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1.  Introduction

1.1.  Overview
PyTDL is  a  language  and  prototype  toolset  that  piggybacks  on  Python,  borrowing  its  syntax  and 
applying rule-based semantics to describe designs. The basic elements of these designs are tokens and 
latency  tolerant  rules  that  fire  atomically  when  their  associated  input  tokens  arrive.  The  latency 
insensitivity is facilitated by automatic back-pressure that can propagate along the links connecting 
logical rules together; in this way, only rules that need to be stalled are stalled.

The language/tool pair additionally introduce a paradigm for logic design: behavioral correctness is 
achieved early, without any premature optimization; optimization is done after the behavior has been 
verified,  and  can be  done  without  affecting the  correctness  of  the  design.  Further,  integration is 
simplified by inherently designing tolerance to timing variations into the specification. The end result 
is a relatively efficient, robust, and easy-to-integrate control unit.

1.1.1.  The Toolset
The tools currently take PyTDL specifications and a constraints file  as input and generate Verilog 
HDL. It is then left to the user to simulate the design for correctness and synthesize it to the target of 
the user's choosing.

After  the  behavior  has  been  described,  the  designer  may  then  assign  control  regions  (section  4. 
Control Region Assignment) to perform a trade-off between tolerance to latency variability which 
may have a high resource cost versus combinational loops which define timing constraints.

1.2.  Structure of this Document
This  reference  guide  is  divided  into  two  primary  sections.  The  first,  “High-Level  Syntax  and 
Semantics,” details the abstraction model presented to the developer, as well as guidelines for correct 
construction of certain patterns.  The second section, “Implementation,” describes how the model's 
elements are realized in hardware; this gives the developer a starting point for understanding the end 
result of the tool, an essential aspect to debugging.

1.2.1.  Syntax Definitions
Syntax definitions will follow standard documentation conventions. All literal code will be typefaced in 
a  monospaced  Courier font.  Variable names will  appear  italicized.  Optional  blocks will  appear  in 
standard-font square brackets. If there is a choice between two rules, such as two keywords, they will 
appear in parentheses with a pipe (|) symbol separating them. Ellipses indicate lists.

1.2.2.  Code Samples
The code samples will  appear in a monospaced  Courier font.  For the sake of readability,  explicit 
whitespace  markers  such  as  tabs  and  newlines  are  omitted,  despite  the  whitespace  sensitivity  of 
Python. If appropriate, comments have been added to notate text layout ambiguity.

Variable, rule, and token naming follows the following conventions as a matter of style only (any valid 
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Python identifier that is not also a PyTDL keyword is accepted):

 Tokens will begin with a lowercase 't' followed by the token name capitalized, e.g. tTokenName

 Rules  will  be named descriptively,  with  the  first  letter  lowercased and words  separated by 
capitalization, e.g. ruleThatCalculatesSum

 Variables will be lower case, with underscores (_) separating words, e.g. first_multiplicand

 Variable  instantiation  classes  and  top-level  design  classes  will  be  capitalized,  e.g. 
PipelinedProcessor

For instance:

class ClassName:
def fireMemoryWrite(self, trigger="tWrite and tDataToWrite"):

self.addr_out = self.pc + 4
create(tMemoryWrite)

1.3.  System Requirements
 Python 2.5.x

 PLY 2.5 or later (given that it is 2.5+ compatible)

PyTDL  runs  on  Python  2.5  and  is  not  forward  compatible.  The  precise  revision  used  in 
developing this tool is 2.5.2; however, we have no reason to believe that any of the 2.5.x versions will 
not work. Be warned that we have not tested it in 2.6 or later. Critical introspection components used 
to  compile  designs  are  purported  to  have  changed according  to  the  current  documentation  (to  a 
different and newer API) or have been deprecated.

Currently,  the  constraints  files  are  compiled  using  the  PLY package,  available  at: 
http://www.dabeaz.com/ply/. Installation instructions are deferred to the documentation on the 
source site.
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2.  High-Level Syntax and Semantics

The four basic design elements are described below, each one subdivided into a description of the 
semantic model and a definition of the syntax.

