
Abstract
Traditional bit-serial multipliers present one or more clock
cycles of data latency.  When combined with addition operations,
as would be needed for an inner product computation, the
latency may increase further.  In this paper, we extend a design
method for latency-free bit-serial multipliers to more powerful
bit-serial arithmetic units capable of computing functions of the
form S = VW + X,  S = VW + X + Y, S = VW + X + Y + Z, S =
VW + XY, and S = VW + XY + Z with no latency (i.e., with only
combinational delay between input and output).  We show that
the above double multiplication and accumulative capabilities
are obtained with small extra cost compared to simple bit-serial
multipliers.  More specifically, the added cost, contributed
mainly by the use of a (7, 3) counter in lieu of a (5, 3) counter in
each multiplier cell, is about 50% for the most complex unit,
making our designs quite cost-effective.  Unsigned or
sign-extended 2’s-complement numbers may be used to produce
arbitrarily long outputs.  Since the designs are fully modular,
they are easily introduced into VLSI  libraries. 
 
Keywords:  Bit-serial computation, Convolution, Inner product,
Little-endian arithmetic, Multiply-accumulate, On-line arithmetic,
Systolic multiplier, Two’s-complement multiplication

1.  Introduction

Bit-serial arithmetic provides a way to minimize pin count,
wire length, and floor space requirements in VLSI designs.
However, performing bit-serial arithmetic simply and quickly,
especially when all operands are entered serially, poses
challenging design and implementation problems.  Since
bit-serial adders/subtractors are easily realized and on-line
bit-serial dividers/square-rooters are not feasible unless a
redundant representation and MSD-first or big-endian order is
used [3], research in bit-serial arithmetic using conventional
binary representations has focused on the design of multipliers
and squarers (see, e.g., [1], [2], [5], and the references therein).  

In a recent paper, Ienne and Viredaz [4] review past design
approaches to bit-serial multiplication and present a new bit-serial
multiplier with four important features: 

1. No latency cycles between input presentation and output
availability. 

2. Applicability to both unsigned and 2’s-complement operands.
3. Production of full double-precision or longer sign-extended

result. 
4. Regular and modular designs suitable for VLSI realization.

This new design needs only N − 1 modules to produce the 2N-bit
product P = XY, given N-bit 2’s-complement operands X and Y
that are sign-extended to length 2N.  Each module, representing
one multiplier slice, incorporates a (5, 3) parallel counter [6] that
adds its 5 single-bit inputs to produce a 3-bit binary output
representing the sum in the range 0 to 5.  

A possible realization of a (5, 3) counter is based on 2 binary
full adders and 1 binary half adder, connected in a 3-level
structure.  By using 4 binary full adders, and with only slight
additional delay, viz the difference between one full adder and one
half adder delay, a (7, 3) counter can be realized that accepts 2
additional inputs.  This provides our motivation to replace the (5,
3) counter with a (7, 3) counter in order to perform more complex
computations.  

In the remainder of this paper, we show that by changing the
(5, 3) counter into a (7, 3) counter and adding a few additional
components, the bit-serial multiplier of Ienne and Viredaz [4] can
be extended into bit-serial units to compute functions such as S =
VW + X, S = VW + X + Y, S = VW + X + Y + Z, S = VW + XY,
and ultimately S = VW + XY + Z.  Computation of the two-term
inner product, S = VW + XY,  or inner product and accumulate, S
= VW + XY + Z, is especially important since it is useful for matrix
operations, correlation, and convolution functions.  Because of
minimal modifications in the overall structure of the bit-serial
multiplier, all the important features listed previously for the
original design carry over to these extended designs. 

2.  Background and Notation

We adopt the arithmetic and logic notations used by Ienne and
Viredaz [4] for ease of reference and comparison.  Numbers are
written as capital letters, with the bits of their binary
representations denoted by the corresponding lower-case letters.
An index associated with a lower-case letter denotes its bit
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position, starting with 0 at the least-significant bit.  All
multiplication operands are considered to be of length N unless
otherwise noted.  The final computation result is denoted by S
which must be of a length ≥ 2N to ensure correct evaluation. 

Figure 1 shows the symbols used in our logic diagrams.
Symbols (a) and (b) are D flip-flops, with clock  inputs omitted for
simplicity.  They both have a one-cycle delay and active-high
synchronous-clear lines.  Symbol (b) also has an active-high
enable.  Symbol (c) is a standard two-input multiplexer.  Finally,
symbol (d) is a (7, 3) counter that outputs a 3-bit binary number
(output bit positions 0, 1, and 2) indicating how many of its 7
inputs are high.
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Figure 1: Circuit symbols.  (a) delay element (D flip-flop) with
active-high synchronous-clear, (b) same as (a) but with
active-high enable, (c) 2-to-1 multiplexer, (d) (7,3) counter.

