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Abstract 
This realization of a multi-threaded MSP430 processor is based on a latency tolerant 
process model. Generally, process network models are mainly used to represent large 
distributed heterogeneous systems. However, the capability to allow function 
isolation and structured sequential relationships benefits even a tiny embedded 
system. In this report, the design of a multi-threaded MSP430 is described. This 
design is traced from planning through optimization of a single-threaded core with 2, 
3, 4 multi-threaded capability. An overview of the design planning, architecture, 
behavioral specification and optimization are presented with an eye towards a simple 
multi-threaded extension of the basic design. The final results show that the multi-
threaded MSP430 achieves higher throughput than TI’s MSP430.  

1 Introduction 

Embedded systems are dominated by tiny microcontrollers typically characterized by 
simple serial architectures. A common theme in such systems is the requirement for 
real-time constraints on the system execution. This must be accomplished at minimal 
cost and for many practical designs obviates multi-core techniques. Indeed, the usual 
case for embedded systems is the notion of “adequate” performance – i.e. one that 
meets the real-time requirements in all cases. There is little if any benefit to higher 
than adequate performance.  
One way to meet such goals is to build a hardware multi-threaded architecture. The 
basic idea is to provide a few copies of the processor context which are dynamically 
used to enable instruction-level switching of activity from one context to another. A 
common scheme would be to have a fixed number of copies of the processor 
context, one for each co-executing process (or thread). Instructions for each of the 
contexts are executed on a simple pipeline with instructions from each context 
interleaved dynamically. The point of this effort is to greatly increase the flexibility of 
the processor as to which context is currently executing. Since there are several 
stored execution contexts, context switching overhead is virtually eliminated. A 
second benefit is that the pipeline can often be substantially simplified since the next 
instruction to be executed is likely not to be from the current context, and thus not a 
possible source of pipeline hazard. 
In the following, we shall describe the basic design ideas and organization for this 
version of MSP430 which is extended to support up to 4 simultaneous processes 
executing in parallel. First, the overall design is presented, then a simple single-
thread version is described followed by a multi-threaded version. 



2 Major Concerns of Multi-threaded designs 

Usually, “multi-threaded” means dispatching and/or executing multiple instructions 
concurrently. However, in this particular multi-theading MSP430 design, only single 
instruction dispatch is supported. This reduces complex modifications to the existing 
design while allowing much higher performance – without the cost of multiple in-
flight instructions per thread which requires complex analysis of data hazards 
resulting from memory-based operands. The multi-threaded msp430 is an 
interleaved pipeline and uses single-instruction-issue. Instructions are selected from 
a possibly different thread every cycle. This strategy provides implicit data path 
sharing and eliminates data dependencies between consecutive instructions, 
alleviating many costly stall conditions and providing better utilization of processor 
resources. A memory-mapped infrastructure is used throughout the multi-threaded 
MSP430, reducing design complexity by providing a uniform interface to system 
peripherals and memory. Figure 1 gives an example of how this multi-threaded 
MSP430 reduces data hazards. 

 

Figure 1 multi-threaded design reducing data hazards created by in flight instructions 
in one thread 

 
Thread 1 first writes to Register R14 and the next instruction reads R14. The second 
compare instruction CMP which reads R14 cannot proceed until previous instruction 
gets completed. This is called read after write data hazards. However, if multiple 
threads are used, following the execution of MOV in thread 1, instead of dispatching 
CMP, the addition instruction ADD in thread 2 is issued. By the time  the CMP 
instruction of thread is issued, its previous move instruction already proceeds one 
clock cycle and reduces stalling cycles of the CMP instruction of thread 1. If more 
threads are used and they are interleaved, then more data hazards can be avoided. 
The main considerations of a multi-threaded design are listed below. 
1. Architecture 

A memory-mapped infrastructure is used throughout the design, reducing design 
complexity by providing a uniform interface to system peripherals and memory. 
By supporting interleaved multi-threading, this new design provides implicit 
sharing of data path resources for increased throughput and low-latency 
response to dynamic events. Instead of using the dispatch unit in a single-thread 
MSP430 design, a custom thread scheduler is used and dynamic interrupt 
handling is implemented inside that scheduler. 



2. Pipeline 
The event-driven nature of embedded systems means that control flow will 
change often and unexpectedly; a successful system should minimize the 
overhead of these transitions. One approach is to use a dynamic pipeline which 
executes instructions in anywhere from one to several cycles. PyTDL, explained in 
detail in the reference guide, allows a straightforward path for realizing 
interlocked pipelines that are readily extensible and lead to high-performance 
implementations. 

