
Implementation of Multi-Threaded MSP430
CPU Revision 1

Abstract
This realization of a multi-threaded MSP430 processor is based on a latency tolerant
process model. Generally, process network models are mainly used to represent large
distributed heterogeneous systems. However, the capability to allow function
isolation and structured sequential relationships benefits even a tiny embedded
system. In this report, the design of a multi-threaded MSP430 is described. This
design is traced from planning through optimization of a single-threaded core with 2,
3, 4 multi-threaded capability. An overview of the design planning, architecture,
behavioral specification and optimization are presented with an eye towards a simple
multi-threaded extension of the basic design. The final results show that the multi-
threaded MSP430 achieves higher throughput than TI’s MSP430.

1 Introduction

Embedded systems are dominated by tiny microcontrollers typically characterized by
simple serial architectures. A common theme in such systems is the requirement for
real-time constraints on the system execution. This must be accomplished at minimal
cost and for many practical designs obviates multi-core techniques. Indeed, the usual
case for embedded systems is the notion of “adequate” performance – i.e. one that
meets the real-time requirements in all cases. There is little if any benefit to higher
than adequate performance.
One way to meet such goals is to build a hardware multi-threaded architecture. The
basic idea is to provide a few copies of the processor context which are dynamically
used to enable instruction-level switching of activity from one context to another. A
common scheme would be to have a fixed number of copies of the processor
context, one for each co-executing process (or thread). Instructions for each of the
contexts are executed on a simple pipeline with instructions from each context
interleaved dynamically. The point of this effort is to greatly increase the flexibility of
the processor as to which context is currently executing. Since there are several
stored execution contexts, context switching overhead is virtually eliminated. A
second benefit is that the pipeline can often be substantially simplified since the next
instruction to be executed is likely not to be from the current context, and thus not a
possible source of pipeline hazard.
In the following, we shall describe the basic design ideas and organization for this
version of MSP430 which is extended to support up to 4 simultaneous processes
executing in parallel. First, the overall design is presented, then a simple single-
thread version is described followed by a multi-threaded version.

2 Major Concerns of Multi-threaded designs

Usually, “multi-threaded” means dispatching and/or executing multiple instructions
concurrently. However, in this particular multi-theading MSP430 design, only single
instruction dispatch is supported. This reduces complex modifications to the existing
design while allowing much higher performance – without the cost of multiple in-
flight instructions per thread which requires complex analysis of data hazards
resulting from memory-based operands. The multi-threaded msp430 is an
interleaved pipeline and uses single-instruction-issue. Instructions are selected from
a possibly different thread every cycle. This strategy provides implicit data path
sharing and eliminates data dependencies between consecutive instructions,
alleviating many costly stall conditions and providing better utilization of processor
resources. A memory-mapped infrastructure is used throughout the multi-threaded
MSP430, reducing design complexity by providing a uniform interface to system
peripherals and memory. Figure 1 gives an example of how this multi-threaded
MSP430 reduces data hazards.

Figure 1 multi-threaded design reducing data hazards created by in flight instructions
in one thread

Thread 1 first writes to Register R14 and the next instruction reads R14. The second
compare instruction CMP which reads R14 cannot proceed until previous instruction
gets completed. This is called read after write data hazards. However, if multiple
threads are used, following the execution of MOV in thread 1, instead of dispatching
CMP, the addition instruction ADD in thread 2 is issued. By the time the CMP
instruction of thread is issued, its previous move instruction already proceeds one
clock cycle and reduces stalling cycles of the CMP instruction of thread 1. If more
threads are used and they are interleaved, then more data hazards can be avoided.
The main considerations of a multi-threaded design are listed below.
1. Architecture

A memory-mapped infrastructure is used throughout the design, reducing design
complexity by providing a uniform interface to system peripherals and memory.
By supporting interleaved multi-threading, this new design provides implicit
sharing of data path resources for increased throughput and low-latency
response to dynamic events. Instead of using the dispatch unit in a single-thread
MSP430 design, a custom thread scheduler is used and dynamic interrupt
handling is implemented inside that scheduler.

