BDD Techniques for Graph Coloring and Related Problems

Steve Haynal

Department of Electrical and Computer Engineering University of California, Santa Barbara

March 1997

Outline

- Problem Statements
- Why Solve These Problems?
- General Approach to Solutions
- Implementation Specifics
- Results
- Further Research Directions
- Conclusions

Problem Statements

•Original Problem

- Find edges, which if added to an existing undirected graph, form odd (even) circuits
 - Original graph contains no odd circuits
 - Edges b and c would form odd circuits
 - Edge *a* would form an even circuit

• Evolved Problems

- Find the chromatic number of an undirected graph
 - Chromatic number = 3
- Find all valid colorings of an undirected graph
 - c could be blue
 - a could be red.....

Why Solve These Problems?

- Coloring Solves General Scheduling
 - Committee scheduling
 - Engineering examples
 - Minimum width channel routing
 - Chip register/resource scheduling
 - Assignment of binary codes to state symbols
- Coloring is NP-complete Challenging!
 - Set and compression properties of BDDs could be useful...

General Approach to Solutions: Finding Possible Odd (Even) Circuit Causing Edges

- Theorem: A graph can be 2-colored if and only if it does not contain a circuit of odd length
 - Any added edge that destroys 2-coloredness forms an odd circuit
 - Any added edge that preserves 2-coloredness and connects two vertices in the same graph forms an even circuit

• Solution:

- Two-color the graph
- For odd circuit causing edges, enumerate all edges between vertices in the same color set
- For even circuit causing edges, enumerate all edges between vertices in opposite color sets that don't exist in the original graph

General Approach to Solutions: Chromatic Numbers and Valid Colorings

- Two-coloring as a product of Boolean constraints
 - $(ab' \lor a'b) \land (ba' \lor b'a) = (ab' \lor a'b)$
- Generalized to >2 colors
 - a
 b
 c

 OO
 01
 01

 OO
 01
 10

 OO
 10
 10

 ...
 ...
 ...

 1O
 01
 01

b • a

а

b

- Solution:
 - Write constraints for *x* colors on *n* vertices
 - Compute product
 - Existing minterms verify chromatic number x
 - Number of minterms indicate possible valid colorings

Implementation Specifics: Representing a Graph

- Each edge is a minterm
- Each minterms has only two 1's adjacent vertices

a	b	с	d
1	1	0	0
1	0	1	0
0	1	0	1
0	0	1	1

- Universe is a tuple
- Useful for partitioning
 - 00-0000----0000-
 - Intersect with graph
 - Returns all edges not adjacent to 0's
- Strings of zeros in the BDD
 - 11 vertex, 18 edge graph
 - 38 nodes BDD
 - 23 nodes ZBDD

Implementation Specifics: Boolean Relations

- Construct a BDD which describes Boolean Relations among vertex colorings
- A path to one is a valid coloring
- **Two-Coloring** = $\prod_{j,k} (v_j \oplus v_k)$ where $(v_j, v_k) \in$ edges
- 2^{*i*}-Coloring = $\prod_{j,k} \sum_{i} (v_{ji} \oplus v_{ki})$ where $(v_j, v_k) \in$ edges

Implementation Specifics: Tighter Constraints

- Logarithmic color encoding how to specify exactly 5 colors?
- Add additional constraints c_j and c_k
 - c_j and c_k are BDDs with *i* levels and minterms from 0 to x-1
 - *x*-Coloring = $\prod_{j,k} \left(c_j \cap c_k \cap \sum_i \left(v_{ji} \oplus v_{ki} \right) \right)$
- Building this BDD is straightforward:
 - Contains 5 colors, 0-- and 100

Further Research

- Chromatic number and valid coloring techniques explode rapidly
- Needed:
 - Tighter constraints
 - Partitioning
- Many unexplored avenues
 - One possible partitioning:
 - Partition between high and low degree vertices
 - Color low degree side leaving sufficient "holes" for high degree side
 - Color high degree side
 - Check for compatible colorings

Conclusions

- Efficient two-coloring and odd-circuit producing edge finding techniques
 - Only 2 minterms in BDD
 - Maximum number of BDD nodes is roughly two times number of vertices
 - Time spent is on order of number of edges in original graph
- Chromatic numbering and valid colorings works for small cases
 - Explodes rapidly
 - Possibility of more constraints
 - Possibility of recursive partitioning