BDD Techniques for Graph Coloring and Related Problems

Steve Haynal

Department of Electrical and Computer Engineering
University of California, Santa Barbara
March 1997

Outline

- Problem Statements
- Why Solve These Problems?
- General Approach to Solutions
- Implementation Specifics
- Results
- Further Research Directions
- Conclusions

Problem Statements

-Original Problem

- Find edges, which if added to an existing undirected graph, form odd (even) circuits
- Original graph contains no odd circuits
- Edges b and c would form odd circuits
- Edge a would form an even circuit

- Evolved Problems
- Find the chromatic number of an undirected graph
- Chromatic number $=3$
- Find all valid colorings of an undirected graph
- c could be blue
- a could be red.

Why Solve These Problems?

- Coloring Solves General Scheduling
- Committee scheduling
- Engineering examples
- Minimum width channel routing
- Chip register/resource scheduling
- Assignment of binary codes to state symbols
- Coloring is NP-complete - Challenging!
- Set and compression properties of BDDs could be useful...

General Approach to Solutions: Finding Possible Odd (Even) Circuit Causing Edges

- Theorem: A graph can be 2-colored if and only if it does not contain a circuit of odd length
- Any added edge that destroys 2-coloredness forms an odd circuit
- Any added edge that preserves 2-coloredness and connects two vertices in the same graph forms an even circuit

- Solution:
- Two-color the graph
- For odd circuit causing edges, enumerate all edges between vertices in the same color set
- For even circuit causing edges, enumerate all edges between vertices in opposite color sets that don't exist in the original graph

General Approach to Solutions: Chromatic Numbers and Valid Colorings

- Two-coloring as a product of Boolean constraints
- $\left(a b^{\prime} \vee a^{\prime} b\right) \wedge\left(b a^{\prime} \vee b^{\prime} a\right)=\left(a b^{\prime} \vee a^{\prime} b\right)$
- Generalized to >2 colors

a	b	c
$\mathbf{O O}$	O 1	O 1
OO	O 1	1 O
OO	1 O	1 O
.	.	.
.	.	.
$\mathbf{1 O}$	O 1	O

- Solution:
- Write constraints for \boldsymbol{x} colors on \boldsymbol{n} vertices
- Compute product
- Existing minterms verify chromatic number x
- Number of minterms indicate possible valid colorings

Implementation Specifics: Representing a Graph

- Each edge is a minterm
- Each minterms has only two 1's - adjacent vertices

a	b	c	d
1	1	0	0
1	0	1	0
0	1	0	1
0	0	1	1

- Universe is a tuple
- Useful for partitioning
- 00-0000---0000-
- Intersect with graph
- Returns all edges not adjacent to 0's
- Strings of zeros in the BDD
- 11 vertex, 18 edge graph
- 38 nodes BDD
- 23 nodes ZBDD

Implementation Specifics: Boolean Relations

Implementation Specifics: Tighter Constraints

- Logarithmic color encoding - how to specify exactly 5 colors?
- Add additional constraints c_{j} and c_{k}
- c_{j} and c_{k} are BDDs with i levels and minterms from 0 to $x-1$
- \boldsymbol{x}-Coloring $=\prod_{j, k}\left(c_{j} \cap c_{k} \cap \sum_{i}\left(v_{j i} \oplus v_{k i}\right)\right)$
- Building this BDD is straightforward:
- Contains 5 colors, 0-- and 100

Further Research

- Chromatic number and valid coloring techniques explode rapidly
- Needed:
- Tighter constraints
- Partitioning
- Many unexplored avenues
- One possible partitioning:
- Partition between high and low degree vertices
- Color low degree side leaving sufficient "holes" for high degree side
- Color high degree side
- Check for compatible colorings

Conclusions

- Efficient two-coloring and odd-circuit producing edge finding techniques
- Only 2 minterms in BDD
- Maximum number of BDD nodes is roughly two times number of vertices
- Time spent is on order of number of edges in original graph
- Chromatic numbering and valid colorings works for small cases
- Explodes rapidly
- Possibility of more constraints
- Possibility of recursive partitioning

