
Constraints Guide

UG625 (v. 13.2) July 6, 2011

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you
solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce,
distribute, republish, download, display, post, or transmit the Documentation in any form or by any means
including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation.
Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx
assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections
or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NOWARRANTY OF ANY KIND. XILINX
MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING
THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE
DOCUMENTATION.

© Copyright 2002-2011 Xilinx Inc. All Rights Reserved. XILINX, the Xilinx logo, the Brand Window and other
designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their
respective owners. The PowerPC name and logo are registered trademarks of IBM Corp., and used under license.
All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version
03/01/2011 13.1 Added VCCAUX_IO and MARK_DEBUG constraints.

07/06/2011 13.2 Added Spartan®-6 to list of supported devices where appropriate.

For PULLUP (Pullup) constraint, added information that NGDBuild ignores the following:
• DEFAULT KEEPER = FALSE • DEFAULT PULLUP = FALSE • DEFAULT PULLDOWN
= FALSE

For IODELAY_GROUP (IODELAY Group) constraint, added information under Limitations
with LOC and Architecture Support

For Area Group (AREA_GROUP) constraint, added Note: All components can be constrained
by the CLOCKREGION range except IOB and BUF.

For CONFIG_MODE (Configuration Mode) constraint, added new architecture support
and new values.

For BEL (BEL) constraint, removed VHDL example.

Constraints Guide
2 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Table of Contents
Revision History .. 2

Chapter 1 Constraint Types...7
Attributes and Constraints .. 7
CPLD Fitter... 8
Grouping Constraints for Timing ... 9
Logical Constraints .. 12
Physical Constraints... 13
Mapping Directives ... 14
Placement Constraints ... 15
Routing Directives ... 17
Synthesis Constraints .. 18
Timing Constraints .. 19
Configuration Constraints ... 23

Chapter 2 Entry Strategies for Xilinx Constraints ...25
Constraints Entry Methods.. 25
Constraints Entry Table ... 25
Schematic Design... 28
VHDL Attributes.. 28
Verilog Attributes... 29
User Constraints File (UCF)... 31
UCF and NCF File Syntax.. 32
Physical Constraints File (PCF) ... 36
Netlist Constraints File (NCF)... 38
Constraints Editor .. 38
ISE Design Suite .. 40
PlanAhead .. 40
Setting Constraints in PACE.. 44
Partial Design Pin Preassignment... 44
FPGA Editor ... 46
XST Constraint File (XCF) ... 48
Constraint Priority ... 48

Chapter 3 Timing Constraint Strategies...51
Basic Constraints Methodology .. 51
Input Timing Constraints .. 52

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 3

Register-to-Register Timing Constraints .. 56
Output Timing Constraints ... 60
Exception Timing Constraints ... 64

Chapter 4 Xilinx Constraints ...67
Constraint Information.. 67
AREA_GROUP (Area Group) ... 68
ASYNC_REG (Asynchronous Register).. 76
BEL (BEL).. 77
BLKNM (Block Name)... 79
BUFG (BUFG)... 81
Clock Dedicated Route (CLOCK_DEDICATED_ROUTE) 83
COLLAPSE (Collapse) ... 84
COMPGRP (Component Group) .. 85
CONFIG_MODE (Configuration Mode) .. 86
COOL_CLK (CoolCLOCK).. 88
DATA_GATE (Data Gate) .. 90
DCI Cascade (DCI_CASCADE) .. 92
DCI Value (DCI_VALUE) .. 94
Default (DEFAULT) ... 95
DIFF_TERM (Diff_Term)... 99
DIRECTED_ROUTING (Directed Routing) .. 101
DISABLE (Disable) .. 103
DRIVE (Drive).. 105
DROP_SPEC (Drop Specifications) .. 108
ENABLE (Enable) ... 109
ENABLE_SUSPEND (Enable Suspend).. 111
FAST (Fast) ... 112
FEEDBACK (Feedback) ... 114
FILE (File) ... 116
FLOAT (Float)... 118
FROM-THRU-TO (From Thru To) .. 120
FROM-TO (From To).. 122
FSM_STYLE (FSM Style)... 124
HBLKNM (Hierarchical Block Name) .. 125
HIODELAY_GROUP (HIODELAY Group) .. 127
HLUTNM (Hierarchical Lookup Table Name)... 128
H_SET (H Set) .. 130
HU_SET (HU Set)... 131

Constraints Guide
4 www.xilinx.com UG625 (v. 13.2) July 6, 2011

IBUF_DELAY_VALUE (Input Buffer Delay Value).. 133
IFD_DELAY_VALUE (IFD Delay Value) .. 135
IN_TERM (In Term) ... 137
INREG (Input Registers) ... 139
Internal Vref Bank (INTERNAL_VREF_BANK).. 140
IOB (IOB).. 141
IOBDELAY (Input Output Block Delay) .. 143
IODELAY_GROUP (IODELAY Group) .. 145
IOSTANDARD (Input Output Standard) .. 147
KEEP (Keep) ... 150
KEEP_HIERARCHY (Keep Hierarchy)... 152
Keeper (KEEPER) ... 155
LOC (Location) ... 157
LOCATE (Locate).. 170
LOCK_PINS (Lock Pins).. 171
LUTNM (Lookup Table Name) ... 172
MAP (Map) ... 175
MARK_DEBUG (Mark Debug)... 176
MAX_FANOUT (Max Fanout)... 178
MAXDELAY (Maximum Delay) .. 181
MAXPT (Maximum Product Terms) ... 184
MAXSKEW (Maximum Skew) .. 185
MCB Performance (MCB_PERFORMANCE)... 188
MIODELAY_GROUP (MIODELAY Group)... 189
NODELAY (No Delay) ... 190
NOREDUCE (No Reduce) ... 192
OFFSET IN (Offset In)... 194
OFFSET OUT (Offset Out) .. 200
Open Drain (OPEN_DRAIN) .. 204
OUT_TERM (Out Term) .. 206
PERIOD (Period).. 208
PIN (Pin) ... 216
Post CRC (POST_CRC).. 217
Post CRC Action (POST_CRC_ACTION) .. 218
Post CRC Frequency (POST_CRC_FREQ).. 219
Post CRC INIT Flag (POST_CRC_INIT_FLAG) .. 220
Post CRC Signal (POST_CRC_SIGNAL) ... 221
Post CRC Source (POST_CRC_SOURCE) .. 222

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 5

PRIORITY (Priority) .. 223
PROHIBIT (Prohibit) ... 224
PULLDOWN (Pulldown)... 227
PULLUP (Pullup) ... 229
PWR_MODE (Power Mode).. 231
REG (Registers) .. 233
RLOC (Relative Location).. 235
RLOC_ORIGIN (Relative Location Origin) ... 252
RLOC_RANGE (Relative Location Range)... 255
SAVE NET FLAG (Save Net Flag) ... 258
SCHMITT_TRIGGER (Schmitt Trigger) .. 260
SIM Collision Check (SIM_COLLISION_CHECK)... 262
SLEW (Slew)... 264
SLOW (Slow).. 267
STEPPING (Stepping) ... 269
SUSPEND (Suspend) ... 270
SYSTEM_JITTER (System Jitter) .. 272
TEMPERATURE (Temperature) .. 274
TIG (Timing Ignore) .. 276
TIMEGRP (Timing Group).. 279
TIMESPEC (Timing Specifications) .. 286
TNM (Timing Name) ... 289
TNM_NET (Timing Name Net)... 293
TPSYNC (Timing Point Synchronization).. 297
TPTHRU (Timing Thru Points)... 300
TSidentifier (Timing Specification Identifier) .. 303
U SET (U_SET) .. 306
Use Internal VREF (USE_INTERNAL_VREF).. 308
USE_LUTNM (Use LUTNM)... 310
USE_RLOC (Use Relative Location) ... 312
Use Low Skew Lines (USELOWSKEWLINES) .. 315
VCCAUX (VCCAUX)... 317
VCCAUX_IO .. 318
VOLTAGE (Voltage)... 320
VREF (VREF) .. 321
WIREAND (Wire And) .. 322
XBLKNM (XBLKNM) .. 323

Appendix Additional Resources ...325

Constraints Guide
6 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 1

Constraint Types
This chapter discusses the constraint types documented in this Guide.

Attributes and Constraints
Some designers use the terms attribute and constraint interchangeably. Other designers
give them different meanings. In addition, certain language constructs use the terms
attribute and directive in similar, but not identical, senses. Xilinx® uses the terms attributes
and constraints as defined below.

Attributes
An attribute is a property associated with a device architecture primitive component
that generally affects an instantiated component functionality or implementation.

Attributes are passed by means:
• Generic maps (VHDL)
• Defparams or inline parameter passed while instantiating the primitive component

(Verilog)

All attributes are described in the Xilinx Libraries Guides as a part of the primitive
component description.

Attributes Examples
• INIT on a LUT4 component
• CLKFX_DIVIDE on a DCM

Implementation Constraints
The Constraints Guide documents implementation constraints.

An implementation constraint is an instruction given to the FPGA implementation tools
to direct the mapping, placement, timing or other guidelines to follow while processing
an FPGA design.

Implementation constraints are generally placed in the User Constraints File (UCF).
They may also be placed in:
• The Hardware Description Language (HDL) code
• A synthesis constraints file.

Implementation Constraints Examples
• LOC (placement)
• PERIOD (timing)

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 7

Chapter 1: Constraint Types

CPLD Fitter
The following constraints apply to CPLD devices:

BUFG (CPLD)

Collapse (COLLAPSE)

CoolCLOCK (COOL_CLK)

Data Gate (DATA_GATE)

Fast (FAST)

Input Registers (INREG)

Input Output Standard (IOSTANDARD)

Keep (KEEP)

Keeper (KEEPER)

Location (LOC)

Maximum Product Terms (MAXPT)

No Reduce (NOREDUCE)

Offset In (OFFSET IN)

Offset Out (OFFSET OUT)

Open Drain (OPEN_DRAIN)

Period (PERIOD)

Prohibit (PROHIBIT)

Pullup (PULLUP)

Power Mode (PWR_MODE)

Registers (REG)

Schmitt Trigger (SCHMITT_TRIGGER)

Slow (SLOW)

Timing Group (TIMEGRP)

Timing Specifications (TIMESPEC)

Timing Name (TNM)

Timing Specification Identifier (TSidentifier)

VREF

Wire And (WIREAND)

Constraints Guide
8 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 1: Constraint Types

Grouping Constraints for Timing
For a Timing Specifications constraint, specify the set of paths to be analyzed by
grouping start and end points in one of the following ways.

• Refer to a predefined group by specifying one of the corresponding keywords:
CPUS, DSPS, FFS, HSIOS, LATCHES, MULTS, PADS, RAMS, BRAMS_PORTA, or
BRAMS_PORTB.

• Create your own groups within a predefined group by tagging symbols with Timing
Name and Timing Name Net constraints.

• Create groups that are combinations of existing groups using Timing Group
symbols.

• Create groups by pattern matching on net names.

For more information, see Creating Groups by Pattern Matching in the Timing Group
constraint.

Using Predefined Groups
Using predefined groups, you can refer to a group of flip-flops, input latches, pads, or
RAMs by using the corresponding keywords.

Predefined Groups Keywords
Keyword Description
CPUS PPC405 in Virtex®-4 FX devices

DSPS DSP48 and any DSP48 derivative in Virtex-4 devices, Virtex-5 devices, and Spartan®-3A
Extended devices

CPUS in Virtex-5 FXT devices

FFS All CLB and IOB edge-triggered flip-flops and Shift Register LUTs (all devices have
shift register LUTs)

HSIOS GT11 (Virtex-4 devices), GTP_DUAL (Virtex-5 devices) and GTX_DUAL (Virtex-5 FXT
devices)

LATCHES All CLB and IOB level-sensitive latches

MULTS Synchronous and asynchronous multipliers.

PADS All I/O pads (typically inferred from top level HDL ports)

RAMS – All CLB LUT RAMs, both single- and dual-port (includes both ports of dual-port)

– All block RAMs, both single-and dual-port (includes both ports of dual-port)

– FIFOS – All FIFO (First In, First Out) Block RAM Memory

BRAMS_PORTA Port A of all dual-port block RAMs

BRAMS_PORTB Port B of all dual-port block RAMs

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 9

Chapter 1: Constraint Types

Predefined Group Examples
From-To statements enable you to define timing specifications for paths between
predefined groups. The following examples are TS constraints that are entered in
the UCF. This method enables you to easily define default timing specifications, as
illustrated by the following examples.

Following is a UCF syntax example.

TIMESPEC "TS01"=FROM FFS TO FFS 30;

TIMESPEC "TS02"=FROM LATCHES TO LATCHES 25;

TIMESPEC "TS03"=FROM PADS TO RAMS 70;

TIMESPEC "TS04"=FROM FFS TO PADS 55;

TIMESPEC "TS01" = FROM BRAMS_PORTA TO BRAMS_PORTB(gork*);

For BRAMS_PORTA and BRAM_PORTB, the specification TS01 controls paths that begin
at any A port and end at a B port, which drives a signal matching the pattern gork*.

BRAMS_PORTA and BRAMS_PORTB Examples
Following are additional examples of BRAMS_PORTA and BRAMS_PORTB.

NET "X" TNM_NET = BRAMS_PORTA groupA;

The TNM group groupA contains all A ports that are driven by net X. If net X is traced
forward into any B port inputs, any single-port block RAM elements, or any Select RAM
elements, these do not become members of groupA.

NET "X" TNM_NET = BRAMS_PORTB(dob*) groupB;

The TNM group groupB contains each B port driven by net X, if at least one output on
that B port drives a signal matching the pattern dob*.

INST "Y" TNM = BRAMS_PORTB groupC;

The TNM group groupC contains all B ports found under instance Y. If instance Y is
itself a dual-port block RAM primitive, then groupC contains the B port of that instance.

INST "Y" TNM = BRAMS_PORTA(doa*) groupD;

The TNM group groupD contains each A port found under instance Y, if at least one
output on that A port drives a signal matching the pattern doa*.

TIMEGRP "groupE" = BRAMS_PORTA;

The user group groupE contains the A ports of all dual-port block RAM elements. This
is equivalent to BRAMS_PORTA (*).

TIMEGRP "groupF" = BRAMS_PORTB(mem/dob*);

The user group groupF contains all B ports, which drives a signal matching the pattern
mem/dob*.

A predefined group can also carry a name qualifier. The qualifier can appear any place
the predefined group is used. This name qualifier restricts the number of elements
referred to. The syntax is:

predefined group (name_qualifier [name_qualifier])

name_qualifier is the full hierarchical name of the net that is sourced by the primitive
being identified.

Constraints Guide
10 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 1: Constraint Types

The name qualifier can include the following wildcard characters:

• An asterisk (*) to show any number of characters

• A question mark (?) to show a single character

Wildcard characters allow you to:

• Specify more than one net

• Shorten and simplify the full hierarchical name

For example, specifying the group FFS (MACRO_A/Q?) selects only the flip-flops
driving the Q0, Q1, Q2 and Q3 nets.

Grouping Constraints
• Component Group (COMPGRP)

• Pin (PIN)

• Timing Group (TIMEGRP)

• Timing Name (TNM)

• Timing Name Net (TNM_NET)

• Timing Point Synchronization (TPSYNC)

• Timing Thru Points (TPTHRU)

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 11

Chapter 1: Constraint Types

Logical Constraints
Logical constraints are constraints that are attached to elements before mapping or
fitting.

• Logical constraints help adapt design performance to expected worst-case
conditions.

• Logical constraints are converted into physical constraints when you:

1. Choose a specific Xilinx® architecture, and

2. Place and Route, or fit, the design.

• You can attach logical constraints using attributes in the input design, which
are written into the Netlist Constraints File (NCF) or NGC netlist, or with a User
Constraints File (UCF).

• Three categories of logical constraints are:

– Placement Constraints

– Relative Location Constraints

For FPGA devices, Relative Location constraints:

♦ Group logic elements into discrete sets.

♦ Allow you to define the location of any element within the set relative to
other elements in the set, regardless of eventual placement in the overall
design.

– Timing Constraints

Timing constraints allow you to specify the maximum allowable delay or skew
on any given set of paths or nets.

Constraints Guide
12 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 1: Constraint Types

Physical Constraints
Note This section applies to FPGA devices only.

Physical constraints are constraints attached to the elements in the physical design.

Mapping
• The physical design is the design after it has been mapped.

• When a design is mapped, the logical constraints in (1) the netlist, and (2) the User
Constraints File (UCF), are translated into physical constraints that apply to a specific
architecture.

• Physical constraints are defined in the Physical Constraints File (PCF) created
during mapping.

Physical Constraints File (PCF)
The Physical Constraints File (PCF):

• Is a mapper-generated file.

• Contains two sections:

– Schematic

Contains the physical constraints based on the logical constraints found in the
netlist and the UCF.

– User

♦ Can be used to add any physical constraints.

♦ Xilinx® recommends that you place user-generated constraints in a UCF,
not in an NCF or a PCF.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 13

Chapter 1: Constraint Types

Mapping Directives
Mapping directives instruct the mapper to perform specific operations.

Mapping Directives
• Area Group

• BEL

• Block Name

• DCI_VALUE

• Drive

• Fast

• Hierarchical Block Name

• Hierarchical Lookup Table Name

• HU SET

• IOB

• Input Output Block Delay

• Input Output Standard

• Keep

• Keeper

• Lookup Table Name

• Map

• No Delay

• Pulldown

• Pullup

• Relative Location

• Relative Location Origin

• Relative Location Range

• Save Net Flag

• Slew

• U SET

• Use Relative Location

• XBLKNM

Constraints Guide
14 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 1: Constraint Types

Placement Constraints
This section describes the placement constraints for each type of logic element in FPGA
designs, including:
• Flip-Flop
• ROM
• RAM
• BUFT
• CLB
• IOB
• I/O
• Edge decoder
• Global buffer

Individual logic gates such as AND or OR gates:
• Are mapped into CLB function generators before the constraints are read.
• Cannot be constrained.

Specifying Constraints
Most constraints can be specified in:
• HDL source code, or
• User Constraints File (UCF)

In a constraints file, each placement constraint acts upon one or more symbols. Every
symbol in a design carries a unique name, which is defined in the input file. Use this
name in a constraint statement to identify the symbol.

Case Sensitivity
• The UCF and the NCF are case sensitive.
• Identifier names (names of objects, such as net names) must exactly match the case

of the name as it exists in the source design netlist.
• Xilinx® keywords (such as LOC, PROHIBIT, RLOC, and BLKNM) can be entered in

all uppercase or all lowercase. Mixed case is not allowed.

Netlist Mapping and Placement Constraints
The following constraints control mapping and placement of symbols in a netlist:
• BLKNM
• HBLKNM
• HLUTNM
• LOC
• LUTNM
• PROHIBIT
• RLOC
• RLOC_ORIGIN
• RLOC_RANGE
• XBLKNM

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 15

Chapter 1: Constraint Types

Relative Location (RLOC) Constraints
The RLOC constraint groups logic elements into discrete sets.

• You can define the location of any element within the set relative to other elements
in the set, regardless of eventual placement in the overall design.

• For example, if RLOC constraints are applied to a group of eight flip-flops organized
in a column, the mapper maintains the columnar order and moves the entire group
of flip-flops as a single unit.

• In contrast, absolute LOC constraints constrain design elements to specific locations
on the FPGA die with no relation to other design elements.

Placement Constraints
• AREA_GROUP

• BEL

• LOC

• LOCATE

• Prohibit

• RLOC

• RLOC_ORIGIN

• RLOC_RANGE

• USE_RLOC

Constraints Guide
16 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 1: Constraint Types

Routing Directives
Routing directives instruct PAR to perform specific operations.

• AREA_GROUP

• CONFIG_MODE

• LOCK_PINS

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 17

Chapter 1: Constraint Types

Synthesis Constraints
Synthesis constraints direct the synthesis tool optimization technique for a particular
design or piece of Hardware Description Language (HDL) code. The constraints are
either embedded in the source code, or are included in a separate synthesis constraints
file.

The following constraints are synthesis constraints:

• FROM-TO

• IOB

• KEEP

• MAP

• MARK_DEBUG

• OFFSET IN

• OFFSET OUT

• PERIOD

• TIG

• TNM

• TNM_NET

Synthesis Constraint Documentation
XST synthesis constraints are documented in:

• XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices (UG627)

• XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices (UG687)

Other synthesis constraints are documented in the software vendor’s documentation.

Constraints Guide
18 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 1: Constraint Types

Timing Constraints
The Xilinx® software enables you to specify precise timing requirements using either
global or path-specific timing constraints.

The recommended methods for defining the constraints are discussed in Timing
Constraint Strategies.

Timing and Grouping Constraints
The following are timing constraints and associated grouping constraints:
• Asynchronous Register (ASYNC_REG)
• Disable (DISABLE)
• Drop Specifications (DROP_SPEC)
• Enable (ENABLE)
• From Thru To (FROM-THRU-TO)
• From To (FROM-TO)
• Maximum Skew (MAXSKEW)
• Offset In (OFFSET IN)
• Offset Out (OFFSET OUT)
• Period (PERIOD)
• Priority (PRIORITY)
• System Jitter (SYSTEM_JITTER)
• Temperature (TEMPERATURE)
• Timing Ignore (TIG)
• Timing Group (TIMEGRP)
• Timing Specifications (TIMESPEC)
• Timing Name (TNM)
• Timing Name Net (TNM_NET)
• Timing Point Synchronization (TPSYNC)
• Timing Thru Points (TPTHRU)
• Timing Specification Identifier (TSidentifier)
• Voltage (VOLTAGE)

Specifying Timing Constraints
To specify timing constraints, enter them in:
• User Constraints File (UCF) (primary method), or
• HDL source code, or
• Schematic source code.

Once you have defined the timing specifications and mapped the design, PAR places
and routes the design based on these specifications.

To analyze the results of the timing specifications, use:
• Timing Analyzer (ISE® Design Suite), or
• TRACE (command line).

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 19

Chapter 1: Constraint Types

Independent of the way timing constraints are specified, the Clock Signal option affects
timing constraint processing. In the case where a clock signal goes through which input
pin is the real clock pin. The CLOCK_SIGNAL constraint allows you to define the clock
pin. See the XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
(UG627) for more information.

Applying XST Timing Constraints
You can apply XST timing constraints by means of:

• The -glob_opt command line switch, OR

• The XST Constraint File (XCF)

Command Line Switch
• Using the -glob_opt command line switch is the same as selecting Process

Properties > Synthesis Options > Global Optimization Goal.

• Using -glob_opt allows you to apply global timing constraints to the entire design.

• You cannot specify a value for these constraints.

• XST optimizes them for the best performance.

• These constraints are overridden by constraints specified in the XCF.

XST Constraint File (XCF)
Using the XCF allows you to use the native UCF timing constraint syntax. Using the
XCF syntax, XST supports constraints such as:

• TNM_NET

• TIMEGRP

• PERIOD

• TIG

• FROM-TO

You can use both wildcards and hierarchical names.

Timing constraints are not written to the NGC file by default. Timing constraints are
written to the NGC file only when:

• Write Timing Constraints is checked in ISE® Design Suite in Process > Properties or

• -write_timing_constraints option is specified in the command line.

Constraints Guide
20 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 1: Constraint Types

UCF Timing Constraint Support
Note If you specify timing constraints in the XCF file, Xilinx® strongly suggests that
you to use the ’/’ character as a hierarchy separator instead of ’_’.

The following timing constraints are supported in the XCF.

From-To
FROM-TO defines a timing constraint between two groups. A group can be user-defined
or predefined (FFS, PADS, RAMS). Following is an example of XCF Syntax:

TIMESPEC "TS name"=FROM group1 TO "group2” value ;

OFFSET IN
OFFSET IN specifies the timing requirements of an input interface to the FPGA device.
The constraint specifies the clock and data timing relationship at the external pads of the
FPGA device. An OFFSET IN constraint specification checks the setup and hold timing
requirements of all synchronous elements associated with the constraint.