2. Pipeline
The event-driven nature of embedded systems means that control flow will
change often and unexpectedly; a successful system should minimize the
overhead of these transitions. One approach is to use a dynamic pipeline which
executes instructions in anywhere from one to several cycles. PyTDL, explained in
detail in the reference guide, allows a straightforward path for realizing
interlocked pipelines that are readily extensible and lead to high-performance
implementations.

3. Schedule
Instead of a conventional dispatch unit, a thread scheduler is used to support
multiple concurrent streams of execution. This multi-threaded scheduler is a
best-effort, round-robin scheduler targeting balanced execution among threads
(no starvation). A round-robin scheduling policy is utilized based on the last
dispatched thread, the pool of active threads, and the state of interrupts.
One challenge of adding multi-threading to a single-threaded system is thread
initialization, as each processor context has no direct access to any other. To
facilitate this process, the scheduler provides initialization registers which are
used when a thread has yet to execute. Modifications to the execution state,
history flags and the target instruction address allow any thread to modify the
execution flow of another context. The ability to begin execution at a specified
function enables thread-based activation of arbitrary code segments.
System execution always begins in thread zero which enters program code at the
beginning of memory. This thread is effectively used to bootstrap the initialization
of other threads. Shared memory provides an easily-used communication
channel for information passing between threads. This is of particular importance
during thread initialization, where an appropriate address for the stack pointer
must be established to avoid memory corruption. On acceptance of an interrupt,
the scheduler overrides the round-robin policy, scheduling the interrupt at the
soonest possible time.

4. Memory
To reduce the programming complexity, a uniform interface to peripherals and
memory is used. This allows our controller to handle a large number of different
on-chip structures without requiring specialized design. Memory-mapping serves
to reduce complexity stemming from otherwise necessary custom instructions
and component interconnect. From an implementation standpoint, this
methodology reduces the overhead of adding custom peripherals and control
elements since interfacing requires no additional hardware. The use of a common
memory for process context information and data will have performance
consequences later in this design.

5. Instruction Fetch
Many available microcontroller devices provide embedded memories for both
program and data. Some devices, such as ARM, use a boot-strapping technique to
move program code from non-volatile memory to volatile memory before
beginning execution of the main program. With multi-threading, one of the

concerns is the increased pressure on instruction fetch. Many of the embedded
applications are very small, on the order of hundred of bytes, and can be pulled
completely on-chip. The ability to do single cycle access to all of memory greatly
improves processor throughput when compared to the penalties incurred from
instruction cache implementations and external memory access. In this multi-
threaded MSP430 design, all the code is stored in ROM.

6. Thread Context
This multi-threaded msp430 design implements unique contexts for all of its 4
hardware threads. Each context consists of a 16-bit wide register file, status
register, program counter, and stack pointer. Similar to TI’s msp430, this new
design provides 11 16-bit general purpose registers. Rather than implement
independent register files for each thread, a uniform memory can be optimized
for speed, area, and locality with data path components. Utilizing the thread
identifier as part of the register file address provides a straightforward method
for accessing and updating data with very little added complexity.

3 Design Planning and Behavioral Specification

The design flow begins by identifying major design components. A primary goal of
this design is that the core be self-contained so as to be amenable to multi-core
implementations. Creating interface boundaries between memories and the
functional core aids subsequent modification to the design. For example, multiple
cores could be implemented with shared memory by simply adding arbitration on the
interfaces – a change that should not require modification to the core design.
Given the behavior of multi-core and multi-threading, it is natural for memory
interfaces to become execution bottlenecks of this MSP430 design. Careful
observation shows that arbitration can be handled better at a lower level where
memory activity timing can be more precisely accounted for. Consider the case
where two threads are executing concurrently. The first thread has issued a read
request to the memory and is stalled waiting for completion and the second thread is
sending a write request to the same memory. If implemented as a shared memory,
the second thread cannot proceed before the completion of the first thread.
However, if the memory unit is constructed as a pair of read and write interfaces, the
memory can allow the write to proceed in parallel with the read operation. Figure 2
gives the diagram.

Figure 2. Comparisons of concurrent memory requests between a single shared

memory interface and a read/write pair interface.

