines discussed in Section 2.10.5.2.
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long_delay:

clrf iic_delay_val

iic_delay:

movf iic_delay_val, W

t_delay:

movwf iic_delay_temp

iic_delay_1:

incfsz iic_delay_temp

goto iic_delay_1

return

iic_restart:

call iic_delay

iic_start:

movlw SDA_FLOAT|SCL_HIGH

movwf PORTE

call iic_delay

call iic_delay

movlw SDA_LOW|SCL_HIGH

movwf PORTE

call iic_delay

call iic_delay

movlw SDA_LOW|SCL_LOW

movwf PORTE

call iic_delay

return

iic_make_stop:

movlw SDA_LOW|SCL_LOW

movwf PORTE

call iic_delay

iic_stop:

movlw SDA_LOW|SCL_LOW

movwf PORTE

call iic_delay

movlw SDA_LOW|SCL_HIGH

movwf PORTE

call iic_delay

call iic_delay

movlw SDA_FLOAT|SCL_HIGH

movwf PORTE
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call iic_delay

return

iic_write_bit:

;this routine writes the bit in carry...

movlw SDA_FLOAT|SCL_LOW

btfss STATUS, C

movlw SDA_LOW|SCL_LOW

movwf PORTE

call iic_delay

movlw SDA_FLOAT|SCL_HIGH

btfss STATUS, C

movlw SDA_LOW|SCL_HIGH

movwf PORTE

call iic_delay

call iic_delay ;write cycle delay

bcf PORTE, SCL ;set clock low

call iic_delay ;low cycle delay

return

iic_read_bit:

;this routine reads a bit into carry...

bcf STATUS, C ;assume bit to be low...

movlw SDA_FLOAT|SCL_LOW

movwf PORTE

call iic_delay ;read cycle delay

movlw SDA_FLOAT|SCL_HIGH

movwf PORTE

call iic_delay

btfsc PORTE, SDA ;test data line

bsf STATUS, C ;adj carry to SDA value

call iic_delay

movlw SDA_FLOAT|SCL_LOW

movwf PORTE

call iic_delay ;low cycle delay

return

iic_write_byte:

;this routine writes the byte in iic_rw_val and

;places the ack bit in carry

movlw 8
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movwf value0

iic_write_b1:

rlf iic_rw_val

call iic_write_bit

decfsz value0

goto iic_write_b1

rlf iic_rw_val ;rotate to original pos

call iic_read_bit ;get ack bit

return

iic_read_byte:

;this routine reads a byte into iic_rw_val and

;uses the carry bit as the ack bit

movlw 8

movwf value0

iic_read_b1:

rlf iic_rw_val

call iic_read_bit

decfsz value0

goto iic_read_b1

rlf iic_rw_val ;rotate to original pos

call iic_write_bit ;set ack bit

return
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B.8 helpers.asm

This contains the cosine function and the multiply function.
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pmem_inc:

incfsz TBLPTL

return

incf TBLPTH

return

pmem_dec:

movf TBLPTL

btfsc STATUS, Z

decf TBLPTH

decf TBLPTL

return

cosine_64:

bcf STATUS, C

cosine_128:

;Check for special cases: 0x40 and 0xC0 (Output zero)

rlf value0, W

xorlw 0x80

btfsc STATUS, Z

goto cos_zero

;Get the original value back

xorlw 0x80

;Now get the cosine value from the table

btfsc value0, 6

sublw 0

iorlw 0x80

tblrdt

;Save and shift the values so they make sense

movwf prod1

bcf STATUS, C

rlf prod1

rlf TBLATH, W

movwf prod0

;Output is currently in the range 0x0000 to 0x7FFE

;Check if output is negative

movlw 0x40

addwf value0, W

bcf STATUS, C

andlw 0x80

btfsc STATUS, Z
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return

decf prod1 ;2’s complement of prod1

comf prod1

btfsc STATUS, Z ;borrow from prod0

decf prod0

comf prod0

return ;29 clocks

;Special cases: Output is zero

cos_zero:

bcf STATUS, C

clrf prod0

clrf prod1

return

mul8 macro bit

btfsc value0, bit

addwf prod0

rrf prod0

rrf prod1

endm

umul0808:

clrf prod0

clrf prod1 ;needed to ensure carry is clear

mul8 0

mul8 1

mul8 2

mul8 3

mul8 4

mul8 5

mul8 6

mul8 7

return
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B.9 user text.asm

This is a small segment of memory that contains the text “Scott Masch,Jon

Hsu,Forrest Brewer” in packed ASCII format. These were the three primary

people involved in designing the XPIC.
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; User Text data

; Printing the value:

; "Scott Masch,Jon Hsu,Forrest Brewer"

text_data:

DATA 0x31A7

DATA 0x3ADE

DATA 0x10E8

DATA 0x309B

DATA 0x31E7

DATA 0x16D0

DATA 0x3795

DATA 0x10DC

DATA 0x3991

DATA 0x16EA

DATA 0x378D

DATA 0x39E4

DATA 0x39CB

DATA 0x10E8

DATA 0x3984

DATA 0x3BCB

DATA 0x39CA
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B.10 cosine.asm

This is the quarter cosine table. The middle 120 values have been omitted

from this printing.
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; ROM Cosine Table

; Generated by ctable

; Created using 128 points

ORG 0x780

cos_tbl:

DATA 0x3FFF ;0x3FFF

DATA 0x3FFD ;0x3FFD

DATA 0x3FFA ;0x3FFA

DATA 0x3FF3 ;0x3FF3

;****************************

;* 120 entries omitted here *

;****************************

DATA 0x0323 ;0x0323

DATA 0x025B ;0x025B

DATA 0x0192 ;0x0192

DATA 0x00C9 ;0x00C9

134


	List of Figures
	List of Tables
	Introduction
	User Manual
	XPIC Overview
	Compatibility
	Program Memory
	Data Memory
	Indirect Addressing
	Instruction Set
	Pulse Rate Modulators
	Serial Links
	ROM Software

	Memory
	Program Memory
	Data Memory
	Indirect Jumps
	Stack
	Indirect Addressing
	Table Read and Write

	Instruction Set
	Byte Instructions
	Bit Instructions
	Literal Instructions
	Control Instructions
	Table Instructions

	Interrupts
	I/O Ports
	Port A
	Port B
	Port E

	Pulse Rate Modulators
	Timer
	Prescaler
	Interrupt on Overflow

	Serial Links
	Protocol
	Transmission
	Reception
	Interrupts
	Loopback

	ROM Software
	Initialization
	Self Test
	Sine Wave Generation
	Boot (Serial EEPROM)
	Helper Functions
	User Text
	Cosine Table


	XPIC Design
	Design Methodology
	Hardware
	Software

	Frame Modeling Language
	Frames
	Actions
	Repeats
	Other Features

	XPIC Core
	Pipeline Flags
	Fetch
	Data Read
	ALU Operation
	WREG
	STATUS
	Data Write
	PCL Writes
	Skip Instructions
	Goto and Call Instructions
	Return Instructions
	RETFIE Instruction
	Table Instructions
	Interrupt Logic

	FML In Practice

	Testing
	Test Software
	ROM-Based Self Test
	RAM-Based Self Test
	I/O Port Test
	Sine Wave Generation

	Test Setup
	Test Socket
	Power Supply
	Reset
	Clock
	I/O Ports
	Serial EEPROM/Boot Mode Selection
	Serial Ports

	Test Results
	Functionality
	Performance
	Power Usage


	Conclusion
	References
	FML Source Code
	ROM Source Code
	main.asm
	coretest.asm
	memtest.asm
	serial.asm
	audio.asm
	boot.asm
	iic.asm
	helpers.asm
	user_text.asm
	cosine.asm


