
ROM Max Tutorial

ROM Max Tutorial

SRC Deliverables Draft, Fall 2009
1. Introduction..1

1.1. Take-Away...1
2. The Design Stage...1

2.1. The First Steps..2
2.1.1. Elastic ROM..2
2.1.2. The Control...3

2.2. Inputs and Outputs..3
2.3. Reset...4

3. Addressing the Two Cases..5
3.1. Case I: Internally close the loop...5

3.1.1. Synthesize the Design...6
3.1.2. Fixing The Verilog..6
3.1.3. Generalizing the Problem and Solution...7

3.2. Case II: Externally close the loop...7

1. Introduction
In this tutorial, we will be creating a PyTDL design that is capable of continuously scanning a range of
addresses from some memory (in our case, a simulation model of a ROM) and outputting tokens
letting you know what the highest memory value is reads is.

The goal of this tutorial is demonstrate when the nondeterministic nature of arbiter results in an
arbitrary selection that will not work. This is a property of the language and toolset, and occurs
because of the inherently ambiguous nature of data flow and arbitration (that is, PyTDL by design
allows the developer to create an ambiguous flow). On the plus side, it is relatively easy to find via
simulation and easy to fix.

1.1. Take-Away
We hope that this tutorial clarifies how sometimes the designer needs to manually intervene with some
of the nondeterministic elements of the design by modifying the output Verilog.

We additionally will cover reset semantics in the context of keeping persistent data via a loop that
must contain at least one nonshorted SELF buffer.

2. The Design Stage
The requirements for the design are:

• Continuously sweep through the addresses of an external memory and read the data

• Maintain a persistent piece of information called “max” that holds the largest integral data value in
the memory.

1

ROM Max Tutorial

By default, the design must be tolerant to variable latencies, especially from the external memory.

2.1. The First Steps
First, we will establish a high-level overview. We'll need some way of sending a token out to the
memory, and receiving data from that memory. We will also need to maintain a “max” variable and a
current address variable; the former will hold the largest integer we've seen, and the latter will cycle
through the available addresses.

2.1.1. Elastic ROM
We arbitrarily choose a 32-bit wide, 256-deep (and hence 8-bit address) elastic ROM – by elastic, we
mean that it looks from the outside world like a token. It has valid inputs and outputs, and stall inputs
and outputs.

The elastic ROM model is listed here. This is not directly synthesizable, as it is only a simulation model
verified in ModelSim:

module elasticROM(valid_in, stall_out, valid_out, stall_in, addr,
data_out);
 parameter ADDRESS_WIDTH = 8;
 parameter DATA_WIDTH = 8;
 parameter DEPTH = 256;
 parameter FILE = "romdata.hex";
 input valid_in;
 output valid_out;
 input stall_in;
 output stall_out;
 input [ADDRESS_WIDTH-1:0] addr;
 output [DATA_WIDTH-1:0] data_out;
 reg [DATA_WIDTH-1:0] data [DEPTH-1:0];
 reg [DATA_WIDTH-1:0] data_out = 0;
 reg valid_out;
 reg stall_out;
 always @(addr or valid_in) begin
 data_out = #1 data[addr];
 valid_out = #1 valid_in;
 stall_out = 0;
 end
 // load file
 initial
 $readmemh(FILE, data);
endmodule

This is straight-forward ROM with added elastic control signals.

2

ROM Max Tutorial

2.1.2. The Control
We start with a basic control design:

from Int import Int, GlobalIn, GlobalOut
class RomMax:

will not synthesize yet
def __init__(self):

self.max = Int(32)
self.addr = Int(8)
self.mem_data_in = GlobalIn(32)

def nextAddr(self, trigger="tNewAddress"):
self.addr = self.addr + 1
create(tReadMemory)

def checkMax(self, trigger="tMemoryValid"):
if self.mem_data_in > self.max:

self.max = self.mem_data_in
create(tNewAddress)

The nextAddr rule increments the address, then creates an external token called tReadMemory for
the ROM. It then waits for the ROM to respond using the tMemoryValid token (which will have
mem_data_in attached to it). Once the ROM looks up the given address, it fires this token, and hence
triggers the checkMax rule.

[[AddressFlowDiagram]]

There are a few issues with this: there is no data path to “store” the current address. Rule checkMax
changes the max variable, stores it onto tNewAddress, but does not have any knowledge of the
address.