OFFSET OUT
OFFSET OUT specifies the timing requirements of an output interface from the FPGA
device. The constraint specifies the time from the clock edge at the input pin of the
FPGA device until data becomes valid at the output pin of the FPGA.

TIG
TIG causes all paths going through a specific net to be ignored for timing analyses and
optimization purposes. This constraint can be applied to the name of the signal affected.

XCF Syntax:

NET "netname" TIG;

TIMEGRP
TIMEGRP is a basic grouping constraint. In addition to naming groups using the
TNM identifier, you can also define groups in terms of other groups. You can create a
group that is a combination of existing groups by defining a Timing Group (TIMEGRP)
constraint.

You can place Timing Group (TIMEGRP)constraints in a constraints file (XCF or NCF).
You can use Timing Group (TIMEGRP) attributes to create groups using the following
methods.
• Combining multiple groups into one
• Defining flip-flop subgroups by clock sense

TNM
Timing Name (TNM) is a basic grouping constraint. Use Timing Name (TNM) to
identify the elements that make up a group, which you can then use in a timing
specification. TNM tags specific FFS, RAMs, LATCHES, PADS, BRAMS_PORTA,
BRAMS_PORTB, CPUS, HSIOS, and MULTS as members of a group to simplify the
application of timing specifications to the group.

The RISING and FALLING keywords may also be used with Timing Name (TNM)
constraints. The XCF syntax is:

{NET|INST |PIN} "net_or_pin_or_inst_name" TNM=[predefined_group] identifier ;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 21

Chapter 1: Constraint Types

TNM Net
Timing Name Net (TNM_NET) is essentially equivalent to TNM on a net except for
input pad nets. Special rules apply when using TNM_NET with the Period (PERIOD)
constraint for DLL/DCM/PLL/MMCMs in all FPGA devices

For more information, see PERIOD Specifications on CLKDLLs, DCMs, PLLs, and
MMCMs.

A TNM_NET is a property that you normally use in conjunction with an HDL design
to tag a specific net. All downstream synchronous elements and pads tagged with the
TNM_NET identifier are considered a group. For more information, see the Timing
Name (TNM) constraint.

The XCF syntax is:

NET "netname" TNM_NET=[predefined_group] identifier;

Constraints Guide
22 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 1: Constraint Types

Timing Model
The timing model used by XST for timing analysis takes into account both logic delays
and net delays. These delays are highly dependent on the speed grade that can be
specified to XST. These delays are also dependent on the selected technology. Logic
delays data are identical to the delays reported by TRACE (Timing Analyzer) after Place
and Route). The Net delay model is estimated based on the fanout load.

Constraint Priority
Constraints are processed in the following order:

• Specific constraints on signals

• Specific constraints on top module

• Global constraints on top module

For example, constraints on two different domains or two different signals have the
same priority (that is, PERIOD clk1 can be applied with PERIOD clk2).

Configuration Constraints
• Configuration Mode (CONFIG_MODE)

• DCI_CASCADE

• MCB_PERFORMANCE

• Stepping (STEPPING)

• POST_CRC

• POST_CRC_ACTION

• POST_CRC_FREQ

• POST_CRC_INIT_FLAG

• VCCAUX

• VREF

• Internal Vref Bank

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 23

Constraints Guide
24 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2

Entry Strategies for Xilinx Constraints
This chapter discusses entry strategies for Xilinx® constraints, including how to use
ISE® Design Suite to enter a given constraint type.

Constraints Entry Methods
The following table shows which feature of ISE® Design Suite to use to enter a given
constraint type.

Constraints Entry Methods
Constraint Type Tool Devices
Timing Constraints Editor All CPLD and FPGA device

families

IO placement and area-group
constraints

PlanAhead™ Software All FPGA device families

IO placement PACE All CPLD device families

IO placement and other
placement constraints

Schematic and Symbol Editors All CPLD and FPGA device
families

Constraints Entry Table
The following table lists the constraints and their associated entry strategies. See the
individual constraint for syntax examples.

Constraints Entry Table
Constraint Sche-

matic
VHDL
Verilog

NCF UCF Constr-
aints
Editor

PCF XCF Plan-
Ahead

PACE FPGA
Editor

ISE®
Design
Suite

AREA_GROUP Yes Yes Yes Yes Yes

ASYNC_REG Yes Yes Yes Yes

BEL Yes Yes Yes Yes

BLKNM Yes Yes Yes Yes Yes

BUFG (CPLD) Yes Yes Yes Yes Yes

CLOCK_DEDICATED
_ROUTE

Yes Yes

COLLAPSE Yes Yes Yes Yes

COMPGRP Yes

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 25

Chapter 2: Entry Strategies for Xilinx Constraints

Constraint Sche-
matic

VHDL
Verilog

NCF UCF Constr-
aints
Editor

PCF XCF Plan-
Ahead

PACE FPGA
Editor

ISE®
Design
Suite

CONFIG_MODE Yes

COOL_CLK Yes Yes Yes Yes

DATA_GATE Yes Yes Yes Yes

DEFAULT Yes Yes Yes Yes Yes Yes Yes

DCI_CASCADE Yes Yes Yes

DCI_VALUE Yes Yes

DIRECTED_ROUTING Yes Yes Yes

DISABLE Yes Yes Yes

DRIVE Yes Yes Yes Yes Yes Yes Yes Yes

DROP_SPEC Yes Yes Yes Yes

ENABLE Yes Yes Yes

ENABLE_SUSPEND Yes Yes

FAST Yes Yes Yes Yes Yes Yes Yes

FEEDBACK Yes Yes Yes Yes Yes

FILE Yes Yes

FLOAT Yes Yes Yes Yes Yes

FROM-THRU-TO Yes Yes Yes Yes Yes

FROM-TO Yes Yes Yes Yes Yes Yes

HBLKNM Yes Yes Yes Yes

HLUTNM Yes Yes Yes Yes Yes Yes

HU_SET Yes Yes Yes Yes Yes

IBUF_DELAY_VALUE Yes Yes Yes Yes

IFD_DELAY_VALUE Yes Yes Yes Yes

INREG Yes Yes

IOB Yes Yes Yes Yes Yes Yes

IOBDELAY Yes Yes Yes Yes Yes

IODELAY_GROUP Yes

IOSTANDARD Yes Yes Yes Yes Yes Yes Yes Yes

KEEP Yes Yes Yes Yes Yes

KEEPER Yes Yes Yes Yes Yes Yes Yes

KEEP_HIERARCHY Yes Yes Yes Yes Yes Yes

LOC Yes Yes Yes Yes Yes Yes Yes Yes

LOCATE Yes Yes

LOCK_PINS Yes Yes Yes

Constraints Guide
26 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2: Entry Strategies for Xilinx Constraints

Constraint Sche-
matic

VHDL
Verilog

NCF UCF Constr-
aints
Editor

PCF XCF Plan-
Ahead

PACE FPGA
Editor

ISE®
Design
Suite

LUTNM Yes Yes Yes Yes

MAP Yes Yes Yes

MARK_DEBUG Yes Yes Yes

MAXDELAY Yes Yes Yes Yes Yes Yes Yes

MAX_FANOUT Yes Yes Yes

MAXPT Yes Yes Yes

MAXSKEW Yes Yes Yes Yes Yes Yes Yes

NODELAY Yes Yes Yes Yes Yes

IODELAY_GROUP Yes

NOREDUCE Yes Yes Yes Yes Yes

OFFSET IN Yes Yes Yes Yes Yes Yes Yes

OFFSET OUT Yes Yes Yes Yes Yes Yes Yes

OPEN_DRAIN Yes Yes Yes Yes Yes

PERIOD Yes Yes Yes Yes Yes Yes Yes Yes Yes

PIN Yes

POST_CRC Yes Yes

POST_CRC_ACTION Yes Yes

POST_CRC_FREQ Yes Yes

POST_CRC_INIT_FLAG Yes Yes

PRIORITY Yes Yes Yes

PROHIBIT Yes Yes Yes Yes Yes

PULLDOWN Yes Yes Yes Yes Yes Yes Yes Yes

PULLUP Yes Yes Yes Yes Yes Yes Yes Yes

PWR_MODE Yes Yes Yes Yes Yes

REG Yes Yes Yes Yes Yes

RLOC Yes Yes Yes Yes Yes Yes

RLOC_ORIGIN Yes Yes Yes Yes Yes Yes

RLOC_RANGE Yes Yes Yes Yes Yes Yes

SAVE NET FLAG Yes Yes Yes Yes Yes

SCHMITT_TRIGGER Yes Yes Yes Yes Yes

SLEW Yes Yes Yes Yes Yes Yes Yes Yes

SLOW Yes Yes Yes Yes Yes Yes Yes Yes

STEPPING Yes

SUSPEND Yes Yes Yes Yes Yes

SYSTEM_JITTER Yes Yes Yes Yes Yes

TEMPERATURE Yes Yes Yes Yes

TIG Yes Yes Yes Yes Yes Yes Yes

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 27

Chapter 2: Entry Strategies for Xilinx Constraints

Constraint Sche-
matic

VHDL
Verilog

NCF UCF Constr-
aints
Editor

PCF XCF Plan-
Ahead

PACE FPGA
Editor

ISE®
Design
Suite

TIMEGRP Yes Yes Yes Yes Yes Yes

TIMESPEC Yes Yes Yes Yes Yes

TNM Yes Yes Yes Yes Yes

TNM_NET Yes Yes Yes Yes Yes Yes

TPSYNC Yes Yes Yes

TPTHRU Yes Yes Yes Yes

TSidentifier Yes Yes Yes Yes Yes Yes

U_SET Yes Yes Yes Yes Yes

USE_RLOC Yes Yes Yes Yes Yes Yes

VCCAUX Yes Yes

VCCAUX_IO Yes Yes Yes Yes

VOLTAGE Yes Yes Yes Yes

VREF Yes Yes Yes

WIREAND Yes Yes Yes Yes

XBLKNM Yes Yes Yes Yes Yes

Schematic Design
Follow these rules to add Xilinx® constraints as attributes within a symbol or schematic
drawing:
• If a constraint applies to a net, add it as an attribute to the net.
• If a constraint applies to an instance, add it as an attribute to the instance.
• You cannot add global constraints such as PART and PROHIBIT.
• You cannot add any timing specifications that would be attached to a TIMESPEC

or TIMEGRP.
• Enter attribute names and values in either all uppercase or all lowercase. Mixed

uppercase and lowercase is not allowed.

For more information about creating, modifying, and displaying attributes, see the
Schematic and Symbol Editors Help.

The syntax for any constraint that can be entered in a schematic is described in the
section for that constraint. For an example of correct schematic syntax, see the Schematic
Syntax Example in BEL.

VHDL Attributes
In VHDL code, constraints can be specified with VHDL attributes. Before it can be used,
a constraint must be declared with the following syntax:

attribute attribute_name : string;

Example

attribute RLOC : string;

Constraints Guide
28 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2: Entry Strategies for Xilinx Constraints

An attribute can be declared in an entity or architecture.
• If the attribute is declared in the entity, it is visible both in the entity and the

architecture body.
• If the attribute is declared in the architecture, it cannot be used in the entity

declaration.

Once the attribute is declared, you can specify a VHDL attribute as follows:

attribute attribute_name of {component_name | label_name |entity_name |signal_name |variable_name |type_name }:
{component|label| entity|signal |variable |type} is attribute_value ;

Accepted attribute_values depend on the attribute type.

Example One

attribute RLOC : string;

attribute RLOC of u123 : label is "R11C1.S0";

Example Two

attribute bufg: string;

attribute bufg of my_clock: signal is "clk";

For Xilinx® the most common objects are signal, entity, and label. A label describes an
instance of a component.

Note The signal attribute must be used on the output port.

VHDL is case insensitive.

In some cases, existing Xilinx constraints cannot be used in attributes, since they are also
VHDL keywords. To avoid this naming conflict, use a constraint alias. Each Xilinx
constraint has its own alias. The alias is the original constraint name pre-pended with
the prefix XIL_ For example, the RANGE constraint cannot be used in an attribute
directly. Use XIL_RANGE instead.

Verilog Attributes
Verilog attributes are bounded by asterisks (*), and use the following syntax:

(* attribute_name = attribute_value *)

where
• attribute precedes the signal, module, or instance declaration to which it refers.
• attribute_value is a string. No integer or scalar values are allowed.
• attribute_value is between quotes.
• The default is 1. (* attribute_name *) is the same as (* attribute_name = "1" *).

Verilog Attributes Syntax Example One
(* clock_buffer = "IBUFG" *) input CLK;

Verilog Attributes Syntax Example Two
(* INIT = "0000" *) reg [3:0] d_out;

Verilog Attributes Syntax Example Three
always@(current_state or reset)

begin (* parallel_case *) (* full_case *)
case (current_state)

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 29

Chapter 2: Entry Strategies for Xilinx Constraints

Verilog Attributes Syntax Example Four
(* mult_style = "pipe_lut" *) MULT my_mult (a, b, c);

Verilog Limitations
Verilog attributes are not supported for:

• Signal declarations

• Statements

• Port connections

• Expression operators

Verilog Meta Comments
Constraints can also be specified in Verilog code using meta comments. The Verilog
format is the preferred syntax, but the meta comment style is still supported. Use the
following syntax:

// synthesis attribute AttributeName [of] ObjectName [is] AttributeValue

Verilog Meta Comments Examples
// synthesis attribute RLOC of u123 is R11C1.S0
// synthesis attribute HU_SET u1 MY_SET
// synthesis attribute bufg of my_clock is "clk"

Constraints Guide
30 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2: Entry Strategies for Xilinx Constraints

User Constraints File (UCF)
A User Constraints File (UCF) file is an ASCII file which specifies constraints on the
logical design. You can create UCF files and enter constraints with:

• Any text editor

• Constraints Editor

These constraints affect how the logical design is implemented in the target device. You
can use UCF files to override constraints specified during design entry.

UCF Flow
The following figure illustrates the UCF flow.

UCF Flow

UCF files are input to NGDBuild (see the preceding figure). The constraints in the
UCF files become part of the information in the NGD file produced by NGDBuild.
For FPGA devices, some of these constraints are used when the design is mapped by
MAP, and some of the constraints are written into the Physical Constraints File (PCF)
produced by MAP.

The constraints in the PCF file are used by each of the physical design tools (for example,
PAR and the timing analysis tools), which are run after the design is mapped.

Manual Entry of Timing Constraints
In addition to entering timing constraints through Constraints Editor, you can manually
enter timing specifications as constraints in UCF files. When you run NGDBuild on the
design, the timing constraints are added to the design database as part of the NGD file.
You can also use the Constraints Editor to enter timing constraints in UCF files.

Constraint Conflicts in Multiple UCF Files
The Xilinx® software still uses "last constraint wins" just as in HDL, NCF, UCF, and PCF
processing. Currently, the UCF files are processed in the order in which they are added
to the project (either in the ISE® Design Suite or by means of Tcl commands), and it has
no bearing on timestamps or the order in which the files were modified.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 31

Chapter 2: Entry Strategies for Xilinx Constraints

UCF and NCF File Syntax
Logical constraints are found in:

• The Netlist Constraints File (NCF), an ASCII file typically generated by synthesis
programs

• The User Constraints File (UCF), an ASCII file generated by the user

Xilinx® recommends that you place user-generated constraints in the UCF or NCF files
and not in the Physical Constraints File (PCF) file.

General Rules for UCF and NCF
• UCF and NCF files are case sensitive. Identifier names (names of objects, such as

net names) must exactly match the case of the name as it exists in the source design
netlist. However, any Xilinx constraint keyword (for example, LOC, PERIOD,
HIGH, LOW) may be entered in all uppercase, all lowercase, or mixed case.

• Each statement is terminated by a semicolon (;).

• No continuation characters are necessary if a statement exceeds one line, since a
semicolon marks the end of the statement.

• Xilinx recommends that you group similar blocks, or components, as a single timing
constraint, and not as separate timing constraints.

• To add comments to the UCF and NCF files, begin each comment line with a pound
(#) sign, as in the following example.

file TEST.UCF
net constraints for TEST design
NET "$SIG_0 MAXDELAY" = 10;
NET "$SIG_1 MAXDELAY" = 12 ns;

• Statements need not be placed in any particular order in the UCF and NCF file.

• Enclose NET and INST names in double quotes (recommended but not mandatory).

• Enclose inverted signal names that contain a tilde (for example, ~OUTSIG1) in
double quotes (mandatory).

• You can enter multiple constraints for a given instance. For more information, see
Entering Multiple Constraints below.

Conflict in Constraints
The constraints in the UCF and NCF files and the constraints in the schematic or
synthesis file are applied equally. It does not matter whether a constraint is entered in
the schematic, HDL, UCF or NCF files. If the constraints overlap, UCF overrides NCF
and schematic/netlist constraints. NCF overrides schematic/netlist constraints.

If by mistake two or more elements are locked onto a single location, MAP detects
the conflict, issues an error message, and stops processing so that you can correct the
mistake.

Constraints Guide
32 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2: Entry Strategies for Xilinx Constraints

Syntax
The UCF file supports a basic syntax that can be expressed as:

{NET|INST|PIN} "full_name" constraint;
• full_name is a full hierarchically qualified name of the object being referred to. When

the name refers to a pin, the instance name of the element is also required.
• constraint is a constraint in the same form as it would be used if it were attached as

an attribute on a schematic object. For example, LOC=P38 and FAST.

Specifying Attributes for TIMEGRP and TIMESPEC
To specify attributes for TIMEGRP, the keyword TIMEGRP precedes the attribute
definitions in the constraints files.

TIMEGRP "input_pads"=PADS EXCEPT output_pads;

Using Reserved Words
In all of the constraints files (NCF, UCF, and PCF), instance or variable names that match
internal reserved words may be rejected unless the names are enclosed in double quotes.
It is good practice to enclose all names in double quotes.

For example, the following entry is not accepted because the word net is a reserved word.

NET net OFFSET=IN 20 BEFORE CLOCK;

Following is the recommended way to enter the constraint.

NET "net" OFFSET=IN 20 BEFORE CLOCK;

or

NET "$SIG_0" OFFSET=IN 20 BEFORE CLOCK;

Enclose inverted signal names that contain a tilde (for example, ~OUTSIG1) in double
quotes (mandatory) as follows:

NET "~OUTSIG1" OFFSET=IN 20 BEFORE CLOCK;

Wildcards
You can use the wildcard characters, asterisk (*) and question mark (?) in constraint
statements as follows:
• The asterisk (*) represents any string of zero or more characters.
• The question mark (?) indicates a single character.

In net names, the wildcard characters enable you to select a group of symbols whose
output net names match a specific string or pattern. For example, the constraint shown
below increases the output speed of pads to which nets are connected with names that
meet the following patterns:
• They begin with any series of characters (represented by an asterisk [*]).
• The initial characters are followed by "AT."
• The net names end with one single character (represented by a question mark [?].

NET "*AT?" FAST;

In an instance name, a wildcard character by itself represents every symbol of the
appropriate type. For example, the following constraint initializes an entire set of ROMs
to a particular hexadecimal value, 5555.

INST "$1I3*/ROM2" INIT=5555;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 33

Chapter 2: Entry Strategies for Xilinx Constraints

If the wildcard character is used as part of a longer instance name, the wildcard
represents one or more characters at that position.

In a location, you can use a wildcard character for either the row number or the column
number. For example, the following constraint specifies placement of any instance under
the hierarchy of loads_of_logic in any SLICE in column 8.

INST "/loads_of_logic/*" LOC=SLICE_X*Y8;

Wildcard characters cannot be used for both the row number and the column number in
a single constraint, since such a constraint is meaningless.

Traversing Hierarchies
Top-level block names (design names) are ignored when searching for instance name
matches. You can use the asterisk wildcard character (*) to traverse the hierarchy of a
design within a UCF and NCF file. The following syntax applies (where level1 is an
example hierarchy level name).

UCF Design Hierarchy
* Traverses all levels of the hierarchy

level1/* Traverses all blocks in level1 and below

level1/*/ Traverses all blocks in the level1 hierarchy
level but no further

Consider the following design hierarchy.

UCF Design Hierarchy

With the example design hierarchy, the following specifications illustrate the scope of
the wildcard.

INST * => <everything>
INST /* => <everything>
INST /*/ => <$A1,$B1,$C1>
INST $A1/* => <$A21,$A22,$A3,$A4>
INST $A1/*/ => <$A21,$A22>
INST $A1/*/* => <$A3,$A4>
INST $A1/*/*/ => <$A3>
INST $A1/*/*/* => <$A4>
INST $A1/*/*/*/ => <$A4>
INST /*/*22/ => <$A22,$B22,$C22>
INST /*/*22 => <$A22,$A3,$A4,$B22,$B3,$C3>

Constraints Guide
34 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2: Entry Strategies for Xilinx Constraints

Entering Multiple Constraints
You can cascade multiple constraints for a given instance in the UCF file:

INST instanceName constraintName = constraintValue | constraintName = constraintValue;

For example:

INST myInst LOC = P53 | IOSTANDARD = LVPECL33 | SLEW = FAST;

File Name
By default, NGDBuild reads the constraints file that carries the same name as the input
design with a .ucf extension. However, you can specify a different constraints file name
with the -uc option when running NGDBuild. NGDBuild automatically reads in the
NCF file if it has the same base name as the input EDIF file and is in the same directory
as the EDIF file.

The implementation tools (for example, NGDBuild, MAP, and PAR) require file name
extensions in all lowercase (for example, .ucf) in command lines.

Instances and Blocks
The statements in the constraints file concern instances and blocks, which are defined
as follows.

• An instance is a symbol on the schematic.

• An instance name is the symbol name as it appears in the EDIF netlist.

• A block is a CLB or an IOB.

• Specify the block name with the BLKNM, HBLKNM, or XBLKNM attributes. By
default, the software assigns a block name on the basis of a signal name associated
with the block.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 35

Chapter 2: Entry Strategies for Xilinx Constraints

Physical Constraints File (PCF)
The Native Generic Database (NGD) file produced when a design netlist is read into
the Xilinx® ISE® Design Suite may contain a number of logical constraints. These
constraints originate in any of these sources.

• An attribute assigned within a schematic or Hardware Description Language (HDL)
file

• A constraint entered in a User Constraints File (UCF)

• A constraint appearing in an Netlist Constraints File (NCF) produced by a CAE
vendor toolset

Logical constraints in the NGD file are read by MAP. MAP uses some of the constraints
to map the design and converts logical constraints to physical constraints. MAP then
writes these physical constraints into a Physical Constraints File (PCF).

The PCF file is an ASCII file containing two separate sections:

• A section for those physical constraints created by the mapper

• A section for physical constraints entered by the user

The mapper section is rewritten every time you run the mapper.

Mapper-generated physical constraints appear first in the file, followed by user physical
constraints. In the event of conflicts between mapper-generated and user constraints,
user constraints are read last, and override mapper-generated constraints.

The beginning of the mapper-generated section is indicated by SCHEMATIC START.
The end of this section is indicated by SCHEMATIC END. Enter user-generated
constraints, such as timing constraints, after SCHEMATIC END.

You can write user constraints directly into the file, or you can write them indirectly (or
undo them) from within the FPGA Editor. For more information on constraints in the
FPGA Editor, see the FPGA Editor help.

Note Whenever possible, you should add design constraints to the HDL, schematic, or
UCF, instead of PCF. This simplifies design archiving and improves design role checking.

The PCF file is an optional input to PAR, FPGA Editor, TRACE, NetGen, and BitGen.
The file may contain any number of constraints, and any number of comments, in any
order. A comment consists of either a pound sign (#) or double slashes (//) followed by
any number of other characters up to a new line. Each comment line must begin with a
pound sign (#) or double slashes (//).

The structure of the PCF file is as follows.

schematic start;

translated schematic and UCF and NCF constraints in PCF format

schematic end;

user-entered physical constraints

Caution! Put all user-entered physical constraints after the schematic end statement.
Any constraints preceding this section or within this section may be overwritten or ignored.