3. Schedule 
Instead of a conventional dispatch unit, a thread scheduler is used to support 
multiple concurrent streams of execution. This multi-threaded scheduler is a 
best-effort, round-robin scheduler targeting balanced execution among threads 
(no starvation). A round-robin scheduling policy is utilized based on the last 
dispatched thread, the pool of active threads, and the state of interrupts. 
One challenge of adding multi-threading to a single-threaded system is thread 
initialization, as each processor context has no direct access to any other. To 
facilitate this process, the scheduler provides initialization registers which are 
used when a thread has yet to execute. Modifications to the execution state, 
history flags and the target instruction address allow any thread to modify the 
execution flow of another context. The ability to begin execution at a specified 
function enables thread-based activation of arbitrary code segments.  
System execution always begins in thread zero which enters program code at the 
beginning of memory. This thread is effectively used to bootstrap the initialization 
of other threads. Shared memory provides an easily-used communication 
channel for information passing between threads. This is of particular importance 
during thread initialization, where an appropriate address for the stack pointer 
must be established to avoid memory corruption. On acceptance of an interrupt, 
the scheduler overrides the round-robin policy, scheduling the interrupt at the 
soonest possible time.  

4. Memory 
To reduce the programming complexity, a uniform interface to peripherals and 
memory is used. This allows our controller to handle a large number of different 
on-chip structures without requiring specialized design. Memory-mapping serves 
to reduce complexity stemming from otherwise necessary custom instructions 
and component interconnect. From an implementation standpoint, this 
methodology reduces the overhead of adding custom peripherals and control 
elements since interfacing requires no additional hardware. The use of a common 
memory for process context information and data will have performance 
consequences later in this design. 

5. Instruction Fetch 
Many available microcontroller devices provide embedded memories for both 
program and data. Some devices, such as ARM, use a boot-strapping technique to 
move program code from non-volatile memory to volatile memory before 
beginning execution of the main program. With multi-threading, one of the 



concerns is the increased pressure on instruction fetch. Many of the embedded 
applications are very small, on the order of hundred of bytes, and can be pulled 
completely on-chip. The ability to do single cycle access to all of memory greatly 
improves processor throughput when compared to the penalties incurred from 
instruction cache implementations and external memory access. In this multi-
threaded MSP430 design, all the code is stored in ROM. 

6. Thread Context 
This multi-threaded msp430 design implements unique contexts for all of its 4 
hardware threads. Each context consists of a 16-bit wide register file, status 
register, program counter, and stack pointer. Similar to TI’s msp430, this new 
design provides 11 16-bit general purpose registers. Rather than implement 
independent register files for each thread, a uniform memory can be optimized 
for speed, area, and locality with data path components. Utilizing the thread 
identifier as part of the register file address provides a straightforward method 
for accessing and updating data with very little added complexity. 

3 Design Planning and Behavioral Specification 

The design flow begins by identifying major design components. A primary goal of 
this design is that the core be self-contained so as to be amenable to multi-core 
implementations. Creating interface boundaries between memories and the 
functional core aids subsequent modification to the design. For example, multiple 
cores could be implemented with shared memory by simply adding arbitration on the 
interfaces – a change that should not require modification to the core design. 
Given the behavior of multi-core and multi-threading, it is natural for memory 
interfaces to become execution bottlenecks of this MSP430 design. Careful 
observation shows that arbitration can be handled better at a lower level where 
memory activity timing can be more precisely accounted for. Consider the case 
where two threads are executing concurrently. The first thread has issued a read 
request to the memory and is stalled waiting for completion and the second thread is 
sending a write request to the same memory. If implemented as a shared memory, 
the second thread cannot proceed before the completion of the first thread. 
However, if the memory unit is constructed as a pair of read and write interfaces, the 
memory can allow the write to proceed in parallel with the read operation. Figure 2 
gives the diagram. 



 
Figure 2. Comparisons of concurrent memory requests between a single shared 

memory interface and a read/write pair interface. 
 

