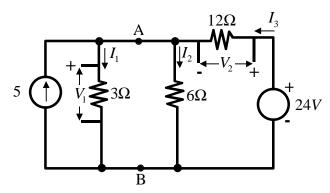
Kirchoff's Laws Direct:

KCL, KVL, Ohm's Law
$$\Rightarrow$$
 $V = IR \Rightarrow VG = I$
 $G = R^{-1}$

Ohm's Law:
$$V_1 = 3 \cdot I_1 = 6 \cdot I_2$$

 $V_2 = 12 \cdot I_3$

(always get 1 equation/Resistor)



KCL:

A:
$$-5 + I_1 + I_2 - I_3 = 0$$

B: $5 - I_1 - I_2 + I_3 = 0$ eq. are dependent

(in general, get n-1 indep. for nodes)

KVL: $-V_1 + 24 - V_2 = 0$ write 1 loop equation for each loop with a voltage not in the current set of equations.

 \Rightarrow Eliminate either V_1 or I using Ohm's Law

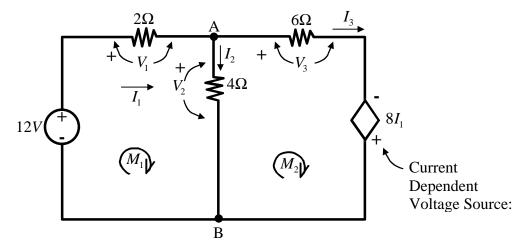
eq: A:
$$-5 + \frac{V_1}{3} + \frac{V_1}{6} - \frac{V_2}{12} = 0$$

$$\Rightarrow \begin{bmatrix} \left(\frac{1}{3} + \frac{1}{6}\right) & \frac{-1}{12} \\ -1 & -1 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 24 \end{bmatrix}$$
KVL: $-V_1 + 24 - V_2 = 0$

Cramer's Rule: $[A] \cdot \vec{X} = \vec{B}$

$$X_{i} = \frac{Det[A^{0..i-1}|B|A^{i+1..N}]}{Det[A]}$$

We can always write in terms of only *V*, or *I* variables using ohm's law:

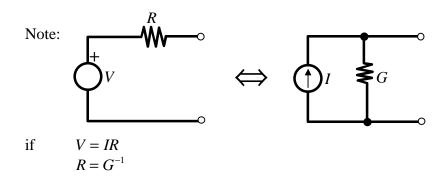


KCL: A:
$$-I_1 + I_2 + I_3 = 0$$

KVL:
$$M_1$$
: $-12 + 2I_1 + 4I_2 = 0$

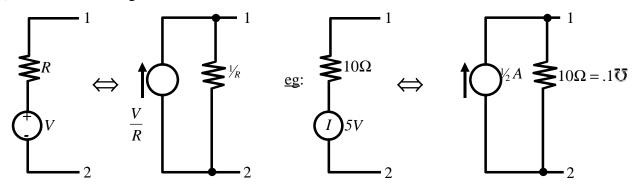
$$M_2$$
: $-4I_2 + 6I_3 - 8I_1 = 0$

$$\begin{bmatrix} -1 & 1 & 1 \\ 2 & 4 & 0 \\ -8 & -4 & 6 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 12 \\ 0 \end{bmatrix}$$



Rules for nodes:

1) Convert all voltage to current sources



- 1) Determine a reference node and identify unknown relative voltages
- 2) Use KCL at each unknown node:

at node A:
$$G_{AA}V_A - G_{AB}V_B - \dots - G_{AN}V_N = I_A$$

B:
$$-G_{AB}V_A + G_{BB}V_B - \dots - G_{BN}V_N = I_B$$

N:
$$-G_{AN}V_A + G_{BN}V_B - \dots - G_{NN}V_N = I_N$$

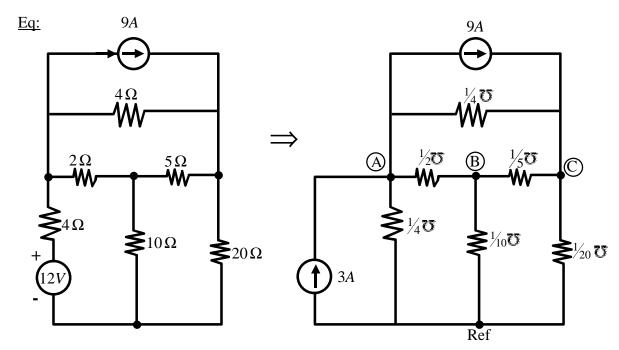
where: $G_{ii} = \Sigma$ all conductances connected to node *i*