To facilitate the above memory interfaces, both memory and register file arbitration
are constructed in Verilog HDL – a limitation of the current PyTDL implementation is
that control observation occurs only in the previous cycle of activity. A Verilog RTL
arbiter design however, allows multiple interfaces and memory state to be
considered when making arbitration decisions. Furthermore, deterministic timing of
these low-level interfaces is necessary to ensure design efficiency. To facilitate the
accommodation of multi-threading and multi-core, the dispatch unit is separated
from the core design.
The system is divided into four major compoents: the dispatch unit, the processor
core, the register file and the memory. Figure 3 depicts the relationships between
these four major components where the processor core interfaces to the register file
and memory through read/write interface pairs. Though all interfaces to the core
unit must respect the valid/stall control communication scheme, only the core is fully
latency tolerant.. In factor, the organization allows the core to be considered as a
variable latency function with old program counter (PC), stack pointer (SP), status
register (SR) as inputs and new PC, SP, SR as outputs, shown as {PC’, SP’, SR’} = core
(PC, SP, SR).

Figure 3 relationships between major components

3.1 PyTDL implementation of the processor core

System behavior in PyTDL is best described through a set of atomic behaviors and
their causal connections represented using token-based control flow. Thus the
starting point of PyTDL design is to decompose the core behavior into a subset of
behavioral modules based on their causal relationships. Before we go into the actual
design, let’s first take a look at the architecture of the processor core.

3.1.1 Processor core Architecture
The MSP430 supports 27 core instructions and 24 emulated instructions. The core
instructions are instructions that have unique op-codes decoded by the CPU. The
emulated instructions are instructions that make code easier to write and read, but
do not have op-codes themselves. Instead they are replaced automatically by the
assembler with an equivalent core instruction. The actual instruction execution flow
is shown in Figure 4.

Figure 4 instruction execution flow of the MSP430

Although the control seems to be simple based on high level description of the
execution flow, it is deceptive. In fact, there are seven different addressing modes for
the source operand (having different timings) and four different addressing modes
for the destination operand. Handling these modes in a traditional pipeline would
require execution division such that common functions could be extracted from
instructions and assigned to specific stages. For instance, memory and register file
access typically occur in specific stages, preventing architectural hazards that would
impede pipelining. Moreover, a fixed-length pipeline would require many stages to
accommodate the available addressing modes, because variant addressing modes
result in variant instruction execution cycles. In PyTDL however, pipeline architecture
is synthesized and execution path is dynamic. Designs of this style are quite different
from those of conventional fixed-length pipelines, requiring different methods to
determine architectural latencies.

3.1.2 Processor core specification
A full description of the core specification can be found in TI’s website. Here we give
a description PyTDL particular token flow for a single operand instruction. Figure 5
shows the actual token flow. Following the diagram in Figure 4, the core specification
is further decomposed such that each sub module, represented as nodes in Figure 5,
corresponds to a PyTDL atomic behavior. At node the behavior is then elaborated,
defining requesite stages for the sequential token flow.
The core execution starts at the instruction fetch node where a memory read request
is sent out with address specified by the program counter (PC). The instruction fetch
node is replaced by the cycle module, triggered by the external world, for example,
an interrupt. The cycle module generates a read request to the ROM through
tRomRead token to fetch the instruction. Inside the cycle module, tFetch token is
created to establish the pipeline flow and pass values of PC, SP and SR down the
pipeline. tRomReadDone signals the completion of ROM read and is sequentially

analyzed by romReadDone behavior which generates tInstructionReady token. The
tInstructionReady token along with tFetch token triggers the decode behavior where
instructions get decoded. The decode behavior processes the instruction by
inspecting their instruction formats. If it is a jump, it flies to the end of the execution
through the creation of tCommit token and increases the PC by 2 or adjusts PC to the
new destination depending on whether the condition is satisfied. Otherwise it checks
the source operand no matter it is a single operand or double operand, because
MSP430 microcontroller is designed to calculate the source operand first for a double
operand instruction. Calculation of the destination operand may be based the value
of source operand.
If the source operand is PC, SP or constant generator, which can be obtained directly
from the corresponding register, control flow is routed to the rsGetRegDone behavior
through the creation of token tRsIsInternal. Otherwise the source operand is indexed
addressed and a register read request is generated through the creation of token
tRegRead and token rRsRegWait is created to establish the internal control path.