To facilitate the above memory interfaces, both memory and register file arbitration 
are constructed in Verilog HDL – a limitation of the current PyTDL implementation is 
that control observation occurs only in the previous cycle of activity. A Verilog RTL 
arbiter design however, allows multiple interfaces and memory state to be 
considered when making arbitration decisions. Furthermore, deterministic timing of 
these low-level interfaces is necessary to ensure design efficiency. To facilitate the 
accommodation of multi-threading and multi-core, the dispatch unit is separated 
from the core design. 
The system is divided into four major compoents: the dispatch unit, the processor 
core, the register file and the memory. Figure 3 depicts the relationships between 
these four major components where the processor core interfaces to the register file 
and memory through read/write interface pairs. Though all interfaces to the core 
unit must respect the valid/stall control communication scheme, only the core is fully 
latency tolerant.. In factor, the organization allows the core to be considered as a 
variable latency function with old program counter (PC), stack pointer (SP), status 
register (SR) as inputs and new PC, SP, SR as outputs, shown as {PC’, SP’, SR’} = core 
(PC, SP, SR). 



 
Figure 3 relationships between major components 

 

3.1 PyTDL implementation of the processor core 

System behavior in PyTDL is best described through a set of atomic behaviors and 
their causal connections represented using token-based control flow. Thus the 
starting point of PyTDL design is to decompose the core behavior into a subset of 
behavioral modules based on their causal relationships. Before we go into the actual 
design, let’s first take a look at the architecture of the processor core.  
 

3.1.1 Processor core Architecture 
The MSP430 supports 27 core instructions and 24 emulated instructions. The core 
instructions are instructions that have unique op-codes decoded by the CPU. The 
emulated instructions are instructions that make code easier to write and read, but 
do not have op-codes themselves. Instead they are replaced automatically by the 
assembler with an equivalent core instruction. The actual instruction execution flow 
is shown in Figure 4. 



 

Figure 4 instruction execution flow of the MSP430 
 

Although the control seems to be simple based on high level description of the 
execution flow, it is deceptive. In fact, there are seven different addressing modes for 
the source operand (having different timings) and four different addressing modes 
for the destination operand. Handling these modes in a traditional pipeline would 
require execution division such that common functions could be extracted from 
instructions and assigned to specific stages. For instance, memory and register file 
access typically occur in specific stages, preventing architectural hazards that would 
impede pipelining. Moreover, a fixed-length pipeline would require many stages to 
accommodate the available addressing modes, because variant addressing modes 
result in variant instruction execution cycles. In PyTDL however, pipeline architecture 
is synthesized and execution path is dynamic. Designs of this style are quite different 
from those of conventional fixed-length pipelines, requiring different methods to 
determine architectural latencies. 
 

3.1.2 Processor core specification 
A full description of the core specification can be found in TI’s website. Here we give 
a description PyTDL particular token flow for a single operand instruction. Figure 5 
shows the actual token flow. Following the diagram in Figure 4, the core specification 
is further decomposed such that each sub module, represented as nodes in Figure 5, 
corresponds to a PyTDL atomic behavior. At node the behavior is then elaborated, 
defining requesite stages for the sequential token flow. 
The core execution starts at the instruction fetch node where a memory read request 
is sent out with address specified by the program counter (PC). The instruction fetch 
node is replaced by the cycle module, triggered by the external world, for example, 
an interrupt. The cycle module generates a read request to the ROM through 
tRomRead token to fetch the instruction. Inside the cycle module, tFetch token is 
created to establish the pipeline flow and pass values of PC, SP and SR down the 
pipeline. tRomReadDone signals the completion of ROM read and is sequentially 



analyzed by romReadDone behavior which generates tInstructionReady token. The 
tInstructionReady token along with tFetch token triggers the decode behavior where 
instructions get decoded. The decode behavior processes the instruction by 
inspecting their instruction formats. If it is a jump, it flies to the end of the execution 
through the creation of tCommit token and increases the PC by 2 or adjusts PC to the 
new destination depending on whether the condition is satisfied. Otherwise it checks 
the source operand no matter it is a single operand or double operand, because 
MSP430 microcontroller is designed to calculate the source operand first for a double 
operand instruction. Calculation of the destination operand may be based the value 
of source operand. 
If the source operand is PC, SP or constant generator, which can be obtained directly 
from the corresponding register, control flow is routed to the rsGetRegDone behavior 
through the creation of token tRsIsInternal. Otherwise the source operand is indexed 
addressed and a register read request is generated through the creation of token 
tRegRead and token rRsRegWait is created to establish the internal control path.  

