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Abstract — This paper describes a practical technique for the opti-
mal scheduling of control dominated systems minimizing the weighted
average latency over all control branches. Such a weighted metric is cru-
cial for control dependent scheduling to accommodate practical archi-
tectural goals. In contrast to most weighting mechanisms, a non-
Bayesian probabilistic measure is used to avoid assumptions of branch
independence. The underlying scheduling model allows general FSM-
based models for operations, captures several forms of speculative exe-
cution and scales well with increasing control complexity.

I. INTRODUCTION

Scheduling is a well studied problem with applications in a
wide variety of fields. Of particular interest are applications in High
Level Synthesis (HLS), where a behavioral specification is synthe-
sized to a cycle-accurate one. Scheduling is a hard problem, being
NP-complete even for resource-constrained, acyclic DFG’s. Optimal
scheduling techniques have been restricted to relatively simple per-
formance metrics in which worst-case or total latency is optimized.
For systems with multiple alternative behaviors or control paths,
such metrics can dramatically fail to find sensible solutions. For
example, consider a small application specific processor (ASIP) with
forwarding, exception handling and queued I/O. A conventional
scheduler attempts to minimize the worst case sequences — which
might occur only at very low likelihood — to the exclusion of all
other costs. A scheduler minimizing every control path separately
may miss operation sharing opportunities and so increase the power
consumption and design complexity. Instead, an intelligent perfor-
mance optimization is desired, in which the performance of key
instruction sequences (limited by available resources and con-
straints) are balanced to meet an appropriate weighted metric.

This paper deals specifically with control-dominated data-flow
scheduling representing systems with weighted control paths. The
data-flow model is acyclic, providing operand based fork and join
controls that only affect data dependencies. Data-flow loop restruc-
turing is not addressed, however, general finite-state models for
operations are supported. In contrast to current branch probability
models, which assume independent probabilities, a non-Bayesian
weight model is used. Thus, potentially correlated weights are
assigned to subsets of control alternatives. This is important in order
to fit the metric to simulation and performance modeling results,
which have consistently shown that branch probabilities are highly
correlated for branches with temporal locality. Such a model has the
issue that the set of weights must be treated as a list instead of a
computation tree as in the independent case. Because of this require-
ment, the problem specification can grow exponentially fast with
control complexity. However, in practice, the cost of adequate speci-
fication is bounded by the accuracy of the simulation analysis and so
is controllable.

Given an acyclic control and data dependency specification, a
bounded set of FSM-based operator models which map to the speci-
fied operations, and a disjoint set of control path weights (which are
taken to represent probabilities), a new symbolic algorithm is pro-

posed to generate all minimal weighted latency schedules of opera-
tions. Specifically permitted in the analysis are all forms of
speculation past branches and branch re-ordering, as well as support
for run-time or non-deterministic branches. The model does not
allow implicit speculation past variable join points. This technique
provides a compromise between implicit scheduling complexity and
classical CDFG re-write techniques such as strength reduction, join
speculation, and loop unwinding which are not addressed here.
Moreover, it provides a bounded state model for scheduling which
greatly reduces the complexity of optimal search.

The remainder of the paper is organized as follows: Section II
summarises previous work on this and closely related problems.
Section III provides a brief overview of the symbolic scheduling
model. Section IV outlines the problem formulation. Section V elab-
orates the algorithm details, and provides a proof of optimal con-
struction. Section VI provides experimental results, and the paper
concludes with Section VII.

II. PREVIOUS WORK

Boolean symbolic scheduling techniques supporting control
were introduced in [2] and greatly improved in [3]. The first
approach, [2], is somewhat akin to an integer linear program (ILP)
formulation in that bits are assigned denoting completion of every
operation at every time step. Unlike ILP, however, the boolean for-
mulation allows for a relatively inexpensive exact model of control
dependent behavior. The technique was inefficient for long schedule
lengths, as complete histories were maintained. Ref. [3] presented an
exact automata based approach which addressed the issue of lengthy
schedules by encoding merely the completion status of operations
rather than complete path histories. This was shown to work on a
number of large problems, and further to support practical con-
straints on the control and sequencing of the components. One prob-
lem with this technique was that large numbers of possible schedules
were equivalent using their metric, leading to poor run-time (and
space) performance on under-constrained problems. Recently,
Cabodi et al. [5] reformulated the problem as an instance of
Bounded Model Checking (BMC) to generate single schedules. This
technique gains performance at the cost of additional control depen-
dency overhead. Manolache et al. [9] consider the different problem
of scheduling tasks with stochastic delays, and derive efficient heu-
ristics based on approximations of the distributions.