 $G_{ii} = \Sigma$ all conductances between node i and node j

 $I_i = \Sigma$ all current sources connected to node i

⇒ Define N equations in N unknowns

all other voltages and currents by Ohm's Law from V and S.



A:
$$(0.25 + .5 + .25)V_A - 0.5V_B - 0.25V_C = 3 - 9$$
 (A)

B:
$$-0.5V_A + (0.5 + 0.1 + 0.2)V_B - .02V_C = 0$$

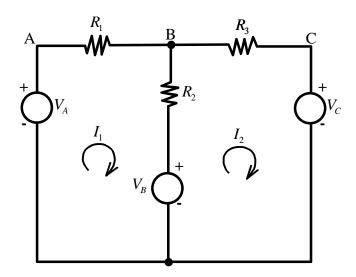
C:
$$-.25V_A - 0.2V_B + (0.2 + 0.25 + 0.05)V_C = 9$$

$$\Rightarrow \begin{bmatrix} 1.0 & -0.5 & -2.5 \\ -.5 & .8 & -.2 \\ -.25 & -.2 & .5 \end{bmatrix} \begin{bmatrix} V_A \\ V_B \\ V_C \end{bmatrix} = \begin{bmatrix} -6 \\ 0 \\ 9 \end{bmatrix}$$

$$\Rightarrow V_A = 4V$$
 $V_B = 8.33V$ $V_C = 23.3V$

One can also solve for N independent currents in N meshes

Consider:



We know that $KVL \Rightarrow$ voltages around a loop = 0.

Current I_1 flows in a simple mesh.

$$I_1 \colon \ I_1 \cdot R_1 + I_1 \cdot R_2 - I_2 \cdot R_2 + V_B - V_A = 0$$

$$I_2$$
: $I_2 \cdot R_3 + I_2 \cdot R_2 - I_1 \cdot R_2 + V_C - V_B = 0$

We can as usual re-arrange to a form that can be written by inspection:

1:
$$(R_1 + R_2)I_1 - R_2I_2 = V_A - V_B$$

2: $-R_2I_1 + (R_2 + R_3)I_2 = V_B - V_C$ \Longrightarrow $\begin{bmatrix} R_1 + R_2 & -R_2 \\ -R_2 & R_2 + R_3 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} V_A - V_B \\ V_B - V_C \end{bmatrix}$

^{*} Note that KCL is always solved implicitly since at each <u>node</u> we have a sum of currents in meshes: each mesh enters and leaves with the <u>same</u> current.

In general:

- 1) Connect each current source with parallel res. to voltage source with series R.
- 2) Select a current variable and mesh for each simple loop (usually we traverse each loop in <u>same direction</u>, ie, clockwise.
- 3) Use KVL for each loop in terms of the mesh <u>current variable</u>.

iff no dependent sources:

1:
$$R_{11}I_1 - R_{12}I_2 - ... - R_{1N}I_N = V_1$$

2:
$$-R_{12}I_1 - R_{22}I_2 - \dots - R_{2N}I_N = V_2$$

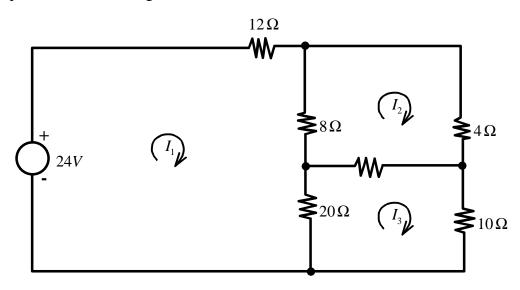
N:
$$-R_{1N}I_1 - R_{2N}I_2 - ... - R_{NN}I_N = V_N$$