Rather than presenting a separate design for computing each
of the desired and possible functions, we will only examine the
case of S = VW + XY + Z in detail.  Other cases can be derived by
pruning or simplifying the design for this most complex case.

3.  Theory of Operation

The algorithm for computing S = VW + XY + Z is depicted in
Figure 2.  In the example shown, all multiplication operands are
signed 2’s-complement binary numbers having N = 4 bits.  To
perform the computation correctly, these must be sign extended as
suggested by Dadda [1].  The additive operand Z, however, can be
a signed 2’s-complement number of length 2N.  With the above
assumptions, the maximum anticipated value of a positive result S
is

Smax = 2(−2N−1)2 + (22N−1 −1) = 22N − 1                                     (1)

In Equation (1), the first term containing the squared negative
value represents the sum of the largest possible positive products
VW and XY, when each of the four operands involved is a
maximal 2’s-complement negative number, and the second term
represents the largest possible positive value for Z.  Similarly, the
magnitude of the most negative result Smin can be computed which
is slightly less than the positive bound.  Thus, the result S is a
2’s-complement number with at most 2N + 1 bits and the terms to
the left of the vertical line in Figure 2 are superfluous.  

The boxed terms in bit positions 7 and 8 of Figure 2 can also
be ignored.  Consider the underlined v3w3 terms present in bit
positions 7 and 8.  These add up to form a result

2v3w3×27 + 3v3w3×28 = v3w3×210                                               (2)

The result in Equation (2) can alter S starting at bit position 10.
More generally,  ignoring these terms only affects bit positions  

s0s1s2s3s4s5s6s7s8

x0y3x1y3x2y3x3y3x3y3x3y3x3y3x3y3x3y3+
v0w3v1w3v2w3v3w3v3w3v3w3v3w3v3w3v3w3+

x0y3x1y3x2y3x3y3x3y3x3y3x3y3x3y3x3y3+
v0w3v1w3v2w3v3w3v3w3v3w3v3w3v3w3v3w3+

x0y3x1y3x2y3x3y3x3y3x3y3x3y3x3y3x3y3+
v0w3v1w3v2w3v3w3v3w3v3w3v3w3v3w3v3w3+

x0y3x1y3x2y3x3y3x3y3x3y3x3y3x3y3x3y3+
v0w3v1w3v2w3v3w3v3w3v3w3v3w3v3w3v3w3+

x0y3x1y3x2y3x3y3x3y3x3y3x3y3x3y3x3y3+
v0w3v1w3v2w3v3w3v3w3v3w3v3w3v3w3v3w3+

x0y3x1y3x2y3x3y3x3y3x3y3x3y3x3y3x3y3+
v0w3v1w3v2w3v3w3v3w3v3w3v3w3v3w3v3w3+

x0y2x1y2x2y2x3y2x3y2x3y2x3y2x3y2x3y2+
v0w2v1w2v2w2v3w2v3w2v3w2v3w2v3w2v3w2+

x0y1x1y1x2y1x3y1x3y1x3y1x3y1x3y1x3y1+
v0w1v1w1v2w1v3w1v3w1v3w1v3w1v3w1v3w1+

x0y0x1y0x2y0x3y0x3y0x3y0x3y0x3y0x3y0+
v0w0v1w0v2w0v3w0v3w0v3w0v3w0v3w0v3w0← These terms can be ignored. →+

z0z1z2z3z4z5z6z7z7+
z0z1z2z3z4z5z6z7z7+
y0y1y2y3y3y3y3y3y3 x
x0x1x2x3x3x3x3x3x3+
w0w1w2w3w3w3w3w3w3  x
v0v1v2v3v3v3v3v3v3

Figure 2: Algorithm to perform S=VW+XY+Z with sign-extended two’s complement numbers.



2N + 2 and beyond, and in no way changes our (2N + 1)-bit
result.  Similar reasoning shows that the x3y3 terms in bit positions
7 and 8 can be ignored. 

The algorithm in Figure 2 can be implemented using a
modified classic add & shift technique.  Simple manipulation
leads to the following recurrence for the computation, with S0 = 0:

Si = ½ [Si−1 + viWi−1 + xiYi−1 + viwi2i + xiyi2i + zi]  for i < N
Si = ½ [Si−1 + vN−1WN−2 + xN−1YN−2 + zi]   for i ≥ N   (3)

Besides noting that Wj and Yj represent the values of W and Y up
to bit position j (i.e., bits already received and stored in the cells),
there are four main points to make with regard to Equation (3).
First, the symmetric terms viwi and xiyi are added only for bit
positions i < N.  Second, for the inputs V, W, X, and Y, only N−1
bits must be stored, provided that the inputs continue to supply the
sign-extended values for bit positions i ≥ N.  Third, the output
depends on the current inputs and previous bit values.  Therefore,
a new result bit is produced only after a combinational delay.  And
finally, the ½ term in Equation (3) implies that the
least-significant result bit is shifted out and the remaining integer
is all that is needed to compute further results.

