CHAPTER 2

FUNCTIONS OF A COMPLEX VARIABLE

2.1 COMPLEX NUMBERS

In the course of study of roots of algebraic equations and in particular the cubic
equation, it has been found convenient to introduce the concept of a number
whose square is equal to —1. By a well-established tradition, this number is
denoted by i, and we write i?> = —1 and i = v/—1. If we allow i to be multiplied
by real numbers, we obtain the so-called imaginary numbers* of the form bi (where
b is real). If the usual rules of multiplication are extended to imaginary numbers,
then we must conclude that the products of imaginary numbers are real numbers;
moreover, their squares are negative real numbers. For instance,

Bi)(—4) = B)(—4)i* = (—12)(—=1) =
(=502 = (=5)%? = =25.

If imaginary numbers are adjoined to real numbers, we have a system within
which we can perform multiplication and division (except by zero, of course).
We say that such a system is closed under multiplication and division. However,
our system is not closed under addition and subtraction.t To eliminate this de-
ficiency, so-called complex numbers are introduced. These are numbers which are
most often written in the form

a—+ bi (a, b = real numbers)

and are assumed to obey appropriate algebraic rules. As will be shown below,
the system of complex numbers is closed under addition, subtraction, multiplica-
tion, and division plus the “‘extraction of roots’ operation. In short, it has all the
desicable algebraic characteristics and represents an extension of the real number
system. The study of complex numbers is invaluable for every physicist because
the description of physical laws is much more complicated without them.

* Imaginary numbers are also called pure imaginary numbers to stress the distinction from
the more general case of complex numbers. The name originated from the belief that
imaginary numbers, as well as complex numbers, do not represent directly observable
quaritities in nature. While this point of view is now mostly abandoned, the original
nomenclature still exists.

+ The system is not closed under the operatlon of extraction of the square root either;
for example, V/i is neither real nor (pure) imaginary.
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2.2 BASIC ALGEBRA AND GEOMETRY OF COMPLEX NUMBERS

If complex numbers are written in the usual form a + ib (or a + bi) then the usual
algebraic operations with them are defined as follows.

1. Addition:_

(ay + iby) + (a; + iby) = (Cl + az) + i(by + by).

2. Multiplication:
(ar + iby) " (az + ibs) = (aras — biby) + i(a by + asb)).

The second rule is easy to follow if we recognize that the expressions a + /b are
multiplied in the same manner as binomials, using the distributive and associative
laws, and /2 is replaced by — 1.

Complex numbers of the form a + /0 are tacitly identified with real numbers
since they obey the same algebraic rules and are generally indistinguishable from
each other* Complex numbers of the form O + ib are then (pure) imaginary
numbers. It is customary to write simply a + i0 = a and 0 + ib = jb. Sub-
traction of complex numbers can be defined as inverse addition so that if

(ay + iby) — (az + ibs) = x + iy,
then
a, + iby = (x + iy) + (az + iby)

from which it follows thatt
X = 4a; — ds and y =.b1 — b,.
An alternative is to form the negative of a complex number,
—(@a+ib) = (—a+ ib) = (=1 + 0)a + ib) = —a — ib,

and reduce the subtraction to addition.
The rule for division can be similarly deduced by inverting the multiplication.
A shortcut method is given by the following technique:

a+ib a4+ ibc—id (ac 4+ bd) + i(bc — ad)

c+id c+idc—id c2 + d?
_ac+bd |, .bc — ad 2 2
_c2+d2+lc2+d2 (c” + d* # 0).

It is readily seen that the divisor can be any complex number except zero (namely
the number 0 + /0, which is unique and is written simply 0).

* In a more rigorous language, “‘the subset of complex numbers of the form a + 0 is
isomorphic to the set of real numbers under the correspondence a + 0 < a.”