 R_{ii} = sum of all resistance in mesh I

 R_{ij} = sum of all common resistance to meshes I,J

 $V_I = \text{sum of voltage rises in mesh } I$, in direction of current I_1

Eq: A Wheatstone Bridge



$$\Rightarrow (12+8+20)I_1 - 8I_2 - 20I_3 = 24$$
$$-8I_1 + (8+4+6)I_2 - 6I_3 = 0$$
$$-20I_1 - 6I_2 + (20+6+10)I_3 = 0$$

$$\begin{bmatrix} 40 & -8 & -20 \\ -8 & +18 & -6 \\ -20 & -6 & +36 \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 24 \\ 0 \\ 0 \end{bmatrix}$$

How to solve this system?

⇒ Gaussian Elimination to Triangular form:

1:
$$\begin{bmatrix} 20 & -4 & -10 \\ -4 & 9 & -3 \\ -10 & -3 & 18 \end{bmatrix} = \begin{bmatrix} 12 \\ 0 \\ 0 \end{bmatrix}$$
 (divide both sides by 2)

$$3 \cdot \frac{5}{9} = \left[\frac{-80}{9} \quad \frac{-5}{3} \quad +10 \right] \left[0 \right]$$

$$\begin{bmatrix} 1' & \begin{bmatrix} \frac{130}{9} & \frac{-17}{3} & 0 \\ -4 & 9 & -3 \\ -10 & -3 & 18 \end{bmatrix} = \begin{bmatrix} 12 \\ 0 \\ 0 \end{bmatrix}$$

$$3 \cdot \frac{1}{6} = \left[\frac{-10}{6} \quad \frac{-1}{2} \quad 3 \right] = [0]$$

$$\begin{vmatrix}
1' & \left[\frac{130}{9} & \frac{-17}{3} & 0 \\ 2' & \left[\frac{-17}{5} & \frac{17}{2} & 0 \\ -10 & -3 & 18 \right] = \begin{bmatrix} 12 \\ 0 \\ 0 \end{bmatrix}$$

$$2' \cdot \frac{2}{17} \cdot \frac{17}{3} = 2' \cdot \frac{2}{3} = \begin{bmatrix} \frac{-34}{9} & \frac{17}{3} & 0 \end{bmatrix}$$

$$\begin{bmatrix}
 1' & \frac{96}{9} & 0 & 0 \\
 2'' & \frac{-17}{3} & \frac{17}{2} & 0 \\
 -10 & -3 & 18
 \end{bmatrix} = \begin{bmatrix} 12 \\ 0 \\ 0 \end{bmatrix}$$

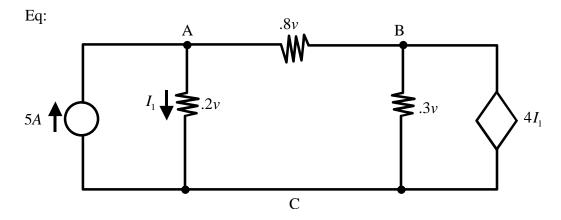
$$\Rightarrow \frac{96}{9} \cdot I_1 = 12V \quad I_1 = \frac{5}{4}A$$

Then
$$2' = \frac{+17}{3} \cdot \frac{5}{4} = \frac{17}{2} \cdot I_2 \implies I_2 = \frac{3}{4}A$$

$$3' \Rightarrow +10 \cdot \frac{5}{4} + 3 \cdot \frac{3}{4} = 18 \cdot I_3 \Rightarrow I_3 = \frac{3}{4}A$$

Dependent Voltage & Current Sources:

We model the activity of many active components by use of a "programmable" voltage or current source whose strength is a function of the voltage or currents elsewhere in the circuit:



if we choose B as the reference node \Rightarrow

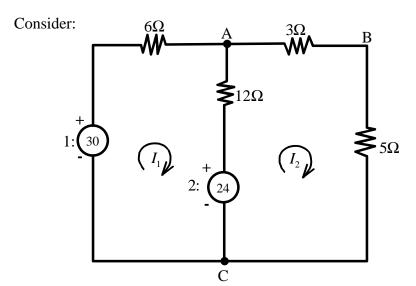
A:
$$(.8 + .2)V_A - .2V_C = 5$$

C: $-(.2)V_A + (.2 + .3)V_C = -5 + 4I_1$

$$now I = 0.2 \cdot (V_A - V_C)$$

$$\Rightarrow \begin{bmatrix} 1 & -.2 \\ -1 & 1.3 \end{bmatrix} \begin{bmatrix} V_A \\ V_C \end{bmatrix} = \begin{bmatrix} s \\ -s \end{bmatrix}$$