2.1.  Four Basic Elements
Four basic design elements compose the abstraction model:

1. Tokens 

2. State, which are data elements strictly attached to tokens

3. Rules executed atomically when triggered by tokens

4. Back-Pressure, which facilitates latency tolerance

2.1.1.  Tokens

I.  SEMANTICS

Tokens are the basic unit of control. They contain a source, which may be an external input or a rule 
creating a token, and a destination, which may be a rule or an external output. They trigger the firing 
of rules, and provide the necessary data that their destination rules then process. Semantically, a token 
can be thought of as a storage element such as a flip-flop with the following control signals:

 Valid Input and Output: Valid input without a stall  signifies a write to the token. Valid 
output specifies that the token contains valid data so that the token's destination can be fired.

 Stall Input and Output: Stall comes in from the token's destination and essentially notifies 
the token that it  should not fire. This signal is propagated backwards to the token's source 
(whatever creates that token) via the last output, notifying it not to create any more tokens 
until the stall signal has been lowered.

The stall signals implement the back-pressure mechanism explained below in further detail. Note that 
tokens may also be used without data – that is, for control only. However, we do not fully support this 
use case at this time, largely because the synthesis of PyTDL designs is based on the flow of data. If 
there is an ill-defined datapath, the synthesis tools may not correctly elaborate the design.
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II.  SYNTAX

Tokens do not need to be declared. In order to use a token, simply create it as follows:

create(tokenName)

To link it to a rule, include the token name in that rule's trigger condition. The rest (arbitration and 
data flow) is handled automatically by PyTDL.

2.1.2.  State

I.  SEMANTICS

Attached to a given token is any state relevant to the rules that it triggers. Each token has its own copy 
of data – that is to say, there is no relationship between two tokens' data, nor is there an explicit one 
between the current data and any past data. That is to say, data exists purely from token-to-token, and 
there is no coherence or persistence of data outside of the token-rule coupling.

There is no persistence storage or shared state in PyTDL. All of the data exists as payloads on 
tokens.

When the design is elaborated, a data path network is constructed to determine the assignment of data 
payloads based on which rules reference variables with the same name.

Designs essentially specify where data is used by accessing them in rules. While there is no persistence 
beyond the token passing from one rule to another, there is a consistent notion of naming. If two rules 
reference variable foo, and one passes a token to the other, they will refer to the same transient value.

From this comes the notion of a data path network. PyTDL infers where data flows based on its use, 
and does so as intelligently as it can. Consider three rules chained together such that a single token can 
pass through all three rules. If a variable is only referenced in the first and third rule in the chain, 
PyTDL will construct a graph that includes this dependency and will likewise include the data in all 
token links.

II.  SYNTAX

For  information  on  how  to  define,  declare,  and  use  data,  see  section  5.6.2. 
Instantiating/Declaring Data Types.
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inferred data flow network, and will subsequently attach the foo data to the tBar token.
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2.1.3.  Atomic Rules

I.  SEMANTICS

Rules are pure functions which take in as input the data attached to its trigger tokens and create as 
output new tokens (to which any modified data is attached). They may not arbitrarily observe the state 
of tokens and conditionally accept. That is to say, there is no mechanism to check if a token exists. 
They simply fire when a token arrives, so long as there is no back-pressure (as described in the next 
section).

These rules are atomic, meaning the ordering of operations is inconsequential so long as code blocks 
are consistent (e.g. the true branch of a conditional  if statement must contain all of its statements 
within the block), and the stateless variable ordering is functionally preserved. These semantics are 
borrowed from the output language; rules turn into Verilog functions, as the Implementation section 
will explain. 

II.  SYNTAX

Rules look syntactically like Python methods, but instead of passing parameters to the body of the 
method, the parameters are used as attributes to the rule itself.

Each rule follows this syntax:

def ruleName(self, trigger="triggerConditionExpression"):

...

Both the  self and the  trigger portions are required in exactly that form. The designer may then 
select a rule name and trigger condition (enclosed in quotations).

The rule condition is specified as any valid combination of conjunctions and disjunctions of token 
names:

tokenName [(and|or) tokenName[(and|or) tokenName[...]]]