Do not edit the schematic constraints. They are overwritten every time the mapper
generates a new PCF file.

Global constraints need not be attached to any object, but should be entered in a
constraints file.

Indicate the end of each constraint statement with a semicolon.

Constraints Guide
36 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2: Entry Strategies for Xilinx Constraints

In all of the constraints files (NCF, UCF, and PCF), instance or variable names that match
internal reserved words are rejected unless the names are enclosed in double quotes. It
is good practice to enclose all names in double quotes. For example, the following entry
would not be accepted because the word net is a reserved word.

NET net FAST;

Following is the recommended way to enter the constraint.

NET "net" FAST;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 37

Chapter 2: Entry Strategies for Xilinx Constraints

Netlist Constraints File (NCF)
The syntax rules for the Netlist Constraints File (NCF) are the same as those for the User
Constraints File (UCF). For more information, see User Constraints File (UCF) and
Netlist Constraints File (NCF) File Syntax.

Constraints Editor
The Constraints Editor is a graphical tool that simplifies the process of entering timing
constraints. This tool guides you through the process of creating constraints without
requiring you to understand User Constraints File (UCF) syntax. For the constraints and
devices with which Constraints Editor can be used, see Constraints Entry Methods. For
information on running Constraints Editor, see the ISE® Design Suite Help

Constraints Editor is used in the implementation phase after the translation step
(NGCBuild). Constraints Editor allows you to create and manipulate constraints
without any direct editing of the UCF. After the constraints are created or modified with
Constraints Editor, NGCBuild must be run again, using the new UCF and design source
netlist files as input and generating a new NGD file as output.

Input/Output
Constraints Editor requires:
• A User Constraints File (UCF)
• A Native Generic Database (NGD) file

Constraints Editor uses the NGD file to provide names of logical elements for grouping.
As output, it uses the UCF file.

After you open Constraints Editor, you must first open a UCF file. If the UCF and NGD
root names are not the same, you must select the appropriate NGD file to open. For
more information, see the Constraints Editor Help.

Upon successful completion, Constraints Editor writes out a UCF file. NGCBuild
(translation) uses the UCF file, along with design source netlists, to produce an NGD
file. The NGD file is read by the MAP program. MAP generates a physical design
database in the form of an Native Circuit Description (NCD) file and also generates
a Physical Constraints File (PCF). The implementation software uses these files to
ultimately produce a bitstream.

Note Not all Xilinx® constraints are accessible through Constraints Editor.

Starting Constraints Editor
Constraints Editor runs on personal computers and workstations. You can start
Constraints Editor:
• From ISE Design Suite
• As a Standalone Tool
• From the Command Line

Running Constraints Editor From ISE Design Suite
Within ISE Design Suite, launch Constraints Editor from the Processes window.
1. Select a design file in the Sources window.
2. Double-click Processes > Design Utilities > User Constraints > Create Timing

Constraints.

Constraints Guide
38 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2: Entry Strategies for Xilinx Constraints

Running Constraints Editor As a Standalone Tool
If you installed Constraints Editor as a standalone tool, either:

• Click the Constraints Editor icon on the Windows desktop, or

• Select Start > Programs > Xilinx ISE > Accessories> Constraints Editor

Running Constraints Editor From the Command Line With No Data
Loaded

To start Constraints Editor from the command line with no data loaded, type:

constraints_editor

Running Constraints Editor From the Command Line With the NGD
File Loaded

To start Constraints Editor from the command line with the NGD file loaded, enter:

constraints_editor ngdfile_name

ngdfile_name is the name of the NGD file

It is necessary to use the .ngd extension.

If a UCF file with the same base name as the NGD file exists, it is loaded also. Otherwise,
you are prompted for a UCF file.

Running Constraints Editor From the Command Line With the NGD
File and the UCF File Loaded

To start Constraints Editor from the command line with the NGD file and the UCF
file loaded, enter:

constraints_editor ngdfile_name -uc ucf_file_name

• ngdfile_name is the name of the NGD file

• ucf_file_name is the name of the UCF file

It is necessary to use the .ucf extension.

Running Constraints Editor From the Command Line As a
Background Process

To run Constraints Editor as a background process on a workstation, enter:

constraints_editor &

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 39

Chapter 2: Entry Strategies for Xilinx Constraints

ISE Design Suite
To set implementation constraints in ISE® Design Suite:

• For FPGA devices, the implementation process properties specify how a design is
translated, mapped, placed, and routed. You can set multiple properties to control
the implementation processes.

• For CPLD devices, the implementation process properties specify how a design is
translated and fit.

For more information, see the ISE Design Suite help for the Process Properties dialog box.

PlanAhead
You can use the PlanAhead™ software either before or after synthesis. The PlanAhead
software supports the following devices:

• Virtex®-4 devices and higher

• Spartan®-3 devices and higher

The PlanAhead software allows you to drag-and-drop placement constraints, including:

• Pinout

• Logic placement

• Area

For more information, see the PlanAhead User Guide (UG632).

Assigning Placement Constraints
For FPGA devices, you can use the PlanAhead software to enter placement constraints
that control:

• I/O pin and logic assignments

• Global logic placement

• Area group assignment

The PlanAhead software runs automatically at various stages of the design process
to allow you to analyze the design and to apply placement constraints. A simplified
version of the PlanAhead software is invoked from ISE® Design Suite to enable only
the types of features required to perform the selected tasks. The standalone PlanAhead
software has many more features available.

When the PlanAhead software is invoked from ISE Design Suite, it is a separate CPU
process and does not communicate realtime with ISE Design Suite as some other tools
do. In order to prevent data mismatch or out of sync issues, do not update ISE Design
Suite source files while the PlanAhead software is running .

When the PlanAhead software is invoked, the appropriate source files are passed to the
PlanAhead software to populate the PlanAhead Project. When the PlanAhead Project is
saved, only the modified UCF files are passed back to ISE Design Suite to update the
Project. These input source files vary depending on the process step invoked.

For more information on the types of files passed, see the Pin Assignment and
Floorplanning and Placement Constraints sections later in this chapter. The following
sections cover strategies for entering placement constraints using the PlanAhead
software.

Constraints Guide
40 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2: Entry Strategies for Xilinx Constraints

Defining I/O Pin Configurations
This section discusses Defining I/O Pin Configurations and includes:

• Pin Assignment Overview

• Reviewing I/O Pin Data Information

• Pin Assignment

• I/O Planner Documentation

Pin Assignment Overview
I/O Planner can be invoked either as a standalone tool or from within ISE Design Suite.
Invoking I/O Planner standalone can be helpful early in the design process when HDL
sources may not yet be complete. I/O ports can be defined manually within the tool,
or by importing a CSV format spreadsheet or HDL sources. You can define an initial
pinout and export a User Constraints File (UCF) file for use in the ISE Design Suite flow.

A UCF file is required when invoking I/O Planner from within ISE Design Suite. If a
UCF file does not exist, an empty one is created. Creation of I/O ports manually or
by importing a CSV spreadsheet is not enabled when invoking I/O Planner from ISE
Design Suite.

I/O Planner is an I/O pin assignment environment containing many helpful views and
capabilities. You can selectively drag and drop groups of I/O ports onto the device using
a variety of methods. An automatic placement routine is also available. Comprehensive
Design Rule Checks (DRCs) ensure legal pinout definition.

Reviewing I/O Pin Data Information
Data Sheets provide device specifications, including I/O standards. To get device-specific
I/O standard information, see the data sheet for the device you are targeting. A lot of
the data contained in the data sheets is also available inside of the I/O Planner tool. The
types of information available include I/O standards, clock capable pins, internal trace
delays, differential pairs, clock region and I/O bank contents, etc. Information about
I/O related device resources such as global and regional clock buffers, I/O delays and
delay controllers, gigabit transceivers, etc. is also available.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 41

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+data+sheets

Chapter 2: Entry Strategies for Xilinx Constraints

Pin Assignment
To invoke I/O Planner standalone either click the PlanAhead Windows Desktop icon
or enter PlanAhead on the Linux command line. From ISE Design Suite, you can use
any of the following methods to start your pin assignment process, which allows you to
choose the method most convenient for you:
• Floorplanning I/O – Pre-Synthesis

When using this command or process step, the HDL source files are passed to the
PlanAhead software in order to extract the top level I/O port information only. If a
UCF files exists in the ISE Design Suite project, it is passed to the PlanAhead software
for modification. If a UCF does not exist, you are prompted to create one. If multiple
UCF files exist, you are prompted to select the desired file to add new constraints to.
Existing constraints are modified in whichever file they are contained in.
Refer to the I/O Planner Documentation section for information on using the I/O
Planner environment contained in the PlanAhead software.
Once the I/O pin assignment is made, you save the PlanAhead software project and
exit the PlanAhead software. This updates the UCF files in the ISE Design Suite
project and update the project status accordingly. Exiting the PlanAhead software
without saving does not change the ISE Design Suite UCF source files or status.

• Floorplanning a Design – Post-Synthesis
When using this command or process step, the synthesized netlist source files are
passed to the PlanAhead software. If a UCF files exists in the ISE Design Suite
project, it is passed to the PlanAhead software for modification. If a UCF does not
exist, you are prompted to create one. If multiple UCF files exist, you are prompted
to select the desired file to add new constraints to. Existing constraints are modified
in whichever file they are contained in.
Having a synthesized netlist as input enables more functionality in I/O Planner since
the tool is now aware of the clocks and clock related logic in the design. Additional
I/O planning capabilities and DRCs are provided to make more intelligent pin
assignment decisions. The design connectivity can also be analyzed to ensure
optimized use of device resources in relation to the I/Os.
Refer to the I/O Planner Documentation section for information on using the I/O
Planner environment contained in the PlanAhead software.
Once the I/O pin assignment is made, you will then save the PlanAhead software
project and exit the PlanAhead software. This will update the UCF files in the Project
Navigator project and update the project status accordingly. Exiting PlanAhead
without saving with not change the ISE Design Suite UCF source files or status.

I/O Planning Documentation
The PlanAhead User Guide (UG632) contains a section on I/O planning for analyzing the
device resources and I/O pin assignment.

The PlanAhead Software Tutorial: I/O Pin Planning (UG674), and the Pin Planning
Methodology Guide (UG792) are also available.

Floorplanning and Placement Constraints
The PlanAhead software provides a comprehensive environment for analyzing the
design from a number of different aspects including connectivity, density, and timing.
You can then apply placement constraints to help drive the implementation tools toward
better or more consistent results. These constraints may include LOC constraints to lock
specific logic objects into specific sites on the device or AREA_GROUP constraints to
constrain a group of logic within a specific area of the device.

Constraints Guide
42 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2: Entry Strategies for Xilinx Constraints

Placement LOC Constraint Assignment
The PlanAhead software enables you to lock down any logic to specific device sites. This
often includes global logic objects such as the following: BUFG, BRAM, MULT, PPC405,
GT, DLL, and DCM.

You can place logic objects by simply dragging the desired logic object from any of the
appropriate PlanAhead software views and drop it in the Device View in the Workspace.
Some types of logic such as I/O ports enable you to enter the desired location site in the
object General Properties view.

For more information about assigning placement constraints, see “Using Placement
Constraints” in the “Floorplanning the Design” chapter of the PlanAhead User Guide
(UG632).

Area Group Assignment
Area groups are the primary means of placing logic in specific regions of the device, for
example, within a particular clock region. The PlanAhead software enables you to create
area groups using a wide variety of methods. Assistance with connectivity, size logic
types and ranges are all provided by the tool including DRCs to ensure proper Area
Group (AREA_GROUP) property definition.

For more information about creating area group constraints, see Floorplanning the Design
in the PlanAhead User Guide (UG632).

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 43

Chapter 2: Entry Strategies for Xilinx Constraints

Setting Constraints in PACE
For CPLD devices, you can set constraints in the Pinout and Area Constraints Editor
(PACE). The Pin Assignments Editor in PACE is used to:

• Assign location constraints to IOs.

• Assign IO properties such as IO Standards.

For a list of the constraints and devices with which PACE can be used, see Constraints
Entry Methods. For more information about accessing and using PACE, see the ISE®
Design Suite Help.

Partial Design Pin Preassignment
This section deals with Pin Preassignment when a design is partially completed. For
information on Pin Preassignment in which a Hardware Description Language (HDL)
template is built by adding constraints to pins that are defined within PlanAhead™
or PACE, see the ISE® Design Suite Help. PACE is supported for CPLD devices.
PlanAhead is supported for FPGA devices.

Designs that are not yet fully coded might still have layout requirements. Pin
assignments, voltage standards, banking rules, and other board requirements might be
in place long before the design has reached the point where these constraints can be
applied. Pin Preassignment allows the design pinout rules to be determined before the
design logic has been completed.

To use Pin Preassignment in PlanAhead or PACE:

1. Provide the complete list of ports in your top-level design

2. Assign I/O constraints to them

Even if the ports are not used by any logic (that is, no loads for input pins, no sources for
output pins), they can still receive constraints and be kept through implementation.

Assign Location (LOC) or Input Output Standard (IOSTANDARD) constraints in the
User Constraints File (UCF) just like for any I/O pin. These requirements are annotated
in the database. PlanAhead and PACE can be used to assign pin locations, banking
groups or voltage standards, and DRC checks can be run. The final PAD report contains
any pins that have logic or constraints associated with them.

This implementation is incomplete and cannot be downloaded to the hardware. You
should expect these errors during the DRC phase of bitstream generation (BitGen):

• ERROR: PhysDesignRules:368 - The signal <D_OBUF> is incomplete. The signal is
not driven by any source pin in the design.

• ERROR: PhysDesignRules:10 - The network <D_OBUF> is completely unrouted.

To trim any unused ports from the design, remove the associated constraints. The
Translate (NGDBuild) phase trims these unused pins.

In this example, there are six top-level ports. Only three (clk, A, C) are currently used.
Of the remaining three ports:

• B is kept because it has a Location (LOC) constraint.

• D is kept because it has an Input Output Standard (IOSTANDARD) constraint.

• E is trimmed because it is completely unused and unconstrained.

Constraints Guide
44 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2: Entry Strategies for Xilinx Constraints

Verilog Example

module design_top(clk, A, B, C, D, E);
input clk, A, B;
output reg C, D, E;

always@(posedge clk)
C <= A;

endmodule

UCF Example

NET "A" LOC = "E2" ;
NET "B" LOC = "E3" ;
NET "C" LOC = "B15" ;
NET "D" IOSTANDARD = SSTL2_II ;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 45

Chapter 2: Entry Strategies for Xilinx Constraints

FPGA Editor
You can add or delete certain constraints in the Physical Constraints File (PCF) using
FPGA Editor. FPGA Editor supports net, site, and component constraints as property
fields in the individual nets and components. Properties are set with the Setattr
command, and are read with the Getattr command.

All Boolean constraints, including BLOCK, Locate (LOCATE), LOCK, Offset In (OFFSET
IN), Offset Out (OFFSET OUT), and Prohibit (PROHIBIT), have values of On or Off.
Offset direction has a value of either In or Out. Offset order has a value of either Before
or After. All other constraints have a numeric value. They can also be set to Off in
order to delete the constraint. All values are case-insensitive (for example, On and on
are both accepted).

When you create a constraint in the FPGA Editor, the constraint is written to the PCF file
whenever you save your design. When you use the FPGA Editor to delete a constraint,
and then save your design file, the line on which the constraint appears in the PCF
file remains in the file but is automatically commented out. Some of the constraints
supported in the FPGA Editor are listed in the following table.

Constraints Supported in FPGA Editor
Constraint Accessed Through
block paths Component Properties and Path Properties

property sheet

define path Viewed with Path Properties property sheet

location range Component Properties Constraints page

locate macro Macro Properties Constraints page

lock placement Component Properties Constraints page

lock routing of this net Net Properties Constraints page

lock routing Net Properties Constraints page

maxdelay allnets Main Properties Constraints page

maxdelay allpaths Main Properties Constraints page

maxdelay net Net Properties Constraints page

maxdelay path Path Properties property sheet

maxskew Main Properties Constraints page

maxskew net Net Properties Constraints page

offset comp Component Properties Offset page

penalize tilde Main Properties Constraints page

period Main Properties Constraints page

period net Net Properties Constraints page

prioritize net Net Properties Constraints page

prohibit site Site Properties property sheet

Locked Nets and Components
If a net is locked, you cannot unroute any portion of the net, including the entire net, a
net segment, a pin, or a wire. To unroute the net, you must first unlock it. You can add
pins or routing to a locked net.

Constraints Guide
46 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2: Entry Strategies for Xilinx Constraints

A net is displayed as locked in the FPGA Editor if the Lock Net [net_name] constraint
is enabled in the PCF file. You can use the Net Properties property sheet to remove
the lock constraint.

When a component is locked, one of the following constraints is set in the PCF file.

lock comp [comp_name]

locate comp [comp_name]

lock macro [macro_name]

lock placement

If a component is locked, you cannot unplace it, but you can unroute it. To unplace
the component, you must first unlock it.

Interaction Between Constraints
Schematic constraints are placed at the beginning of the PCF file by MAP. The start of
this section is indicated with SCHEMATIC START. The end of this section is indicated
with SCHEMATIC END. Because of a last-read order, all constraints that you enter in
this file should come after SCHEMATIC END.

You are not prohibited from entering a user constraint before the schematic constraints
section, but if you do, a conflicting constraint in the schematic-based section may
override your entry.

Every time a design is remapped, the schematic section of the PCF file is overwritten
by the mapper. The user constraints section is left intact, but certain constraints may
be invalid because of the new mapping.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 47

Chapter 2: Entry Strategies for Xilinx Constraints

XST Constraint File (XCF)
XST constraints can be specified in the XST Constraint File (XCF). The XCF has an
extension of .xcf. For more information, see:

• ISE® Design Suite Help

• XST Constraint File (XCF) section in the XST User Guide for Virtex-4, Virtex-5,
Spartan-3, and Newer CPLD Devices

Constraint Priority
In some cases more than one timing constraint covers the same path. The constraint
conflict must be resolved, with the higher priority constraint taking precedence and
being applied to the path, and the lower priority constraints being ignored for that
path. The method of constraints resolution depends on both the order of constraint
specification as well as the priority of the constraints specified. The rules of constraint
priority resolution are described below. This determination is based upon the constraint
prioritization or which constraint appears later in the Physical Constraints File (PCF), if
there are overlapping constraints of the same priority. For example, if the design has
two Period (PERIOD) constraints that cover the same paths, the later Period (PERIOD)
constraint in the PCF file covers or analyzes these paths. The previous Period (PERIOD)
constraints have “0 items analyzed” in the timing report. In order to modify the
default constraint resolution behavior, the constraint priority can be assigned using
the PRIORITY keyword.

File Priorities
When conflicting constraints have the same priority, the order of specification is used to
determine the constraint that takes precedence. The resolution rule for identical priority
constraints is the constraint that is specified last overwrites any previously defined
constraints. This rule applies to constraints within a single User Constraints File (UCF)
as well as constraints defined in multiple UCF files.

The following list defines the precedence order of identical priority constraints when
these constraints are defined in different constraint files. The list is given in descending
priority order with the highest priority constraint listed first.

• Constraints in a Physical Constraints File (PCF)

• Constraints in a User Constraints File (UCF)

• Constraints in a Netlist Constraints File (NCF)

• Attributes in a schematic or Constraints specified in HDL that are passed down
in the netlist

Constraints Guide
48 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 2: Entry Strategies for Xilinx Constraints

Timing Specification Priorities
When two different constraints cover the same path, the constraint with the highest
priority takes precedence and is applied to that path. Other constraints are ignored.
Constraint priority is as follows, in descending order from highest to lowest.

• Timing Ignore (TIG)

• From Thru To (FROM-THRU-TO)

– Source and Destination are User Defined Groups

– Source or Destination are User Defined Groups

– Source and Destination are Predefined Groups

• From To (FROM-TO)

– Source and Destination are User Defined Groups

– Source or Destination are User Defined Groups

– Source and Destination are Predefined Groups

• OFFSET IN (Offset In) and OFFSET OUT (Offset Out)

– Specific Data IOB (NET OFFSET) Constraint

– Time Group of Data IOBs (Grouped OFFSET) Constraint

– All Data IOBs (Global OFFSET) Constraint

• Period (PERIOD)

OFFSET Priorities
If two specific OFFSET constraints at the same level of precedence cover the same
path, an OFFSET with a register qualifier takes precedence over an OFFSET without a
qualifier; if otherwise equivalent, the latter in the constraint file takes precedence.

MAXSKEW and MAXDELAY Priorities
Net delay and net skew specifications are analyzed independently of path delay analysis
and do not interfere with one another. NET TIG do interact with the NET constraints
and take precedence.

Constraint Priority Exceptions
Use Priority (PRIORITY) to override the default constraint resolution behavior. Priority
(PRIORITY) uses a value of —255 to +255 to manually assign a priority to a constraint.
The smaller the constraint value, the higher the constraint priority. This keyword affects
constraint resolution priority only, and does not influence the priority in which the
implementation tools Place and Route the resources covered by the constraint. For
more information, see Priority (PRIORITY).

Constraint Set Interaction
There are circumstances in which constraint priority may not operate as expected. These
cases include supersets, subsets, and intersecting sets of constraints. See the following
figure.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 49

Chapter 2: Entry Strategies for Xilinx Constraints

Interaction Between Constraint Sets

• In Case A, the Timing Ignore (TIG) superset conflicts with the Period (PERIOD) set.

• In Case B, the intersection of the Period (PERIOD) and TIG sets creates an ambiguous
circumstance. In this instance, constraints may sometimes be considered as part of
Timing Ignore (TIG), and at other times part of Period (PERIOD).

Constraints Guide
50 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 3

Timing Constraint Strategies
The goal of using timing constraints is to ensure that all the design requirements are
communicated to the implementation tools. This goal also implies that all paths are
covered by the appropriate constraint. This chapter provides general guidelines that
explain the strategy for identifying and constraining the most common timing paths
in FPGA devices in the most efficient manner possible.

Note For more information, see the Timing Constraints User Guide (UG612)..

Basic Constraints Methodology
In order to ensure a valid design, the timing requirements for all paths must be
communicated to the implementation software. The timing requirements can be broken
down into several global categories based on the type of path that is to be covered. The
most common types of path categories include:

• Input paths

• Register-to-register paths

• Output paths

• Path specific exceptions

A Xilinx® timing constraint is associated with each of these global category types. The
most efficient way to specify these constraints is to begin with global constraints, then
add path specific exceptions as needed. In many cases, only the global constraints are
required.

The FPGA implementation software is driven by the specified timing requirements.
The software assigns device resources, and expends the appropriate amount of effort
necessary to ensure that the timing requirements are met. However, when a requirement
is over-constrained (or specified as a value greater than the design requirement), the
effort to meet this constraint increases significantly, and results in increased memory
use and tool runtime. In addition, over-constraining can degrade performance for not
only that particular constraint, but for other constraints as well. For this reason, Xilinx
recommends that you specify the constraint values using the actual design requirements.

The method of applying constraints given in this guide uses User Constraints File (UCF)
constraint syntax examples. This format highlights the constraints syntax that conveys
the design requirements. However, the easiest way to enter design constraints is to
use Constraints Editor, which:

• Provides a unified location in which to manage all timing constraints associated
with a design

• Provides assistance in creating timing constraints from the design requirements

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 51

Chapter 3: Timing Constraint Strategies

Input Timing Constraints
This section discusses how to specify input timing constraints and includes:

• Input Timing Constraints Overview

• System Synchronous Input

• Timing Diagram for Ideal System Synchronous SDR Interface Example

• Source Synchronous Inputs

• Timing Diagram for Ideal Source Synchronous DDR Interface Example

Input Timing Constraints Overview
Input timing constraints cover the data path from the external pin of the FPGA device to
the internal register that captures that data. Use OFFSET IN to specify the input timing.
The best way to specify the input timing requirements depends on the type (source or
system synchronous) and data rate (SDR or DDR) of the interface.

