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Problem Statements

eOriginal Problem

e Find edges, which if added to an existing a
undirected graph, form odd (even) circuits LY
e Original graph contains no odd circuits b™-.
e Edgesb andc would form odd circuits .t

e Edgea would form an even circuit

e Evolved Problems
e Find the chromatic number of an undirected

graph a=green c=red
e Chromatic number = 3

e Find all valid colorings of an undirected graph
e c could be blue
e a could be red.......

b=red d=blue




Why Solve These Problems?

e Coloring Solves General Scheduling
e Committee scheduling
e Engineering examples

e Minimum width channel routing

e Chip register/resource scheduling

e Assignment of binary codes to state symbols

e Coloring is NP-complete - Challenging!

e Set and compression properties of BDDs could be useful...




General Approach to Solutions: Finding Possibl
Odd (Even) Circuit Causing Edges

e Theorem: A graph can be 2-colored if and only if it does not contain
circuit of odd length
e Any added edge that destroys 2-coloredness forms gg¢q. &+ -9 blue
odd circuit b
e Any added edge that preserves 2-coloredness and
connects two vertices in the same graph forms an e

) ) - red
circuit blue

e Solution:
e Two-color the graph
e For odd circuit causing edges, enumerate all edges between vertices in thggsame
color set
e For even circuit causing edges, enumerate all edges between vertices in ogposite
color sets that don’t exist in the original graph




General Approach to Solutions: Chromatic
Numbers and Valid Colorings

® a

e Two-coloring as a product of Boolean constraints
e (ab'va'b)A(ba vb'a)=(ab va'b

e Generalized to >2 colors

a b c
OO0 01 01

a
OO0 01 10
OO0 10 10
o " b c

10 01 O1

e Solution:

e Write constraints for x colors onn vertices

e Compute product

e EXisting minterms verify chromatic number x

e Number of minterms indicate possible valid colorings




Implementation Specifics Representing a Graph

e Each edge is a minterm
e Each minterms has only two 1's - adjacent vertices

a b ¢ d a c
1 1 0 O
1 0 1 O
0O 1 0 1
0O 0 1 1 b d

e Universe is a tuple

o Useful for partitioning

e 00-0000----0000-

¢ Intersect with graph

e Returns all edges not adjacent to O’s
e Strings of zeros in the BDD

e 11 vertex, 18 edge graph

e 38 nodes BDD

e 23 nodes ZBDD




Implementation Specifics: Boolean Relations

vll
v12
e Construct a BDD which describes Boolean v13
Relations among vertex colorings ”
V
e A path to one is a valid coloring V22

e Two-Coloring = Irl{H/J D Vi Bwhere H, v He edges

: E
w [N
= w

e 2-Coloring = H;B,“ D Vi Ewhere H, vk He edges

v32




Implementation Specifics: Tighter Constraints

e Logarithmic color encoding - how to specify exactly 5 colors?
o Add additional constraints ¢, and ¢«
e ¢ andck are BDDs withi levels and minterms from 0 tox-1

e x-Coloring = E{%:J M CiN ;H’ii D Vi HE

e Building this BDD is straightforward:
e Contains 5 colors, 0-- and 100




Further Research

e Chromatic number and valid coloring techniques explode rapidly

e Needed:
e Tighter constraints

e Partitioning

e Many unexplored avenues

e One possible partitioning:
e Partition between high and low degree vertices
e Color low degree side leaving sufficient “holes”
for high degree side
Color high degree side
Check for compatible colorings




Conclusions

o Efficient two-coloring and odd-circuit producing edge finding
techniques

e Only 2 minterms in BDD
e Maximum number of BDD nodes is roughly two times number of vertices
e Time spent is on order of number of edges in original graph
e Chromatic numbering and valid colorings works for small cases
e Explodes rapidly
e Possibility of more constraints

e Possibility of recursive partitioning