T It is tacitly postulated that x; + iy; = x2 + iys ifandonly if x; = x2and y; = y2.
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Remarks

1. The addition of complex numbers obeys the same rule as the addition of vectors in
plane, provided a and b are identified with components of a vector. Note, however, that
the multiplication of complex numbers differs from the formation of dot and cross
products of vectors.

2. The use of the symbol i and the related binomial a + ib is conventional, but not

indispensable. It is possible to define a complex number as a pair of real numbers,
(a, b), obeying certain peculiar rules, e.g., the multiplication can be defined by

(ala bl)(029 b2) = (a1a2 - b1b2’alb2 + a2b1)’

and so on. It should be clear that the form a + ib is just a representation of a complex
number.

It is customary to represent complex numbers by points in the so-called com-
plex plane, or Argand diagram (Fig. 2.1). If we denote the complex number
x + iy by a single symbol z and write z = x + iy, then to each z there cor-
responds a point in the complex plane with the abscissa x and the ordinate y.
This idea also leads us to the zrigonometric representation of a complex number:

z = r(cos @ + isin 9),

where r = \/x2 4+ y2 and tan8 = y/x. In
this representation r is unique (positive square
root) but 6 is not. A common convention is to

demand that} 5 f . »Re
—r <6< m Real axis

Im
4 P z=x+iv

)/

Imaginary axis

along with the standard rule of quadrants, - Figure 2.1
namely, § < 0if y < O.
The following nomenclature and notation will be widely used: If

z=x+1iy = r(cosf + isin6)
then
x = Rez is the real part of z,
y = Imz 1is the imaginary part of z,

r=|z| is the modulus of z, also known as the magnitude
or absolute value of z, '

6 is the argument of z, also called the polar angle or phase.}

The number x — iy is called the complex conjugate of the number z = x + iy
and vice versa. We shall denote it by z*. We can say that z and z* represent (on
the complex plane) the reflections of each other with respect to the real axis.

t Another commonly used convention is 0 < 6 < 2.
I A more precise name for § would be the “principal value of the argument of z” (see p. 57).
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Remarks

1. The quantity zz* is always a nonnegative real number equal to 2|2 or to |z*|2 (which
are the same).

2. The quantity z + z* i$ always a real number, equal to 2 Rez or to 2Re z* (which
are the same). ,

3. The rules (z1 + z2)* = 2% + 2% and (z1z2)* = z%z% are evident and should be
remembered. ’

Figure 2.2

Because complex numbers obey the same addition rule that applies to vectors
in a plane, they can be added graphically by the parallelogram rule (Fig. 2.2a).
Conversely, vectors in a plane can be represented by complex numbers. The
scalar product of two such vectors can be obtained by the rule

(2, - 23) = Re (z125) = Re (2123),

where it is understood that z, and z, are vectors corresponding to complex num-
bers z, and z, respectively. The vector product can be obtained in a similar
fashion:

21 X 25] = Im (£1z2) = —Im (2222).
Exercise. Verify the validity of the above rules for scalar and vector products.

In the theory of complex variables, the expression |z; — Zg| is often used.
According to Fig. 2.2(b) this quantity (modulus of the complex number z; — Z9)
is equal to the distance between the points z; and z2 in the complex plane. It
follows that the statement |z — zo| < R (which often occurs in proofs of various
theorems) means geometrically that point z is within the circle of radius R drawn

around the point z, as a center (i.e., z is in the R-neighborhood of z,; see p. 16).
The following two inequalities are easily proved from geometrical considerations:

1. 2y + 29| < 2| + [22]-
(A side of a triangle is less than or equal to the sum of the other two sides.)

2. lz1 = 22| 2 llza] = |25

(The difference of two sides of a triangle is less than or equal to the third side.)
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Remark. 1t should be emphasized that inequalities can exist only among the moduli of
complex numbers, not among the complex numbers themselves. A complex number
cannot be greater or smaller than another complex number. Also, there are no positice
or negative complex numbers.