 
Figure 5 Actual token flow of the PyTDL design of the MSP430 



In contrast to ROM Read, a register read request token is tagged to disambiguate the 
control path when the register read is completed. This is because multiple behaviors 
make register read requests via token tRegRead. This tagging method is the 
application of the context-aware concept, which allows local indeterminism but 
guarantees determinism of the whole system. Once register read is completed, 
tRegReadDone token with an associated tag is created and processed by the 
regReadDone behavior which routes the control to rsRegDone behavior through 
token tRsRegReadDone. The arriving of tRsRegReadDone and rRsRegWait indicates 
register operations for the source operand are comleted and register values are 
passed down as pipelined data members.  
Regardless of how the source operand is obtained, the control converges to 
rsGetRegDone behavior. If the source is directly addressed or is a constant value or is 
in the PC auto-increment addressing mode, token tRsRegDone is created. Otherwise 
the source is indexed addressed and a memory read request is generated through 
token tMemRead. Similar to token tRegRead, token tMemRead/tMemWrite has an 
associated tag value to disambiguate the control path, because memory is read or 
written by multiple atomic behaviors. The last thing that rsGetRegDone needs to take 
care is the write-back to register file if the source operand is auto-increment 
addressed. 
Source operand retrieval completes when control reaches the rsReady module. If the 
instruction is a single operand instruction, then the instruction result is calculated 
and memory/register writeback is initialized. Otherwise fetching of destination 
operand begins. The process of fetching the second operand is similar to the fetching 
of the source operand and is a little bit easier, because there are only four addressing 
modes for the destination operand. After both operands have been fetched, the 
result is calculated and memory/register writebacks are initiated. Both single and 
double operand instructions signal completion via toke tCommit. The commit 
behavior calculates new values of PC, SP and SR for next round execution. 

4 Optimization 

After seeing the token-based flow of this PyTDL design of the MSP430, one might 
argue that this design must have really long execution clock cycles. Indeed, some 
instructions where both source and destination operands are indexed addressed 
require more than 20 clock cycles. The token-heavy PyTDL design provides great 
design flexibility by sacrificing system performance. However, the number of tokens 
used in the design is always decided by the designer. One could write an alternative 
specification for the core unit where tokens were only used at interface boundaries 
to facilitate communication with external components. Specifying the core that way 
can decrease the number of clock cycles to execute some instructions, but the 
readability decreases too. 
 

4.1 Optimization through functional composition. 
Instead of using fewer tokens in specification description, one can “short” tokens 



during optimization step through a constraint file without changing PyTDL 
specification, thus maintaining the same readability. Shorting tokens means 
selectively removing pipeline buffers by composing functional behaviors. A shorted 
token becomes a pure combinational function, but still obeys SELF protocol to 
provide valid/stall interface. For comparison, we use a 16-bit CRC algorithm along 
with a mix I/O for reporting results and progress. The results without and with 
optimization are list in table 1. 
 

Table 1 CPI characteristics of the core unit with and without token shorting 
optimizations for Flip-flop  

Description Shorted Tokens Throughput Latency per 
instruction 

Baseline None 0.071 12.1 
Memory/register 
file routine 

tRsMemReadDone, 
tRdMemReadDone, 
tRetiSrMemReadDone, 
tRetiPcMemReadDone, 
tRsMemWriteDone, 
tRdMemWriteDone, 
tIntPcMemWriteDone, 
tIntSRMemWriteDone, 
tRsRegReadDone, RdRegReadDone, 
tRsRegWriteDone, dRegWriteDone, 
tIncRegWriteDone 

0.081 10.4 

Memory/register 
file and internal 
routing 

tRsMemReadDone, 
RdMemReadDone, 
tRetiSrMemReadDone, 
tRetiPcMemReadDone, 
tRsMemWriteDone, 
RdMemWriteDone, 
tIntPcMemWriteDone, 
tIntSRMemWriteDone, 
tRsRegReadDone, RdRegReadDone, 
tRsRegWriteDone, 
RdRegWriteDone, 
tIncRegWriteDone, 
tInstructionReady, 
tIntMemReadDone, 
tRsIsInternal, tRsRegIsDone, 
tRdRegIsDone, tRdRegDone, 
tRsRegDone,tCommit, tDone 

0.118 6.3 

48-bit instruction 
fetching 

the same as above 0.123 6.1 

 
Without optimization, the throughput is very low and instruction latency is very long. 