Superposition for Circuits

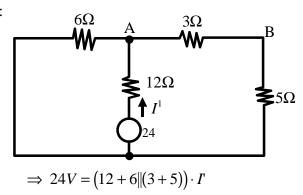


We could solve this by either node or mesh analysis, but there may be a simpler approach:

If we suppress source #1 (i.e. make a short circuit) we can find $\vec{I_1}$, $\vec{I_2}$. Similarly, I_1 , I_2 could be written without source #2.

Total currents and voltages $\underline{\text{superpose}} \Rightarrow \text{suppress}$ one at a time and then superpose the results:

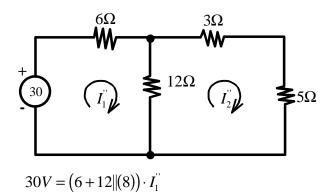
Suppress 1:



So
$$I = \frac{7}{108} \cdot 24 = \frac{14}{9} A \Rightarrow V_A = \frac{56}{3} + 24 \text{ volt}$$

$$I_1 = \frac{-128}{18} \qquad I_2 = \frac{128}{18}$$

Now: Suppress I_2 , run I_1

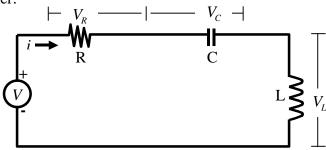


Exponential Excitation of circuits: Admittance & Impedance

Idea: Exponential function is easy to analyze ⇒ simple to add/multiply/integrates, etc.

Also is a common case for circuit excitation

Consider:



where $V = Ae^{st}$ for complex s, A, real t.

We know all <u>currents</u> are same in circuit, $V_R + V_C + V_L = V$ <u>KVL</u>

$$V_R = i(t) \cdot R$$
 $V_C = \frac{1}{C} \cdot \int i(t) dt$ $V_L = L \frac{di(t)}{dt}$

or
$$i_R(t) = \frac{V_R(t)}{R}$$
 $i_L(t) = C \frac{dV_C(t)}{dt}$ $i_L(t) = \frac{1}{L} \int V_C(t) dt$

for our circuit $V(t) = Ae^{st} \implies V_R(t) = A'e^{st}$, $V_C(t) = A''e^{st}$...

where:
$$Ae^{st} = (A' + A'' + A''')e^{st}$$
 KVL

we have
$$i_R(t) = \frac{A'}{R}e^{st}$$
 $i_C(t) = C \cdot A'' \cdot s e^{st}$ $i_L = \frac{A''' e^{st}}{sL}$

Note: for this kind of excitation,
$$i_L(t) = C \cdot A'' \cdot s \ e^{st}$$

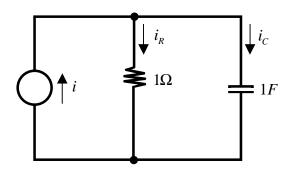
= $sC \cdot V_C(t)$

$$i_L(t) = \frac{1}{s^L} V_L(t)$$

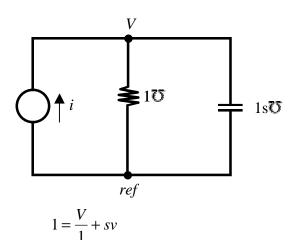
$$i_R(t) = \frac{1}{R} V_R(t)$$

So: sC has same units/behavior as $\frac{1}{R}$: conductance.