2.3 DE MOIVRE FORMULA AND THE CALCULATION OF ROOTS

While addition and subtraction of complex numbers are most easily performed
in their cartesian form z = x 4+ iy, multiplication and division are easier in
trigonometric form. If z; = ry(cos 6; 4 isin 6;) and z; = ry(cos 8, + isin 65),
then elementary calculation shows that

z21Zg = ryrafcos (61 4+ 62) + isin (6; 4+ 6,)]

with the provision that if §; + 6, happens to be greater than =, or less than or
equal to —=, then the amount 27 should be added or subtracted to fulfill the
condition —7 < (6; + 65) < .

Remark. It should be emphasized that even though cos (0 &= 27r) = cos8 and
sin (§ == 2r) = sin §, the value of 6 is supposed to be uniquely specified. This will be-
come evident when 6 is subjected to certain operations, e.g., in the course of evaluation
of roots. The convention —r < 8 < 7 is not the only one possible, but some convention
must be adopted and ours is just as good as any other.

Using the same trigonometric identities as in the above multiplication rule,
we can also obtain the so-called De Moivre formula:

(cos 6 + isin 6)" = cos nf + isin né (n = integer).

Thus we now have the general rule for calculating the nth power of a complex num-
ber z. 1If z = r(cos 6 + isin §), then z* = R(cos ¢ + isin ¢), where R = r" and
¢ = nf £+ 2rk with the integer k chosen in such a way that — 7 < ¢ < .

The rule for calculating the nth root of a complex number can now be derived
without much difficulty. If z = r(cos 8 + i sin 8), then the complex number

wo = V'r (cosg + isin Q) Im
n n

4

is definitely the nth root of z because
ws = z. However, this is not the only nth
root of z; the numbers

k= V'r <cos 0+ 2mk +n27rk + isin 8+ Zmk +n27rk> )

R=<'r Principal root
— Re

where k = 1,2,3,...,(n — 1), are also
nth roots of z because w} = z. It is Figure 2.3
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customary to call the number wo the principal root of z. The nth roots of a complex

number z are always located at the vertices of a regular polygon of n sides inscribed
in a circle of radius R = /r about the origin (Fig. 2.3).

Exercise. Verify that all possible roots of a complex number z are given by the above
formulas. Show that all complex numbers except one have exactly n (different) nth-order
roots. Which complex number is the exception?

2.4 COMPLEX FUNCTIONS. EULER’S FORMULA

Complex numbers z = X +4 iy may be considered as variables if x or y (or both)
vary. If this is so, then complex functions may be formed. For instance, consider
the equation w = 22 Ifwewrittez=x+iyandw = u + iv, it follows that

u=x2—y% v=2xp

From this we conclude that if w is a function of z, then u and v are, in general,
functions of both x and y. Thus we are dealing with two (independent) real
functions of two (independent) real variables.

Im

z-plane

X == ez=1+i
- W /
| e > Re ’ / Invariant point
| —v‘/ 4’/ — Re
-=-—1 i -=1
Figure 2.4 Figure 2.5

Graphical representation of complex functions poses a problem since we must
deal with four real variables simultaneously. The idea of mapping is most com-
monly used. Two separate complex planes, the z-plane and the w-plane, are
considered side by side, and a point zg is said to be mapped onto the point
wo = f(zo). For instance, formula w = z2 maps z, = [ onto Wy = 2= —1;
it also maps zo = 1 4+ ionto wp = 2i, z3 = 1 onto w3 = 1, and so on. This 1S
illustrated in Fig. 2.4, where it is also indicated that the horizontal line y = 1
in the z-plane is mapped onto the parabola v = 2v/u + 1in the w-plane. Some-
times it is convenient to superimpose the two planes. Then the images of various
points are located on the same planc and the function w = f(z) is said to trans-
form the complex plane into itself (or a part of itself), as in Fig. 2.5, for the same
function w = z2.
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Exercise. Show that the function w = iz represents counterclockwise rotation of the
complex plane by 90°. How would you describe a rotation by 180°? How would you
describe a clockwise rotation by 90°?

