Homework \#3

Due Wed at beginning of class.

Reading: Handout (especially "more techniques")
Ref: Ma 5a Text

1. Find general solutions for the following linear differential equations: Hint: if you can't make the equation into a known form, try to substitute $u=f(x)$ for some $f(x)$ to make a simpler problem.
a. $y^{\prime \prime \prime}-2 y^{\prime \prime}-3 y^{\prime}=0$
b. $y^{\prime \prime}-y^{\prime}=x^{2}$
c. $x^{2} y^{\prime}+y^{2}=x y y^{\prime}$
2. Find a nonzero solution of the equation: $\quad y^{\prime \prime}-4 y^{\prime}+x^{2}\left(y^{\prime}-4 y\right)=0 \quad$ by inspection, then use the theorem from last homework to find a solution of:

$$
y^{\prime \prime}-4 y^{\prime}+x^{2}\left(y^{\prime}-4 y\right)=2 x e^{-\frac{x^{3}}{3}}
$$

such that $\mathrm{y}=0$ and y ' $=4$ when $\mathrm{x}=0$. Hint: it is easy to find the first solution -- then use it to make a first order equation for the other soluion...
3. Consider the resonant RLC circuit from the notes subjected to a sinusoidal 'drive' as follows:

$$
v^{\prime \prime}+\frac{R}{L} v^{\prime}+\frac{1}{L C} v=\sin (\alpha t)
$$

a. Since this is a linear second order equation, find the general solution by adding a particular solution to the solutions from the notes.
b. Plot $v(t)$ for the case $\mathrm{R}=0.1, \mathrm{~L}=0.01, \mathrm{C}=0.01$, and alpha is 1000 , for $\mathrm{t}=0$ to 0.03 sec , given $\mathrm{v}(0)=0, \mathrm{v}^{\prime}(0)=100 \mathrm{~V} / \mathrm{sec}$. (You might want to use a computer for this....)