The AFAP or path-based scheduling scheme in [10] minimizes
individual control path lengths and tries to construct a controller
with minimal control states. The technique has strong restrictions on
operators types, and further requires that every path be completely
ordered prior to scheduling. In [11], the preceding method is
extended to allow operation re-ordering, but only within basic
blocks. Neither method supports speculative execution. Minimizing
each path length is better than ignoring short paths. However, all
control branches need to share the same resources. Given potential
control restructuring and speculation, the number of operations and
opportunities for function unit sharing are not fixed. Such greedy



path length reduction will find fast solutions only at the cost of
excess resources.

Bhattacharya et al. [7] introduced expected execution time as a
metric, and proposed a heuristic scheduling technique targeted
toward reducing it. Lakshminarayana et al. [8] proposed an algo-
rithm with a control representation exposing more parallelism to
minimize the expected execution. Both techniques are heuristic, and
rely on modeling the branch weights as essentially independent
(assuming Bayesian independence in the weights).

Dos Santos et al. [1] use average execution time to guide a
code-motion based exploration. Though their method guarantees
that at least one optimal solution is always present in the search
space, there is no assurance that it will be found. Finally, Kountouris
and Wolinski [6] describe a list-based scheduler that uses a priority
function based on probability of execution. The control model used
in [6] is similar to that of [2], [3] and this work in that no explicit
fork nodes are placed, avoiding the ad-hoc clustering of operations
into basic blocks.

III. SYMBOLIC SCHEDULING
Automata based symbolic scheduling was introduced in [3].
This section briefly covers the terminology and basis of this tech-
nique. A detailed discussion of automata based scheduling tech-
niques can be found in [4].

A. Terminology

The following terms are used in the rest of this work with the
stated meanings:

¢ A control operation is one that produces one or more binary
control values (control bits) which represent a forking of the
execution into independent behaviours.

* A control cube is a Boolean cube consisting of multiple control
bits, representing a set of branch decisions. A cube may be asso-
ciated with a weight, representing the probability of that set of
decisions.

* A control cube covering exactly one behavioral sequence of the
system is termed a control case.

* A trace is a scheduled instance of a control case, consisting of a
complete ordering of all operations required for the case.

¢ An ensemble schedule is a valid, causal collection of traces cov-
ering every control case.

* Compatible traces are traces for different control cases that
may co-exist in a given ensemble schedule.

* A resolve label is a Boolean function associated with each con-
trol operation. It is True only in the cycle when the control
resolves (The value becomes available to the system and con-
troller by the end of that cycle).

B. Operator model

Operations are modeled as small NFA (non-deterministic finite
automata) which encode the operation’s temporal input and output
behavior. Fig. 1 shows a few example operator models. Arcs are
labeled by the input requirements, a 1 indicating that an operand
must be available in that cycle for the transition to take place. A sin-
gle-cycle operation that takes one input can be modeled as in Fig. 1a.
Note that the non-determinism is used to model the unknown start
time of the operation. After it starts, the model executes in a single
cycle and ends in its final state. Typically, the operators are encoded
with an all-zero start state, and the termination is modeled by a dense

c. Cached Memory
Access Model

a. Single cycle
operation

d. Sequential operator
with abort sequence

b. Single cycle
control operator

Figure 1. FSM operator models

(close to all-1s) cube. This choice of encoding heuristically reduces
the size of the representaton.

A single cycle control operation is shown in Fig. 1b. Execution
traces are represented by unique sequences of states of the modeling
automaton. Since distinct control cases can have distinct traces,
every control bifurcation has a corresponding bifurcation in the
modeling state space to represent alternative traces. These traces are
distinguished by a bit (boxed) whose value indicates the branch
selection (true or false path) in the simple single cycle operator
model of Fig. la.