Example of a valid trigger conditions:

def ruleName(self, trigger="tFoo and (tBar or tBaz)"):
...

The rule does not return anything (therefore the return keyword is not valid). It interacts with other 
rules via creation of tokens.

For details on how multiple tokens are combined, see 2.1.5.  Arbitration.

2.1.4.  Back-pressure
Back-pressure  is  the  mechanism that  creates  chains  of  stall  conditions.  If  a  rule  cannot  fire  (for 
instance, if it contains a long combinational chain which is still propagating, or it is waiting for some 
external token to arrive), then it notifies its input tokens of the stall (via the tokens' stall input signals). 
These tokens will then propagate their stall outputs to whatever the token source is.

This continues until the outermost token asserts its stall on the external I/Os.
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2.1.5.  Arbitration
Oftentimes, designs require control decisions to be made on the level of tokens. For instance, in order 
to design a system that branches off into two paths (by having the rule create two tokens) and later 
combining the two, the designer needs some way of describing the combination of more than one 
token as the trigger for a rule.

PyTDL  offers  two  nondeterministic  arbitration  methods,  and  a  fork/token-duplication  node  –  all 
automatically generated. The former consists of  conjunctive token combination  (the “AND” or 
“JOIN” of two tokens) and disjunctive token selection (the “OR” or “SELECT” of two tokens). Both 
are automatically inserted based on the rule condition, described by the trigger input.

1. Conjunctive Token Combination (JOIN): Join arbiters wait for more than one token to 
arrive at a single point  before firing the output token. They are inserted anywhere a rule's 
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onto the data until the stall is cleared in (D).
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trigger contain logical conjunctions ala "tInput and tRead". If the conjunction condition is 
not met – that is, not all of the tokens have arrived – the arbiter asserts back-pressure on those 
links which have tokens waiting (indicating that the join cannot consume those inputs) until 
the other tokens arrive.

2. Disjunctive Token Selection (SELECT): Select arbiters funnel multiple tokens that arrive 
at  the same time into one output  token,  nondeterministically  choosing which token passes 
through and forcing the other tokens to wait via back-pressure. The designer can prescribe a 
certain priority ordering for tokens to help the compiler resolve the nondeterminism by adding 
specific commands to the constraints file. See 6.4.  Setting Select Arbiter Priorities.

3. Token Duplication (FORK): Finally, if more than one rule accepts the same token, a fork 
node is automatically inserted. The default behavior is an eager fork; if  the fork sees back-
pressure on one node, but not the other, it will first fire the token it can fire before propagating 
the stall.

2.2.  Examples

2.2.1.  Trivial Rule Firing
Consider the following code example:
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nondeterministically choose one of the tokens to fire and force the others to wait; a 2-output 
fork will duplicate this token over two links.
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from Int import GlobalIn, GlobalOut
class TrivialRuleFiring:

def __init__(self):
self.x_in = GlobalIn(32)
self.x_out = GlobalOut(32)

def trivialRule(self, trigger="tInput"):
self.x_out = self.x_in + 1
create(tOutput)

We have defined the top-level design class called TrivialRuleFiring. This class contains an initialize 
method which specifies that the member variable x_in is of type GlobalIn and has a size of 32 bits. 
Likewise for x_out with type GlobalOut. The data types are covered in section 5.6.  Data Types. For 
now it suffices to say that this sets up x_in as a potential data payload label that will arrive from the 
outside world attached to some token, and that x_out similarly will be an output attached to a token.

Recall that data has no meaning without an intrinsic attachment to a token, and the design on its own 
has no notion of input/output – rather, it has only classified two variables as part of the module's 
interface.

These variables gain meaning depending on their use. When a token is attached to the input of a rule, 
and that rule then references, for instance,  x_in, this variable now has state that will be associated 
with  the  input  token.  The  same  applies  to  x_out –  by  virtue  of  creating  token  tOutput in  rule 
trivialRule, the variable x_out (or, rather, its value) is attached to a token and now has meaning.