OFFSET IN defines the relationship between the data and the clock edge used to capture
that data at the pins of the FPGA device. When analyzing OFFSET IN, the timing
analysis software automatically take all internal factors affecting the delay of the clock
and data into account. These factors include:

• Frequency and phase transformations of the clock

• Clock uncertainties

• Data delay adjustments

In addition to the automatic adjustments, you may also add additional input clock
uncertainty to the PERIOD constraint associated with the interface clock. For more
information on the PERIOD constraint and adding INPUT_JITTER, see PERIOD.

OFFSET IN is associated with a single input clock. By default, OFFSET IN covers all
paths from the input pads of the FPGA device to the internal registers that capture that
data and are triggered by the specified OFFSET IN clock. This application of OFFSET IN
is called the global method, and is the most efficient way to specify input timing.

System Synchronous Inputs
The system synchronous interface is an interface in which a common system clock is
used to both transfer and capture the data. The following figure shows a simplified
System Synchronous interface with associated SDR timing.

Constraints Guide
52 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 3: Timing Constraint Strategies

Because this interface uses a common system clock, board trace delays and skew limit
the operating frequency of the interface. The lower frequency also results in the system
synchronous input interface typically being a single data rate (SDR) application. In
this system synchronous SDR application example, the data is transmitted from the
source device on one rising clock edge and captured in the FPGA device on the next
rising clock edge.

Using OFFSET IN is the most efficient way to specify the input timing for a system
synchronous interface. In this method, one PERIOD constraint is defined for each
system synchronous input interface clock. This single constraint covers the paths of all
input data bits that are captured in registers triggered by the specified input clock.

To specify the input timing:

1. Specify the clock OFFSET IN constraint for the input clock associated with the
interface.

2. Define the global OFFSET IN constraint for the interface.

Timing Diagram for Ideal System Synchronous SDR Interface Example
The following example shows a timing diagram for an ideal System Synchronous SDR
interface. The interface has a clock period of 5 ns and the data for both bits of the bus
remains valid for the entire period.

The global OFFSET IN constraint is defined as:

OFFSET = IN value VALID value BEFORE clock;

For OFFSET IN, value determines the time from the capturing clock edge in which data
first becomes valid. In this system synchronous example, the data becomes valid 5
ns before the capturing clock edge. For OFFSET IN, the VALID value determines the
duration in which data remains valid. In this example, the data remains valid for 5 ns.
For this example, the complete OFFSET IN specification with an associated PERIOD is:

NET “SysCLk” TNM_NET = “SysClk”;

TIMESPEC “TS_SysClk” = PERIOD “SysClk” 5 ns HIGH 50%;

OFFSET = IN 5 ns VALID 5 ns BEFORE “SysClk”;

This global constraint covers both data bits of the bus (data1, data2).

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 53

Chapter 3: Timing Constraint Strategies

Source Synchronous Inputs
The source synchronous interface is an interface in which a clock is regenerated and
transmitted along with the data from the source device. This clock is then used to
capture the data in the FPGA device. A simplified Source Synchronous interface with
associated DDR timing is shown in the following diagram.

Because this interface uses a regenerated clock that is transmitted along the same board
traces as the data, the board trace delays and skew no longer limit the operating
frequency of the interface. The higher frequency also results in the source synchronous
input interface typically being a dual data rate (DDR) application. In this source
synchronous DDR application example, unique data is transmitted from the source
device on both the rising and falling clock edges and captured in the FPGA using the
regenerated clock.

Using OFFSET IN is the most efficient way to specify the input timing for a source
synchronous interface. In the DDR interface, one OFFSET IN constraint is defined for
each edge of the input interface clock. These constraints will cover the paths of all input
data bits that are captured in registers triggered by the specified input clock edge.

To specify the input timing:

1. Specify the clock PERIOD constraint for the input clock associated with the interface.

2. Define the global OFFSET IN constraint for the rising edge of the interface.

3. Define the global OFFSET IN constraint for the falling edge of the interface.

Timing Diagram for Ideal Source Synchronous DDR Interface Example
The following example shows a timing diagram for an ideal Source Synchronous DDR
interface. The interface has a clock period of 5 ns with a 50/50 duty cycle, and the data
for both bits of the bus remains valid for the entire ½ period.

Constraints Guide
54 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 3: Timing Constraint Strategies

The global OFFSET IN constraint for the DDR case is defined as:

OFFSET = IN value VALID value BEFORE clock RISING;

OFFSET = IN value VALID value BEFORE clock FALLING;

For OFFSET IN, value determines the time from the capturing clock edge in which data
first becomes valid. In this source synchronous example, the rising data becomes valid
1.25 ns before the capturing rising clock edge and the falling data also becomes valid 1.25
ns before the capturing falling clock edge. For OFFSET IN, the VALID value determines
the duration in which data remains valid. In this example, both the rising and falling
data remains valid for 2.5 ns. For this example, the complete OFFSET IN specification
with an associated PERIOD is:

NET “SysCLk” TNM_NET = “SysClk”;

TIMESPEC “TS_SysClk” = PERIOD “SysClk” 5 ns HIGH 50%;

OFFSET = IN 1.25 ns VALID 2.5 ns BEFORE “SysClk” RISING;

OFFSET = IN 1.25 ns VALID 2.5 ns BEFORE “SysClk” FALLING;

These global constraints cover both data bits of the bus (data1, data2).

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 55

Chapter 3: Timing Constraint Strategies

Register-to-Register Timing Constraints
This section discusses the methodology for the specification of register-to-register
synchronous path timing requirements. Register-to-register constraints cover the
synchronous data paths between internal registers. This section includes:
• Register-to-Register Timing Constraints Overview
• Automatically Related DCM/PLL/MMCM Clocks
• Manually Related Clock Domains
• Asynchronous Clock Domains

Register-to-Register Timing Constraints Overview
PERIOD defines the timing of the clock domains. PERIOD not only analyzes the paths
within a single clock domain, but analyzes all paths between related clock domains as
well. In addition, PERIOD automatically takes into account all frequency, phase, and
uncertainty differences between the domains during analysis.

The application and methodology for constraining synchronous clock domains falls
under several common categories. These categories include:
• Automatically related DCM/PLL/MMCM Clock Domains
• Manually related Clock Domains
• Asynchronous Clock Domains

By allowing the tools to automatically create clock relationships for DCM/PLL/MMCM
output clocks, and manually defining relationships for externally related clocks, all
synchronous cross-clock- domain paths will be covered by the appropriate constraints,
and properly analyzed. With proper application of PERIOD constraints that follows this
methodology, the need for additional cross-clock-domain constraints is eliminated.

Automatically Related DCM/PLL/MMCM Clocks
The most common type of clock circuit is one in which the input clock is fed into
a DCM/PLL/MMCM and the outputs are used to clock the synchronous paths in
the device. In this scenario, the recommended methodology is to define a PERIOD
constraint on the input clock to the DCM/PLL/MMCM . By placing PERIOD on the
input clock, the Xilinx® software automatically derives a new PERIOD for each of the
DCM/PLL/MMCM output clocks. In addition, the tools will automatically determine the
clock relationships between the output clock domains, and automatically perform an
analysis for any paths between these synchronous domains.

Example
In this example, the input clock goes to a DCM. The following figure shows the circuit
for this example:

Constraints Guide
56 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 3: Timing Constraint Strategies

The PERIOD constraint syntax for this example is:

NET “ClockName” TNM_NET = “TNM_NET_Name”;

TIMESPEC “TS_name” = PERIOD “TNM_NET_Name” PeriodValue HIGH HighValue%;

For PERIOD, the PeriodValue defines the duration of the clock period. In this case, the
input clock to the DCM has a period of 5 ns. The HighValue of the PERIOD constraint
defines the percent of the clock waveform that is HIGH. In this example, the waveform
has a 50/50 duty cycle resulting in a HighValue of 50%. The syntax for this example is:

NET “ClkIn” TNM_NET = “ClkIn”;

TIMESPEC “TS_ClkIn” = PERIOD “ClkIn” 5 ns HIGH 50%;

Based on the input clock PERIOD constraint given above, the DCM automatically
creates two output clock constraints for the DCM outputs, and automatically performs
analysis between the two domains.

Manually Related Clock Domains
In some cases, the relationship between synchronous clock domains cannot be
automatically determined by the tools. One example occurs when related clocks enter
the FPGA device on separate pins. In this scenario, the recommended constraint
methodology is to create separate PERIOD constraints for both input clocks and define
a manual relationship between the clocks. Once the manual relationship is defined,
all paths between the two synchronous domains are automatically analyzed with all
frequency, phase, and uncertainty information automatically taken into account.

The Xilinx constraints system allows for complex manual relationships to be defined
between clock domains using PERIOD. This manual relationship can include clock
frequency and phase transformations. The methodology for this process is:
1. Define PERIOD for the primary clock
2. Define the PERIOD constraint for the related clock using the first PERIOD constraint

as a reference

Example
In this example two related clocks enter the FPGA device through separate external
pins. The first clock, CLK1X, is the primary clock, and the second clock, CLK2X180 is
the related clock. The circuit for this example is shown in the following figure:

The PERIOD syntax for this example is:

NET “PrimaryClock” TNM_NET = “TNM_Primary”;

NET “RelatedClock” TNM_NET = “TNM_Related”;

TIMESPEC “TS_primary” = PERIOD “TNM_Primary” PeriodValue HIGH HighValue%;

TIMESPEC “TS_related” = PERIOD “TNM_Related” TS_Primary_relation PHASE value;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 57

Chapter 3: Timing Constraint Strategies

In the related PERIOD definition, the PERIOD value is defined as a time unit (period)
relationship to the primary clock. The relationship is expressed in terms of the primary
clock TIMESPEC. In this example CLK2X180 operates at twice the frequency of CLK1X
which results in a PERIOD relationship of ½. In the related PERIOD definition, the
PHASE value defines the difference in time between the rising clock edge of the source
clock and the related clock. In this example, the CLK2X180 clock is 180 degrees shifted,
so the rising edge begins 1.25 ns after the rising edge of the primary clock. The syntax
for this example is:

NET “Clk1X" TNM_NET = “Clk1X";

NET “Clk2X180" TNM_NET = “Clk2X180";

TIMESPEC "TS_Clk1X" = PERIOD "Clk1X" 5 ns;

TIMESPEC "TS_Clk2X180" = PERIOD "Clk2X180“ TS_Clk1X/2 PHASE +
1.25 ns ;

Asynchronous Clock Domains
Asynchronous clock domains are defined as those in which the transmit and capture
clocks bear no frequency or phase relationship. Because the clocks are not related, it is
not possible to determine the final relationship for setup and hold time analysis. For this
reason, it is recommended that proper asynchronous design techniques be employed
to ensure the successful capture of data. However, while not required, in some cases
designers wish to constrain the maximum data path delay in isolation without regard to
clock path frequency or phase relationship.

The Xilinx constraints system allows for the constraining of the maximum data path
delay without regard to source and destination clock frequency and phase relationship.

This requirement is specified using FROM-TO with the DATAPATHONLYkeyword.

The methodology for this process is:

1. Define a time group for the source registers

2. Define a time group for the destination registers

3. Define the maximum delay of the net using FROM-TO between the two time groups
with DATAPATHONLYkeyword.

For more information on using FROM-TO with the DATAPATHONLYkeyword, see
FROM-TO.

Constraints Guide
58 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 3: Timing Constraint Strategies

Example
In this example two unrelated clocks enter the FPGA device through separate external
pins. The first clock, CLKA, is the source clock, and the second clock, CLKB is the
destination clock. The circuit for this example is shown in the following figure:

NET “CLKA” TNM_NET = FFS “GRP_A”;

NET “CLKB” TNM_NET = FFS “GRP_B”;

TIMESPEC TS_Example = FROM “GRP_A” TO “GRP_B” 5 ns DATAPATHONLY;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 59

Chapter 3: Timing Constraint Strategies

Output Timing Constraints
This section discusses how to specify output timing constraints. Output timing
constraints cover the data path from a register inside the FPGA device to the external
pin of the FPGA device.

Output Timing Constraints Overview
Use OFFSET OUT to specify output timing. The best way to specify the output
timing requirements depends on the type (source/system synchronous) and data rate
(SDR/DDR) of the interface.

OFFSET OUT defines the maximum time allowed for data to be transmitted from the
FPGA device. The output delay path begins at the input clock pin of the FPGA device
and continues through the output register to the data pins of the FPGA. This path is
shown in the following diagram.

When analyzing OFFSET OUT, the timing analysis software automatically take all
internal factors affecting the delay of the clock and software into account. These factors
include:

• Frequency and phase transformations of the clock

• Clock uncertainties

• Data path delay adjustments

System Synchronous Output
The system synchronous output interface is an interface in which a common system clock
is used to both transfer and capture the data. The following figure shows a simplified
System Synchronous output interface with associated single data rate (SDR) timing.

Constraints Guide
60 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 3: Timing Constraint Strategies

Because this interface uses a common system clock, only the data will be transmitted
from the FPGA device to the receiving device.

Using OFFSET OUT is the most efficient way to specify the output timing for the system
synchronous interface. In the global method, one OFFSET OUT constraint is defined for
each system synchronous output interface clock. This single constraint covers the paths
of all output data bits sent from registers triggered by the specified output clock.

To specify the output timing:

1. Define a time name (TNM) for the output clock to create a timegroupwhich contains
all output registers triggered by the output clock.

2. Define the global the OFFSET OUT constraint for the interface

Example
The following example shows the interface and a timing diagram for a System
Synchronous SDR output interface. The data in this example must become valid at the
output pins a maximum of 5 ns after the input clock edge at the pin of the FPGA.

The global OFFSET OUT constraint for the system synchronous interface is defined as:

OFFSET = OUTvalue VALID value AFTER clock;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 61

Chapter 3: Timing Constraint Strategies

For OFFSET OUT, the OFFSET=OUT value determines the maximum time from the
rising clock edge at the input clock port until the data first becomes valid at the data
output port of the FPGA. In this system synchronous example, the output data must
become valid at least 5 ns after the input clock edge. For this example, the complete
OFFSET OUT specification is:

NET “ClkIn” TNM_NET = “ClkIn”;

OFFSET = OUT 5 ns AFTER “ClkIn”;

This global constraint covers both output data bits of the bus:

• data1

• data2

Source Synchronous Outputs
The source synchronous output interface is an interface in which a clock is regenerated
and transmitted along with the data from the FPGA device. The following figure shows
a simplified Source Synchronous output interface with associated DDR timing.

Because the regenerated clock is transmitted along with the data, the interface is
primarily limited in performance by system noise and the skew between the regenerated
clock and the data bits. In this interface, the time from the input clock edge to the output
data becoming valid is not as important as the skew between the output data bits and
in most cases can be left unconstrained.

Using OFFSET OUT is the most efficient way to specify the output timing for a source
synchronous interface. In the DDR interface, one OFFSET OUT constraint is defined for
each edge of the output interface clock. These constraints cover the paths of all output
data bits that are transmitted by registers triggered with the specified output clock edge.

To specify the output timing:

1. Define a time name (TNM) for the output clock to create a timegroupwhich contains
all output registers triggered by the output clock

2. Define the global OFFSET OUT constraint for the rising edge of the interface

3. Define the global OFFSET OUT constraint for the falling edge of the interface

Example
The following example shows a timing diagram for an ideal Source Synchronous DDR
interface. In this interface example the absolute clock to output time is not important,
and only the skew between the regenerated clock and the output data bits is desired.

Constraints Guide
62 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 3: Timing Constraint Strategies

The global OFFSET OUT constraints for the DDR case are:

OFFSET = OUT AFTERclock REFERENCE_PIN "REF_CLK" RISING;

OFFSET = OUT AFTERclock REFERENCE_PIN "REF_CLK" FALLING;

For OFFSET OUT, the OFFSET=OUT value determines the maximum time from the
rising clock edge at the input clock port until the data first becomes valid at the data
output port of the FPGA device. When the value is omitted from OFFSET OUT, the
constraint becomes a report only specification which reports the skew of the output bus.
The REFERENCE_PINkeyword in the constraint defines the regenerated output clock as
the reference point for which the skew of the output data pins is reported against.

For this example, the complete OFFSET OUT specification for both the rising and falling
clock edges is:

NET "ClkIn" TNM_NET = "ClkIn";

OFFSET = OUT AFTER "ClkIn" REFERENCE_PIN "ClkOut" RISING;

OFFSET = OUT AFTER "ClkIn" REFERENCE_PIN "ClkOut" FALLING;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 63

Chapter 3: Timing Constraint Strategies

Exception Timing Constraints
This section discusses Exception Timing Constraints and includes:

• Exception Timing Constraints Overview

• False Paths

• Multi-Cycle Paths

Exception Timing Constraints Overview
By using the global definitions of the input, register-to-register, and output timing
constraints, the majority of the paths are properly constrained. However, in certain cases
a small number of paths contain exceptions to the global constraint rules. The most
common type of exceptions specified are:

• False Paths

• Multi-Cycle Paths

False Paths
In some cases, you may want to remove a set of paths from analysis if these paths do
not affect timing performance.

One common way to specify the set of paths to remove from timing analysis is to use the
FROM-TO constraint with the timing ignore (TIG) keyword. This allows you to specify
a set of registers in a source time group and a set of registers in a destination time group,
and to automatically remove all paths between those time groups from analysis.

To specify the timing ignore (TIG) constraint for this method:

1. Define a set of registers for the source time group

2. Define a set of registers for the destination time group

3. Define a FROM-TO constraint with a TIG keyword to remove the paths between
the groups

Example
This example shows a hypothetical case in which a path between two registers does
not affect the timing of the design, and is desired to be removed from analysis. The
following figure shows a block diagram of the example circuit.

Constraints Guide
64 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 3: Timing Constraint Strategies

The generic syntax for defining a timing ignore (TIG) between time groups is:

TIMESPEC "TSid" = FROM "SRC_GRP" TO "DST_GRP" TIG;

In the FROM-TO TIG example, the SRC_GRP defines the set of source registers in
which path tracing will begin from while the DST_GRP defines the set of destination
registers the path tracing will end at. All paths that begin in the SRC_GRP and end in
the DST_GRP will be ignored.

The specific syntax for this example is:

NET “CLK1” TNM_NET = FFS “GRP_1”;

NET “CLK2” TNM_NET = FFS “GRP_2”;

TIMESPEC TS_Example = FROM “GRP_1” TO “GRP_2” TIG;

Multi-Cycle Paths
A multi-cycle path is a path in which data is transferred from source to destination
register at a rate that is less than the clock frequency defined in the PERIOD specification.
This scenario most often occurs when the registers are gated with a common clock
enable signal. By defining a multi-cycle path, the timing constraints for these registers
will be relaxed over the default PERIOD constraint, and the implementation tools will
be able to prioritize the implementation of these paths appropriately.

To specify the FROM-TO multi-cycle constraint:

1. Define a PERIOD constraint for the common clock domain

2. Define a set of registers based on a common clock enable signal

3. Define a FROM-TO multi-cycle constraint describing the new timing requirement

Example
This example shows a hypothetical case in which a path between two registers is clocked
by a common clock enable signal. The clock enable is toggled at a rate that is one half of
the reference clock. A block diagram of the example circuit is shown in the figure below.

The generic syntax for defining a multi-cycle path between time groups is:

TIMESPEC “TSid” = FROM “MC_GRP” TO “MC_GRP” value;

In the FROM-TO multi-cycle example, the MC_GRP defines the set of registers which
are driven by a common clock enable signal. All paths that begin in the MC_GRP and
end in the MC_GRP will have the multi-cycle timing requirement applied to them while
paths into and out of the MC_GRP will be analyzed with the appropriate PERIOD
specification.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 65

Chapter 3: Timing Constraint Strategies

The specific syntax for this example is:

NET “CLK1” TNM_NET = “CLK1”;

TIMESPEC “TS_CLK1” = PERIOD “CLK1” 5 ns HIGH 50%;

ET “Enable” TNM_NET = FFS “MC_GRP”;

TIMESPEC TS_Example = FROM “MC_GRP” TO “MC_GRP” TS_CLK1*2;

Constraints Guide
66 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4

Xilinx Constraints
Each Xilinx® constraint includes the following, where applicable:

• Architecture Support

• Applicable Elements

• Description

• Propagation Rules

• Syntax

• Syntax Examples

• Additional information, if necessary

Constraint Information
This chapter gives the following information for each constraint:

• Architecture Support

Whether the constraint may be used with that device.

• Applicable Elements

The elements to which the constraint may be applied.

• Description

A brief description of the constraint, including its usage and behavior.

• Propagation Rules

How the constraint is propagated.

• Syntax Examples

Syntax examples for using the constraint with particular tools or methods. Not
every tool or method is listed for every constraint. If a tool or method is not listed,
the constraint may not be used with it.

• Additional Information

Additional information is provided for certain constraints.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 67

Chapter 4: Xilinx Constraints

AREA_GROUP (Area Group)
The AREA_GROUP (Area Group) constraint:
• Is a design implementation constraint.
• Enables partitioning of the design into physical regions for mapping, packing,

placement, and routing.
• Is attached to logical blocks in the design.

The string value of the constraint identifies a named group of logical blocks that
are to be packed together by mapper and placed in the ranges if specified by PAR.
If AREA_GROUP is attached to a hierarchical block, all sub-blocks in the block are
assigned to the group.

Once defined, an AREA_GROUP can have a variety of additional constraints associated
with it to control its implementation. For more information, see Constraint Syntax below.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
• Logic blocks
• Timing groups

For more information, see Defining From Timing Groups below.

Propagation Rules
• When attached to a design element, AREA_GROUP is propagated to all applicable

elements in the hierarchy below the component.
• It is illegal to attach AREA_GROUP to a net, signal, or pin.

AREA_GROUP UCF Syntax
The UCF syntax for defining an area group is:

INST “X ” AREA_GROUP=groupname ;

The UCF syntax for attaching constraints to an area group is:

AREA_GROUP “groupname” RANGE=range;

or

AREA_GROUP “groupname” COMPRESSION=percent;

or

AREA_GROUP “groupname” GROUP={OPEN|CLOSED};

or

AREA_GROUP “groupname ”PLACE={OPEN|CLOSED};

where
groupname is the name assigned to an implementation partition to uniquely define the
group.

Each of these additional AREA_GROUP constraints is described below.

Constraints Guide
68 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

RANGE
RANGE defines the range of device resources that are available to place logic contained
in the AREA_GROUP, in the same manner ranges are defined for the LOC constraint.

For all FPGA devices, the RANGE syntax is as follows:

RANGE=SLICE_X# Y#:SLICE_X#Y#

RANGE=RAMB16_X#Y#:RAMB16_X#Y#

RANGE=MULT18X18_X #Y#:MULT18X18_X#Y#

All FPGA devices SLICES are supported. If an AREA_GROUP contains both Block
RAM and SLICE elements, two separate AREA_GROUP RANGE components can be
specified: one for BRAM elements and one for SLICE elements.

All locations in the FPGA device are specified in terms of X and Y coordinates. You can
use the wildcard character for either the X coordinate or the Y coordinate.

The RANGE value can also be specified as a CLOCK REGION element or a set of
CLOCK REGION elements. This syntax is supported for all INST types that can be used
in AREA_GROUP constraints.

For all FPGA devices, AREA_GROUP is supported for various clock regions:

For a single region:

AREA_GROUP “groupname” RANGE=CLOCKREGION_X#Y#;

For a range of clock regions that form a rectangle:

AREA_GROUP "group_name"
RANGE=CLOCKREGION_X#Y#:CLOCKREGION_X#Y#;

For a list of clock regions:

AREA_GROUP “groupname”
RANGE=CLOCKREGION_X#Y#,CLOCKREGION_X#Y#,...,;

The valid X# and Y# values vary by device.

Note All components can be constrained by the CLOCKREGION range except IOB
and BUF.