4.  Modular Implementation

Figure 3 shows a modular implementation of a serial
arithmetic unit designed to compute the function S = VW + XY +
Z.  All signals are shown and labeled except for the clock.  This is
a synchronous design and it is assumed that flip-flops latch on a
clock edge.  With N-bit operands V, W, X, and Y, the design
consists of N identical modules (N = 4 in Figure 2's example).  

To begin a computation, “clear” must be held high for at least
one cycle.  After “clear” is brought low, computation begins by
presenting the least significant bits of all the operands at the
appropriate inputs.  Also, in the same cycle that the least
significant bits are presented and only for that one cycle, “token”
must be set high.  This token is held by a module for one cycle
before it is passed onto the module below.  While in possession of
the token, a module computes only the symmetric term vjwj  + xjyj,
where j is the module number.  This takes care of the necessary
symmetric terms for i < N as shown in Equation (3).  

The top half of Figure 4 shows what part of the computation is
performed by each module, while the bottom half indicates when
each computation step is performed.  For brevity, the bit-level
inner product computation vawb + xayb is represented as iab.  Notice
that module 0, the first module to receive a token, computes v0w0

+ x0y0 + z0 during the first cycle.  Since it stores values for v0, w0,
x0, and y0 during the first cycle, it will be responsible for all
subsequent terms of v0wj + x0yj  and vjw0  + xjy0  shown in the
algorithm of Figure 2.  Computation proceeds in a similar manner
for the remaining modules as the token is passed downward.   

Figure 3:  Bit-serial arithmetic unit for S = VW + XY + Z.

Note that even though Figure 4 shows modules computing
some terms to the left of the vertical line separating bits positions 8
and 9, including these terms does not alter the result.  These  
redundant computations are introduced to keep the design
modular.  Effects of these terms are flushed out of their respective
modules by the clear signal preceding a new computation.
Following an analysis similar to that of Ienne and Viredaz [4], we
have shown that these terms will not corrupt proper result sign
extension even if the arithmetic unit is operated beyond 2N + 1
cycles, provided that all operands are sign extended for the entire
duration of the computation.
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Figure 4:  Module and time assignment for each bit-level
inner product iab = vawb + xayb.

The final result in Figure 4 is a valid signed 2’s-complement
number of length 2N + 1.  This is the maximum length expected
for S = VW + XY + Z.  Unfortunately, 2N + 1  is a rather odd
length in most applications dealing with data words whose
lengths are multiples of 8 or 4 bits.  Typically, one knows the
expected length of a result before computation.  If this is the case,
the user only has to compute the result up to the anticipated
length.  Bits beyond this length are all sign extensions.  This
suggests that results of the more convenient length 2N can be
produced if the higher overflow probability is tolerable.  Overflow
detection would still be possible by examining the output bit at
position 2N after each computation step.

5.  Detailed Module Design

Figure 5 shows the complete implementation of a module.
When the token input is high, the multiplexers present the (7, 3)
counter with the product terms vjwj and xjyj.  The token signal also
latches vj, wj, xj, and yj for future computations.  The inverted
token signal input to two AND gates is necessary to prevent any of
the currently latching data from altering the result during this
cycle.  For the lowest order module, Cin carries one bit of Z.  

Once the token is passed on and a new cycle i has begun, the
(7, 3) counter will be presented with, in order from top to bottom
input, vjwi, viwj, xjyi, xiyj, a sum bit from module j + 1, a far carry
from module j – 1, and a near carry from its own previous cycle.
The carries from position j should go to positions j + 1 and j + 2,
with the sum staying at position j.  However, because of the
multiplicative ½ term in Equation (3), everything is shifted up and
each module will work on the next higher significant position
during the following cycle.  The number of 1s among the 7 inputs
to the (7, 3) counter dictates the cell result for the current cycle.
The flip-flops on the Sin-Sout path form the register used to store
and shift the partial result Si . 