Much more complex operators may be created to model pre-
scribed sequential behaviors. For example, Fig. 1c shows a non-
deterministic 2/5 cycle latency cached memory access. To initiate
the access, one operand is needed for the first transition (the
address). Since the hit/miss value is known only at run-time, the
model has to correctly account for both cases. Thus, this operator
behaves exactly like a control operator producing a dynamically
computed decision, and correspondingly provides bifurcating states
for each case. Fig. 1d models an operation that initiates an abort
sequence if it fails to receive inputs in a timely fashion — as the arc
labeling indicates, it requires its second input operand to arrive on
the third cycle after the first operand.

Such complex operator models are required to provide abstrac-
tions of subsystem behavior such as operations forced to execute on
a reconfigurable pipeline which is a fixed requirement of the design.
In general, an “operation” models the sequential production of a data
object which is taken to be subsequently available in the system to
satisfy data-flow dependency requirements.

C. CDFG model

The FSM inputs (the arc labels in Fig. 1) controlling the model-
ing automata are derived from specification control and data-flow
dependency relations. Thus, the enabling input to an operation
comes from the completion states of its ancestors via data-flow
dependencies. Data availability is simply modeled by the completion
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Figure 2. Small CDFG



of a data-available state of the modeling automata. Control depen-
dence is enforced only on operations whose inputs are selected from
alternative branches (joins) which are distinguished by one or more
control bits in the modeling state. The branch (fork) in Fig. 2 is
implicitly captured using soft dependencies on the operations. Soft
dependencies only modify the resource constraint mechanism of the
schedule: an operation may be started as soon as its input operands
(hard dependences) are valid even if it is not known to be necessary.
Since control operations are, themselves, subject to this rule, arbi-
trary speculation past branches and branch re-ordering are implicitly
performed. The control marking of branching traces using soft
dependences allows for optimal interpretation of mutual indepen-
dence and resource sharing in the model. Note the strict dependence
between the control operation and the join which does prevent spec-
ulation past the join boundary as mentioned in the introduction. Join
dependence is enforced to prevent an explosion in the number of
states since an operation with a different selected operand is effec-
tively a different operation.

D. Scheduling and Validation

The scheduling problem is solved via an implicit reachable
state traversal of the modeling automata. The traversal starts from a
state where only initial operands are known and ends when states
encoding pre-specified termination conditions are encountered. Ini-
tially, a series of forward image computations performing breadth-
first search of the state space determines the quickest state sequence
paths to termination states. Once terminating states are reached,
backward pruning is performed to cull those states (and transitions)
that do not lie on minimal time paths.

During this backward prune, a validation fixed point computa-
tion is performed to ensure that every trace is part of some ensemble
schedule. To see why this is necessary, consider the small CDFG of
Fig. 2. Suppose one resource is available to execute the control oper-
ation, and one for all the others. Every schedule for this flow consists
of two traces, one for each of the possible control values. As sched-
uling proceeds, terminal states for both paths are reached in 2 time
cycles, but there is no causal ensemble schedule of length 2. This is
due to the fact that the early termination of each path relies on hav-
ing speculated differently on that path. For example, to complete the
0 path in 2 cycles, the execution of operations a,y and C must occur
in the first cycle. Since the value of the control operation will not be
available until the end of the cycle it executes in, operation q, is
speculated. The trace that completes the 1 path must execute a; in
the first cycle — which conflicts with path 0. At the time when the
decision has to be made, the value of the control output is unknown.
Although there is a trace of length 2 for each branch, the two traces
are not compatible within bounded resources.

Succinctly, validation eliminates all states belonging to traces
that belong to no valid ensemble schedule. Thus any surviving trace
belongs to some ensemble schedule and could be part of a valid opti-
mal solution. The validation process is constructed as a fixed point
search on the model since enumerating the constraints is itself expo-
nential. Typically, validation improves the run-time of the model by
elimination non-causal states. It should be noted, however, that in
contrast to conventional operation scheduling, in this generalized
model, there is no guarantee of an ensemble schedule of any length.