Comma Separated RANGE Specifications Are Ignored
Comma separated RANGE specifications are not allowed on a single line. The second
specification will be ignored. Each RANGE specification must be on its own line.

Following is an invalid syntax example.

INST "RM_data_control" AREA_GROUP = "RR_RM_data_control" ;
AREA_GROUP "RR_RM_data_control" RANGE = SLICE_X0Y44:SLICE_X27Y20, DSP48_X0Y25:DSP48_X0Y14;

Following is a valid syntax example.

INST "RM_data_control" AREA_GROUP = "RR_RM_data_control" ;
AREA_GROUP "RR_RM_data_control" RANGE = SLICE_X0Y44:SLICE_X27Y20;
AREA_GROUP "RR_RM_data_control" RANGE = DSP48_X0Y25:DSP48_X0Y14;

Types of Logic Legal in the RANGE Constraint
Range Name virtex4 virtex5 virtex6 spartan6

BSCAN_XnYn X X X X

BUFDS_XnYn X X

BUFGCTRL_XnYn X X X

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 69

Chapter 4: Xilinx Constraints

Range Name virtex4 virtex5 virtex6 spartan6
BUFGMUX_XnYn X

BUFHCE_XnYn X

BUFH_XnYn X

BUFIO2FB_XnYn X

BUFIO2_XnYn X

BUFIODQS_XnYn X

BUFIO_XnYn X X

BUFO_XnYn X

BUFPLL_MCB_XnYn X

BUFPLL_XnYn X

BUFR_XnYn X X X

CAPTURE_XnYn X

CFG_IO_ACCESS_XnYn X

CRC32_XnYn X

CRC64_XnYn X

DCIRESET_XnYn X

DCI_XnYn X X X

DCM_ADV_XnYn X X

DCM_XnYn X

DNA_PORT_XnYn X

DPM_XnYn X

DSP48_XnYn X X X X

EFUSE_USR_XnYn X

EMAC_XnYn X

FIFO16_XnYn X

GLOBALSIG_XnYn X X X

GT11CLK_XnYn X

GT11_XnYn X

GTPA1_DUAL_XnYn X

GTP_DUAL_XnYn X

GTXE1_XnYn X

GTX_DUAL_XnYn X

IBUFDS_GTXE1_XnYn X

ICAP_XnYn X X X X

IDELAYCTRL_XnYn X X X

ILOGIC_XnYn X X X X

IOB_XnYn X X X

IODELAY_XnYn X X X

Constraints Guide
70 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Range Name virtex4 virtex5 virtex6 spartan6
IPAD_XnYn X X X X

MCB_XnYn X

MMCM_ADV_XnYn X

MONITOR_XnYn X

OCT_CAL_XnYn X

OLOGIC_XnYn X X X X

OPAD_XnYn X X X X

PCIE_XnYn X X X

PCILOGIC_XnYn X

PLL_ADV_XnYn X X

PMCD_XnYn X

PMVBRAM_XnYn X X

PMVIOB_XnYn X

PMV_XnYn X

PPC405_ADV_XnYn X

PPC440_XnYn X

PPR_FRAME_XnYn X

RAMB16_XnYn X X

RAMB18_XnYn X

RAMB36_XnYn X X

RAMB8_XnYn X

SLICE_XnYn X X X X

STARTUP_XnYn X

SYSMON_XnYn X X

TEMAC_XnYn X X

TIEOFF_XnYn X X X X

USR_ACCESS_XnYn X

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 71

Chapter 4: Xilinx Constraints

Sites That Do Not Conform to the Normal X, Y Format
The following sites do not conform to the normal X, Y format and can be used in an
area group range. The syntax is:

AREA_GROUP "group" RANGE=site1; AREA_GROUP "group" RANGE=site2;

Site Name virtex4 virtex5 virtex6 spartan6
CAPTURE X X

DCIRESET X X

DNA_PORT X

EFUSE_USR X

FRAME_ECC X X X

JTAGPPC X X

KEY_CLEAR X

PAD X

PMV X X X

POST_CRC_INTERNAL X

SLAVE_SPI X

SPI_ACCESS X

STARTUP X X X

SUSPEND_SYNC X

USR_ACCESS_SITE X X

Constraints Guide
72 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

COMPRESSION
COMPRESSION defines the compression factor for the AREA_GROUP constraints. The
percent values can be from 0 to 100. If the AREA_GROUP does not have a RANGE,
only 0 (no compression) and 1 (maximum compression) are meaningful. The mapper
computes the number of CLBs in the AREA_GROUP from the RANGE and attempts
to compress the logic into the percentage specified. Compression does not apply to
BRAMs, or DSP block/multipliers.

The compression factor is similar to the -c option in MAP, except that it operates on the
AREA_GROUP instead of the whole design. AREA_GROUP compression interacts
with the -c map option as follows:
• Area groups with a compression factor are not affected by the -c option. (Logic that

is not part of an area group is not merged with grouped logic if the AREA_GROUP
has its own compression factor.)

• Area groups without a compression factor are affected by the -c option. The mapper
may attempt to combine ungrouped logic with logic that is part of an area group
without a compression factor.

• At no time is the logic from two separate area groups combined.
• The -cmap option does not force compression among slices in the same area group.

The Map Report (MRP) includes a section that summarizes AREA_GROUP processing.

If a symbol that is part of an AREA_GROUP contains a LOC (Location) constraint, the
mapper removes the symbol from the area group and processes the LOC constraint.

Logic that does not belong to any AREA_GROUP can be pulled into the region of logic
belonging to an area group, as well as being packed or merged with such logic to form
SLICES.

COMPRESSION on AREA_GROUP constraints does not apply when Timing Driven
Packing and Placement is in MAP(-timing).

COMPRESSION on AREA_GROUP constraints is not supported for Virtex®-5 devices.

GROUP
GROUP controls the packing of logic into physical components (that is, slices) as follows.
• CLOSED

Do not allow logic outside the AREA_GROUP to be combined with logic inside the
AREA_GROUP.

• OPEN
Allow logic outside the AREA_GROUP to be combined with logic inside the
AREA_GROUP.
The default value is GROUP=OPEN.

PLACE
PLACE controls the allocation of resources in the area group’s RANGE, as follows.
• CLOSED

Do not allow comps that are not members of the AREA_GROUP to be placed within
the RANGE defined for the AREA_GROUP.

• OPEN
Allow comps that are not members of the AREA_GROUP to be placed within the
RANGE defined for the AREA_GROUP.
The default value is PLACE=OPEN.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 73

Chapter 4: Xilinx Constraints

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax Examples
• Attach AREA_GROUP=groupnameto a valid instance.
• Attach RANGE =rangeto a CONFIG symbol.
• Attach COMPRESSION=percentto a CONFIG symbol.
• Attach GROUP={OPEN|CLOSED}to a CONFIG symbol.
• Attach PLACE={OPEN|CLOSED}to a CONFIG symbol.
• Attach to a CONFIG symbol. For a value of TRUE, both PLACE and GROUPmust

be CLOSED.
• Attribute Names

– AREA_GROUP

– RANGErange
– COMPRESSIONpercent
– GROUP={OPEN|CLOSED}

– PLACE={OPEN|CLOSED}

• Attribute Values:
– groupname
– range
– percent
– GROUP={OPEN|CLOSED}

– PLACE={OPEN|CLOSED}

UCF and NCF Syntax Example
The following example:
• Assigns all the logical blocks in state_machine_X to the area group group1.
• Places logic in the physical area between:

– SLICE row 1, column 1, and
– SLICE row 10, column 10

INST “state_machine_X” AREA_GROUP=group1;AREA_GROUP “group1”RANGE=SLICE_X1Y1:SLICE_X10Y10;

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:
• Defining placement constraints
• Assigning placement constraints
• Defining I/O pin configurations
• Floorplanning and placement constraints

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

Constraints Guide
74 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Defining From Timing Groups
To create an area group based on a timing group, use the following User Constraints File
(UCF) and Netlist Constraints File (NCF) syntax:

TIMEGRPtiming_group_name AREA_GROUP =area_group_name ;
• timing_group_name is the name of a previously defined timing group.
• area_group_name is the name of a new area group to be defined from the TIMEGRP

contents.

This is equivalent to manually assigning each member of the timing group to
area_group_name. The area group name defined by this statement can be used in RANGE
constraints, just like any other area group name.

TNM_NET Groups
In the AREA_GROUP definition, the timing_group_name is generally a TNM_NET
group. This allows area groups to be formed based on the loads of clock or other control
nets. Defining AREA_GROUP constraints from TIMEGRP constraints can improve
placement of designs with many different clock domains in devices that have more
clocks than clock regions.

TNM and TIMEGRP Groups
You can also specify
• A TNM group name, or
• The name of a user group defined by a TIMEGRP statement.

Edge qualifiers used in the TIMEGRP definition are ignored when determining area
group membership. In all cases, the AREA_GROUP members are determined after the
TIMEGRP has been propagated to its target elements.

TIMEGRP constraints can contain only synchronous elements and pads. Area groups
defined from timing groups also contain only these element types. If an AREA_GROUP
is defined by a TIMEGRP that contains only Flip-Flops or Latches, assigning a RANGE
to that group is useful only if ungrouped logic is also allowed within the area. For this
reason, don not define COMPRESSION for such groups.

PERIOD Specifications
If a TNM_NET is used by a PERIOD specification, and is traced into any DCM, PLL, or
MMCM, new TNM_NET groups and PERIOD specifications are created at the DCM,
PLL, orMMCM outputs. If the original TNM_NET is used to define an area group, and
if more than one clock tap is used on the DCM, PLL, orMMCM, the area group is
split into separate groups at each clock tap.

For example, assume you have the following UCF constraints:

NET "clk" TNM_NET="clock";

TIMESPEC "TS_clk" = PERIOD "clock" 10 MHz;

TIMEGRP "clock" AREA_GROUP="clock_area";

If the net clk is traced into a DCM, PLL, orMMCM, a new group and PERIOD
specification is created at each clock tap. Similarly, a new area group is created at each
clock tap. A suffix indicates the clock tap name. If the CLK0 and CLK2X taps are used,
the AREA_GROUP clock_area_CLK0 and clock_area_CLK2X are defined automatically.

When AREA_GROUP definitions are split in this manner, NGDBuild issues an
informational message, showing the names of the new groups. Use these new group
names, rather than the ones originally specified, in RANGE constraints.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 75

Chapter 4: Xilinx Constraints

ASYNC_REG (Asynchronous Register)
The ASYNC_REG (Asynchronous Register) constraint:
• Is a timing constraint.
• Is used to improve the behavior of asynchronously clocked data for simulation.
• Disables X propagation during timing simulation. In the event of a timing violation,

the previous value is retained on the output instead of going unknown.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
• Can be attached to registers and latches only.
• Should be used only on registers or latches with asynchronous inputs (D input

or the CE input).

Propagation Rules
Applies to the register or latch to which it is attached.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute ASYNC_REG : string;

Specify the VHDL constraint as follows:

attribute ASYNC_REG of instance_name: label is "{TRUE|FALSE}";

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* ASYNC_REG = " {TRUE|FALSE}" *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST “instance_name ” ASYNC_REG = {TRUE|FALSE};

The default is FALSE.

If no Boolean value is supplied, it is considered TRUE.

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

Constraints Guide
76 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

BEL (BEL)
The BEL (BEL) constraint:
• Is an advanced placement constraint.
• Locks a logical symbol to a particular BEL site in a slice, or an IOB.
• Differs from the LOC constraint in that LOC allows specification to the component

level. Examples of components include:
– SLICE
– BRAM
– ILOGIC
– OLOGIC
– IOB

• Allows specification as to which particular BEL site of the component to be used. For
example, this can be used to specify the specific LUT or FF to be used within a SLICE.

• Should always be used with an appropriate LOC or RLOC attribute.

An IOB BEL constraint does not direct the mapper to pack the register into an IOB
component. Some other feature (the -pr switch, for example) must cause the packing.
Once the register is directed to an IOB, the BEL constraint causes the proper placement
within the IOB.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Registers Latches
LUT

LUTRAM

RAMB18

SRL

Propagation Rules
It is legal to place a BEL constraint only on an appropriate instance with a valid LOC
or RLOC.

Constraint Values
Value Identify in a Slice
F, G

A6LUT, B6LUT, C6LUT, D6LUT

A5LUT, B5LUT, C5LUT, D5LUT

Specific LUTs, SRL16s, and distributed RAM
components

FFA, FFB, FFC, FFD, FFX, FFY Specific Flip-Flops, Latches, and other
elements

XORF, XORG XORCY elements

The following values are also valid for Virtex®-6 devices:

AFF, BFF, CFF, DFF, A5FF, B5FF, C5FF, D5FF

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 77

Chapter 4: Xilinx Constraints

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid instance

• Attribute Name

BEL

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* BEL = " {value}" *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST "instance_name " BEL={value};

The syntax for the RAMB BEL instance is:

INST "upper_BRAM_instance_name" LOC = RAMB36_XnYn | BEL = UPPER;

INST "lower_BRAM_instance_name" LOC = RAMB36_XnYn | BEL = LOWER;

Example
INST "ramb18_inst0" LOC = RAMB36_X0Y2 | BEL = UPPER; INST
"ramb18_inst1" LOC = RAMB36_X0Y2 | BEL = LOWER;

The following statement locks xyzzy to the FFX site on the slice.

INST "xyzzy" BEL=FFX;

PlanAhead™ Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
78 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

BLKNM (Block Name)
The BLKNM (Block Name) constraint:

• Is an advanced mapping constraint

• Assigns block names to qualifying primitives and logic elements.

If the same BLKNM constraint is assigned to more than one instance, the software
attempts to map them into the same block. Conversely, two symbols with different
BLKNM names are not mapped into the same block. Placing similar BLKNM constraints
on instances that do not fit within one block causes an error.

Specifying identical BLKNM constraints on FMAP tells the software to group the
associated function generators into a single SLICE. Using BLKNM, you can partition a
complete SLICE without constraining the SLICE to a physical location on the device.
BLKNM constraints, like LOC constraints, are specified from the design. Since
hierarchical paths are not prefixed to BLKNM constraints, BLKNM constraints for
different SLICEs must be unique throughout the entire design. For information on
attaching hierarchy to block names, see Hierarchical Block Name (HBLKNM).

BLKNM allows any elements except those with a different BLKNM to be mapped
into the same physical component. Elements without a BLKNM can be packed with
those that have a BLKNM. For information on allowing only elements with the same
XBLKNM to be mapped into the same physical component, see XBLKNM.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
This constraint may be used with an FPGA device in one or more of the following design
elements, or categories of design elements. Not all devices support all elements. To see
which design elements can be used with which devices, see the Libraries Guides. For
more information, see the device data sheet.

• Flip-flop and latch primitives

• Any I/O element or pad

• FMAP

• ROM primitives

• RAMS and RAMD primitives

• Carry logic primitives

• Block RAM

You can also attach BLKNM to the net connected to the pad component in a User
Constraints File (UCF) file. NGDBuild transfers the constraint from the net to the pad
instance in the NGD file so that it can be processed by the mapper. Use the following
syntax:

NET “net_name” BLKNM=property_value;

Propagation Rules
When attached to a design element, this constraint is propagated to all applicable
elements in the hierarchy within the design element.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 79

Chapter 4: Xilinx Constraints

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid instance

• Attribute Name

BLKNM

• Attribute Value

block_name

VHDL Syntax
Declare the VHDL constraint as follows:

attribute blknm : string;

Specify the VHDL constraint as follows:

attribute blknm of {component_name|signal_name|entity_name|label_name}:
{component|signal|entity|label} is “block_name”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* BLKNM = “blk_name” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST “instance_name” BLKNM=block_name;

where

block_name is a valid block name for that type of symbol

For information on assigning hierarchical block names, see Hierarchical Block Name
(HBLKNM).

The following statement assigns an instantiation of an element named block1 to a block
named U1358.

INST “$1I87/block1” BLKNM=U1358;

XCF Syntax
MODEL “entity_name” blknm = block_name;

BEGIN MODEL “entity_name”

INST "instance_name" blknm = block_name;

END;

Constraints Guide
80 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

BUFG (BUFG)
The BUFG (BUFG) constraint:
• Is an advanced fitter constraint.
• Is a synthesis constraint.
When applied to an input buffer or input pad net, BUFG maps the tagged signal to a
global net. When applied to an internal net, the tagged signal is either routed directly to
a global net or brought out to a global control pin to drive the global net, as supported
by the target device family architecture.

• CLK
Maps to a global clock (GCK) line

• OE
Maps to a global tristate control (GTS) line

• SR
Maps to a global set/reset control (GSR) line

• DATA_GATE
Maps to the DATA_GATE latch enable control line

Architecture Support
Applies to CPLD devices only. Does not apply to FPGA devices.

Applicable Elements
Any input buffer (IBUF), input pad net, or internal net that drives a CLK, OE, SR, or
DATA_GATE pin

Propagation Rules
When attached to a net, BUFG has a net or signal form and so no special propagation
is required. When attached to a design element, BUFG is propagated to all applicable
elements in the hierarchy within the design element.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to an IBUF instance of the input pad connected to an IBUF input
• Attribute Name

BUFG

VHDL Syntax
Declare the VHDL constraint as follows:

attribute BUFG: string;

Specify the VHDL constraint as follows:

attribute BUFG of signal_name : signal is “{CLK|OE |SR|DATA_GATE} ”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 81

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* BUFG = "{CLK | OE | SR | DATA_GATE}" *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
NET “net_name ” BUFG={CLK | OE | SR | DATA_GATE};

INST “instance_name” BUFG={CLK | OE | SR| DATA_GATE};

where

• CLK

Designates a global clock pin (all CPLD families)

• OE

Designates a global tristate control pin (all CPLD devices except CoolRunner™-II
and CoolRunner XPLA3 devices) or internal global tristate control line
(CoolRunner-II devices only)

• SR

Designates a global set/reset pin (all CPLD devices except CoolRunner-II and
CoolRunner XPLA3 devices)

• DataGate

Maps to the DataGate latch enable control line

The following statement maps the signal named fastclk to a global clock net.

NET “fastclk” BUFG=CLK;

XCF Syntax
BEGIN MODEL “entity_name ”

NET "signal_name" BUFG = {CLK|OE |SR|DATA_GATE} ;

END;

Constraints Guide
82 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Clock Dedicated Route (CLOCK_DEDICATED_ROUTE)
The Clock Dedicated Route (CLOCK_DEDICATED_ROUTE) constraint:
• Is an advanced constraint.
• Directs the tools whether or not to follow clock placement rules for a specific

architecture.
If the constraint is not used or set to TRUE, clock placement rules must be followed.
Otherwise, placement will error. If the constraint is set to FALSE, it directs the tools to
ignore the specific clock placement rule and continue with Place and Route (PAR). If
possible, all clock placement rule violations should be fixed in a design in order to
ensure the best clocking performance. This constraint is intended to be used only in
limited situations when it is absolutely necessary to violate a clock placement rule. For
more information about specific clock placement rules, see the Hardware User’s Guide.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Applies to Clock Buffers, Clock Manager Blocks, and High Speed IO Blocks.

Propagation Rules
Applies to the NET or INSTANCE PIN.

Syntax
The following sections show the syntax for this constraint.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid instance
• Attribute Name

CLOCK_DEDICATED_ROUTE
• Attribute Values

– TRUE
– FALSE

UCF and NCF Syntax
PIN "BEL_INSTANCE_NAME.PIN "CLOCK_DEDICATED_ROUTE = {TRUE|FALSE};

where
BEL_INSTANCE_NAME.PIN is the specific input/output pin of the instance you want to
constrain. An example is the CLKIN input pin of a DCM instance.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 83

Chapter 4: Xilinx Constraints

COLLAPSE (Collapse)
The COLLAPSE (Collapse) constraint:
• Is an advanced fitter constraint.
• Forces a combinatorial node to be collapsed into all of its fanouts.

Architecture Support
Applies to CPLD devices only. Does not apply to FPGA devices.

Applicable Elements
Any internal net.

Propagation Rules
This constraint is a net constraint. Any attachment to a design element is illegal.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a logic symbol or its output net
• Attribute Name

COLLAPSE
• Attribute Values

– TRUE
– FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute collapse: string;

Specify the VHDL constraint as follows:

attribute collapse of signal_name: signal is “{YES|NO|TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* COLLAPSE = “{YES|NO|TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
NET “net_name” COLLAPSE;

The following statement forces net $1N6745 to collapse into all its fanouts.

NET “$1I87/$1N6745” COLLAPSE;

Constraints Guide
84 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

COMPGRP (Component Group)
The COMPGRP (Component Group) constraint:

• Is an advanced grouping constraint

• Identifies a group of components

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Groups of components.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

PCF Syntax
COMPGRP “group_name”=comp_item1... comp_itemn [EXCEPT comp_group];

where

comp_item is one of the following

– COMP “comp_name”

– COMPGRP “group_name”

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 85

Chapter 4: Xilinx Constraints

CONFIG_MODE (Configuration Mode)
The CONFIG_MODE (Configuration Mode) constraint:
• Communicates to PAR which of the dual purpose configuration pins can be used

as general purpose IOs.
• Is used by PAR to prohibit the use of Dual Purpose IOs if they are

required for CONFIG_MODE: S_SELECTMAP+READBACK or
M_SELECTMAP+READBACK. The bitgen -g Persist option must be used to retain
these IO for Readback and Reconfiguration use.

In the case of CONFIG_MODE: S_SELECTMAP orM_SELECTMAP, PAR uses the
Dual Purpose IOs as General Purpose IOs only if necessary.

Architecture Support
Applies to Spartan®-3, Virtex®-4, Virtex-5, Virtex-6, and 7 series devices.

Applicable Elements
Attaches to the CONFIG symbol.

Propagation Rules
Applies to dual-purpose I/Os.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF Syntax
CONFIG CONFIG_MODE=string;

where

string can be one of the following:
• M_SERIAL

Master Serial Mode (The default value)
• S_SERIAL

Slave Serial Mode
• B_SCAN

Boundary Scan Mode
• B_SCAN+READBACK

Boundary Scan Mode with Persist expected.
• M_SELECTMAP

Master SelectMAP Mode , 8-bit width
• M_SELECTMAP+READBACK

Master SelectMAP Mode, 8-bit width, with Persist expected.
• S_SELECTMAP

Slave SelectMAP Mode, 8-bit width
• S_SELECTMAP+READBACK

Slave SelectMAP Mode, 8-bit width, with Persist expected.

Constraints Guide
86 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

• S_SELECTMAP16

Slave SelectMAP Mode, 16-bit width

• S_SELECTMAP16+READBACK

Slave SelectMAP Mode, 16-bit width, with Persist expected.

• S_SELECTMAP32

Slave SelectMAP Mode, 32-bit width

• S_SELECTMAP32+READBACK

Slave SelectMAP Mode with Persist expected.

For S_SELECTMAP32 and S_SELECTMAP32+READBACK, you can select
S_SELECTMAP16 and S_SELECTMAP16+READBACK for Virtex-5 devices to have
the correct number of data pins needed persisting after configuration.

In addition, the following values are applicable to 7 series devices only:

• SPIx1

• Serial Peripheral Interface, 1-bit width

• SPIx2

Serial Peripheral Interface, 2-bit width

• SPIx4

Serial Peripheral Interface, 4-bit width

• BPI8

Byte Peripheral Interface (Parallel NOR), 8-bit width

• BPI16

Byte Peripheral Interface (Parallel NOR), 8-bit width

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 87

Chapter 4: Xilinx Constraints

COOL_CLK (CoolCLOCK)
COOL_CLK (CoolCLOCK) reduces clocking power within a CPLD device by combining
clock division circuitry with the DualEDGE circuitry. Because the clock net can be
a significant power drain, the clock power can be reduced by driving the net at half
frequency, then doubling the clock rate using DualEDGE triggered macrocells.

Architecture Support
Applies to CoolRunner™-II devices only.