This design is highly modular and can easily be implemented
in VLSI.  Figure 3 shows a pair of AND gates producing the
terms vjwj  and xjyj for all modules.  If strict modularity is desired,

Figure 5:  Bit-Slice to implement S = VW + XY + Z. All  
clears are common.
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these AND gates can be replicated in each module.  On the other
hand, if uniformity is not an issue, then the bottom module in the
series, module N, can be simplified.  This last module does not
need to store any bits for future computations.  Accordingly, the V,
W, X , and Y flip-flops along with their attached AND gates can
be removed.  Also, the multiplexers can be replaced with AND
gates, with token-in as the other enabling input, and the token-out
flip-flop can be removed.  Finally, the (7, 3) counter can be
replaced with a simpler (5, 3) counter. 

The bit-slice in Figure 5 can be pruned to compute S = VW +
X + Y + Z by removing the flip-flops, multiplexer and gates
associated with X, Y, and XY and then directly connecting X and Y
to the (7, 3) counter.  Since only the lowest-order module receives
inputs for X, Y, and Z, the higher-order modules don't need (7, 3)
counters but only (5, 3) counters.  Finally, the inputs X, Y, and Z
can be of arbitrary length, even > 2N + 1, as long as they are
sign-extended to the maximum anticipated result length. 

The computation S = VW + XY is a special case of S = VW +
XY + Z, with Z set to 0 at all times.  If uniformity is not an issue, a
(6, 3) counter could then be used for the first module in this
design.  Likewise, S = VW + X + Y and S = VW + X are special
cases of S = VW + X + Y + Z.  Again, only the first module needs
as many inputs as dictated by the computed function.

6.  Discussion and Conclusion

We have shown how Ienne and Viredaz’s scheme for bit-serial
multiplication [4] can be extended to perform S = VW + X, S =
VW + X + Y, S = VW + X + Y + Z, S = VW + XY, and ultimately S
= VW + XY + Z, using a small amount of added hardware.  The
extended design may require N modules, rather than N − 1
modules, but the Nth module can be significantly simpler than the
rest.  The only increase in delay was due to the somewhat slower
(7, 3) counter compared to a (5, 3) counter.  As in the original
design, results are produced without any latency cycles.
Furthermore, both unsigned and signed 2’s-complement numbers
are accepted as long as the inputs are sign extended for the
duration of the computation.  Full precision outputs of arbitrary
length are possible.  Finally, the design is modular, allowing for
easy VLSI implementation.  

The critical path for the design of Figure 5 contains an AND
gate, a 2-input multiplexer, and a (7, 3) counter.  Compared to the
original design of Ienne and Viredaz [4], this represents an
increase corresponding to the difference in delay between a (7, 3)
and a (5, 3) counter.  Assuming 4 (2) gate levels of delay per full
(half) adder and 2 per multiplexer, the delay of our extended
design is 15 gate levels for an increase of about 15% over the 13
gate levels of the original design.  The difference in throughputs is
less pronounced since the same latch delay and clock safety
margin will have to be figured in for both implementations.

Hardware complexity is increased by the difference in gate
counts between a (7, 3) counter and a (5, 3) counter, one
additional multiplexer, 2 AND gates, and 2 flip-flops.  Counting

each full (half) adder as having 9 (4) gates, a (7, 3) counter built of
4 full adders will have 36 gates compared to 22 gates for a (5, 3)
counter composed of 2 full adders and 1 half adder.  If
additionally we take each flip-flop to have 4 gate-equivalent of
complexity and each multiplexer as 3 gates, our cell complexity of
78 gates is 53% higher than that of a simple bit-serial multiplier
cell at 51 gates.  Here, comparison of gate counts is a fair measure
of relative costs since the two designs have substantially the same
interconnection patterns and wire lengths.

In many applications in signal processing and
high-performance computing, the additional capabilities of double
multiplication and accumulation is well worth the added
complexity.  If we compare the two implementations using the
composite measure of cost × delay, we are paying an overhead of
about 75% to do more than twice the computation.

The designs described in this paper were verified in two stages.
In the prototype stage, we began by describing the basic
components (latches, AND gates, counters, and multiplexers) as
behavioral models in VHDL and carried out the process until
complete arithmetic units were encompassed and subsequently
tested in a VHDL test-bench.  Once the correctness of the designs
and their timing properties were established, minor adjustments
were made and the full refined designs were modeled in structural
VHDL using Cascade Epoch’s standard cell library.  The model’s
behavior was then verified with Mentor Graphic’s QVSIM.
Finally, complete VLSI circuits in a 2.0-micron process with 2
metal layers were synthesized with Epoch.  Timing and area data
from the synthesis confirmed our gate-level cost/performance
estimates to be within 3 percentage points of actual design values
(Table I).

Table I:  Area and delay results

13.26637 × 437Our cell for S = VW + XY + Z

11.89568 × 321 Design of Ref. [4] for S = XY

Delay (ns)Area  (µm)Description of the Design
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