I'V. PROBLEM FORMULATION
The technique in [3] minimizes worst case latency of the long-
est path and can heuristically reduce the latency of other paths sub-
ject to the worst case. In this work, the scheduling problem is

formulated in terms of a weighted average latency metric. This algo-
rithm ensures that every trace is part of some ensemble schedule of
minimal cost, the cost being the sum of path weight times path
latency. This metric forces changes to the exploration (via new prun-
ing techniques), to validation and to termination, as well as implicit
mechanization of the weighting process. This added complexity,
however, enables a guided search whose optimality is directly linked
with architectural need. In the remainder of the paper, the terms
weight and probability shall be used interchangeably although trace
weights are not constrained to behave as probabilities for the algo-
rithm to be exact.

A. Assumptions and Justifications

The input weights are assumed to be obtained from simulation,
are all positive, and label disjoint control cubes. All weights are nor-
malized with respect to the smallest possible weight. It should be
noted that this may not necessarily be the smallest listed weight -
since the weights are from a finite sample of runs, it is possible that
some low-frequency paths are not encountered in the simulation.
Symbolic scheduling, however, explores all paths, and thus will hit
such cases. A related issue is the possibility of dead-code or of func-
tionally impossible branches. Since the actual correlated value of
branches is not available during scheduling, the model will take
branches allowed by the language specification, even if they cannot
occur in execution. Usually, such cases account only for a small per-
centage of the possible paths. To account for these extra resolvers, a
per-control probability factor is interpolated from the available
weights and used to modulate the path weight to make a well formu-
lated problem.

Path costs are calculated by multiplying the termination latency
with the normalized path weight and rounding the product. Thus, the
maximum possible absolute error due to round-off is 0.5 times the
number of weighted paths, and is constant. On the other hand, if an
error of € is assumed in the probability measurement, the relative
error is € times the reciprocal of the minimum probability and is
constant. (The absolute error in cost at time t for a probability py is

given by:

+
8=t><(pk €) t><pk~ pkx( i)

(Pm*e) Pm Pm \ Pm

ignoring quadratic and higher terms in € and ignoring p,, with
respect to py. The relative error is given by the term in the brackets).
Since all the weights are positive, the cost is monotonic non-decreas-
ing with increasing exploration cycle depth and the constant relative
error dwarfs the constant absolute error within a few cycles.

An important point is that no assumptions of solution continu-
ity are required, as would be the case with classical search tech-
niques. This formulation and algorithm work optimally for
arbitrarily sparse solution sets which may have no solutions for some
control paths at given latencies. Finally, the restriction of controls to
binary values is immaterial, as multi-way branching may be imple-
mented by a binary encoded scheme, mimicking practical hardware
implementation.

B. Motivating Example

To motivate the need for a weighted, non-Bayesian approach,
consider the CDFG fragment of Fig. 3. Control operation C is as in
Fig. 1b, operations a0, al (required, respectively, for the 0 and 1
cases of operation C) and addr are as shown in Fig. 1a, the read is as
shown in Fig. 1c (flags a hit or miss in the first cycle of its execution)



Table 1: Costs

Black Box Op

Path | Weight | A B C
0,M [0.05 8 11 |8
0,H [0.12 6 5 6
@ 1,M [0.03 8 11 |11
5 1,H [0.80 6 5 5
e Tot. [1.00 6.16 |5.48 |5.45
@ Potential traces
1 2 3 1415 |6|7] 8 |9(10[11
H, 6 Hibbox
read
M, 8 [addr bbox
H,5| C [read H

M, 11| [bbox,, bbox

Figure 3. Motivating Example

and the black-box operator (bbox in the traces) has the sequential
behaviour of Fig. 1d.

Though the CDFG is divided into two independent (no data
dependency) sections, the presence of a cached memory access
means that hit/miss functional correlation is possible with the
branches of control operation C. A set of probabilities is shown in
Table 1, under the column Weight, for the 4 possible cases arising
from C being 0 or 1 and the cache hitting (H) or missing (M). Note
that speculative initiation of the black-box may lead to an abort if the
cache misses (recall that the operator of Fig. 1d aborts and restarts if
the second operand does not arrive on time).