The constraints  file  fills  the required token input/output  information,  as  well  as  data  payloads of 
tokens. The syntax is straightforward – the  input line lists input tokens with an associated comma-
separated list of payload variables in the square brackets. The same goes for the output line. Detailed 
constraints file syntax is explained in section 6.  Constraints File.

input = (tInput[x_in])
output = (tOutput[x_out])

The design can be graphically represented as:

tInput contains the contents of x_in, (referred to with the self prefix to indicate that this is stateful 
data  passed between rules)  so that  when rule  trivialRule fires,  it  is  automatically  aware  of  the 
token's data payload. The rule increments this value, then attaches it to tOutput.
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2.2.2.  A Small Pipeline
Now we look at a small “pipeline.” Of course, this is an extremely trivial and silly example of passing 
data from one stage to another, but it will highlight one key aspect of how this code is elaborated.

from Int import Int,GlobalIn, GlobalOut
class SmallPipeline:

def __init__(self):
self.x = GlobalIn(32)
self.y = GlobalIn(32)
self.z = GlobalOut(32)

def addXAndY(self, trigger="tInput"):
self.z = self.x + self.y
create(tMulByTwo)

def mulByTwo(self, trigger="tMulByTwo"):
self.z = self.z + self.z
create(tSub)

def sub(self, trigger="tSub"):
self.z = self.z – 11
create(tOutput)

The associated constraints file is (see section 6.  Constraints File):

input = (tInput[x, y])
output = (tOutput[z])

We can see that tInput, with data x and y in tow, triggers rule addXAndY. This rule does what it says – 
adds x + y and stores the result, labeled z, into the token tMulByTwo. Rule mulByTwo is now triggered 
and multiplies z by two, the result of which is stored into token tSub. Finally, token tSub triggers rule 
sub and its payload z is reduced by 11 and attached to token tOutput.

This example highlights what separates PyTDL from most other languages – values of variables in 
one rule are not the same as values of variables (of the same name) in another. There is 
no shared or persistent state. In this case, the value of z referenced in rule sub is not the same as 
the value of z referenced in mulByTwo if observed at the same time. Instead, the latter will pass on its 
modified variable to the former via the token. Both rules can (and by default will) fire at the same time, 
since they have distinctly different values and the rule can both fire the token and accept a new input 
token  on  the  same  cycle.  In  rule  sub,  the  assignment  operation  reads  self.z from token  tSub, 
subtracts 11 from it, and assigns the result to the z attached to token tOutput.

Oftentimes, it is easy to see what is going on by visualizing the design:

11



3.  Implementation PyTDL Reference Guide

3.  Implementation
The  four  basic  elements  of  PyTDL  designs  are  realized  in  hardware  with  SELF  buffers  and 
combinational logic. This section introduces both, along with arbiter implementation.

3.1.  Tokens, State, and Back-Pressure as SELF Buffers
SELF (Synchronous ELastic Flow) buffers were introduced by Cortadella,  et al. [Cortadella06] as a 
pipelining  mechanism  that  allows  latency  tolerance  (on  the  granularity  of  clock  cycles)  in  a 
combinatorially isolated buffer that looks semantically similar to a flip-flop or a FIFO.

The buffers themselves are composed of a pair of master-slave latches and gates dictating valid and 
stall control signals, along with a register to store the data portion. As demonstrated in Figure 1, these 
control signals do not introduce chains of combinational logic and can thus be scaled up arbitrarily.

The mapping from SELF buffer to token is, by default, one-to-one. The definition of a token in this 
context is the assertion of a valid signal and its associated payload data stored in the register. Back-
pressure is defined as the assertion of the stall signal; if there is a valid token in the SELF buffer, the 
data is kept in place until it can pass on to its destination. 

The  combinational  isolation  property  means  rules  can  live  in  their  own  control  domains.  See  4. 
Control Region Assignment.
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3.2.  Arbiter Implementation
Cortadella et al. also introduced the aforementioned fork and join arbiters. Figures 5 and 6 show the 
two,  respectively.  These are instantiated automatically  based on the trigger conditions of  rules,  as 
described in section 2.1.5.  Arbitration.