Algebraic functions of a complex variable are defined by algebraic operations
which are directly applicable to complex numbers. Transcendental functions,
however, may require special definitions. Consider, for instance, the exponential
function e® (real x). Its basic properties are

1. ex1te = ele®2, 2. (&%) = e*".

It is desired to define a complex exponential function e* with the same proper-
ties. Write z = x + iy; then
et = ez+iy = exeiy.

The quantity e® is a well-defined real number, but how shall we define e?
One possible method is as follows: Assume that e can be represented by the
usual power series

2 3
vo g+ @@

Then, rearranging the terms, we have

‘ 2yt 3 5
ezy=<1___+ >+l< —%!_ %_>

= cosy + isiny.

The validity of this procedure can be established after the development of the
theory of convergence for complex series. However, at this stage we may simply
define the function e*¥ by means of

e’ = cosy + isiny.
This is Euler’s fo}mula. The desired properties,
ity — ez (pW) = o™ (n = integer),
follow from the identities

(cos y; + isiny)(cos ya + isinyg) = cos (y; + y2) + isin (1 + y2)

d . . ..
an (cosy + isiny)" = cosny + isinny.

The definition of a complex exponential function is then given by the formula
e’ = e*(cosy + isiny)

which has the desired properties and reduces to the real exponential function if
Imz = 0.
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2.5 APPLICATIONS OF EULER’S FORMULA
Euler’s formula leads to the compact polar representation of complex numbers,

z = x+ iy = r(cos 8 + isinf) = re®d.

Suppose that a complex number z is multiplied by e**, where a is a real con-

stant. Then
eiaz — rei(ﬂ-{*a)'

The new number can be obtained by rotating the point z about the origin by an
angle «. This fact has many important applications.

Euler's formula also permits the description of sinusoidally varying real
quantities by means of complex exponentials. A general form of such quantity is

f(t) = acos (wt — 6),

where a (amplitude), w (angular frequency), and 8 (phase) are constants, and 7 is
a real variable (usually time). Consider the complex function of the real variable

g(t) = Be™!
where B is a complex constant. Set B = ae'’; then

(1) = ae®e™" = acos (8 — wt) + iasin (6 — wt)

= acos (wt — 0) — iasin (wt — ).

In other words, f(f) = Re {g(1)}.
Complex functions of a real variable can be treated by the methods of calculus
of real variables. For instance, if '

g(t) = u(®) + iv(?) (u, v = real functions),
then

dg _ du  do,
a-atia

and so on. Differentiation of Be™ ™! is very simple:

g—t(Be"i“") = —iwBe ™",

The use of complex exponentials is illustrated in the following example.
Consider a (damped) harmonic oscillator subject to a harmonically varying
external force. The differential equation to be solved reads

% + 20% + wix = Fcos (wt — ¢) (% = (dx/dr) etc.),

where the constants a, wg, F, w, and ¢ are real, and both variables x and ¢ are real.

P




Je FUNCTIONS Or A COMPLEX VARIABLE

2.6 MULTIVALUED FUNCTIONS AND RIEMANN SURFACES

Certain complex functions are multivalued and they are usually considered as
consisting of branches, each branch being a single-valued function of z. For
instance, f(z) = \/z can be split into two branches according to the usual formula
for the roots (z = re'):

1. Principal branch,  f1(z) = \/r e?¥'?,
2. Second branch,  f,(z) = \/r e'l€+2m/2]

Strictly speaking, f1(z) and f3(z) are two separate functions but they are intimately
connected and for this reason they are treated together as two branches of a
(double-valued) function f(z) = \/z.