Four of the possible schedule traces for this CDFG are shown in
Fig. 3., showing, respectively, sequences for a read hit taking 6
cycles in total, a miss taking 8 cycles, a hit with speculative start of
the black box leading to a 5 cycle completion time, and finally, a
miss leading to an abort and restart of the black box operation. The
boxes are labeled with the operations that are initiated in that time
step. The hatched time-steps indicate that a particular trace termi-
nates in that cycle. Each trace shown is compatible with both C=0
and C=1, and the two operations a; and a; may be scheduled freely
in all cases.

Table 1 shows the schedule costs for 3 different ensemble
schedules. Schedule A is produced if the optimization metric is min-
imum worst-case latency or equivalently, minimum sum-of-path
lengths. This solution is composed of compatible traces of type H,6
and M,8. As it happens, this schedule never aborts, but in terms of
average performance, this is way off target.

If the control operation and the cache hit/miss probabilities are
assumed independent and the average latency is optimized, schedule
B is obtained. This solution is composed of traces of type H,5 and
M,11. This is still not optimal in terms of performance — due to the
assumption of branch independence, the scheduler effectively sees a
lumped hit-miss distribution of 0.92-0.08 and proceeds accordingly.

It is worth observing, at this point, that the traces H,5 and M,8
are not compatible — to complete the sequence for a hit in 5 cycles,
the black box operator must be speculatively started. It will then not
line up appropriately with a read miss case and will have to abort and
restart. Thus, H,5 may only pair with M,11 and M,8 only with H,6.
This means that not only are the branch weights correlated, so are
their latencies.

With the non-Bayesian metric, the scheduler is able to specu-
late only on the correct path, and arrives at schedule C, taking into

Input: NFA representation of CDFG
1: while not (optimal schedule):
while not (current schedule is valid):
while not (current schedule is complete):
Add time step in forward exploration
Record and weight terminal states
Perform Weighted Validation
if new minimum cost:
Record cost and schedules
Figure 4. Simplified Weighted Algorithm

account all possible side-effects, picking, one representative from
each of the traces shown to make the ensemble. The error made in
assuming independence (and thus the error in scheduling) grows rap-
idly with the number of control branches. In this simple example, no
resource or dependency constraints span the correlated branches to
keep the complexity of the example manageable for discussion.

V. WEIGHTED ALGORITHM

A broad outline of the scheduling technique is shown in Fig. 4.
Forward image computation (Section III-D) proceeds via lines 3-5.
In line 5, states that mark termination are tagged with a BDD repre-
senting the product of the current latency and the weight of the cor-
responding trace. This is done by conjoining the BDD of the state set
with a BDD representing the cost as a binary-encoded integer. Using
a common BDD representation for the traces and weights simplifies
correspondence and allows implicit computation during the explora-
tion. The default set of BDD variable used to encode the tag are
denoted as the x variables. Extra resolvers (Section IV-A), if any, are
accounted for here. Line 6, which does the bulk of the work, is
shown in greater detail in Fig. 5 and discussed in Section V-A.

A. Weighted Validation

The validation algorithm performs a double fixed point, an
outer loop over all time (lines 2-20) and an inner loop (lines 5-17)
over all control operations. The inner loop takes a copy of the transi-
tions for each reverse step and loops over all controls until there is
no change in the state sets (condition on line 17). Validation removes
traces that have no compatible traces, i.e. are not part of any optimal

Inputs: State set Sj, target T, cost bound BDD B
1:PS=T
2: do:

3: for each time step j to 0:

4 Create transition T; for reverse step S APS - S
5: do:

6: Teopy=T;

7 for each control operation:

8: cvar = BDD var. for control val.

9: res = BDD func. for resolve label

10: T,=T; /\ res

11: Tjno T;.Cofactor(—cvar)

12: j,c 1= T ,-Cofactor(cvar)

13: rC1_ X(TVCI AN XtOY)

14: = ElZ(Elxy(( irc0 N Tirep) A XplYeqZ) AZtoX) A B
15: -—(T A —res) \/T

16: 1f[ = 0, exit

17:  while T = Teopy

18: Prune Sj and Sj_, using pruned 7;
19: PS =Pruned S, ;

20: while some change in states

21: Determine minimum, remove sub-optimals

Figure 5. Weighted Validation



ensemble schedule. If a state is present only on traces that are
removed in one iteration of the validation loop, that state is removed
from the state sets. Since it is possible that it may be the only state
that allows some other traces to be compatible, this process has to be
taken to a fixed point in the state sets. Bounds on the number of iter-
ations of the validation loops required to reach this fixed point were
presented in [2] and [4].