It's important to note that PyTDL implements Select arbiters (which nondeterministically choose one 
token  from  potentially  many)  using  a  fixed,  random  priority.  This  can  be  overridden  via  the 
constraints file. See 6.4.  Setting Select Arbiter Priorities for details.

3.3.  Rules as Combinational Logic
Rules  are  atomic  pure  functions  and have a  direct  mapping to  combinational  logic.  If  a  rule,  for 
instance, performs arithmetic on the input data, this elaborates to the appropriate high-level Verilog 
operation. The resulting HDL is behaviorally described to allow the synthesis toolchain to determine 
actual  implementation.  E.g.  the  type of  carry  propagation adder  may  be  dependent  on the  target 
technology, and thus the most suitable choice may be used. It is left to the designer to make any low-
level decisions beyond behavioral descriptions.

3.3.1.  Intermediate Stateless Variables
PyTDL borrows one of Verilog's semantics of temporary variables for the sake of readability. As an 
aside, it is important to note that it is not advisable to rely on the underlying implementation 
beyond what is described in this section; writing platform-dependent code takes away from the 
robustness of the design.

For the sake of code brevity and neatness,  PyTDL allows the designer to use temporary variables 
within  a  rule.  The  following  rule  does  not  instantiate  any  state  or  SELF buffers  for  the  stateless 
variables bar and baz. Note that the declarations are required.
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Figure 6: Cortadella's SELF join requires both V11 and 
V12 to be asserted in order for the output Vr to assert.  
Source: Cortadella06

Figure 5: SELF eager fork: V1 and S1 are 
inputs and are greedily forked into the two 
valid, stall pairs. Source: Cortadella06
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rule readableRule(self, trigger="tFoo"):
bar = Int(32)
baz = Int(32)
bar = self.x + self.y
baz = bar[8:16] + bar[0:8]
self.z = baz

The best way to think about the code behavior is to backwards substitute the variables. Recall that bit 
slicing is distinct from Verilog bus select (covered in 5.4.2.  Bit Slicing). The above rule then reduces 
to code that is behaviorally identical to the following:

rule unreadableRule(self, trigger="tFoo"):
self.z = ((self.x + self.y) >> 16) + ((self.x + self.y) & 0xFFFF)

It is clear that body of rule readableRule is much more readable than the above.

A possible  downside to  this  syntactic  shortcut  is  that  assignment  operations  are  now sensitive  to 
ordering;  proper  division  of  the  problem  into  small,  manageable  rules  gets  past  this  issue  when 
coupled with control region assignment.

3.4.  Inputs and Outputs
From a high level, any token and its payload can be used as either an input or an output. However, due 
to the tools current limitations, and the ambiguity of dealing with data of the same label in multiple 
places,  it  is  required  (although not  enforced  by  the  tools)  that  outputs  and inputs  use  dedicated 
variables.  They do not add any additional resource cost,  since any data used by a rule is going to 
automatically be buffered.

It is not syntactically correct to use a variable declared as an I/O internally within the design.

14



4.  Control Region Assignment PyTDL Reference Guide

4.  Control Region Assignment

The philosophy behind the design flow of PyTDL is to first get the design behaviorally correct and 
verified,  then  to  focus  on incremental  optimizations.  To  this  end,  the  default  behavior  of  PyTDL 
focuses solely on functionality of a latency tolerant circuit by assigning SELF buffers to every token 
link.  However,  this  approach  has  a  high  resource  cost.  Since  the  semantic  execution  model  and 
language force the designer to make inherently latency tolerant designs, it is possible to get around the 
resource cost by removing freedom without affecting behavior.

This freedom is based on the concept of a  control region: a control region is a spacial and logical 
region  where  interdependencies  exist,  both  timing  (sharing  the  same  clock)  and  wire/gate 
dependencies (in the form of combinational logic loops). 
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Figure 7: The original design is on the left. The grayed dotted areas represent control and 
timing domains. No combinational loops cross these boundaries. The middle design 
demonstrates merging the top two regions by "shorting" token tBar. The right image shows 
the merger of the lower two regions by shorting tBaz.
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By default,  each rule lives in its  own isolated control  region. This one-to-one mapping of rules to 
control domains can lead to situations where the high cost of SELF buffers dominates resources. The 
designer ends up with each intermediate piece of data attached to tokens, and the associated logic for 
valid/stall pairs. 

