
Quadratic Polynomial Tutorial

Quadratic Polynomial Tutorial

SRC Deliverables Draft, Fall 2009
1. Introduction..1

1.1. Take-Away...1
2. The Design Stage...1

2.1. The First Pass..1
2.1.1. Synthesize the Design...3

1. Introduction
In this tutorial, we will be creating a simple PyTDL design that computes a quadratic polynomial of the
form:

result = x2 + bx

Where we can arbitrarily choose b. We'll select b = 20.

The purpose of this is to demonstrate the basic syntax of a working design.

1.1. Take-Away
We hope that this tutorial shows a simple stream calculator. Its sole purpose is to show the structure of
both PyTDL designs and the associated constraint files. We also hope that it will provide a simple
testbed for getting your simulation environment set up.

2. The Design Stage
The requirements for the design are:

• Accept a single stream of input x

• Perform the listed calculations on it

2.1. The First Pass
We will design the stream such that there are two separate paths. It will square the input in parallel to
multiplying by the constant. We do not share resources here, since these two operations can be
realized using special squaring and multiply-by-constant circuits.

The code is listed below.

1

Quadratic Polynomial Tutorial

from Int import Int, GlobalIn, GlobalOut
class Quadratic:

def __init__(self):
self.x = GlobalIn(16)
self.bx = Int(16)
self.xsquared = Int(16)
self.result = GlobalOut(16)

def dispatch(self, trigger="tInput"):
create(tXReady)

def square(self, trigger="tXReady"):
self.xsquared = self.x * self.x
create(tXSquared)

def bx(self, trigger="tXReady"):
b = Int(16, 20)
self.bx = b * self.x
create(tBX)

def sum(self, trigger="tXSquared and tBX"):
self.result = self.bx + self.xsquared
create(tOutput)

We see that the dispatch rule accepts x on the token tInput and sends it as token tXReady. Since
there are two rules, square and bx, which both accept tXReady, a fork arbiter will be automatically
inserted to duplicate the token.

Once the two calculations have been completed, we need to sum the two parts. We do so using the sum
rule which waits for both tokens to arrive (with their associated payloads) before doing the addition.
The operation dependency is built into the design, and since it is latency tolerant, we do not need to
worry about timing – the Join/And arbiter will handle the synchronization for us.

The constraints file is straightforward:

input = (tInput[x])
output = (tOutput[result])

We simply declare the input token associated with data x and the output token associated with the
result.

Note that this is one of the rare situations where it is acceptable to break the requirement that input
data have their own variable names. There are no conflicts or ambiguities in this design.

The design is visualized in the figure below.

2

Quadratic Polynomial Tutorial

2.1.1. Synthesize the Design
Synthesize the design with this command:

python PyTDL.py -o constraints.tc Quadratic.py

(See the User's Guide for details.)

You can now use the packaged test bench to run the simulation and verify correctness.

3

	1. Introduction
	1.1. Take-Away

	2. The Design Stage
	2.1. The First Pass
	2.1.1. Synthesize the Design