At first glance, the problem of calculating the cost of an ensem-
ble schedule may appear trivial — since adding up the individual
trace latencies and multiplying by their weights suffices. Remember,
however, that the state traversal effectively forms a breadth-first
search, exploring all possible traces in parallel. Thus, the cost of all
possible ensemble schedules needs to be calculated. It should be
clear that enumerating and computing these sums individually is
infeasible, as there are, in general, a factorial number of traces
and the number of ensembles is exponential in the number of traces.
Instead, the computation is performed in parallel symbolically
exploiting the logarithmic compression possible in a BDD represen-
tation. The cost of this is the size of the BDDs that are built.

The BDD tagging a given state set is somewhat difficult to char-
acterize. In general, the tag consists not of a single number, but a set
of numbers. This is because though each trace has a unique weight
and cost associated with it, each state may lie on traces for multiple
control cases and may also lie on traces of differing latency for a
given control case. The set of numbers tagging the state represent the
possible conditional costs of completion given that the automaton is
in the current state. Put another way, each state is labelled with the
set of sums of costs of compatible traces that pass through it. This is
clearly true for the termination states, and this is an invariant on the
BDD tags that needs to be preserved. Since the start state is present
in every trace, the set of tags associated with the start state are
exactly the costs of all possible ensemble schedules.

The ‘resolve’ labeled transitions are extracted (line 10) — these
are transitions on which control values become known. As was seen
in Section III-B, every control operation has a modeling bit that
bifurcates the states on the two paths. This models the freedom to
pursue different objectives depending of the result of the branch.

First, the transition is split into the ‘true’ and ‘false’ cases on
the control modeling bit (lines 11,12). Next, the tag on one of the
cases (the ‘True’ case is shifted from the x variable set to an auxil-
iary set of bits, the y variables (line 13). Line 14 performs the actual
magic — walking from the inside out of the braces, the innermost
conjunction annihilates all but the matching cofactors. The next con-
junction with the BDD XplYeqZ implicitly sums up the x and y vari-
ables and places the sum on the z variables. This summation occurs
in parallel — a pair of matching cofactors tagged with their respective
cost BDDs as mentioned above have every pairwise combination of
sums added up in parallel. This generates the correct tag for the par-
ent state, since any schedule leading out from one of the cofactors
may be paired with any corresponding schedule leading from the
other cofactor and thus, every tag on one cofactor could possibly
combine with every tag of the other cofactor.

Finally, the cost is moved back to the original cost bits, the x
variables, and pruned for the current bound, B. Overall, three sets of
BDD variables are used, viz. X, y and z. The BDD functions XfoY
and ZtoX copy their source variables to the destination variables and
XplYeqZ places the sum of the x and y variables on the z variables.

Line 15 reassembles the resolving and non-resolving portions
of the control. On each backward step (line 18), the tag on each state

is propagated backward. Finally, before exiting the procedure, all
sub-optimal solutions are removed (line 21).

B. Proof of Optimality

A proof that the procedure outlined above results in optimal
schedules is given below. Two preliminary lemmas are proved first,
as follows.

Lemma 1: Given an initial, potentially optimal solution, the
forward exploration of the modeling automaton needs to be extended
only for a finite number (possibly zero) of time steps to obtain a
guaranteed optimal solution.

Proof: Let the n weighted paths be numbered: 0..n-1. Associ-
ated with each control path k is a weight wy. Further, every path has
some earliest cycle of completion, denoted by the integer dj. Sup-
pose that at an exploration depth of ¢ cycles, a solution with cost C is
found. The only solutions involving traces that terminate later than
step ¢ with lower cost must perforce be paired with traces that finish
earlier than step ¢, since the cost is monotonic. In the limit, the most
optimistic case for a given path i occurs when a solution in the future
is able to match with all the other traces of length d}, and provide an
ensemble with cost less than C. Thus, the upper bound on required
exploration cycle depth for any path i is given by:

C- ZWde
T =

max K#i
i Wi

These path-wise limits are all finite since each wy, is non-zero.
Among all the paths, there is some overall maximum value of these
path-wise limits, denoted 7,,,,,. Once exploration has been extended
beyond ¢=T7,,,,, optimality is guaranteed by monotonicity of the
cost. This proves the lemma.