There are two cases here:

1. Case I: We can have checkMax wait for both tMemoryValid (containing the memory data
payload) and tReadMemory (containing the current address). This presents an issue with the
Join that will be automatically inserted: namely, the developer will need to manually change
the Verilog output to route the various data into the input of the checkMax rule. See the section
below for this approach.

2. Case II: We can pass both the address and max back into the design. That is, rule nextAddr
outputs both max and address, which we then manually loop back into checkMax by attaching
it to the tMemoryValid token.

Before we cover both cases' implementations and solutions, we'll cover two important pieces: how to
deal with I/Os and how to handle resets.

2.2. Inputs and Outputs
Our design needs an interface to the external memory. We introduce the I/Os and a constraint file.
Note that we follow the required convention of introducing new variables for I/O. This clears up
ambiguous references when synthesizing:

3

ROM Max Tutorial

from Int import Int, GlobalIn, GlobalOut
class RomMax:

will not synthesize yet
def __init__(self):

self.max = Int(32)
self.addr = Int(8)
self.mem_addr_out = GlobalOut(32)
self.mem_data_in = GlobalIn(32)
self.max_out = GlobalOut(32)

def nextAddr(self, trigger="tNewAddress"):
self.addr = self.addr + 1
self.mem_addr_out = self.addr
create(tReadMemory)

def checkMax(self, trigger="tMemoryValid"):
if self.mem_data_in > self.max:

self.max = self.mem_data_in
create(tNewAddress)

self.max_out = self.max
create(tMax)

We've added a signal output for the address which will be attached to tReadMemory. We will not
attach addr to this token, because it will introduce an ambiguity – the prototype compiler does not yet
have a mechanism to resolve internal and external signal conflicts.

Now we create a constraints file to let PyTDL know the input and output token/data sets:

input = (tMemoryValid[mem_data_in])
output = (tReadMemory[mem_addr_out])
output = (tMax[max_out])

The design will output the tReadMemory token with address in tow, and wait for tMemoryValid with
the data associated with that address. Token tMax will contain the highest integer observed.

2.3. Reset
Both max and address are persistent through the token loops, and in order to correctly initialize the
data, we need some way of resetting them. This is where the Select/Or arbiter comes into play. The
input to nextAddr is currently the token tNewAddress, carrying both the current address and current
max; if we instead tell the rule to accept the tNewAddress token from either the checkMax rule or a
new reset rule, then we can essentially “interrupt” the loop and inject new values.

4

ROM Max Tutorial

from Int import Int, GlobalIn, GlobalOut
class RomMax:

will not synthesize yet
def __init__(self):

self.max = Int(32)
self.reset_addr = GlobalIn(8)
self.addr = Int(8)
self.mem_addr_out = GlobalOut(32)
self.mem_data_in = GlobalIn(32)
self.max_out = GlobalOut(32)

def resetAddr(self, trigger="tReset"):
self.addr = self.reset_addr
self.max = 0
self.mem_data_in = 0
create(tNewAddress)

def nextAddr(self, trigger="tNewAddress"):
self.addr = self.addr + 1
self.mem_addr_out = self.addr
create(tReadMemory)

def checkMax(self, trigger="tMemoryValid"):
if self.mem_data_in > self.max:

self.max = self.mem_data_in
create(tNewAddress)

self.max_out = self.max
create(tMax)

We have now added an extra rule that accepts a “reset address” from the outside world. PyTDL will
automatically insert a select arbiter to choose between the token generated from resetAddr and
checkMax, nondeterministically choosing one. If both tokens arrive at the same clock edge, it will
choose one, then the other – thus, the reset may not be accepted; it is recommended that you verify the
Verilog implementation to prioritize the reset input on the arbiter.

We need to include the external token and associated reset data by adding the following to the
constraints file:

input = (tReset[reset_addr,max,mem_data_in])
A note on resource cost – although we have introduced a separate input, we can simply tie the reset
address to ground/zero and the synthesis tools will replace the register portion of the token with wires.
Thus, the overhead is whatever combinational control signals remain.

3. Addressing the Two Cases

3.1. Case I: Internally close the loop
To close the data loop and make the max and address data persistent, we can make checkMax wait for
both tMemoryValid from the memory, and tReadMemory from nextAddr. The point of adding the
latter is it will ship with it both the current address and current max, making the design functionally
correct. However, in order to make this work, we need to make modifications to the top-level Verilog
module to ensure that the right data source is selected by the Join arbiter.

5

ROM Max Tutorial

3.1.1. Synthesize the Design
Now we have a full constraints file, working reset semantic, and data loop. Synthesize the design with
this command:

python PyTDL.py -o constraints.tc RomMax.py
(See the User's Guide for details.)