Note that the principal branch does not map the z-plane onto the entire
w-plane, but rather onto the right half-plane (Re w > 0) to which the positive
imaginary semiaxis is added. The negative imaginary semiaxis is not included.
The second branch, which has no special name, maps the z-plane onto the left
half-plane (Re w < 0) plus the negative imaginary semiaxis. Except for z = 0,
no other point on the w-plane (image plane) is duplicated by both mappings.

Also observe another important feature of the two branches. Each branch
taken separately is discontinuous on the negative real semiaxis. The meaning of
this is as follows: The points

i(r—6)

zZ,=¢e z(—1r+6),

and Zg = ¢
where 6 is a small positive number, are very close to each other. However, their
images under the principal branch mapping, namely

Si(zy) = etm/27H D and  fi(zy) = e~ {m/2TH D)

are very far from each other. On the other hand, note that the image of z, under
the mapping f2(z), namely,
fa(z) = /248D

is very close to the point f1(z;). It appears that the continuity of mapping can be
preserved if we switch branches as we cross the negative real semiaxis.

To give this idea a more precise meaning we must define the concept of con-
tinuous function of a complex variable. Let w = S(2) be defined in some neigh-
borhood (see pp. 47 and 16) of point z, and let Sf(zo) = wo. We say that f(2)
is continuous at z, if* f(z) — wo whenever z — zo 1n the sense that given § > 0
(arbitrarily small), the inequality |f(z) — wo| < & holds whenever |z — zy| < €
holds, for sufficiently small €. It is readily shownt that if w = u(x, y) + iv(x, y),
then the continuity of w implies the continuity of u(x, y) and v(x, y) and vice versa.

* Also written as lim._., f(2) = f(z0).
t For example, see Kaplan, p. 495.

joir
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Riemann proposed an ingenious device to represent both branches by means
of a single continuous mapping: Imagine two separate z-planes cut along the
negative real semiaxis from “minus infinity”’ to zero. Imagine that the planes are
superimposed on each other but retain their separate identity in the manner of
two sheets of paper laid on top of each other. Now suppose that the second
quadrant of the upper sheet is joined along the cut to the fourth quadrant of the
lower sheet to form a continuous surface (Fig. 2.6). It is now possible to start
a curve C in the third quadrant of the upper sheet, go around the origin, and cross
the negative real semiaxis into the third quadrant of the lower sheet in a con-
tinuous motion (remaining on the surface). The curve can be continued on the
lower sheet around the origin into the second quadrant of the lower sheet.

Lower sheet

Figure 2.6 Figure 2.7

Now imagine the second quadrant of the lower sheet joined to the third
quadrant of the upper sheet along the same cut (independently of the first joint and
actually disregarding its existence). The curve C can then be continued onto the
upper sheet and may return to the starting point. This process of cutting and cross-
Jjoining two planes leads to the formation of a Riemann surface which is thought of
as a single continuous surface formed of two Riemann sheets (Fig. 2.7).

An important remark is now in order: The line between the second quadrant
of the upper sheet and the third quadrant of the lower sheet is to be considered as
distinct from the line between the second quadrant of the lower sheet and the third
quadrant of the upper one. This is where the paper model fails us. According to
this model the negative real semiaxis appears as the line where all four edges of
our cuts meet. However, the Riemann surface has no such property; there are
Iwo real negative semiaxes on the Riemann surface just as there are two real posi-
tive semiaxes. The mapping f(z) = \/z may help to visualize this: The principal
branch maps the upper Riemann sheet (negative real semiaxis excluded) onto
the region Re w > 0 of the w-plane. The line joining the second upper with the
third lower quadrants is also mapped by the principal branch onto the positive
imaginary semiaxis. The lower Riemann sheet (negative real semiaxis excluded)
is mapped by the second branch onto the region Re w < 0. The line joining the
second lower with the third upper quadrants is mapped (by the second branch)
onto the negative imaginary semiaxis. In this fashion the entire Riemann surface
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is mapped one-to-one onto the w-plane (z = O is mapped onto w = 0; this
particular correspondence, strictly speaking, belongs to neither branch since
the polar angle 6 is not defined for z = 0).