Figure 5 Actual token flow of the PyTDL design of the MSP430

In contrast to ROM Read, a register read request token is tagged to disambiguate the
control path when the register read is completed. This is because multiple behaviors
make register read requests via token tRegRead. This tagging method is the
application of the context-aware concept, which allows local indeterminism but
guarantees determinism of the whole system. Once register read is completed,
tRegReadDone token with an associated tag is created and processed by the
regReadDone behavior which routes the control to rsRegDone behavior through
token tRsRegReadDone. The arriving of tRsRegReadDone and rRsRegWait indicates
register operations for the source operand are comleted and register values are
passed down as pipelined data members.
Regardless of how the source operand is obtained, the control converges to
rsGetRegDone behavior. If the source is directly addressed or is a constant value or is
in the PC auto-increment addressing mode, token tRsRegDone is created. Otherwise
the source is indexed addressed and a memory read request is generated through
token tMemRead. Similar to token tRegRead, token tMemRead/tMemWrite has an
associated tag value to disambiguate the control path, because memory is read or
written by multiple atomic behaviors. The last thing that rsGetRegDone needs to take
care is the write-back to register file if the source operand is auto-increment
addressed.
Source operand retrieval completes when control reaches the rsReady module. If the
instruction is a single operand instruction, then the instruction result is calculated
and memory/register writeback is initialized. Otherwise fetching of destination
operand begins. The process of fetching the second operand is similar to the fetching
of the source operand and is a little bit easier, because there are only four addressing
modes for the destination operand. After both operands have been fetched, the
result is calculated and memory/register writebacks are initiated. Both single and
double operand instructions signal completion via toke tCommit. The commit
behavior calculates new values of PC, SP and SR for next round execution.

4 Optimization

After seeing the token-based flow of this PyTDL design of the MSP430, one might
argue that this design must have really long execution clock cycles. Indeed, some
instructions where both source and destination operands are indexed addressed
require more than 20 clock cycles. The token-heavy PyTDL design provides great
design flexibility by sacrificing system performance. However, the number of tokens
used in the design is always decided by the designer. One could write an alternative
specification for the core unit where tokens were only used at interface boundaries
to facilitate communication with external components. Specifying the core that way
can decrease the number of clock cycles to execute some instructions, but the
readability decreases too.

4.1 Optimization through functional composition.
Instead of using fewer tokens in specification description, one can “short” tokens

during optimization step through a constraint file without changing PyTDL
specification, thus maintaining the same readability. Shorting tokens means
selectively removing pipeline buffers by composing functional behaviors. A shorted
token becomes a pure combinational function, but still obeys SELF protocol to
provide valid/stall interface. For comparison, we use a 16-bit CRC algorithm along
with a mix I/O for reporting results and progress. The results without and with
optimization are list in table 1.

Table 1 CPI characteristics of the core unit with and without token shorting
optimizations for Flip-flop

Description Shorted Tokens Throughput Latency per
instruction

Baseline None 0.071 12.1
Memory/register
file routine

tRsMemReadDone,
tRdMemReadDone,
tRetiSrMemReadDone,
tRetiPcMemReadDone,
tRsMemWriteDone,
tRdMemWriteDone,
tIntPcMemWriteDone,
tIntSRMemWriteDone,
tRsRegReadDone, RdRegReadDone,
tRsRegWriteDone, dRegWriteDone,
tIncRegWriteDone

0.081 10.4

Memory/register
file and internal
routing

tRsMemReadDone,
RdMemReadDone,
tRetiSrMemReadDone,
tRetiPcMemReadDone,
tRsMemWriteDone,
RdMemWriteDone,
tIntPcMemWriteDone,
tIntSRMemWriteDone,
tRsRegReadDone, RdRegReadDone,
tRsRegWriteDone,
RdRegWriteDone,
tIncRegWriteDone,
tInstructionReady,
tIntMemReadDone,
tRsIsInternal, tRsRegIsDone,
tRdRegIsDone, tRdRegDone,
tRsRegDone,tCommit, tDone

0.118 6.3

48-bit instruction
fetching

the same as above 0.123 6.1

Without optimization, the throughput is very low and instruction latency is very long.