If  instead, the designer  assigns rules to specific regions,  then an application-appropriate mapping 
from rules in the design to control regions can lead to a more efficient implementation.

Thus,  control  region  assignment  is  the  post-design  process  of  “shorting”  tokens.  Shorting  tokens 
means replacing SELF buffers with logic equivalent gates and wires – valid in is wired to valid out, 
stall in is wired to stall out, and the register containing the data portion of the token is replaced with 
wires from the D input to the Q output. The result is that rules on either end of the shorted gate now 
combine into the same timing and control domain. 

In essence, shorting provides a mechanism for the designer to trade off between long combinational 
loops and the resource cost of SELF buffers.

This process can be iteratively continued until there are only a handful of actual SELF buffers; during 
the entire process, if the designer conformed to the latency-tolerant semantic model in the original 
design,  the  circuit  will  remain  functionally  identical.  The  difference  would  be  long  logic  loops  of 
combined rules and different timing characteristics.

Syntax of how to short tokens is covered in section 6.3.  Control Region Assignment Syntax.
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5.  Syntax Details
The  constraints  file  syntax  and any  PyTDL syntax  not  yet  covered  by  the  above  sections  will  be 
described  in  this  section.  For  the  latter's  details,  we  defer  to  the  official  Python  documentation 
(http://www.python.org/doc/2.5.2/). 

5.1.  Whitespace
Python, and thus PyTDL, is whitespace-sensitive; code blocks are specified by the whitespace level of 
their member statements. For instance, conditional if  blocks are grouped together if they have the 
same  whitespace  level.  Whitespace  formally  includes  spaces  and  tabs  for  indentation;  newlines 
separate statements except where the parser can unambiguously determine statement continuity. For 
more information, see section 2.1 in the Python language reference.

5.2.  Comments
Comments begin with a hash symbol (#) and include everything until the next line. They may begin 
anywhere after a valid statement, after whitespace, or take up the entire line.

5.3.  Constants
Constants  can be expressed as  either  decimal  literals,  which is  simply  the decimal  number,  or  as 
hexadecimal literals following standard C-style syntax: 0xABCD0123, for example.

5.4.  Supported Operations

5.4.1.  Arithmetic and Bitwise Operations
Table 1 lists the supporting unary and binary operations from highest to lowest precedence.
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Operator Syntax

Highest Precedence

Bitwise Invert ~a

Logical Not !a

Multiplication a * b

Addition a + b

Subtraction a - b

Left Shift a << b

Right Shift a >> b

Comparison Greater Than a > b

Comparison Greater Than or Equal To a >= b

Comparison Less Than a < b

Comparison Less Than or Equal To a <= b

Comparison Equality a == b

Comparison Inequality a != b

Bitwise And a & b

Bitwise Xor a ^ b

Bitwise Or a | b

Logical And a && b

Logical Or a || b

Lowest Precedence

Table 1: Supported operators with corresponding precedence

5.4.2.  Bit Slicing
Bit slicing/selection is a built-in operator, but works according to the Python slice operation and not 
the Verilog semantic. To select bits, use the following syntax form:

variableName[lowerBoundInclusive : upperBoundExclusive]

where lowerBoundInclusive ≤ upperBoundExclusive. The Verilog equivalent would be:

variableName[upperBoundExclusive-1:lowerBoundInclusive]

By default, the Verilog output will instantiate all vectors as directly mapped indices. The highest index 
corresponds to the most signifant bit.

To illustrate the PyTDL method, the following results in bar containing the lower 16 bits of foo, and 
baz containing the upper 16 bits of foo:
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foo = Int(32)
bar = foo[0:16]
baz = foo[16:32]

PyTDL does not support arbitrary bit index assignment. The indices represent bit position directly – 
that is, index 0 is the LSB, and the highest numbered index is the MSB. For further clarification, the 
Verilog equivalent of the above is:

bar = foo[15:0]
baz = foo[31:16]

5.5.  Statements

5.5.1.  Conditional Statements
PyTDL rules can contain blocks of nested conditional statements. The general syntax is:

if expression:

<whitespace>statementlist
[elif expression:

<whitespace>statementlist
[elif expression:
...]]
[else:
<whitespace>statementlist]

Conditionals are evaluated atomically. Conflicting, non-mutually exclusive statements will prioritize 
the last assignment operation:

if self.x > 5:
self.y = 1

if self.x > 10:
self.y = 2

In the case that self.y is 11, both conditions evaluate to true and the last assignment to 2 is accepted.