Applicable Elements
Applies to any input pad or internal signal driving a register clock.

Propagation Rules
Applying COOL_CLK to a clock net is equivalent to passing the clock through a
divide-by-two clock divider (CLK_DIV2) and replacing all flip-flops controlled by that
clock with DualEDGE flip-flops. Using COOL_CLK does not alter your overall design
functionality.

Some restrictions apply:
• You cannot use COOL_CLK on a clock that triggers any flip-flop on the low-going

edge. The CoolRunner™-II clock divider can be triggered only on the high-rising
edge of the clock signal.

• If there are any DualEDGE flip-flops in your design source, the clock that controls
any of them cannot be specified as a COOL_CLK.

• If there is already a clock divider in your design source, you cannot also use
COOL_CLK. CoolRunner-II devices contain only one clock divider.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a input pad or internal signal driving a register clock
• Attribute Name

COOL_CLK
• Attribute Values

– TRUE
– FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute cool_clk: string;

Specify the VHDL constraint as follows:

attribute cool_clk of signal_name: signal is “{TRUE | FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
88 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* COOL_CLK = “{TRUE | FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
NET “signal_name” COOL_CLK;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 89

Chapter 4: Xilinx Constraints

DATA_GATE (Data Gate)
DATA_GATE (Data Gate) provides a direct means of reducing power consumption.
Each I/O pin input signal passes through a latch that can block the propagation of
incident transitions during periods when such transitions are not of interest to your
CPLD design. Input transitions that do not affect the CPLD design function still
consume power, if not latched, as they are routed among the device’s function blocks.
By asserting the DATA_GATE control I/O pin on the device, selected I/O pin inputs
become latched, thereby eliminating the power dissipation associated with external
transitions on those pins.

Architecture Support
Applies to CoolRunner™-II devices with 128 macrocells or more only.

Applicable Elements
I/O pads and pins

Propagation Rules
Applying the DATA_GATE attribute to any I/O pad indicates that the pass-through latch
on that device pin is to respond to the DATA_GATE control line. Any I/O pad (except
the DATA_GATE control I/O pin itself), including clock input pads, can be configured to
get latched by applying the DATA_GATE attribute. All other I/O pads that do not have a
DATA_GATE attribute remain unlatched at all times. The DATA_GATE control signal
itself can be received from off-chip via the DATA_GATE I/O pin, or you can generate
it in your design based on inputs that remain unlatched (pads without DATA_GATE
attributes).

For more information on using DATA_GATE with Verilog and VHDL designs, see
BUFG (BUFG).

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to I/O pads and pins
• Attribute Name

DATA_GATE
• Attribute Values

– TRUE
– FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute DATA_GATE : string;

Specify the VHDL constraint as follows:

attribute DATA_GATE of signal_name: signal is “{TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
90 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* DATA_GATE = “{TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
NET “signal_name” DATA_GATE;

XCF Syntax
BEGIN MODEL “entity_name”

NET “signal_name” data_gate={TRUE|FALSE};

END ;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 91

Chapter 4: Xilinx Constraints

DCI Cascade (DCI_CASCADE)
In Virtex®-5 and Virtex-6 device families, IO banks that need DCI reference voltage
can be cascaded with other DCI IO banks. One set of VRN/VRP pins can be used to
provide reference voltage to several IO banks. This results in more usable pins and
in reduced power usage because fewer VR pins and DCI controllers are used. DCI
Cascade (DCI_CASCADE) identifies a DCI master bank and its corresponding slave
banks. There can be multiple instances of this constraint for a design in order to specify
multiple master-slave pairs. BitGen uses information from this constraint to program
DCI controllers for different banks and have them cascade up or down. The placer
also uses this information to determine whether VR pins in slave banks can be used
for other purposes.

Each instance of DCI_CASCADE must have one master bank and one or more slave
banks that can be entered as a space-separated list. The first value in the list is the master
bank and all subsequent values are slave banks that get DCI reference voltage from the
master bank. This restriction does not apply to Virtex-6 devices. Cascaded banks must
be in the same column (left, center or right) and must have the same VCCO setting. For
more information, see UCF and NCF Syntax below.

Architecture Support
Applies to Virtex-5 and Virtex-6 devices only.

Applicable Elements
A DCI_CASCADE attribute on the top level design block.

Propagation Rules
Placed as an attribute on the CONFIG block, and propagated to the physical design
object.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
CONFIG DCI_CASCADE = "<master> <slave1> <slave2> ...";

where
• <master> = [1...MAX_NUM_BANKS]
• <slave1> = [1...MAX_NUM_BANKS]
• <slave2> = [1...MAX_NUM_BANKS]
• All values in the list are legitimate IO banks in the Virtex-5 device.
• The master bank must have an IOB with an IO standard that requires DCI reference

voltage. This restriction does not apply to Virtex-6 devices.
• All slave banks must have the same VCCO setting as the master bank.
• If there are banks between the master and slave, they should be able to cascade in

the required direction.

Example

CONFIG DCI_CASCADE = "11 13 15 17";

Constraints Guide
92 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

PCF Syntax
CONFIG DCI_CASCADE = "<master>, <slave1>, <slave2>, ..."

where

• <master> = [1...MAX_NUM_BANKS]

• <slave1> = [1...MAX_NUM_BANKS]

• <slave2> = [1...MAX_NUM_BANKS]

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 93

Chapter 4: Xilinx Constraints

DCI Value (DCI_VALUE)
DCI Value (DCI_VALUE) determines which buffer behavioral models are associated
with the IOBs of a design in the generation of an IBS file using IBISWriter.

Architecture Support
Supports Virtex®-4, Virtex-5, Virtex-6, and Spartan®-3 devices.

Applicable Elements
IOBs

Propagation Rules
Applies to the IOB to which it is attached.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
INST pin_name DCI_VALUE = integer;

where

• Legal values are integers 25 through 100 with an implied units of ohms.

• The default value is 50 ohms.

Constraints Guide
94 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Default (DEFAULT)
The Default (DEFAULT) constraint allows you to set a new default value for several
constraints. A specific constraint overrides the DEFAULT constraint value where
applicable.

Termination is the constraint name for the following:
• KEEPER
• FLOAT
• PULLDOWN
• PULLUP

Architecture Support
The DEFAULT constraint applies to the following constraints and their architectures:
• KEEPER, PULLDOWN

Applies to all FPGA devices and the CoolRunner™-II CPLD device.
• PULLUP

Applies to all FPGA devices and the CoolRunner XPLA3 and CoolRunner-II CPLD
devices.

Applicable Elements
For the applicable elements for each of the constraints supported by DEFAULT, see:
• KEEPER
• FLOAT
• PULLDOWN
• PULLUP

Propagation Rules
For the propagation rules for each of the constraints supported by DEFAULT, see:
• KEEPER
• FLOAT
• PULLDOWN
• PULLUP

Constraint Syntax
For the syntax rules for each of the constraints supported by DEFAULT, see:
• KEEPER
• FLOAT
• PULLDOWN
• PULLUP

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 95

Chapter 4: Xilinx Constraints

Schematic Syntax
The basic syntax for attaching a DEFAULT constraint to a schematic is:
• Attach to a net, instance, or pin
• Attribute Name

DEFAULT constraint_name
where
constraint_name is one of the following:
– KEEPER
– FLOAT
– PULLDOWN
– PULLUP

• Attribute Values
Determined by the constraint_name.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute attribute_name : string;

Example

attribute KEEPER: string;

Specify the VHDL constraint as follows:

attribute attribute_name of DEFAULT is attribute_value;

Accepted attribute_names for DEFAULT are:
• KEEPER
• FLOAT
• PULLDOWN
• PULLUP

Accepted attribute_values depend on the attribute type as shown in the following
example:

attribute of DEFAULT KEEPER is “TRUE”;

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* CONSTRAINT_NAME = "constrant_value" *) DEFAULT

The constraint_value is case sensitive.

Accepted CONSTRAINT_NAMES for the DEFAULT constraint are:
• KEEPER
• FLOAT
• PULLDOWN
• PULLUP

Accepted constraint_values depend on the constraint_name, as shown in the following
example.

Constraints Guide
96 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Example

(* KEEPER = “TRUE” *) DEFAULT

For more information about basic Verilog syntax, see Verilog Attributes.

UCF Syntax
DEFAULT constraint_name;

Accepted constraint_names for DEFAULT are:
• KEEPER
• FLOAT
• PULLDOWN
• PULLUP

UCF Syntax Example
DEFAULT KEEPER = TRUE;

XCF Syntax
BEGIN MODEL “entity_name”

DEFAULT constraint_name [attribute_value] ;

END;

Accepted constraint_names for DEFAULT are:
• KEEPER
• FLOAT
• PULLDOWN
• PULLUP

Accepted attribute_values depend on the attribute type.

XCF Syntax Example
BEGIN MODEL “my_design”

DEFAULT keeper = TRUE;

END;

NCF Syntax
Same as UCF syntax.

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:
• Defining placement constraints
• Assigning placement constraints
• Defining I/O pin configurations
• Floorplanning and placement constraints

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 97

Chapter 4: Xilinx Constraints

PACE Syntax
The Pinout and Area Constraints Editor (PACE) tool:

• Is supported for CPLD devices only

• Is mainly used to assign location constraints to IOs.

• Can be used to assign certain IO properties such as IO Standards.

• Can be accessed from the Processes window in ISE® Design Suite.

For more information, see the PACE help, especially the topics in Editing Pins and Areas
in the Procedures section.

Constraints Guide
98 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

DIFF_TERM (Diff_Term)
The DIFF_TERM (Diff_Term) constraint:

• Is a basic mapping constraint.

• Is used to turn the built-in 100 ohm differential termination on or off

Architecture Support
Applies to Spartan®-6 devices only.

Applicable Elements
Differential IO blocks such as IBUFDS_DIFF_OUT

Values
• TRUE

Turns the built-in 100 ohm differential termination on

• FALSE
Turns the built-in 100 ohm differential termination off

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attribute Name

DIFF_TERM

• Attribute Values

See Values section above.

VHDL Syntax
Declare the VHDL constraint as follows:

Attribute DIFF_TERM: string;

Specify the VHDL constraint as follows:

attribute DIFF_TERM of block_name: signal is “{TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* DIFF_TERM = “{TRUE|FALSE }” *)

For more information about basic Verilog syntax, see Verilog Attributes.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 99

Chapter 4: Xilinx Constraints

UCF and NCF Syntax
The following statement configures the IO to use the built-in 100 ohm termination.

INST "IO block name" DIFF_TERM = “{TRUE|FALSE }” ;

XCF Syntax
BEGIN MODEL “entity_name”

NET "block_name"DIFF_term=true;

END;

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
100 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

DIRECTED_ROUTING (Directed Routing)
DIRECTED_ROUTING (Directed Routing) is a means of maintaining the routing and
timing for a small number of loads and sources. Use of directed routing requires that the
relative position between the sources and loads be maintained exactly the same with the
use of LOC or RLOC constraints as well as BEL constraints.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Applies to the net to which it is attached.

Propagation Rules
Not applicable.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
The following examples are for illustration only. They are not valid executables.
Formulation of a directed routing constraint requires the placement of the source and
load components in a fixed location relative to each other.

FPGA Editor Syntax
To generate directed routing constraints with FPGA Editor, select Tools > Directed
Routing Constraints. FPGA Editor provides the following three settings for the
type of placement constraint to be generated automatically on the sources and loads
components.

• Do Not Generate Placement Constraint

• Use Relative Location Constraint

• Use Absolute Location Constraint

Do Not Generate Placement Constraint

“Do Not Generate Placement Constraint” generates a constraint for the routing
only. It is designed to be used with existing RPMs.

NET "net_name" ROUTE="{2;1;-4!-1;-53320;2920;14;90;200;30;13!0;-
2091;1480;24!0;16;-8!}";

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 101

Chapter 4: Xilinx Constraints

Use Relative Location Constraint

“Use Relative Location Constraint” generates an RPM for the source and load
components along with the routing constraint. The RPM can be relocated around
the device letting the Placer make the final decision on placement.

NET "net_name" ROUTE="{2;1;-4!-1;-53320;2920;14;90;200;30;13!0;- 2091;1480;24!0;16;-8!}";
INST "inst1" RLOC=X3Y0;
INST "inst1" RPM_GRID=GRID;
INST "inst1" U_SET=macro name;
INST "inst1" BEL="F";
INST "inst2" RLOC=X3Y0;
INST "inst2" U_SET=macro name;
INST "inst2" BEL="G";

In the above example, each RLOC reference signals the launch of a new instance.
Accordingly, there are three instances encompassed within this example.

Use Absolute Location Constraint

“Use Absolute Location Constraint” causes the source and load components
attached to the target net to be locked in place by specifying RLOC constraints as
well as an RLOC_ORIGIN constraint. Alternatively, location constraints (LOCs)
can be specified manually by the user.

NET "net_name" ROUTE="{2;1;-4!-1;-53320;2920;14;90;200;30;13!0;- 2091;1480;24!0;16;-8!}";
INST "inst1" RLOC=X3Y0;
INST "inst1" RPM_GRID=GRID;
INST "inst1" RLOC_ORIGIN=X87Y200;
INST "inst1" U_SET=macro name;
INST "inst1" BEL="F";
INST "inst2" RLOC=X0Y1;
INST "inst2" U_SET=macro name;
INST "inst2" BEL="F";
INST "inst3" RLOC=X3Y0;
INST "inst3" U_SET=macro name;
INST "inst3" BEL="G";

Constraints Guide
102 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

DISABLE (Disable)
The DISABLE (Disable) constraint:
• Is a timing constraint.
• Is used to turn off specific path tracing controls.

A path tracing control is used to determine if a common type of path is enabled or
disabled for timing analysis. All path tracing control statements from any source (netlist,
UCF, or NCF) are passed forward to the PCF. You cannot override a DISABLE in the
netlist with an Enable (ENABLE) in the UCF.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Global in constraints file.

Propagation Rules
Disables timing analysis of specified block delay symbol

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
DISABLE=delay_symbol_name;

where
delay_symbol_name is the name of one of the standard block delay symbols for path
tracing or a specific delay name in the data sheet

These symbols are listed in the following table. Component delay names are also
supported in the Physical Constraints File (PCF).

Standard Block Delay Symbols for Path Tracing
Delay Symbol Name Path Type Default
reg_sr_o Asynchronous Set/Reset to output

propagation delay
Disabled

reg_sr_r Asynchronous Set/Reset to recovery
path

Disabled for Virtex®-5 and earlier
architectures

Enabled for Virtex-6 and Spartan®-6
architectures

reg_sr_clk Synchronous Set/Reset to clock setup
and hold checks

Enabled

lat_d_q Data to output transparent latch delay Disabled

lat_ce_q Clock Enable to output transparent
latch delay

Disabled

ram_we_o RAM write enable to output
propagation delay

Enabled

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 103

Chapter 4: Xilinx Constraints

Delay Symbol Name Path Type Default
io_pad_i IO pad to input propagation delay Enabled

io_t_pad IO tristate to pad propagation delay Enabled

io_o_i IO output to input propagation delay.
Disabled for tristated IOBs.

Enabled

io_o_pad IO output to pad propagation delay. Enabled

PCF Syntax
Same as UCF Syntax.

Constraints Guide
104 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

DRIVE (Drive)
The DRIVE (Drive) constraint:

• Is a basic mapping directive

• Selects the output for drive strength for all supported FPGA architectures.

• Selects output drive strength (mA) for the SelectIO™ technology buffers that use
the LVTTL, LVCMOS12, LVCMOS15, LVCMOS18, LVCMOS25, or LVCMOS33
interface I/O standard

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
This constraint may be used with an FPGA device in one or more of the following design
elements, or categories of design elements. Not all devices support all elements. To see
which design elements can be used with which devices, see the Libraries Guides. For
more information, see the device data sheet.

• IOB output components (such as OBUF and OFD)

• SelectIO technology output buffers with:

– IOSTANDARD = LVTTL

– LVCMOS15

– LVCMOS18

– LVCMOS25, or

– LVCMOS33

• Nets

Propagation Rules
DRIVE is illegal when attached to a net or signal, except when the net or signal is
connected to a pad. In this case, DRIVE is treated as attached to the pad instance. When
attached to a design element, DRIVE is propagated to all applicable elements in the
hierarchy below the design element.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid IOB output component

• Attribute Name

DRIVE

• Attribute Values

For a list of the constraint values, see the UCF and NCF Syntax section below.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 105

Chapter 4: Xilinx Constraints

VHDL Syntax
Declare the VHDL constraint as follows:

attribute drive: string;

Specify the VHDL constraint as follows:

attribute drive of {component_name |entity_name|label_name} : {component|entity
|label} is “value”;

For a list of the constraint values, see the UCF and NCF Syntax section below.

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* DRIVE = “value” *)

For a list of the constraint values, see the UCF and NCF Syntax section below.

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
This section gives UCF and NCF Syntax examples for the following:
• IOB Output Components (UCF)
• SelectIO Technology Output Components

IOB Output Components (UCF)
For Spartan®-3 and higher devices or Virtex®-4 and higher devices:

INST “instance_name” DRIVE={2|4|6| 8|12|16 |24};

12 mA is the default

SelectIO Technology Output Components
This section applies to the following components:
• IOBUF_SelectIO
• OBUF_SelectIO
• OBUFT_SelectIO

The following table shows syntax examples for the named standard with Spartan-3
devices and higher or Virtex-4 devices and higher. The default in each case is 12mA.

Standard Syntax
LVTTL INST “instance_name” DRIVE={2|4|6|8|12|16|24};

LVCMOS12

LVCMOS15

LVCMOS18

INST “instance_name” DRIVE={2|4|6|8|12|16};

LVCMOS25

LVCMOS33

INST “instance_name” DRIVE={2|4|6|8|12|16|24};

Constraints Guide
106 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

XCF Syntax
MODEL “entity_name” drive={2|4|6|8|12|16|24};

BEGIN MODEL “entity_name ”

NET “signal_name” drive={2|4|6|8|12|16|24};

END;

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 107

Chapter 4: Xilinx Constraints

DROP_SPEC (Drop Specifications)
The DROP_SPEC (Drop Specifications) constraint:

• Is an advanced timing constraint.

• Allows you to specify that a timing constraint defined in the input design should
be dropped from the analysis.

Use DROP_SPEC when new specifications defined in a constraints file do not directly
override all specifications defined in the input design, and some of these input design
specifications need to be dropped. While this timing command is not expected to be
used frequently in an input netlist or a Netlist Constraints File (NCF), it is legal. If
defined in an input design DROP_SPEC must be attached to TIMESPEC.

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
Timing constraints

Propagation Rules
It is illegal to attach this constraint to nets or macros. This constraint removes a specified
timing specification.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
TIMESPEC “TSidentifier”=DROP_SPEC;

where

TSidentifier is the identifier name used for the timing specification to be removed

The following statement cancels the input design specification TS67.

TIMESPEC “TS67”=DROP_SPEC;

PCF Syntax
“TSidentifier” DROP_SPEC;

Constraints Guide
108 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

ENABLE (Enable)
The ENABLE (Enable) constraint:

• Is a timing constraint.

• Turns on specific path tracing controls.

A path tracing control is used to determine if a common type of paths is enabled or
disabled for timing analysis. For more information, see Disable (DISABLE).

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Global in constraints file

Propagation Rules
Enables timing analysis for specified path delays.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
ENABLE can be applied only to a global timespec. The UCF path tracing syntax is
as follows:

ENABLE= delay_symbol_name ;

Where delay_symbol_name is the name of one of the standard block delay symbols for
path tracing symbols shown in the following table, or a specific delay name defined in
the data sheet

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 109

Chapter 4: Xilinx Constraints

Standard Block Delay Symbols for Path Tracing
Delay Symbol Name Path Type Default
reg_sr_o Asynchronous Set/Reset to output

propagation delay
Disabled

reg_sr_r Asynchronous Set/Reset to recovery
path

Disabled for Virtex®-5 and earlier
architectures

Enabled for Virtex-6 and Spartan®-6
architectures

reg_sr_clk Synchronous Set/Reset to clock setup
and hold checks

Enabled

lat_d_q Data to output transparent latch delay Disabled

lat_ce_q Clock Enable to output transparent
latch delay

Disabled

ram_we_o RAM write enable to output
propagation delay

Enabled

io_pad_i IO pad to input propagation delay Enabled

io_t_pad IO tristate to pad propagation delay Enabled

io_o_1 IO output to input propagation delay.
Disabled for tristated IOBs

Enabled

io_o_pad IO output to pad propagation delay Enabled

PCF Syntax
ENABLE=delay_symbol_name ;

TIMEGRP name ENABLE=delay_symbol_name ;

Constraints Guide
110 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

ENABLE_SUSPEND (Enable Suspend)
ENABLE_SUSPEND (Enable Suspend) defines the behavior of the SUSPEND
power-reduction mode for the Spartan®-3A device family.

Architecture Support
Applies to Spartan-3A and Spartan-6 devices only.

Applicable Elements
This constraint is a global attribute for Spartan-3A devices and is not attached to any
particular element.

Propagation Rules
This constraint is a global attribute that is attached to the entire design.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF Syntax
CONFIG ENABLE_SUSPEND=”{NO | FILTERED | UNFILTERED}”;

ENABLE_SUSPEND values are:

• NO (default)

Disables this feature

• FILTERED

Activates the suspend feature with the glitch filter being activated (requires longer
pulse width to activate)

• UNFILTERED

Activates the feature with the filter bypassed (quicker activation of SUSPEND)

UCF Syntax Example
CONFIG ENABLE_SUSPEND=”FILTERED”;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 111

Chapter 4: Xilinx Constraints

FAST (Fast)
The FAST (Fast) constraint:
• Is a basic mapping constraint.
• Increases the speed of an IOB output.
• May increase noise and power consumption.

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
• Output primitives
• Output pads
• Bidirectional pads

You can also attach FAST to the net connected to the pad component in a UCF file.
NGDBuild transfers the constraint from the net to the pad instance in the NGD file so
that it can be processed by the mapper. Use the following syntax:

NET “net_name” FAST;

Propagation Rules
FAST is illegal when attached to a net except when the net is connected to a pad. In this
instance, FAST is treated as attached to the pad instance. When attached to a macro,
module, or entity, FAST is propagated to all applicable elements in the hierarchy below
the module.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid instance
• Attribute Name

FAST
• Attribute Values

– TRUE
– FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute FAST: string;

Specify the VHDL constraint as follows:

attribute FAST of signal_name: signal is “{TRUE | FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
112 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* FAST = “{TRUE | FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
The following statement increases the output speed of the element y2:

INST “$1I87/y2” FAST;

The following statement increases the output speed of the pad to which net1 is
connected:

NET “net1” FAST;

XCF Syntax
BEGIN MODEL “entity_name”

NET “signal_name” fast={TRUE | FALSE};

END;

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 113

Chapter 4: Xilinx Constraints

FEEDBACK (Feedback)
The FEEDBACK (Feedback) constraint:
• Is used to define the external DCM feedback path delay when the DCM is used in

board de-skew applications. The delay is defined as the maximum external path
delay of the board trace and should not include any internal FPGA path delays.

• Is required for the timing tools to properly determine the DCM phase shift and
analyze the associated synchronous paths.

• input_feedback_clock_net
The name of the input pad net used as the feedback to the DCM

• value
The board trace delay calculated or measured by you

• units
ns (default) or ps

• output_clock_net
The name of the output pad net driven by the DCM

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Not applicable.

Propagation Rules
Both input_feedback_clock_net and output_clock_net must correspond to pad nets. If
attached to any other net, an error results. The input_feedback_clock_netmust be an input
pad and output_clock_net must be an output pad.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF Syntax
NET output_clock_net FEEDBACK =value
units NET input_feedback_clock_net ;

XCF Syntax
BEGIN MODEL “entity_name ”

NET output_clock_net FEEDBACK = value units NET input_feedback_clock_net;

END;

PCF Syntax
BEL |COMP} output_clock_net FEEDBACK = value units {BEL |COMP}
input_feedback_clock_net;

Constraints Guide
114 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Constraints Editor Syntax
For information on Constraints Editor and Constraints Editor syntax in ISE® Design
Suite, see the ISE Design Suite Help.