<u>Eg</u>. 2:



Parallel \Rightarrow admittances \Rightarrow



$$\Rightarrow V = \frac{I}{1+s}$$

for
$$i(t) = 10e^{-2t}$$
 $s = -2, A = 10$
$$V = \frac{10}{1 - 2} = -10e^{st} = -10e^{-2t} \text{ volts}$$

Sinewave (Sinusodial) excitation:

We know:
$$e^{io} = \cos o + i \sin o$$

$$\Rightarrow \cos o = \frac{e^{io} + e^{-io}}{2} \qquad \sin o = \frac{e^{io} - e^{-io}}{2i}$$

We wish to study circuits with excitation: $v(t) = V \cos(wt + \phi)$

$$= \frac{V}{2} \left(e^{iwt + i\varphi} + e^{-iwt - i\varphi} \right) = v_i e^{iwt} + v_2 e^{-iwt}$$

$$v_1 = \frac{V}{2}e^{i\varphi} \qquad v_2 = \frac{V}{2}e^{-i\varphi}$$

note V is <u>complex</u>.

R C L

We define: Admittance $\frac{1}{R}$ sC $\frac{1}{sL}$

 $\underline{\text{Impedance}} \qquad R \qquad \frac{1}{s_C} \qquad sL$

for s = iw (sinusoid case) $\frac{1}{R}$ iwC $\frac{1}{iwL}$

 $R \frac{1}{iwC} iwL$

Admittances compose like conductances, Impedances compose like resistances.

So for our circuit:
$$v(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt} + \frac{1}{C} \int i(t)dt$$

for
$$i(t) = Ie^{st}$$

$$\Rightarrow v(t) = \left(R \cdot I + L \cdot I \cdot s + \frac{I}{sC}\right)e^{st}$$
or $I = \frac{V}{R + Ls + \frac{1}{sC}} = \frac{V}{z(s)}$

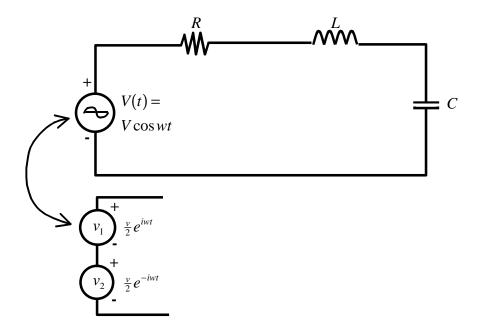
we write impedances as Z(s), admittance as Y(s)

so
$$i(t) = Ie^{st} = \frac{V}{R + Ls + \frac{1}{sC}} \cdot e^{st}$$
eq: if $V = 10 \cdot e^{-2t}$ (10 $V @ t = 0 \rightarrow$ decreasing)
$$R = 1\Omega \qquad L = \frac{1}{2}H \qquad C = \frac{1}{2}F$$

$$i(t) = \frac{10}{1 + \frac{s}{2} + \frac{2}{s}}e^{st} = -10e^{-2t} \text{ (Amps)}$$

Basic Trick: Extend the circuit techniques for node and mesh analysis to also handle Impedence and Admittances

⇒ generalize circuits which can be analyzed.



note: we can apply superposition to solve this:

suppress v_1 or v_2 and solve for other.

$$I_1 = \frac{v_2'}{R + iwL + \frac{1}{iwC}}$$
 $I_2 = \frac{v_2'}{R - iwL + \frac{1}{-iwC}}$

if we write I_1, I_2 in exponential complex form:

$$I_{1} = I_{1}e^{i\sigma_{1}} \qquad I_{2} = I_{2}e^{i\sigma_{2}}$$
we get: $I_{1} = I_{2} = \frac{\frac{V_{2}}{\sqrt{R^{2} + (wL - \frac{1}{wC})^{2}}}}{\sqrt{R^{2} + (wL - \frac{1}{wC})^{2}}} \qquad o_{1} = -\tan^{-1}\left(\frac{wL - \frac{1}{wC}}{R}\right) = -\sigma_{2}$

$$i_{1}(t) = I_{1}e^{i\sigma_{1}}e^{iwt}....$$

$$i_{1}(t) = i_{1} + i_{2} = I_{1}\left(e^{i(wt + \sigma_{1})} + e^{-i(wt - \sigma_{1})}\right)$$

$$= \frac{V}{\sqrt{R^{2} + (wL - \frac{1}{wC})^{2}}} \cdot \cos(wt + \sigma_{1})$$

I, V are called **Phasors**