It is important to note that reaching all states is not a sufficient
condition to stop exploration — in fact, the motivating example of
Fig. 3 exhibits the optimal solution only after this point is reached.
The issue is that although all states have been found, it is still possi-
ble to extend a current incomplete low weight path which enables a
complete lower cost ensemble. A worthwhile observation is that
each time a cheaper solution is found, the current upper bound on
exploration depth required, 7,,,,,, correspondingly decreases.

Lemma 2: The weighted validation algorithm (Fig. 5) com-
putes the solution costs correctly.

Proof: To see this, the termination states for each path are, by
construction, weighted with the appropriate cost. When states do not
resolve, the back propagation acts to move the costs back to their
predecessors on the same path. (i.e. the addition relation works both
from addends to sum and in reverse.) Thus, at the point when a con-
trol resolves, states that match on the two resolving paths arrive car-
rying the correct cost of completion. Since the validation co-
factoring and conjunction ensures that every state is paired exactly
with its control twin, the addition process takes place exactly
between the correct resolving branches. This is now propagated
backward. Thus, costs are computed correctly when all resolution
points are processed and the start state reached.

To prove optimality, it can be seen that applying the weighted
validation algorithm once without any extraneous bound will gener-
ate the normal solutions, with the correct minimum total cost avail-
able, by Lemma 2. Now, given a potentially optimal solution with a
known exploration bound, forward exploration is continued till the
required maximum exploration depth of Lemma 1 occurs, and over-
all optimality is assured.



VI. EXPERIMENTAL RESULTS
The algorithms of Section V were implemented using the Colo-
rado University BDD package, CUDD. All experiments were con-
ducted on a 3GHz/2GB Pentium 4 Linux desktop. The memory
model for CUDD was set at 1.5GB.
Table 2: Benchmark Details

Benchmark Operations | Controls | Longest Path
ADPCM-dec 40 10 11
ADPCM-enc 45 11 15
Rotor 28 3 7
Kim-54 54 5 9
Kim-26 26 2 5

Table 2 describes the benchmarks used. The two ADPCM
examples are the loop bodies of the encoder and decoder from Medi-
abench [12]. Rotor [3] performs the rotation of a point by an angle,
which may lie in any of the 4 quadrants. Kim-26 and Kim-54 are
from [13]. For all the benchmarks, + does add, - does subtract, ALU
does add, subtract and bit-logic, << is a shifter, == is a comparator, []
an array address decoder and * a multiplier. The multiplier is 2 cycle
pipelined, unless mentioned otherwise. All other operations take one
cycle. The control value generated by a comparator is not assumed
to be available in the same cycle the control operation executes - i.e.,
mutual exclusive sharing is not possible in the same cycle that a con-
trol operation is executed, but is possible in the next cycle. Some
early papers ignored the causal connection between control activity
and control operation execution.

The various algorithms being compared against are labeled
Wave (Wavesched, [8]), KW (Kountouris, [6]), DS (Dos Santos, [1])
and SPARK (Gupta, [14]). The optimal algorithm described in this
paper is labeled Opt.

A. ROTOR

This example was tested with 3 different weight settings, listed
in Table 3.
Table 3: Rotor Quadrant Probabilities

Set Ql Q2 Q3 Q4
WO 0.25 0.25 0.25 0.25
Wl 0.97 0.01 0.01 0.01
w2 0.6 0.15 0.15 0.1
Table 4: Rotor Latency

Res. ljv(t’ WO Wl | w2
RI1:1[],1ALU,1==,1* [11 |10.25(11) [9.05(12) |9.6(12)
R2:1[],2ALU,1==.2* |8 |7.75(8) 7.03(8) |7.35(9)
R3:1[],2ALU.2==,1* (9 |9(9) 8.04(10) |8.5(10)

As can be seen from Table 4, under any non-trivial weight set,
only in one case (R2, W1) does the unweighted solution set contain
an optimal solution. The column format is optimal average
latency(longest path). For the unweighted case, it is merely the long-
est path. It is instructive to note that column WO, with equal weights,
finds no new solutions - an indication that minimizing the sum of all
paths may not be effective. All the runs completed in between 0.6s
and 2.6s.