Tokens can be generated conditionally by putting the create keyword inside one of the branches. The 
condition is simply prefixed to the valid input of the token.

5.6.  Data Types
Python is a dynamically typed language; in the context of generating hardware, however, this relaxed 
typing scheme is difficult to realize efficiently. Thus, all data types must be declared by the user as 
some  variation  of  bit  vectors.  These  are  defined  using  data  class  types,  and  are  declared  using 
instantiations of these classes.

5.6.1.  Defining Basic Properties
Data classes define a base set of methods that return properties of the data type; they are called by the 
PyTDL tools  during synthesis  – that  is,  they  are  pragmatic,  non-synthesizable  components  of  the 
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design.  These  methods  have  names  with  two underscores  surrounding  them,  mimicking  Python's 
convention (e.g. __value__). We will explain these types by showing the implementation of a generic 
integer used in the tutorials and code examples of this document. 

First, in order to use the integer class, the designer must import the appropriate package (defined by 
filenames of the same name). In this case, the Int package is contained in a file named Int.py. Hence 
the statement:

from Int import Int, GlobalIn, GlobalOut

This states that PyTDL should search the file Int.py (the .py is appended to the package name), and 
pull the classes Int, GlobalIn, and GlobalOut into the current namespace.

Put another way, it imports the three comma-separated classes listed from the package Int.

More generally, the designer may use one of three methods of importing classes:

1. Import a specified list of classes from a package:

from PackageName import ClassName[, ClassName[,...]]

2. Import all classes from a package:

from PackageName import *

3. Import the namespace, prefixing each instantiation with the package name:

import PackageName

...
variableName = PackageName.ClassName()

See 5.6.2.  Instantiating/Declaring Data Types.

Now we look at the source of the file.

class Int:
    def __init__(self, size=1, value=0):
        self.size = size
        self.value = value
    
    def __size__(self):
       return self.size
   
    def __value__(self):
        return self.value
    
    def __coherence__(self):
        return "none"

class GlobalOut(Int):
    def __output__(self):
        return True
    
class GlobalIn(Int):
    def __input__(self):
        return True

There are three simple data type classes here which implement several different built-in methods.
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In general, data classes can implement any of the built-ins in Table 2 describing the characteristics of 
any instantiation of this class. We can see that the above integer example contains at least one class 
implementing each method.

Method Name Description

__value__ Returns the storage value of this data type.

__size__ Returns an integer of the size, in bits, of the data

__coherence__ Not supported.

__input__ Returns a boolean value indicating that this data is an input.

__output__ Returns a boolean value indicating that this data is an output.

Table 2: Data class built-in methods

5.6.2.  Instantiating/Declaring Data Types
Once a data type class has been formed, the designer may instantiate the data. The location of the 
instantiation depends on what the purpose of the data is:

1. Stateful, Token-linked Variables: Declared in the __init__ routine of the main class.

2. Stateless Temporary Variables: Declared in whatever rule they are used, and must be declared 
before they are used.

The syntax of the declaration for stateful data is:

self.variableName = [PackageName.]DataTypeClass([parameter1[, parameter2[,...]]])

Where as stateless temporary variables omit the prefixing self object:

variableName = [PackageName.]DataTypeClass([parameter1[, parameter2[,...]]])

See above 5.6.1.  Defining Basic Properties for details on when the PackageName is necessary.

5.6.3.  Extending Data Types
In addition to the built-in methods, classes may implement their own pure functions. These are read-
only  functions  that  can  help  structure  the  code;  for  instance,  the  MSP430  example  contains  an 
Instruction data type containing decoding specific functions such as single_opcode. These simply 
return bit slices or function results dependent on some part of the data.

