Weighted Control Scheduling

Aravind Vijayakumar and Forrest Brewer
UC Santa Barbara

Overview

- Optimal scheduling of forward branching CDFGs under weighted average latency
- **#** BDD-based automata exploration
- **#** Accommodates correlated branches
- Implicitly allows speculation, dynamic branch reordering, complex binding constraints

Motivation

Correlated branch profile

Requirements

- # Fixed hardware resources
 - Arbitration
- **#** Optimization across all paths
 - Control alternatives are not equal
- **Accommodate 1000s to millions of paths**
 - K independent branches ⇒ 2^K control paths
 - Need to find complete set of compatible (causal) control paths

Definition of Terms

- **#** Control operation
- **#** Control cube
- **#** Control case (path)
 - Path in Red
 - Trace
 - Cost
- # Ensemble schedule
 - Cost

Problem Formulation

- Weighted average latency metric
- Ensures every trace is part of some ensemble of minimal cost
- # Entails new labeling and pruning mechanism
- Maintenance of potential trace latency
- **Schedule** termination criterion
- # Added complexity allows solution to be performance driven

Weight Model, Restrictions

- Weights positive, identified with disjoint control path sets
- Weight = Execution probability, in practice
- **#** Forward branching structure
- **#** Control operations binary

Bit Resolution

- # Expected source of weights: simulation
- **#** Finite precision of measurement
 - Measurement error
- **≠** Finite bit-width for cost sufficient
- # True even with round-off
 - Absolute vs. Relative

Symbolic Scheduling - Overview

- Non-deterministic Finite Automata (NFA) based modeling of process
- **#** Operation behavior modeled as small NFA
- **BDD** representation of composite transitions
- **#** CDFG modeled by guarding operation transitions
- Solution consists of a (set of) trace(s) through the model
- # Radivojevic '94, '96, Haynal '98, '00

Operator Models

- NFA models encode operation I/O behavior
- **#** Example:

Simple 1 input, 1 cycle operation model

■ State of operator enables transition of dependent operand.

Example Cache Model

- **#** Simple to construct abstraction of signaling
- **±** E.g. 2 (hit), 5 (miss) cycle latency cached memory access:

Controls

- Control operations need to bifurcate model state space
- # Example:

1 cycle, 1 input, 1 bit control op:

CDFG Model

Composite NFA Model of CDFG

Boolean encoding of composite FSM

Composite State Encoding

Weighted example

Representative traces

Scheduling - I

- **#** BFS of state space
- **#** Start with initial operands known
- **#** Forward image computation

Scheduling - II

- **#** Bifurcating traces
- **#** Speculation

Scheduling - III

- # First terminals seen
- **#** Labeling of costs
- **#** Causality

Validation

Complete but incompatible pair of traces

Cost representation

- Cost represented as binary-encoded integer
- **BDD** encoding attached to state BDD
- **#** Example: (after 2 cycles)

```
c a b e f <-cost->
11 1 1 0 0 01000 (4 x 2 = 8)
10 0 0 1 1 00010 (1 x 2 = 2)
```

Scheduling - IV

Complete solutions present!

Scheduling - V

Reverse propagate labels

Scheduling - VI

States may have multiple cost labels

Scheduling - VII

■ Parallel addition across resolving transitions

Solution Space and Optimality

Algorithm

Note on Cost Calculation

- # Addition of trace costs commutes over controls
- Not restricted to numbers, addition!
- **Any binary operator that commutes over the controls**
- # Cheap BDD representation of operation needed
- **≠** For addition → linear with interleaved variables

Note on Termination Criterion

- **#** Exploration cannot stop at state saturation!
 - Only true for restricted class of models
- **#** Optimal cost
- **#** Path saturation
- Some sequential constraints may render solution impossible

Some experiments

- ♯ ROTOR 28 ops, 3 controls, longest path 7
- ♯ ADPCM encoder 45 ops, 11 controls, longest path15
- Synthetic CDFG 6 ops, 1 cached access, 1 black box operator with dynamic abort
- # BDD package CUDD
- # P4 3GHz/2GB Linux PC

Experimental results - ROTOR

Set	Q1	Q2	Q3	Q4
W0	0.25	0.25	0.25	0.25
W1	0.97	0.01	0.01	0.01
W2	0.6	0.15	0.15	0.1

Res.*	None	W0	W1	W2
1±,1×,1==	11	10.25(11)	9.05(12)	9.6(12)
2±,2×,1==	8	7.75(8)	7.03(8)	7.35(9)
2±,1×,2==	9	9(9)	8.04(10)	8.5(10)

^{*1} table look-up

Experimental results – Kim54,ADPCM

```
# Kim54 : 2+,2-,2×,1==
Wavesched – 10/14/12.6
Optimal – 7/9/7.875
(shortest/longest/average)
```

- # ADPCM encoder: 1±,2==, 2[], 1 <<
- Separately scheduled pre-loop, body, post-loop
- # For 10 iterations : Spark – 192 Optimal – 157.75(164)

Experimental Results – Synthetic CDFG

- **#** Black box subsystem imposes sequential constraint
- **#** Cache may fail to meet timing

Metric	Shortest	Longest	Expectation
Worst case	6	8	6.16
Weighted, Independent	5	11	5.48
Weighted, Correlated	5	11	5.45

Conclusions, Future Work

- **#** Technique for optimizing weighted average latency
- No assumption of branch independence
- May be used to develop heuristics
- **#** Explore other cost functions
- **#** Basis for abstraction