The first optimization is carried out by composing post operation routing of memory 
and register file results. Token-shorting in memReadDone and regReadDone 
behaviors is the example. By shorting tokens created in these behaviors results in the 
routing function inlined with subsequent behaviors. This optimization improves 
throughput by 0.01 and decrease latency by 1.7 clock cycles on average. 
The second optimization adds shorting of internal tokens and further improves 
throughput by almost 0.04 and decreases latency by almost 4.1. Thus the total 
throughput improvement is 0.05 and latency improvement is almost 6 clock cycles. 
In addition to affecting the sequential depth on instruction execution, token shorting 
may affect both maximum clock frequency and design area. When a token is shorted, 
the corresponding buffer is removed from the circuit, contributing to a buffer area 
reduction. When a token is shorted, the resulting combinational function is added to 
its sequential behavior, resulting in larger and deeper combinational circuits, which 
may potentially increase the critical path and thus increase minimum clock period. 
Design vision from Synopsys will be used to synthesize the design and tradeoff 
among throughput, latency per instruction, maximum clock frequency and design 
area will be shown. These results will be updated later. 
 

4.2 Optimization through instruction Fetching 
In the MSP430, instruction length varies from one 16-bit word to three 16-bit words. 
A double operand instruction may need as many as 3 16-bit words if both source and 
destination operands are indexed addressed. Instead of accessing these additional 
words on a by-need basis, the core unit could always fetch 48-bit data to 
accommodate all potential instruction lengths. However, 48-bit data does not align 
well, so instead, a 64-bit interface is used to facilitate the alignment of 48-bit data. 
This is implemented through two 32-bit wide ROMs. To accommodate this in RTL 
would need lots of changes to state machines and functional interfaces. In PyTDL, it is 
easy to implement by extending the Instruction object to allow named access to 
these new fields along with a ROM interface which is around 50 lines. Figure 6 shows 
the organization of the two interleaved ROMs, where data is represented in 
hexadecimal mode. 

 
Figure 6 division of a 32-bit ROM into two 32-bit ROMs each with half space 

 
The whole ROM space can be seen as the interleaving of the low ROM and the high 
ROM. The trick to guarantee correct execution and fetch length-variant instruction in 
one cycle lies on the novel use of the three least significant bits of the address. 
Depending on the address, the arbiter can access 2 different 64-bit chunks by 



addressing the high 32 bits different than the low 32 bits. For instance, the arbiter 
can access either [B3B2B1B0 A3A2A1A0] or [C3C2C1C0 B3B2B1B0]. Then the lower 2 
bits are used to index into the 64-bit chunk to return a 48-bit value. The possible 
results for the 48-bit value can be B1B0A3A2A1A0, B2B1B0A3A2A1, B2B3B1B0A3A2, 
0B3B2B1B0A3, 00B3B2B1B0. 
Due to the infrequency of indexed addressing in this CRC algorithm, this optimization 
strategy only shows a very slight throughput improvement and latency decrease. The 
reason is because multi-word instructions are not very often in CRC algorithm 
implementation. 

5 Adding multi-threading 

Inspired by the design and implementation of JackKnife architecture, which shows 
that multi-threaded has quantifiable hardware and software benefits, we incorporate 
multi-threaded to single-threaded MSP430 design. 
This implementation of multi-threaded MSP430 requires only 10 extra lines to the 
core description in PyTDL to specify thread identifier of the inputs and outputs for 
register read and write requests, due to the face that each thread has its own register 
space. Another modification is the replacement of the dispatch unit with a threading 
unit which performs thread scheduling and maintains PC, SP, SR context for each 
thread. The threading unit also provides a memory mapped interface to these 
register values as well as a register designating state: idle or active. Depending on 
design needs, thread registers can be mapped to different peripheral range of the 
MSP430.  

 
Figure 7 Architecture of Multi-threaded MSP430 design 

One test case for this multi-threaded msp430 is based on the CRC algorithm. Each 



thread is running on a CRC algorithm independently and instructions are interleaved 
from the beginning of thread activation. Table 2 shows the results of the design 
which is optimized with 48-bit instruction fetch and maximum token shorting. 
 