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 115

Chapter 4: Xilinx Constraints

FILE (File)
When you instantiate a module that resides in another netlist, NGCBuild finds this
file by looking it up by the file name. This requires the netlist to have the same name
as a module that is defined in the file. To name the netlist differently than the module
name, attach FILE (File) to an instance declaration. This tells NGCBuild to look for
the module in the file specified.

Some Xilinx® constraints cannot be used in attributes, because they are also VHDL
keywords. To avoid this problem, use a constraint alias. Each constraint has its own
alias. The alias name is based on the original constraint name with a XIL prefix. For
example, FILE cannot be used in attributes directly. You must use XIL_FILE instead.
The existing XILFILE alias is still supported.

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
Instance declaration where the definition is defined in the specified file.

Propagation Rules
Applicable only on instances.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid instance

• Attribute Name

FILE

• Attribute Values

file_name.extension

where

file_name is the name of a file that represents the underlying logic for the element
carrying the constraint.

Example file types include:

• EDIF

• EDN

• NGC

• NMC

Constraints Guide
116 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

VHDL Syntax
Declare the VHDL constraint as follows:

attribute xilfile: string;

Specify the VHDL constraint as follows:

attribute xilfile of {instance_name|component_name} : {label|component} is “file_name”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* XIL_FILE = "file_name" *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST <instance definition> FILE= <filename definition is located in>;

No valid syntax for UCF.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 117

Chapter 4: Xilinx Constraints

FLOAT (Float)
The FLOAT (Float) constraint:
• Is a basic mapping constraint
• Allows tristated pads to float when not being driven.
This is useful when the default termination for applicable I/Os is set to any of the
following in ISE® Design Suite:
• PULLUP
• PULLDOWN
• KEEPER

Architecture Support
Applies to CoolRunner™ XPLA3 and CoolRunner-II devices only.

Applicable Elements
Applies to nets or pins.

Propagation Rules
Applies to the net or pin to which it is attached.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid instance
• Attribute Name

FLOAT
• Attribute Values

– TRUE
– FALSE
– None required. If attached, TRUE is assumed.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute FLOAT: string;

Specify the VHDL constraint as follows:

attribute FLOAT of signal_name : signal is “{TRUE|FALSE}”;

Verilog Syntax
Place this constraint immediately before an instantiation.

Specify the Verilog constraint as follows:

(* FLOAT = “{TRUE|FALSE}” *)

Constraints Guide
118 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

UCF and NCF Syntax
NET “signal_name ” FLOAT;

XCF Syntax
BEGIN MODEL “entity_name”

NET "signal_name" FLOAT;

END;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 119

Chapter 4: Xilinx Constraints

FROM-THRU-TO (From Thru To)
The FROM-THRU-TO constraint:

• Is an advanced timing constraint,

• Is associated with the Period constraint of the high or low time.

From synchronous paths, a FROM-TO-THRU constraint controls only the setup path,
not the hold path. This constraint applies to a specific path that begins at a source
group, passes through intermediate points, and ends at a destination group. The source
and destination groups can be either user or predefined groups. You must define an
intermediate path using TPTHRU before using THRU.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Predefined and user-defined groups

Propagation Rules
Applies to the specified FROM-THRU-TO path only.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_pt1”...[THRU “thru_pt2”
...] TO “destination_group” value [Units] [DATAPATHONLY];

where

• identifier can consist of characters or underbars

• source_group and destination_group are user-defined or predefined groups

• thru_pt1 and thru_pt2 are intermediate points to define specific paths for timing
analysis

• value is the delay time

• units can be ps, ms, ns, or micro

The DATAPATHONLYkeyword indicates that the FROM-TO constraint does not take
clock skew or phase information into consideration. This keyword results in only the
data path between the groups being constrained and analyzed.

TIMESPEC TS_MY_PathB = FROM “my_src_grp” THRU “my_thru_pt” TO “my_dst_grp” 13.5 ns DATAPATHONLY;

FROM or TO is optional. You can have just a FROM or just a TO.

Constraints Guide
120 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

You are not required to have a FROM, THRU, or TO. You can have almost any
combination, such as:

• FROM-TO

• FROM-THRU-TO

• THRU-TO

• TO

• FROM

• FROM-THRU-THRU-THRU-TO

• FROM-THRU

There is no restriction on the number of THRU points. The source, THRU points, and
destination can be a net, bel, comp, macro, pin, or timegroup.

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

PCF Syntax
TSname=MAXDELAY FROM TIMEGRP "source" THRU TIMEGRP "thru_pt1" ...THRU
"thru_ptn" TO TIMEGRP "destination" [DATAPATHONLY];

You are not required to have a FROM, THRU, and TO. You can have almost
any combination (such as FROM-TO, FROM-THRU-TO, THRU-TO, TO, FROM,
FROM-THRU-THRU-THRU-TO, and FROM-THRU). There is no restriction on the
number of THRU points. The source, THRU points, and destination can be a net, bel,
comp, macro, pin, or timegroup.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 121

Chapter 4: Xilinx Constraints

FROM-TO (From To)
The FROM-TO (From To) constraint:
• Defines a timing constraint between two groups.
• Is associated with the Period constraint of the high or low time.
A group can be user-defined or predefined. From synchronous paths, a FROM-TO
constraint controls only the setup path, not the hold path.

For Virtex®-5 devices, the FROM-TO constraint controls both setup and hold paths.

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
Predefined and user-defined groups.

Propagation Rules
Applies to a path specified between two groups.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
TIMESPEC TSname=FROM “group1” TO “group2” value [DATAPATHONLY];

where
• TSname must always begin with TS. Any alphanumeric character or underscore

may follow.
• group1 is the origin path
• group2 is the destination path
• value is ns by default. Other possible values are MHz or another timing specification

such as TS_C2S/2 or TS_C2S*2.

The DATAPATHONLYkeyword indicates that the FROM-TO constraint does not take
clock skew or phase information into consideration. This keyword results in only the
data path between the groups being constrained and analyzed.

TIMESPEC TS_MY_PathA = FROM “my_src_grp” TO “my_dst_grp” 23.5 ns
DATAPATHONLY;

XCF Syntax
XST supports FROM-TO with the following limitations:
• FROM-THRU-TO is not supported
• Linked Specification is not supported
• Pattern matching for predefined groups is not supported:

TIMESPEC TS_1 = FROM FFS(machine/*) TO FFS 2 ns;

Constraints Guide
122 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

PCF Syntax
TSname=MAXDELAY FROM TIMEGRP "group1" TO TIMEGRP "group2" value
[DATAPATHONLY];

You are not required to have a FROM, THRU, and TO. You can have almost any
combination, such as:

• FROM-TO

• FROM-THRU-TO

• THRU-TO

• TO

• FROM

• FROM-THRU-THRU-THRU-TO

• FROM-THRU

There is no restriction on the number of THRU points. The source, THRU points, and
destination can be any of the following:

• net

• bel

• comp

• macro

• pin

• timegroup

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 123

Chapter 4: Xilinx Constraints

FSM_STYLE (FSM Style)
For information about the FSM_STYLE (FSM Style) constraint, see the XST User Guide for
Virtex-6, Spartan-6, and 7 Series Devices (UG687).

Constraints Guide
124 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

HBLKNM (Hierarchical Block Name)
The HBLKNM (Hierarchical Block Name) constraint:
• Is an advanced mapping constraint.
• Assigns hierarchical block names to logic elements and controls grouping in a

flattened hierarchical design. When elements on different levels of a hierarchical
design carry the same block name, and the design is flattened, NGCBuild prefixes a
hierarchical path name to the HBLKNM value.

Like Block Name, HBLKNM forces function generators and flip-flops into the same CLB.
Symbols with the same HBLKNM constraint map into the same CLB, if possible.

However, using HBLKNM instead of Block Name has the advantage of adding hierarchy
path names during translation, and therefore the same HBLKNM constraint and value
can be used on elements within different instances of the same design element.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
HBLKNM may be used with an FPGA device in one or more of the following design
elements, or categories of design elements. Not all devices support all elements. To see
which design elements can be used with which device families, see the Xilinx® Libraries
Guides for details. For more information, see the device data sheet.
• Registers
• I/O elements and pads
• FMAP
• PULLUP
• ACLK
• GCLK
• BUFG
• BUFGS
• BUFGP
• ROM
• RAMS
• RAMD
• Carry logic primitives

You can also attach HBLKNM to the net connected to the pad component in a UCF file.
NGCBuild transfers the constraint from the net to the pad instance in the NGD file so
that it can be processed by the mapper. Use the following syntax:

NET “net_name” HBLKNM=property_value;

Propagation Rules
When attached to a design element, HBLKNM is propagated to all applicable elements
in the hierarchy within the design element. However, when attached to a NET,
HBLKNM is only propagated to PADs.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 125

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 4: Xilinx Constraints

Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid instance

• Attribute Name

HBLKNM

• Attribute Values

block_name

VHDL Syntax
Declare the VHDL constraint as follows:

attribute hblknm: string;

Specify the VHDL constraint as follows:

attribute hblknm of {entity_name|component_name|signal_name|label_name}:
{entity|component|signal|label} is “block_name”;

where

block_name is a valid block name for that type of symbol

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* HBLKNM = “block_name” *)

block_name is a valid block name for that type of symbol

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
NET “net_name” HBLKNM=property_value;

INST “instance_name” HBLKNM=block_name;

block_name is a valid block name for that type of symbol

The following statement specifies that the element this_fmap is put into the block named
group1.

INST “$I13245/this_fmap” HBLKNM=group1;

The following statement attaches HBLKNM to the pad connected to net1.

NET “net1” HBLKNM=$COMP_0;

Elements with the same HBLKNM are placed in the same logic block if possible.
Otherwise an error occurs. Conversely, elements with different block names are not
put into the same block.

Constraints Guide
126 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

HIODELAY_GROUP (HIODELAY Group)
The HIODELAY_GROUP (HIODELAY Group) constraint:
• Is a design implementation constraint.
• Groups a hierarchical set of IDELAY and IODELAYs with an IDELAYCTRL to enable

automatic replication and placement of IDELAYCTRL in a design.
For more information, see the IDELAYCTRL section of the device user guide.

Architecture Support
Applies to Virtex®-4 and Virtex-5 devices. For Virtex-4 devices, HIODELAY_GROUP is
supported only when using the Timing Driven Pack and Placement Option in MAP.

Applicable Elements
IDELAY, IODELAY, and IDELAYCTRL primitive instantiations

Propagation Rules
HIODELAY_GROUP can be attached only to a design element. It is illegal to attach
HIODELAY_GROUP to a net, signal, or pin. To merge two or more embedded
HIODELAY_GROUP constraints in your design, see MIODELAY_GROUP (MIODELAY
Group).

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute HIODELAY_GROUP: string;

Specify the VHDL constraint as follows:

attribute HIODELAY_GROUP of {component_name|label_name}: {component|label} is
"group_name";

For a description of group_name, see UCF and NCF Syntax below.

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* HIODELAY_GROUP = "group_name" *)

For a description of group_name, see UCF and NCF Syntax below.

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST "instance_name" HIODELAY_GROUP = group_name;

where
group_name is the name assigned to a set of IDELAY or IODELAY constraints and an
IDELAYCTRL to uniquely define the group.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 127

Chapter 4: Xilinx Constraints

HLUTNM (Hierarchical Lookup Table Name)
The HLUTNM (Hierarchical Lookup Table Name) constraint:

• Allows you to control the grouping of logical symbols into the LUT sites of the
Virtex®-5 FPGA architectures.

• Is a string value property that is applied to two qualified symbols.

• Must be applied uniquely to two symbols within a given level of hierarchy. These
two symbols are implemented in a shared LUT site within a SLICE component.

• Is functionally similar to HBLKNM (Hierarchical Block Name)

Architecture Support
Applies to Virtex-5 devices only.

HLUTNM Applicable Elements
HLUTNM can be applied to:

• Two symbols that:

– Share a common hierarchy, and

– Are unique within their level of hierarchy

• Two 5-input or smaller function generator symbols (LUT, SRL16) if the total number
of unique input pins required for both symbols does not exceed 5 pins.

• A 6-input read-only function generator symbol (LUT6) in conjunction with a 5-input
read-only symbol (LUT5) if:

– The total number of unique input pins required for both symbols does not
exceed 6 inputs, and

– The lower 32 bits of the 6-input symbol programming matches all 32 bits of the
5-input symbol programming.

Propagation Rules
Can be applied to two symbols that share a common hierarchy and that are also unique
within their level of hierarchy.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid element or symbol type

• Attribute Name

HLUTNM

• Attribute Value

<user_defined>

Constraints Guide
128 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

VHDL Syntax
Declare the VHDL constraint as follows:

attribute hlutnm: string;

Specify the VHDL constraint as follows:

attribute hlutnm of instance_name : label is “string_value ”;

where

• instance_name is the instance name of an instantiated LUT, or LUTRAM.

• string_value is applied uniquely to two symbols within a given level of hierarchy.

– There is no default value.

– If the value is blank, the constraint is ignored.

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* HLUTNM = “string_value” *)

where

• string_value is applied uniquely to two symbols within a given level of hierarchy.

• There is no default value.

• If the value is blank, the constraint is ignored.

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST “symbol_name” HLUTNM=string_value ;

where

• string_value is applied uniquely to two symbols within a given level of hierarchy.

• There is no default value.

• If the value is blank, the constraint is ignored.

XCF Syntax
MODEL “symbol_name” hlutnm = string_value ;

where

• string_value is applied uniquely to two symbols within a given level of hierarchy.

• There is no default value.

• If the value is blank, the constraint is ignored.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 129

Chapter 4: Xilinx Constraints

H_SET (H Set)
See HU_SET (HU Set).

Constraints Guide
130 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

HU_SET (HU Set)
The HU_SET (HU Set) constraint:
• Is an advanced mapping constraint.
• Is defined by the design hierarchy.
• Allows you to specify a set name.

Note It is possible to have only one H_SET within a given hierarchical element, but
by specifying set names, you can specify several HU_SET sets.

NGCBuild hierarchically qualifies the name of the HU_SET as it flattens the design and
attaches the hierarchical names as prefixes.

Differences Between HU_SET and H_SET
HU_SET H_SET
Has an explicit user-defined and hierarchically qualified
name for the set

Has only an implicit hierarchically qualified name generated
by the design-flattening program

Starts with the symbols that are assigned the HU_SET
constraint

Starts with the instantiating macro one level above the
symbols with the RLOC constraints

For more information about set attributes, see Relative Location (RLOC).

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
This constraint may be used with an FPGA device in one or more of the following design
elements, or categories of design elements. Not all devices support all elements. To see
which design elements can be used with which devices, see the Libraries Guides. For
more information, see the device data sheet.
• Registers
• FMAP
• Macro Instance
• ROM
• RAMS, RAMD
• MULT18X18S
• RAMB4_Sm_Sn, RAMB4_Sn
• RAMB16_Sm_Sn, RAMB16_Sn
• RAMB16
• DSP48

Propagation Rules
This constraint is a design element constraint. Any attachment to a net is illegal.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 131

Chapter 4: Xilinx Constraints

Schematic Syntax
• Attach to a valid instance

• Attribute Name

HU_SET

• Attribute Values

set_name

VHDL Syntax
Declare the VHDL constraint as follows:

attribute HU_SET: string;

Specify the VHDL constraint as follows:

attribute HU_SET of {component_name | entity_name | label_name} : {component | entity
| label} is "set_name";

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* HU_SET = "set_name" *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST "instance_name" HU_SET=set_name ;

where

• set_name is the identifier for the set

• set_name must be unique among all the sets in the design

The following statement assigns an instance of the register FF_1 to a set named
heavy_set.

INST "$1I3245/FF_1" HU_SET=heavy_set;

XCF Syntax
MODEL "entity_name" hu_set={yes | no};

BEGIN MODEL "entity_name"

INST "instance_name" hu_set=yes;

END;

Constraints Guide
132 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

IBUF_DELAY_VALUE (Input Buffer Delay Value)
The IBUF_DELAY_VALUE (Input Buffer Delay Value) constraint:

• Is a mapping constraint.

• Adds additional static delay to the input path of the FPGA array.

• Can be applied to any input or bi-directional signal that is not directly driving a
clock or IOB (Input Output Block) register.

For more information regarding the constraint of signals driving clock and IOB registers,
see IFD_DELAY_VALUE. IBUF_DELAY_VALUE can be set to an integer value from
0-16. The value 0 is the default value, and applies no additional delay to the input
path. A larger value correlates to a larger delay added to input path. These values do
not directly correlate to a unit of time but rather additional buffer delay. For more
information, see the device data sheets.

Architecture Support
Applies to Spartan®-3A and Spartan-3E devices.

Applicable Elements
Any top-level I/O port.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach a new property to the top-level port of the schematic

• Attribute Name

IBUF_DELAY_VALUE

• Attribute Values

0-16

VHDL Syntax
Attach a VHDL attribute to the appropriate top-level port.

attribute IBUF_DELAY_VALUE : string;

attribute IBUF_DELAY_VALUE of top_level_port_name: signal is "value";

a valid value is from 0 to 16.

The following statement assigns an IBUF_DELAY_VALUE increment of 5 to the net
DataIn1

attribute IBUF_DELAY_VALUE : string;

attribute IBUF_DELAY_VALUE of DataIn1: label is "5";

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 133

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 4: Xilinx Constraints

Verilog Syntax
Attach a Verilog attribute to the appropriate top-level port.

(* IBUF_DELAY_VALUE="value" *) input top_level_port_name;

where

A valid value is from 0 to 16.

The following statement assigns an IBUF_DELAY_VALUE increment of 5 to the net
DataIn1.

(* IBUF_DELAY_VALUE="5" *) input DataIn1;

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
NET "top_level_port_name" IBUF_DELAY_VALUE = value;

where

• value is the numerical IBUF delay setting.

• A valid value is from 0 to 16.

The following statement assigns an IBUF_DELAY_VALUE increment of 5 to the net
DataIn1.

NET "DataIn1" IBUF_DELAY_VALUE = 5;

Constraints Guide
134 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

IFD_DELAY_VALUE (IFD Delay Value)
The IFD_DELAY_VALUE (IFD Delay Value) constraint:
• Is a mapping constraint.
• Adds additional static delay to the input path of the FPGA array.
• Can be applied to any input or bi-directional signal which drives an IOB (Input

Output Block) register.
For more information on the constraint of signals which do not drive IOB registers,
see Input Buffer Delay Value (IBUF_DELAY_VALUE).

• Can be set to
– an integer value from 0-8
– AUTO

AUTO is the default value, and is used to guarantee that the input hold time of
the destination register is met by automatically adding the appropriate amount
of delay to the data path.

When IFD_DELAY_VALUE is set to 0, the data path has no additional delay added. The
integers 1-8 correspond to increasing amounts of delay added to the data path. These
values do not directly correlate to a unit of time but rather additional buffer delay. For
more information, see the device data sheets.

Architecture Support
Supports Spartan®-3A and Spartan-3E devices.

Applicable Elements
Any top-level I/O port

Propagation Rules
Although IFD_DELAY_VALUE is attached to an I/O symbol, it applies to the entire
I/O component.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a net
• Attribute Name

IFD_DELAY_VALUE
• Attribute Values

– 0-8
– AUTO

VHDL Syntax
Attach a VHDL attribute to the appropriate top-level port.

attribute IFD_DELAY_VALUE : string;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 135

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 4: Xilinx Constraints

The following statement assigns an IFD_DELAY_VALUE increment of 5 to the net
DataIn1:

attribute IFD_DELAY_VALUE : string;

attribute IFD_DELAY_VALUE of DataIn1: label is "5";

Verilog Syntax
Attach a Verilog attribute to the appropriate top-level port.

(* IFD_DELAY_VALUE="value" *) input top_level_port_name;

The following statement assigns an IFD_DELAY_VALUE increment of 5 to the net
DataIn1:

(* IFD_DELAY_VALUE="5" *) input DataIn1;

UCF and NCF Syntax
NET "top_level_port_name" IFD_DELAY_VALUE = value;

value is the numerical IBUF delay setting

The following statement assigns an IFD_DELAY_VALUE increment of 5 to the net
DataIn1:

NET "DataIn1" IFD_DELAY_VALUE = 5;

Constraints Guide
136 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

IN_TERM (In Term)
The IN_TERM (In Term) constraint:

• Is a basic mapping constraint.

• Sets a configuration of input termination resistors .

In Term is valid on an input pad NET, input pad INST, or for the entire design.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
This constraint may be used with an FPGA device in one or more of the following design
elements, or categories of design elements:

• IOB input components (such as IBUF)

• Input Pad Net

Not all devices support all elements. To see which design elements can be used with
which devices, see the Libraries Guides. For more information, see the device data sheet.

Propagation Rules
IN_TERM is illegal when attached to a net or signal, except when the net or signal is
connected to a pad. In this case, IN_TERM is treated as attached to the pad instance.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
• NONE

• TUNED_SPLIT

• UNTUNED_SPLIT_25

• UNTUNED_SPLIT_50

• UNTUNED_SPLIT_75

Schematic Syntax
• Attach to a pad net

• Attribute Name

IN_TERM

• Attribute Values

See Values section above.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 137

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 4: Xilinx Constraints

VHDL Syntax
Declare the VHDL constraint as follows:

Attribute IN_TERM: string;

Specify the VHDL constraint as follows:

attribute IN_TERM of signal_name: signal is “{NONE | TUNED_SPLIT |
UNTUNED_SPLIT_25 | UNTUNED_SPLIT_50 | UNTUNED_SPLIT_75}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* IN_TERM = “{NONE | TUNED_SPLIT | UNTUNED_SPLIT_25 |
UNTUNED_SPLIT_50 | UNTUNED_SPLIT_75 }” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
The following statement configures the IO to use a PULLUP.

NET "pad_net_name"IN_TERM = “{NONE | TUNED_SPLIT | UNTUNED_SPLIT_25
| UNTUNED_SPLIT_50 | UNTUNED_SPLIT_75 }” ;

The following statement configures IN_TERM to be used globally.

DEFAULT IN_TERM = TUNED_SPLIT;

XCF Syntax
BEGIN MODEL “entity_name”

NET "signal_name" in_term=tuned_split;

END;

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
138 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

INREG (Input Registers)
INREG (Input Registers) applies to register and latch instances with their D-inputs
driven by input pads, or to the Q-output nets of such registers and latches. By default,
registers and latches for CoolRunner™ XPLA3 and CoolRunner-II designs that have
their D-inputs driven by input pads are automatically implemented using the device’s
Fast Input path, where possible. If you disable the ISE® Design Suite property Use Fast
Input for INREG for the Fit (Implement Design) process, then only register and latches
with the INREG attribute are considered for Fast Input optimization.

Architecture Support
Applies to CoolRunner™ XPLA3 and CoolRunner-II devices only.

Applicable Elements
Applies to register and latch instances with their D-inputs driven by input pads or to the
Q-output nets of such registers or latches.

Propagation Rules
Applies to register or latch to which it is attached or to the Q-output nets of such
registers or latches

Syntax Excamples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a register, latch, or net

• Attribute Name

INREG

• Attribute Values

None (TRUE by default)

UCF Syntax
NET “signal_name” INREG;

INST “register_name” INREG;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 139

Chapter 4: Xilinx Constraints

Internal Vref Bank (INTERNAL_VREF_BANK)
The Internal Vref Bank (INTERNAL_VREF_BANK) constraint:

• Provides a means of assigning a voltage value to the internal Vref feature for a
given IO bank.

• Is useful for freeing the Vref pins of IO banks from their function of providing
a voltage reference. By using the internal Vref on an IO bank, the Vref pins can
assume an alternative use.

