
BDD Techniques for Graph Coloring
and Related Problems

Steve Haynal

Department of Electrical and Computer Engineering
University of California, Santa Barbara

March 1997

Outline

l Problem Statements

l Why Solve These Problems?

l General Approach to Solutions

l Implementation Specifics

l Results

l Further Research Directions

l Conclusions

Problem Statements

lOriginal Problem
l Find edges, which if added to an existing

undirected graph, form odd (even) circuits
l Original graph contains no odd circuits
l Edges b and c would form odd circuits
l Edge a would form an even circuit

l Evolved Problems
l Find the chromatic number of an undirected

graph
l Chromatic number = 3

l Find all valid colorings of an undirected graph
l c could be blue
l a could be red.......

a

b

c

c

d

c=red

d=blue

a=green

b=red

Why Solve These Problems?

l Coloring Solves General Scheduling

l Committee scheduling

l Engineering examples

l Minimum width channel routing

l Chip register/resource scheduling

l Assignment of binary codes to state symbols

l Coloring is NP-complete - Challenging!

l Set and compression properties of BDDs could be useful...

General Approach to Solutions: Finding Possible
Odd (Even) Circuit Causing Edges

l Theorem: A graph can be 2-colored if and only if it does not contain a
circuit of odd length
l Any added edge that destroys 2-coloredness forms an

odd circuit
l Any added edge that preserves 2-coloredness and

connects two vertices in the same graph forms an even
circuit

l Solution:
l Two-color the graph
l For odd circuit causing edges, enumerate all edges between vertices in the same

color set
l For even circuit causing edges, enumerate all edges between vertices in opposite

color sets that don’t exist in the original graph

a

b

c

red

blue

blue

red

General Approach to Solutions: Chromatic
Numbers and Valid Colorings

l Two-coloring as a product of Boolean constraints
l (abÂ - aÂb) . (baÂ - bÂa) = (abÂ - aÂb)

l Generalized to >2 colors

O1O11O

......

......

1O1OOO

1OO1OO

O1O1OO

cba

l Solution:
l Write constraints for x colors on n vertices
l Compute product
l Existing minterms verify chromatic number x
l Number of minterms indicate possible valid colorings

a

b

a

b c

Implementation Specifics: Representing a Graph

l Each edge is a minterm
l Each minterms has only two 1’s - adjacent vertices

1100

1010

0101

0011

dcba

l Universe is a tuple
l Useful for partitioning

l 00-0000----0000-
l Intersect with graph
l Returns all edges not adjacent to 0’s

l Strings of zeros in the BDD
l 11 vertex, 18 edge graph
l 38 nodes BDD
l 23 nodes ZBDD

a

b

c

d

Implementation Specifics: Boolean Relations

l Construct a BDD which describes Boolean
Relations among vertex colorings

l A path to one is a valid coloring

l Two-Coloring = where edgesP
j,k

vj / vk

vj ,vk

 c

l 2i-Coloring = where edgesP
j,k
S
i

vji / vki

vj ,vk

 c

v11

v12

v13

v21

v22

v23

v31

v32

v33

v41

v42

v43

Implementation Specifics: Tighter Constraints

l Logarithmic color encoding - how to specify exactly 5 colors?

l Add additional constraints cj and ck

l cj and ck are BDDs with i levels and minterms from 0 to x-1

l x-Coloring = P
j,k

cj 3 ck 3 S

i

vji / vki

l Building this BDD is straightforward:
l Contains 5 colors, 0-- and 100 FT

FT

T F

Further Research

l Chromatic number and valid coloring techniques explode rapidly

l Needed:
l Tighter constraints

l Partitioning

l Many unexplored avenues
l One possible partitioning:

l Partition between high and low degree vertices
l Color low degree side leaving sufficient “holes”

for high degree side
l Color high degree side
l Check for compatible colorings

Conclusions

l Efficient two-coloring and odd-circuit producing edge finding
techniques
l Only 2 minterms in BDD

l Maximum number of BDD nodes is roughly two times number of vertices

l Time spent is on order of number of edges in original graph

l Chromatic numbering and valid colorings works for small cases
l Explodes rapidly

l Possibility of more constraints

l Possibility of recursive partitioning