The splitting of a multivalued function into branches is arbitrary to a great
extent. For instance, define the following two functions which also may be treated
as branches of f(z) = \/z:

NP for 0<6<m,
Vrell®t2ni2l for 1 <9 <0,
r eil0+20/21 oo <6<,
NPk for -7 <9<0.

Branch A: f4(z) = {

Branch B: fg(z) = l

Note that branch 4 is continuous on the negative real semiaxis but is discontinuous
on the positive real semiaxis (so is branch B). These two branches constitute,
together, the double-valued function f(z) = \/z, and this representation is no
better and no worse than the previous one. Also observe that the Riemann surface
built up by these two branches is the same as the one described before.

It is not difficult to see that the function f(z) = \/z can be split in two branches
in many other ways. In all of them, however, there will be a branch line (or branch
cut) extending from z = O to infinity. This line may be a curve. The Riemann
surface can be obtained by joining two Riemann sheets across the cut, and this
surface is unique. The point z = 0 where any branch line must start (or end) is
called a branch point. The position of the branch point is determined by the nature
of the multivalued function and is independent of the choice of branches.

This technique can be extended to other multivalued functions. Some require
more than two Riemann sheets (for instance f(z) = v/z requires three). Some
require two Riemann sheets but two branch points* (f(z) = \/(z — Dz + 1)),
etc. There are functions requiring an infinite number of Riemann sheets such as
f(z) = z* with irrational « and some of transcendental functions which we shall
briefly consider below.

Using the definition of exponential function,

e’ = e*(cos y + isiny),

we may define trigonometric and hyperbolic functions:

. . ) 1 R .
cosz = §(e'* + %), sinz = 2_i( 1z %),
sin z 1
tan z = s cotz = »
cos z tan z
coshz = &(e® + e7%), sinh z = 3fe® — 7%,
sinh z |
tanh z = , = .
cosh z coth z “tanh z

* If the so-called point ar infinity (Section 2.14) is taken into account, then the mapping
f(z) = V/z also has two branch points.
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All these functions are periodic: sin z and cos z have a (primitive) period 2,
tan z has a (primitive) period , €, sinh z, and cosh z have a (primitive) period
2xi. A score of familiar formulas can be established, for instance,

sin (z; + 2g) = sin z; COS Z2 + cos z; sin Za,

z Zo . Z z
1+ 2 gin 1+ 2

3 3 etc.

sin z; — sin zg = 2 COS

Also note that
cosh z = cos (iz) sinh z = —isin (iz).

It is worthwhile to mention that |sin z| and |cos z| are by no means bounded

by unity, for instance,
|sin 2i| = 3.24.

The logarithmic function is defined as the inverse of exponential function.
Solving ¥ = z = re'® for w, we obtain the general solution

w = logr + i6 + i2nw (n = integer).

This function is multivalued: Its principal branch is usually denoted by w = log z
and is defined as '
logz = logr + if (=7 < 6 <)

The entire multivalued function is referred to as
w = Logz = logz + i2nr.

These formulas are often written with the help of the argument of z function which
is also multivalued, the principal branch being

argz = 0 (—r<f§<m) -
and the entire function reading Argz = argz 4+ 2nw. Thus we may write
logz = log|z| + iargz, Logz = loglz| + i Argz.

The functions Arg z and Log z require a Riemann surface consisting of infinitely
many Riemann sheets.

The definition of inverse trigonometric and hyperbolic functions now easily
follows. All are multivalued:

Arccos z = i Log (z + VzE =1,

. ™
Arcsinz = 5~ Arc cos z,

Arc tan z = 5 Log

Arsinh z = Log (z + V22 + 1),
Arcosh z = Log (z + Vz2 — 1),

1+ 2z
1 — =z

Artanh z = 3 Log