B. Kim Benchmarks

These 2 benchmarks are synthetic CDFGs. For the purpose of
comparison, the multiply is single cycle. All branches are equi-prob-
able, again, to enable comparison.The results are shown in Table 5.

Table 5: Kim benchmark comparison

CDFG| Resources | Wave[8] |KW[6]| DS[1] | Opt.
Kim- |2+, 2==,1- |- 6/6/6 |- 5/6/5.5
26

Kim- |2+, 1==,1- |- 6/6/6 |-/6/5.75|5/6/
26 5.75
Kim- |2+,2-,2%,1==(10/14/12.6 |- - 7/9/
54 7.875

The columns indicate shortest path/longest path/average
latency. The last column, Opt., shows the results of this algorithm.
Blanks indicate that either the example was not used or that the par-
ticular datum was not reported. The Kim-26 runs were both under
0.6s, while the Kim-54 example took 2s. The improved results are a
combination of the weighted algorithm and the control model.
Though its HCDG is not restricted by basic blocks, [6] is unable to
find the solution with average latency 5.5.

C. ADPCM benchmarks

The ADPCM coder and encoder both consist of short pre-
ambles, followed by a single for loop, and a short post-amble. To
compare the encoder with [14], the 3 sections were scheduled sepa-
rately and the loop latency multiplied by the 10 loop iterations. For
the decoder, the values given are for one iteration of the loop.

Table 6: ADPCM comparison

Bench Resources Spark Opt
Dec. [RI:2ALU, 1==,1[], I<< |- 11.5(13)
Dec. |R2:1ALU, 2==,2[], I<< |- 12.25(14)
Enc. |R2:1ALU, 2==,2[], I<< |192 157.75(164)

Table 6 shows the results for this set of experiments. For the
optimal algorithm, the column lists optimum average latency(longest
path). In the case of the encoder, the longest path is assumed to take
the worst case through the loop body each time. Execution details
are provided in Table 7. The columns labeled “No wt.” are the statis-
tics for unweighted scheduling. Due to the large number of control
cases, the time taken for complete scheduling is dominated by the
time to extract a witness from all the optimal ensembles. To give a
better idea of the run-time for optimal scheduling, the numbers in
brackets indicate scheduling without witness extraction. Peak BDD
size is reached during the scheduling process, and does not grow fur-
ther.

Table 7: ADPCM execution statistics

Time(s) BDD (K nodes)
Bench | Res.
No wt Opt Nowt. | Opt.
Dec. [R1 [5.34(1.42) |5.86(3.04) |41 298
Dec. [R2 [8.56(4.3) [13.33(9.18) |71 799
Enc, [R2 [9.65(2.3) [12.2(5.09) |144 440
D. Summary

The results show that with modest run times, guaranteed opti-
mal solutions may be found. It was not possible to directly compare



results with the methods of [7] and [8] since those techniques
include extensive loop optimizations, while the current optimal algo-
rithm operates on bounded-state forward branching CDFGs. It was
possible to compare against the work in [14] since the loops in the
examples were almost completely on the outside of a data-flow ker-
nel. The results indicate that substantial improvements in expected
execution time are possible, even in small examples.

VII. CONCLUSIONS, FUTURE WORK

In this work, a solution to the problem of optimal scheduling
under a weighted average latency metric is described. The solutions
are optimal within the uncertainty imposed by errors in path proba-
bility measurements. The model for weights can support direct simu-
lation measurement since no assumption of independence is made.
The only requirement imposed is that the weights be positive and
apply to disjoint control cases. The technique is demonstrated on a
variety of benchmark problems with good performance and reason-
able time complexity. The authors are unaware of any pre-existing
work that generates weighted optimal schedules for even small
CDFGs. Future work includes heuristic utilization of the weight
information for early pruning and complexity control, and generaliz-
ing the method to enable scheduling of loops (such as, for e.g., [10]).
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