The first optimization is carried out by composing post operation routing of memory
and register file results. Token-shorting in memReadDone and regReadDone
behaviors is the example. By shorting tokens created in these behaviors results in the
routing function inlined with subsequent behaviors. This optimization improves
throughput by 0.01 and decrease latency by 1.7 clock cycles on average.
The second optimization adds shorting of internal tokens and further improves
throughput by almost 0.04 and decreases latency by almost 4.1. Thus the total
throughput improvement is 0.05 and latency improvement is almost 6 clock cycles.
In addition to affecting the sequential depth on instruction execution, token shorting
may affect both maximum clock frequency and design area. When a token is shorted,
the corresponding buffer is removed from the circuit, contributing to a buffer area
reduction. When a token is shorted, the resulting combinational function is added to
its sequential behavior, resulting in larger and deeper combinational circuits, which
may potentially increase the critical path and thus increase minimum clock period.
Design vision from Synopsys will be used to synthesize the design and tradeoff
among throughput, latency per instruction, maximum clock frequency and design
area will be shown. These results will be updated later.

4.2 Optimization through instruction Fetching
In the MSP430, instruction length varies from one 16-bit word to three 16-bit words.
A double operand instruction may need as many as 3 16-bit words if both source and
destination operands are indexed addressed. Instead of accessing these additional
words on a by-need basis, the core unit could always fetch 48-bit data to
accommodate all potential instruction lengths. However, 48-bit data does not align
well, so instead, a 64-bit interface is used to facilitate the alignment of 48-bit data.
This is implemented through two 32-bit wide ROMs. To accommodate this in RTL
would need lots of changes to state machines and functional interfaces. In PyTDL, it is
easy to implement by extending the Instruction object to allow named access to
these new fields along with a ROM interface which is around 50 lines. Figure 6 shows
the organization of the two interleaved ROMs, where data is represented in
hexadecimal mode.

Figure 6 division of a 32-bit ROM into two 32-bit ROMs each with half space

The whole ROM space can be seen as the interleaving of the low ROM and the high
ROM. The trick to guarantee correct execution and fetch length-variant instruction in
one cycle lies on the novel use of the three least significant bits of the address.
Depending on the address, the arbiter can access 2 different 64-bit chunks by

addressing the high 32 bits different than the low 32 bits. For instance, the arbiter
can access either [B3B2B1B0 A3A2A1A0] or [C3C2C1C0 B3B2B1B0]. Then the lower 2
bits are used to index into the 64-bit chunk to return a 48-bit value. The possible
results for the 48-bit value can be B1B0A3A2A1A0, B2B1B0A3A2A1, B2B3B1B0A3A2,
0B3B2B1B0A3, 00B3B2B1B0.
Due to the infrequency of indexed addressing in this CRC algorithm, this optimization
strategy only shows a very slight throughput improvement and latency decrease. The
reason is because multi-word instructions are not very often in CRC algorithm
implementation.

5 Adding multi-threading

Inspired by the design and implementation of JackKnife architecture, which shows
that multi-threaded has quantifiable hardware and software benefits, we incorporate
multi-threaded to single-threaded MSP430 design.
This implementation of multi-threaded MSP430 requires only 10 extra lines to the
core description in PyTDL to specify thread identifier of the inputs and outputs for
register read and write requests, due to the face that each thread has its own register
space. Another modification is the replacement of the dispatch unit with a threading
unit which performs thread scheduling and maintains PC, SP, SR context for each
thread. The threading unit also provides a memory mapped interface to these
register values as well as a register designating state: idle or active. Depending on
design needs, thread registers can be mapped to different peripheral range of the
MSP430.

Figure 7 Architecture of Multi-threaded MSP430 design

One test case for this multi-threaded msp430 is based on the CRC algorithm. Each

thread is running on a CRC algorithm independently and instructions are interleaved
from the beginning of thread activation. Table 2 shows the results of the design
which is optimized with 48-bit instruction fetch and maximum token shorting.