If you now try to synthesize this, you will get error messages. This is where we need to make changes to
the Verilog module, RomMax.v located in the build subdirectory.

WARNING: PyTDL will recursively delete and replace the build directory each time! We
strongly recommend you copy the synthesized files into another directory.

3.1.2. Fixing The Verilog
After we have discovered that the resulting Verilog is not syntactically or functionally correct, we need
to discover why. It turns out that the Join arbiter that waits for both tMemoryValid and
tReadMemory expects data from one of them to be used in the input rule checkMax.

By default, Join will randomly select one of its input tokens' data payload. However, we did not specify
the address and maximum number as part of the data payload for the input token tMemoryValid.
PyTDL assumes this data exists somewhere; this is not the case, since the address and maximum
number are not relevant inputs.

There is a second issue: we designed the rules such that different pieces of data come from different
tokens. The address and max number come from the tReadMemory token, while the actual data from

6

ROM Max Tutorial

the memory comes from the tMemoryValid token. The tools do not currently check for this type of
use case (since it is, again, difficult to determine which token's data the developer wanted). In the
future, we may support compiler pragmas to disambiguate situations like this one.

In any case, the following output is observed near the data network of the top-level Verilog file
RomMax.v:

/* -- JOIN -- */
// tMemoryValid -> join0x0
assign join0x0_addr_i0 = addr;
assign join0x0_max_i0 = max;
assign join0x0_mem_data_in_i0 = mem_data_in;
// tReadMemory -> join0x0
assign join0x0_addr_i1 = tReadMemory_addr;
assign join0x0_max_i1 = tReadMemory_max;
assign join0x0_mem_data_in_i1 = tReadMemory_mem_data_in;

This piece of code assigns the token inputs to the join.

We can see that the payload inputs for the first set of inputs (attached to tMemoryValid) are fixed to
non-existent Verilog signals addr and max. To fix this, we simply zero those values out.

The second problem manifests itself on the tReadMemory input of the join:
tReadMemory_mem_data_in is not a valid data signal. To solve this issue, we simply grab the signal
from the interface (coming from the memory) and assign it to the signal at the bottom:

/* -- JOIN -- */
// tMemoryValid -> join0x0
assign join0x0_addr_i0 = 0;
assign join0x0_max_i0 = 0;
assign join0x0_mem_data_in_i0 = 0;
// tReadMemory -> join0x0
assign join0x0_addr_i1 = tReadMemory_addr;
assign join0x0_max_i1 = tReadMemory_max;
assign join0x0_mem_data_in_i1 = mem_data_in;

This covers the inputs to the join arbiter, but what about the output? You will have to scroll up in the
file to search for the instantiation of the join0x0 module.

The actual output is listed as:

assign join0x0_max = join0x0_max_i1;
assign join0x0_addr = join0x0_addr_i1;

Here, we lucked out in that it selected its 2nd input (indicated by the “i1” suffix). If we had reordered
the rules, it may have worked out oppositely, thereby assigning the “i0” signals to the data output.

3.1.3. Generalizing the Problem and Solution
Now that we can demonstrate a situation where this problem arises, we can generalize what can
happen and how to approach a solution.

The issue is that there is an inferred data network, the tools have no knowledge of exactly where the
designer wanted data to flow. This, combined with the nondeterministic nature of the semantic model

7

ROM Max Tutorial

means that the tool will make decisions to resolve the nondeterminism that may affect the end
behavior. The Verilog code is structured in a way that it should be easy for the developer to find these
fixed behaviors and replace them with whatever they desire.

3.2. Case II: Externally close the loop
The second, and arguably easier, case is to close the loop outside of the design.

This is accomplished in the instantiation of the top-level module. Only the relevant pieces are shown:

RomMax rommax(
 ...
 .o_addr(address_loop),
 .i_addr(address_loop),
 ...
);

The included files contain all of the remaining code, including a full testbench.

8

	1. Introduction
	1.1. Take-Away

	2. The Design Stage
	2.1. The First Steps
	2.1.1. Elastic ROM
	2.1.2. The Control

	2.2. Inputs and Outputs
	2.3. Reset

	3. Addressing the Two Cases
	3.1. Case I: Internally close the loop
	3.1.1. Synthesize the Design
	3.1.2. Fixing The Verilog
	3.1.3. Generalizing the Problem and Solution

	3.2. Case II: Externally close the loop

