
Incremental Timing-Driven Placement

Steve Haynal and Forrest Brewer

Department of Electrical and Computer Engineering
University of California, Santa Barbara

January 1997

Motivations
l Class project
l Practical project
l Experience with Epoch
l Automate steps used to fix critical delay in Rogue Chip
l Incremental algorithms:

l Not as many
l Provides manual intervention
l Fast
l Can be complex
l More focused view

Outline
l Underlying Principles
l Algorithm Description
l Implementing and Testing the Algorithm
l Observations and Conclusions

Underlying Principles

B

C D

A

E

X

Y

WZ

l Cluster Critical Cells - First for a critical net, then for a critical path.
l Reduce Gate Sizes - Even of periphery nodes
l Localize Movement - Spread out impact costs
l Probabilistic Hill Climbing - Overcomes local minimums
l Good Delay Estimates - Costly but applicable for incremental changes
l Stop When Goal is Reached - Avoids detrimental changes

Seven Step Algorithm

Input

Preprocessing Calculations

Completion

Rebuffer Sizing

Greedy
Localized
Movement

Probabilistic
Hill Climbing

Step 1: Input

l Connectivity and placement data - movable cells and fixed points
l Original buffer sizes
l Penfield-Horowitz timing data
l Critical and near critical paths
l Desired critical path delay reduction
l Delay due to wiring

Step 2: Preprocessing

l Critical paths
l Critical nets
l Critical cells
l Near critical nets
l Near critical cells

Step 3: Calculations

l Net mass center (n=critical cells in net)xnet = 1
n S

i=1

n
xcelli ynet = 1

n S
i=1

n
ycelli

l Ideal cell locations (m=critcal nets to cell)xideal =
S
j=1

m

wj%xnetj

S
j=1

m
wj

yideal =
S
j=1

m

wj%ynetj

S
j=1

m
wj

l Path cost (n=critical nets in path)pathc= S
j=1

n
wj % b j

l Global cost (m=critical nets in circuit)globalc= S
j=1

m
wj % b j

l Initial path goal cost goalc=
dwiring−dreduce

dwiring
% pathcinitial .

Step 4: Greedy Localized Movement

Up Moves Down Moves Right Moves Left Moves

Up/Left Moves Up/Right Moves Down/Left Moves Down/Right Moves

Figure 3: Local move sets. Critical cell to move is marked with an .

Step 4: Greedy Localized Movement

l Types of moves
l Jam moves
l Swap moves

l Accept move when is maximizedaccept= S
i=1

n
wi %

boldi − bnewi

l Exceptions to step 4:
l Cell is in an ideal location
l No move is possible

l Move to critical path mass center xcp =
S
j=1

m

wj%xnetj

S
j=1

m
wj

Step 5: Probababilistic Hill Climbing

l Kernighan-Lin style backtracking to lowest cost point in move sequence
l If n moves were made in step 4, n-(k+1) of these moves are undone so

that is maximized and greater than or equal to zero. S
i=1

k
accept

l The new global cost is set to gnew = gold − S
i=1

k
accept

Step 6: Completion.

l Random reordering of lists:
l A net’s critical cells
l A path’s critical nets
l Critical paths

l Exit when all goal costs met or no change in global cost

Step 7: Rebuffer Sizing

l All critical cells set to minimum size
l Timing-driven buffer sizing where needed

Implementing and Testing the Algorithm

l Roughly 2200 lines of C++

l Interface with Cascade’s Epoch

l 512 cell HP26G 0.8 µm technology standard cell group test circuit

l 12.5 ns target clock period

l All Epoch’s optimization options employed

l Worst critical path 900 ps too long

Maximum Net Reduction Trial

 Before: 1.94×106 µm2 9 critical paths After - 2.06×106 µm2 1 critical path

Appropriate Net Reduction Results

l Appropriate dreduce for each critical path
l 9905 moves
l 14.5 seconds Ultra Sparc 1 user time
l 2.02×106 µm2 - 4% increase
l 12.5 ns cycle time - 11% speedup
l Worst critical path reduced by 1 ns
l Remaining near critical paths more balanced

Appropriate Net Reduction Trial

l Clumping of critical cells
l 4% area increase
l 11% speedup

Observations and Conclusions

l Observations
l Timing analysis in the main loop
l K-for-one swap moves
l Compare with benchmarks
l Compare with standard placement algorithms

l Conclusions
l Exploitable freedoms in Epoch’s optimized standard cell placements

l 11% speedup and 4% area increase in 512 standard cell test circuit
l Approximately O(n3) complexity where n is number of critical cells

l Fast - only handful of critical cells