Table 2 Results of multi-threaded MSP430 running on the CRC algorithm
Num of thread Throughput Latency per instruction
1 0.123 6.1
2 0.243 5.9
3 0.347 6.1
4 0.427 6.3

It is expected that the addition of multi-threading should provide significant
improvement to processor utilization by filling the substantial waste created by
single-instruction-issue execution. Moving to 2 threads is shown to increase average
throughput by almost 2x while 3 threads provides a 2.8x improvement and 4 threads
provides a 3.5x improvement. The fact that throughput improvement is not
proportional to the number of threads is because by adding more threads the critical
path becomes longer.
By adding more threads to the design, area and clock frequency are subject to
change. These will be verified later. However, we estimate little area increase and
little decrease of maximum frequency because the code change to add multi-
threading to the design is very small, comparing to the size of existing design.

6 Interrupt

Efficient use of system resources often necessitates the use of interrupts. One
characteristic of interrupt is the interrupt latency. AVR interrupt routines typically
require prologue and epilogue code as long as 17 instructions, totally 4 clock cycles.
This long interrupt latency is partly because there is no hardware support for fast
interrupt context switching. In contrast, this multi-threaded msp430 design provides
zero-cycle context switching through priority scheduling and dedicated interrupt
service threads (IST). ISTs allow user code to be executed immediately, without the
overhead of prologue and epilogue code. Table 3 summaries the interrupt response
time of this multi-threaded msp430 design.

Table 3 Interrupt response time w/o dedicated IST
 With dedicated IST Without dedicated IST
Scheduling algorithm Round robin Priority

scheduling
Xxxx

Interrupt response time
(# of clock cycles)

n/2 1 17 * (clock cycles per
instruction)

Table 3 shows that with a dedicated IST, the interrupt response time is either 1 clock
cycle or n/2 clock cycles depending on which scheduling algorithm is used where n is
the number of threads. However, without a dedicated IST, the average interrupt

response time is the execution time of 17 instructions, with most of the instructions
being push and pop, according msp430-gcc stack point standard. Because of the one
instruction response time, the interrupt timing jitter is fundamentally reduced.

7 Peripheral

The embedded domain comprises of many different applications requiring
integration with various component types. Because the peripheral sets of
commercial devices are fixed, families of devices are typically offered with varying
peripheral sets and memory sizes. It is often the case that these predetermined
peripheral sets are not well suited to a particular design. Similar to the JackKnife
design, this multi-threaded MSP430 provides the ability to customize system
peripherals for a given application. Central to this capability is an extensible bus
architecture that links the processor core to both data and I/O memory. This decision
to fully support a memory-mapped infrastructure allows integration complexity to be
masked, and provides a uniform interface to all system components. All peripheral
modules adhere to a common bus policy in which write and read requests are
specified as single-cycle operations. One extension to this design is to support the
use of memory wait signals for slow memory devices. However this extension has the
potential to create more stall cycles.
One specific aspect of TI’s MSP430 design is that the multiplier is implemented as a
peripheral. In this multi-threaded MSP430 design, we do the same thing. Table 4
shows the test results for Fast Fourier Transform (FFT) algorithm.

Table 4 Results of FFT implemented in multi-threaded MSP430 design
Num of threads Throughput Latency per instruction in clock cycles
1 0.124 6.0
2 0.246 5.9
3 0.349 6.0
4 0.428 6.1

Results in table 2 and table 4 shows that operation overhead does not increase with
the multiplier included. This is because in the design, peripherals are made to share
the common bus policy where read and write requests are single-cycle operations --
the same as memory read/write requests.

8 Conclusion & Future Work

In this paper, we talked about the implementation of a multi-threaded MSP430
design using PyTDL and showed the results. Through token-shorting and instruction
fetch optimization strategies, the throughput of the design goes up to 0.42
instruction per clock cycle. It is expected that subsequent revisions will achieve
better performance through greater optimization of both control and functional
partitioning. Many such optimizations are possible given the flexibility of PyTDL's

design paradigm.
To make this multi-threaded MSP430 of industrial value, more thorough tests are
needed. One approach is to use some MSP430 simulators to randomly test the
design. An extension of the current multi-threaded MSP430 is to make the entire
processor latency insensitive. RTSC created by Bob Frankle from TI, provides the
software platform for multi-threading tests. Eventually we are going to synthesize
this multi-threaded MSP430 design onto a FPGA board to emulate it, or even build a
full customized design.