Table 2 Results of multi-threaded MSP430 running on the CRC algorithm 
Num of thread Throughput Latency per instruction 
1 0.123 6.1 
2 0.243 5.9 
3 0.347 6.1 
4 0.427 6.3 
 
It is expected that the addition of multi-threading should provide significant 
improvement to processor utilization by filling the substantial waste created by 
single-instruction-issue execution. Moving to 2 threads is shown to increase average 
throughput by almost 2x while 3 threads provides a 2.8x improvement and 4 threads 
provides a 3.5x improvement. The fact that throughput improvement is not 
proportional to the number of threads is because by adding more threads the critical 
path becomes longer. 
By adding more threads to the design, area and clock frequency are subject to 
change. These will be verified later. However, we estimate little area increase and 
little decrease of maximum frequency because the code change to add multi-
threading to the design is very small, comparing to the size of existing design.  

6 Interrupt 

Efficient use of system resources often necessitates the use of interrupts. One 
characteristic of interrupt is the interrupt latency. AVR interrupt routines typically 
require prologue and epilogue code as long as 17 instructions, totally 4 clock cycles. 
This long interrupt latency is partly because there is no hardware support for fast 
interrupt context switching. In contrast, this multi-threaded msp430 design provides 
zero-cycle context switching through priority scheduling and dedicated interrupt 
service threads (IST). ISTs allow user code to be executed immediately, without the 
overhead of prologue and epilogue code. Table 3 summaries the interrupt response 
time of this multi-threaded msp430 design. 
 

Table 3 Interrupt response time w/o dedicated IST 
 With dedicated IST Without dedicated IST 
Scheduling algorithm Round robin Priority 

scheduling 
Xxxx 

Interrupt response time 
(# of clock cycles) 

n/2 1 17 * (clock cycles per 
instruction) 

 
Table 3 shows that with a dedicated IST, the interrupt response time is either 1 clock 
cycle or n/2 clock cycles depending on which scheduling algorithm is used where n is 
the number of threads. However, without a dedicated IST, the average interrupt 



response time is the execution time of 17 instructions, with most of the instructions 
being push and pop, according msp430-gcc stack point standard.  Because of the one 
instruction response time, the interrupt timing jitter is fundamentally reduced. 

7 Peripheral 

The embedded domain comprises of many different applications requiring 
integration with various component types. Because the peripheral sets of 
commercial devices are fixed, families of devices are typically offered with varying 
peripheral sets and memory sizes. It is often the case that these predetermined 
peripheral sets are not well suited to a particular design. Similar to the JackKnife 
design, this multi-threaded MSP430 provides the ability to customize system 
peripherals for a given application. Central to this capability is an extensible bus 
architecture that links the processor core to both data and I/O memory. This decision 
to fully support a memory-mapped infrastructure allows integration complexity to be 
masked, and provides a uniform interface to all system components. All peripheral 
modules adhere to a common bus policy in which write and read requests are 
specified as single-cycle operations. One extension to this design is to support the 
use of memory wait signals for slow memory devices. However this extension has the 
potential to create more stall cycles.  
One specific aspect of TI’s MSP430 design is that the multiplier is implemented as a 
peripheral. In this multi-threaded MSP430 design, we do the same thing. Table 4 
shows the test results for Fast Fourier Transform (FFT) algorithm.  
 

Table 4 Results of FFT implemented in multi-threaded MSP430 design 
Num of threads Throughput Latency per instruction in clock cycles 
1 0.124 6.0 
2 0.246 5.9 
3 0.349 6.0 
4 0.428 6.1 
 
Results in table 2 and table 4 shows that operation overhead does not increase with 
the multiplier included. This is because in the design, peripherals are made to share 
the common bus policy where read and write requests are single-cycle operations -- 
the same as memory read/write requests. 

8 Conclusion & Future Work 

In this paper, we talked about the implementation of a multi-threaded MSP430 
design using PyTDL and showed the results. Through token-shorting and instruction 
fetch optimization strategies, the throughput of the design goes up to 0.42 
instruction per clock cycle. It is expected that subsequent revisions will achieve 
better performance through greater optimization of both control and functional 
partitioning. Many such optimizations are possible given the flexibility of PyTDL's 



design paradigm. 
To make this multi-threaded MSP430 of industrial value, more thorough tests are 
needed. One approach is to use some MSP430 simulators to randomly test the 
design. An extension of the current multi-threaded MSP430 is to make the entire 
processor latency insensitive. RTSC created by Bob Frankle from TI, provides the 
software platform for multi-threading tests. Eventually we are going to synthesize 
this multi-threaded MSP430 design onto a FPGA board to emulate it, or even build a 
full customized design. 