Extended functions must be of the form:

def function_name(self, size=integerSize):

...
return [...]

The function name must be any valid Python identifier, and the prototype is required to be in the form 
shown. The size attribute is a required constant (specified syntactically like a Python parameter with 
a default value, but semantically different) specifying how many bits the result of this function is.

To demonstrate how to implement such a method, below is a very simple 32-bit IEEE 754 floating 
point data type:
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class Float32:
def __init__(self):

self.size = 32

def __size__(self):
return self.size

def __coherence__(self):
return "none"

def sign(self, size=1):
return self[32]

def exponent(self, size=8):
return self[23:31] - 127

def significand(self, size=23):
return self[0:23]

Beyond the standard built-in property methods, there are three added functions which either return a 
bit slice of the internal data, or in the case of exponent, returns the unbiased exponent. Note that the 
bit  slicing is  not  the  same as  Verilog,  as  covered  in  the  bit-slicing section  in  section  5.4.2.   Bit 
Slicing.

22



Chapter 6.  Constraints File PyTDL Reference Guide

6.  Constraints File

6.1.  Basics
The constraints file is a list of inputs, outputs, and shorted tokens. Each specification must be on its 
own line.  Whitespace (spaces and tabs)  is  ignored before  and after  the  lines,  and blank lines  are 
permitted.

Comments follow the same rules  as  PyTDL designs – namely,  a  hash symbol  (#)  followed by the 
comment that can extend until the next new line character.

6.2.  Inputs and Outputs
The constraints file describes input and output tokens and their  corresponding data payloads;  the 
former will appear as valid/stall pairs in the top-level Verilog module, while the latter are standard 
Verilog input and output buses.

The syntax for specifying input tokens and data is:

input = ([tokenName[[attachedVariable[, attachedVariable, ...]]], ...])

The  keyword  input followed  by  an  equals  sign  and  a  comma-separated  list  of  token-data 
combinations.  Each  token-data  combination  consists  of  the  token's  name  along  with  an  optional 
comma-separated variable list within square brackets.

Output tokens and data are specified in the same way, with the output keyword instead:

output = ([tokenName[[attachedVariable[, attachedVariable, ...]]], ...])

The designer may spread out all of the tokens over multiple input and output specifications, so long as 
each list contains a mutually exclusive set of tokens. For example, if a design had four input tokens 
tFoo,  tBar,  tBaz,  and  tZod,  each  attached  to  data  fooData,  barData,  bazData,  and  zodData, 
respectively, the constraints file may be partitioned as follows:

input = (tFoo[fooData], tBar[barData])
input = (tBaz[bazData], tZod[zodData])

6.3.  Control Region Assignment Syntax
Control regions are assigned by “shorting” tokens – this amounts to connecting to the valid input 
signal to the valid output signal, and the stall input signal to the stall output signal. The data register is 
then replaced with wires from the D inputs to the Q outputs, hence the term “shorting.”

In order to select which tokens to short, simply add one or more lines in the constraints file similar to 
the above input and output specifications:

short = ([token1[, token2 [, ...]])

Simply follow the short keyword with an equals sign and a parenthesized list of token names.

Examples:
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short = (tFoo, tBar, tZod)

6.4.  Setting Select Arbiter Priorities
Select  arbiters  are  by  design  semantically  nondeterministic.  However,  when PyTDL generates  the 
output design, it randomly chooses a deterministic ordering – as of this writing, the Select arbiters 
have a fixed priority such that for the  n inputs, input  i0 will have the highest priority,  i1 the second 
highest, and so on with in-1 having the lowest priority.

While designs should be tolerant to any ordering of tokens on the output, oftentimes the nature of the 
problem dictates  that  tokens  have a  specific  ordering.  To this  end,  PyTDL provides the ability  to 
prioritize tokens through the constraints file.

To specify the priorities, insert a list (on its own line) of tokens in decreasing priority surrounded by 
parentheses:

(tokenHighest, tokenSecondHighest[, ...])

This will tell the compiler to use this priority ordering if any of those tokens become inputs to Select 
arbiters.
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