Architecture Support
Applies to Virtex®-6, Kintex™-7, and Virtex®-7 devices

Applicable Elements
This constraint is a global CONFIG constraint and is not attached to any instance or
signal name.

Propagation Rules
Applies to IOs in the specified bank for the entire design

Syntax
The following sections show the syntax for this constraint.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
CONFIG INTERNAL_VREF_BANKn=v ;

where

• n is the number of the bank

• v is the target voltage value (0.0, 0.6, 0.675, 0.75, 0.9, 1.1, 1.25)

Example
CONFIG INTERNAL_VREF_BANK5=1.1;

Constraints Guide
140 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

IOB (IOB)
The IOB constraint:
• Is a basic mapping and synthesis constraint.
• Indicates which flip-flops and latches can be moved into the IOB/ILOGIC/OLOGIC.
The mapper supports a command line option (-pr i | o | b | off) that allows flip-flop
or latch primitives to be pushed into the input IOB (i), output IOB (o), or input/output
IOB (b) on a global scale. The IOB constraint, when associated with a flip-flop or latch,
tells the mapper to pack that instance into an IOB type component if possible. The IOB
constraint has precedence over the mapper -pr command line option. However, IOB
constraints do not have precedence over LOC constraints.

XST considers the IOB constraint as an implementation constraint, and therefore
propagates it in the generated NGC file. XST also duplicates the flip-flops and latches
driving the Enable pin of output buffers, so that the corresponding flip-flops and latches
can be packed in the IOB.

• TRUE
Allows the flip-flop or latch to be pulled into an IOB

• FALSE
Indicates not to pull it into an IOB

• AUTO
Used by XST only. XST takes into account timing constraints and automatically
decides to push or not to push flip-flops into IOBs

• FORCE
Requires that the flip-flop or latch be pulled into an IOB, otherwise an error is
given. FORCE produces an error only if the register has I/O connections and cannot
be packed in the IOB.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
• Non-INFF/OUTFF flip-flop and latch primitives
• Registers

Propagation Rules
Applies to the design element to which it is attached.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a flip-flop or latch instance or to a register
• Attribute Name

IOB

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 141

Chapter 4: Xilinx Constraints

VHDL Syntax
Declare the VHDL constraint as follows:

attribute iob: string;

Specify the VHDL constraint as follows:

attribute iob of {component_name |entity_name|label_name|signal_name} :
{component|entity |label|signal} is "{TRUE|FALSE|AUTO|FORCE}";

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* IOB = "{TRUE|FALSE |AUTO|FORCE}" *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST "instance_name" IOB={TRUE|FALSE|FORCE};

The following statement instructs the mapper to place the foo/bar instance into an
IOB component.

INST "foo/bar" IOB=TRUE;

Note The NET "foo/bar" IOB=TRUE; syntax is not supported in the User Constraints
File (UCF). The supported syntax is INST "foo/bar" IOB=TRUE;

XCF Syntax
BEGIN MODEL "entity_name"

NET "signal_name" iob={true|false|auto|force};

INST " instance_name" iob={true |false |auto|force};

END;

For the AUTO option, XST takes into account timing constraints and automatically
decides to push or not to push flip-flops into IOBs

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

Constraints Guide
142 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

IOBDELAY (Input Output Block Delay)
The IOBDELAY (Input Output Block Delay) constraint:

• Is a basic mapping constraint.

• Specifies how the input path delay elements in all devices are to be programmed.

There are two possible destinations for input signals:

• The local IOB input FF

• A load external to the IOB

Xilinx® devices allow a delay element to delay the signal going to one or both of these
destinations.

IOBDELAY cannot be used concurrently with No Delay (NODELAY).

• NONE sets the delay OFF for both the IBUF and IFD paths.

– The following statement sets the delay OFF for the IBUF and IFD paths.

INST “xyzzy” IOBDELAY=NONE

– For Spartan®-3 devices, the default is not set toNONE so the device can achieve
a zero hold time.

• BOTH sets the delay ON for both the IBUF and IFD paths.

• IBUF sets the delay to OFF for any register inside the I/O component and to ON
for the registers outside of the component if the input buffer drives a register D pin
outside of the I/O component.

• IFD sets the delay to ON for any register inside the I/O component and to OFF for
the registers outside the component if a register occupies the input side of the I/O
component, regardless of whether the register has the IOB=TRUE constraint.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Any I/O symbol (I/O pads, I/O buffers, or input pad nets)

Propagation Rules
Although IOBDELAY is attached to an I/O symbol, it applies to the entire I/O component.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to an I/O symbol

• Attribute Name: IOBDELAY

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 143

Chapter 4: Xilinx Constraints

VHDL Syntax
Declare the VHDL constraint as follows:

attribute iobdelay: string;

Specify the VHDL constraint as follows:

attribute iobdelay of {component_name |label_name}: {component|label} is
“{NONE|BOTH|IBUF|IFD}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* IOBDELAY = {NONE|BOTH|IBUF|IFD} *)

For more information on basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST “ instance_name” IOBDELAY={NONE|BOTH|IBUF|IFD};

Constraints Guide
144 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

IODELAY_GROUP (IODELAY Group)
The IODELAY_GROUP (IODELAY Group) constraint:
• Is a design implementation constraint.
• Groups a set of IDELAY and IODELAY constraints with an IDELAYCTRL to enable

automatic replication and placement of IDELAYCTRL in a design.
For more information, see the IDELAYCTRL section of the appropriate device user guide.

Limitations with LOC
• Use IODELAY_GROUP only when replicating a single IDELAYCTRL to multiple

banks, without a LOC constraint.
• Do not use IODELAY_GROUP in conjunction with IDELAYCTRL instances that

have a LOC constraint.
• Instantiate only one IDELAYCTRL in the design.
• Do not apply a LOC constraint.
• Group any IODELAY constraint that needs an IDELAYCTRL into an

IODELAY_GROUP.
• Create one group for each bank.

Architecture Support
Applies to Virtex®-4, Virtex-5, Virtex-6, and 7 series devices.
• For Virtex-4 devices, IODELAY_GROUP is supported only when using the Timing

Driven Pack and Placement Option in MAP.
• While IODELAY_GROUP is supported on Virtex-4 and Virtex-5 devices, it is not the

recommended method for replicating IDELAYCTRL. For the recommended method,
see the appropriate device user guide.

• IODELAY_GROUP is the recommended method for replicating IDELAYCTRL
primitives on Virtex-6 and 7 series devices.

Applicable Elements
IDELAY, IODELAY, IODELAYE1, IDELAYE2, ODELAYE2 and IDELAYCTRL

Propagation Rules
IODELAY_GROUP can only be attached to a design element. It is illegal to attach
IODELAY_GROUP to a net, signal, or pin. To merge two or more embedded
IODELAY_GROUP constraints in your design, see MIODELAY_GROUP.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute IODELAY_GROUP: string;

Specify the VHDL constraint as follows:

attribute IODELAY_GROUP of {component_name|label_name}: {component|label} is
"group_name";

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 145

Chapter 4: Xilinx Constraints

For a description of group_name, see the UCF Syntax for this constraint.

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* IODELAY_GROUP = "group_name" *)

For a description of group_name, see UCF Syntax below.

For more information about basic Verilog syntax, see Verilog Attributes.

UCF Syntax
INST "instance_name" IODELAY_GROUP = group_name;

where

group_name is the name assigned to a set of IDELAY or IODELAY constraints and an
IDELAYCTRL to uniquely define the group.

Constraints Guide
146 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

IOSTANDARD (Input Output Standard)
The IOSTANDARD (Input Output Standard) constraint:
• Is a basic mapping constraint.
• Is a synthesis constraint.

IOSTANDARD for FPGA Devices
Use IOSTANDARD to assign an I/O standard to an I/O primitive.

All components with IOSTANDARD must follow the same placement rules (banking
rules) as the SelectIO™ components. See the Xilinx® Libraries Guides for information on
the banking rules for each architecture. For descriptions of the supported I/O standards,
see the device data sheet.

For Spartan®-3, Spartan-3A, Spartan-3E, Virtex®-4, and Virtex-5 devices, the
recommended procedure is to attach IOSTANDARD to a buffer component instead
of using the SelectIO variants of a component. For example, use an IBUF with the
IOSTANDARD=HSTL_III constraint instead of the IBUF_HSTL_III component.

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-4, and Virtex-5 devices, differential
signaling standards apply to IBUFDS, IBUFGDS, OBUFDS, and OBUFTDS only (not
IBUF or OBUF).

IOSTANDARD for CPLD Devices
You can apply IOSTANDARD to I/O pads of CoolRunner™-II devices to specify both
input threshold and output VCCIO voltage. For supported values, see the device data
sheet.

The CPLD fitter automatically groups outputs with compatible IOSTANDARD settings
into the same bank when no location constraints are specified.

Architecture Support
Applies to all FPGA devices and CoolRunner-II CPLD devices.

Applicable Elements
To see which design elements can be used with which device families, see the Libraries
Guides. For more information, see the device data sheet.
• IBUF, IBUFG, OBUF, OBUFT
• IBUFDS, IBUFGDS, OBUFDS, OBUFTDS
• Output Voltage Banks

Propagation Rules
It is illegal to attach IOSTANDARD to a net or signal except when the signal or net is
connected to a pad. In this case, IOSTANDARD is treated as attached to an IOB instance
(IBUF, OBUF, IOB FF). When attached to a design element, IOSTANDARD propagates
to all applicable elements in the hierarchy within the design element.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 147

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 4: Xilinx Constraints

Schematic Syntax
• Attach to an I/O primitive
• Attribute Name

IOSTANDARD
• Attribute Values

iostandard_name

For more information, see UCF and NCF Syntax below.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute iostandard: string;

Specify the VHDL constraint as follows:

attribute iostandard of {component_name|label_name}: {component|label} is
“iostandard_name ”;

For more information, see UCF and NCF Syntax below.

For CPLD devices you can also apply IOSTANDARD to the pad signal.

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

For a description of iostandard_name, see the UCF section.

For CPLD devices you can also apply IOSTANDARD to the pad signal.

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST “ instance_name” IOSTANDARD= iostandard_name;

NET “pad_net_name” IOSTANDARD=iostandard_name;
iostandard_name is an IO Standard name as specified in the device data sheet.

XCF Syntax
BEGIN MODEL “entity_name ”

INST “instance_name” iostandard=string ;

NET “signal_name” iostandard=string ;

END;

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:
• Defining placement constraints
• Assigning placement constraints
• Defining I/O pin configurations
• Floorplanning and placement constraints

Constraints Guide
148 www.xilinx.com UG625 (v. 13.2) July 6, 2011

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 4: Xilinx Constraints

Pinout and Area Constraints Editor (PACE) Syntax
Pinout and Area Constraints Editor (PACE) is supported for CPLD devices only. PACE
is NOT supported for FPGA devices.

Access PACE from ISE® Design Suite > Processes.

Use PACE to:

• Assign location constraints to IOs

• Assign certain IO properties such as IO Standards

For more information, see the PACE Help, especially the topics in Procedures > Editing
Pins and Areas.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 149

Chapter 4: Xilinx Constraints

KEEP (Keep)
The KEEP (Keep) constraint:
• Is an advanced mapping constraint.
• Is a synthesis constraint.
When a design is mapped, some nets may be absorbed into logic blocks. When a net
is absorbed into a block, it can no longer be seen in the physical design database. This
may happen, for example, if the components connected to each side of a net are mapped
into the same logic block. The net may then be absorbed into the block containing the
components. KEEP prevents this from happening.

KEEP is translated into an internal constraint known as NOMERGE when targeting an
FPGA. Messaging from the implementation tools therefore refers to the system property
NOMERGE, not KEEP. In addition to TRUE and FALSE, synthesis (XST) accepts and
additional SOFT value that instructs the tool to preserve the designated net, but also
prevents it from attaching a NOMERGE constraint to this net in the synthesized netlist.
As a result, the net is preserved during synthesis, but implementation tools are given all
freedom to handle it. Conceptually, you are specifying a KEEP=TRUE for synthesis only,
but a KEEP=FALSE for implementation tools.

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
Applies to signals.

Propagation Rules
Applies to the signal to which it is attached.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a net
• Attribute Name

KEEP
• Attribute Values

TRUE
FALSE
SOFT (XST only)

VHDL Syntax
Declare the VHDL constraint as follows:

attribute keep : string;

Specify the VHDL constraint as follows:

attribute keep of signal_name: signal is “{TRUE|FALSE|SOFT}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
150 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* KEEP = “{TRUE|FALSE |SOFT}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST “instance_name” KEEP={TRUE|FALSE};

The following statement ensures that the net $SIG_0 remains visible.

NET “$1I3245/$SIG_0” KEEP;

XCF Syntax
BEGIN MODEL “entity_name”

NET “signal_name” keep={yes|no|true|false};

END;

In an XST Constraint File (XCF) file, the value of the KEEP constraint may optionally
be enclosed in double quotes. For the SOFT value, this becomes mandatory, as shown
below:

BEGIN MODEL “entity_name”

NET “signal_name” keep=”soft”;

END;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 151

Chapter 4: Xilinx Constraints

KEEP_HIERARCHY (Keep Hierarchy)
KEEP_HIERARCHY (Keep Hierarchy) is a synthesis and implementation constraint.
If hierarchy is maintained during synthesis, the implementation software uses
KEEP_HIERARCHY to preserve the hierarchy throughout the implementation process
and allow a simulation netlist to be created with the desired hierarchy.

XST may flatten the design to get better results by optimizing entity or module
boundaries. You can set KEEP_HIERARCHY to true so that the generated netlist is
hierarchical and respects the hierarchy and interface of any entity or module of your
design.

This option is related to the hierarchical blocks (VHDL entities, Verilog modules)
specified in the Hardware Description Language (HDL) design and does not concern the
macros inferred by the HDL synthesizer. Three values are available for this option:

• true

Allows the preservation of the design hierarchy, as described in the HDL project. If
this value is applied to synthesis, it is also propagated to implementation.

• false

Hierarchical blocks are merged in the top level module.

• soft

Allows the preservation of the design hierarchy in synthesis, but the
KEEP_HIERARCHY constraint is not propagated to implementation.

For CPLD devices, the default is true. For FPGA devices, the default is false

Note In XST, the KEEP_HIERARCHY constraint can be set to the following values:
yes, true, no, false, and soft. When used at the command line, only yes, no, and soft
are accepted.

In general, an HDL design is a collection of hierarchical blocks. Preserving the hierarchy
gives the advantage of fast processing because the optimization is done on separate
pieces of reduced complexity. Nevertheless, very often, merging the hierarchy blocks
improves the fitting results (fewer PTerms and device macrocells, better frequency)
because the optimization processes (collapsing, factorization) are applied globally on
the entire logic.

KEEP_HIERARCHY enables or disables hierarchical flattening of user-defined design
units. Allowed values are true and false. By default, the user hierarchy is preserved.

In the following figure, if KEEP_HIERARCHY is set to the entity or module I2, the
hierarchy of I2 is in the final netlist, but its contents I4, I5 are flattened inside I2. Also
I1, I3, I6, I7 are flattened.

Constraints Guide
152 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

KEEP_HIERARCHY EXAMPLE

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
Attached to logical blocks, including blocks of hierarchy or symbols.

Propagation Rules
Applies to the entity, module, or signal to which it is attached.

Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to the entity or module symbol
• Attribute Name

KEEP_HIERARCHY
• Attribute Values

– TRUE
– FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute keep_hierarchy : string;

Specify the VHDL constraint as follows:

attribute keep_hierarchy of architecture_name: architecture is {TRUE|FALSE|SOFT};

The default is false for FPGA devices and true for CPLD devices.

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 153

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* KEEP_HIERARCHY = "{TRUE|FALSE}" *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST “instance_name” KEEP_HIERARCHY={TRUE|FALSE};

XCF Syntax
In XST, KEEP_HIERARCHY accepts the following values:

• yes

• true

• no

• false

• soft

When KEEP_HIERARCHY is used as a command-line switch, only yes, no, and soft
are accepted.

MODEL “entity_name” keep_hierarchy={yes|no|soft};

ISE Design Suite Syntax
Define globally with ISE® Design Suite > Process > Properties > Synthesis Options >
Keep Hierarchy. With a design selected in the Sources window, select Processes >
Synthesize > Process Properties > Property display level > Advanced.

Constraints Guide
154 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Keeper (KEEPER)
The Keeper (KEEPER) constraint:
• Is a basic mapping constraint.
• Retains the value of the output net to which it is attached.
For example, if logic 1 is being driven onto the net, KEEPER drives a weak/resistive
1 onto the net. If the net driver is then tristated, KEEPER continues to drive a
weak/resistive 1 onto the net.

The KEEPER constraint must follow the same banking rules as the KEEPER component.
For more information on banking rules, see the Xilinx® Libraries Guides.

KEEPER, PULLUP, and PULLDOWN are valid only on pad NETs, not on INSTs of
any kind.

For CoolRunner™-II devices, the use of KEEPER and the use of PULLUP are mutually
exclusive across the whole device.

Architecture Support
Applies to all FPGA devices and CoolRunner-II CPLD devices.

Applicable Elements
Tristate input/output pad nets

Propagation Rules
KEEPER is illegal when attached to a net or signal except when the net or signal is
connected to a pad. In this case, KEEPER is treated as attached to the pad instance.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to an output pad net
• Attribute Name

KEEPER
• Attribute Values

– TRUE
– FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute keeper: string;

Specify the VHDL constraint as follows:

attribute keeper of signal_name : signal is “{YES|NO|TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 155

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* KEEPER = " {YES|NO|TRUE|FALSE}" *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
This statement configures the IO to use KEEPER for a NET.

NET "pad_net_name" KEEPER;

This statement configures KEEPER to be used globally.

DEFAULT KEEPER = TRUE;

XCF Syntax
BEGIN MODEL “entity_name”

NET “signal_name” keeper={yes|no|true |false};

END;

Constraints Guide
156 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

LOC (Location)
The LOC (Location) constraint:

• Is a basic placement constraint.

• Is a synthesis constraint.

LOC Description for FPGA Devices
LOC defines where a design element can be placed within an FPGA device. LOC
specifies the absolute placement of a design element on the FPGA die. It can be a single
location, a range of locations, or a list of locations. You can specify LOC from the design
file and also direct placement with statements in a constraints file.

To specify multiple locations for the same symbol, separate each location in the field
with a comma. The comma specifies that the symbols can be placed in any of the
specified locations. You can also specify an area in which to place a design element or
group of design elements.

A convenient way to find legal site names is to use the PlanAhead™ software or FPGA
Editor. The legal names are a function of the target part type. To find the correct syntax
for specifying a target location, load an empty part into FPGA Editor, Place the cursor on
any block, then click the block to display its location in the FPGA Editor history area. Do
not include the pin name such as .I, .O, or .T as part of the location.

You can use LOC for logic that uses multiple CLBs, IOBs, soft macros, or other symbols.
To do this, use LOC on a soft macro symbol, which passes the location information
down to the logic on the lower level. The location restrictions are automatically applied
to all blocks on the lower level for which LOCs are legal.

FPGA devices use a Cartesian-based XY designator at the slice level. The slice-based
location specification uses the form:

SLICE_XmYn.

The XY slice grid starts as X0Y0 in the lower left CLB tile of the chip. The X values start
at 0 and increase horizontally to the right in the CLB row, with two different X values
per CLB. The Y values start at 0 and increase vertically up in the CLB column, with
two different Y values per CLB.

Following are examples of how to specify the slices in the XY coordinate system.

Single LOC Constraint Examples
SLICE_X0Y0 First (bottom) slice of the CLB in the lower left corner of the chip

SLICE_X0Y1 Second slice of the CLB in the lower left corner of the chip

SLICE_X1Y0 Third slice of the CLB in the lower left corner of the chip

SLICE_X1Y1 Fourth (top) slice of the CLB in the lower left corner of the chip

SLICE_X0Y2 First slice of the second CLB in CLB column 1

SLICE_X2Y0 First (bottom) slice of the bottom CLB in CLB column 2

SLICE_X2Y1 Second slice of the bottom CLB in CLB column 2

SLICE _X50Y125 Slice located 125 slices up from and 50 slices to the right of
SLICE_X0Y0

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 157

Chapter 4: Xilinx Constraints

FPGA block RAMs and multipliers have their own specification different from the SLICE
specifications. Therefore, the location value must start with SLICE, RAMB, orMULT.
• A block RAM located at RAMB16_X2Y3 is not located at the same site as a flip-flop

located at SLICE_X2Y3.
• Amultiplier located atMULT18X18_X2Y3 is not located at the same site as a flip-flop

located at SLICE_X2Y3 or at the same site as a block RAM located atRAMB16_X2Y3.

The location values for global buffers (BUFGs) and DCM elements is the specific
physical site names for available locations.

Pin assignment using LOC is not supported for bus pad symbols such as OPAD8.

Location Specification Types for FPGA Devices
Element Types Location Examples Meaning
IOBs P12 IOB location (chip carrier)

A12 IOB location (pin grid)

B, L, T, R Applies to IOBs and indicates edge locations (bottom,
left, top, right) for the following devices: Spartan®-3,
Spartan-3A, Spartan-3E

LB, RB, LT, RT, BR, TR, BL, TL Applies to IOBs and indicates half edges (for example,
left bottom, right bottom) for the following devices:
Spartan-3, Spartan-3A, Spartan-3E

Bank# Applies to IOBs and indicates the bank for all FPGA
devices

Slices SLICE_X22Y3 SLICE_X22Y3 Slice location for all FPGA devices

Block RAMs RAMB16_X2Y56 Block RAM location for the following devices: Spartan®-3,
Spartan-3A, Spartan-3Es

RAMB36_X2Y56 Block RAM location for Virtex®-5 devices

Multipliers MULT18X18_X#Y# Multiplier location for Spartan-3 and Spartan-3A devices

DSP48_X#Y# Multiplier location for Virtex-4 and Virtex-5 devices

Digital Clock Manager DCM_X#Y# Digital Clock Manager for the following devices:
Spartan-3, Spartan-3A, Spartan-3E

DCM_ADV_X#Y# Digital Clock Manager for Virtex-4 and Virtex-5 devices

Phase Lock Loop PLL_ADV_X#Y# Phase Lock Loop for all FPGA devices

The wildcard character (*) can be used to replace a single location with a range as shown
in the following example:

SLICE_X*Y5 Any slice of a FPGAdevicewhose Y coordinate
is 5

Constraints Guide
158 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

The wildcard character for an FPGA global buffer, global pad, or DCM locations, is
not supported.

LOC Description for CPLD Devices
For CPLD devices, use the LOC=pin_name constraint on a PAD symbol or pad net to
assign the signal to a specific pin. The PAD symbols are IPAD, OPAD, IOPAD, and
UPAD. You can use the LOC=FBnn constraint on any instance or its output net to assign
the logic or register to a specific function block or macrocell, provided the instance is
not collapsed.

The LOC=FB nn_mm constraint on any internal instance or output pad assigns the
corresponding logic to a specific function block or macrocell within the CPLD. If a LOC
is placed on a symbol that does not get mapped to a macrocell or is otherwise removed
through optimization, the LOC is ignored.

LOC Priority
When specifying two adjacent LOC constraints on an input pad and its adjoining net,
the LOC attached to the net has priority. In the following diagram, LOC=11 takes
priority over LOC=38.

LOC Priority Example

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
For information about which design elements can be used with which device families,
see the Libraries Guides. For more information, see the device data sheet.

Propagation Rules
For all nets, LOC is illegal when attached to a net or signal except when the net or signal
is connected to a pad. In this case, LOC is treated as attached to the pad instance.

For CPLD nets, LOC attaches to all applicable elements that drive the net or signal.

When attached to a design element, LOC propagates to all applicable elements in the
hierarchy within the design element.

Constraint Syntax
Following is the syntax for a single location:

INST “instance_name” LOC=location;

where
location is a legal location for the part type

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 159

Chapter 4: Xilinx Constraints

Syntax Examples for Single LOC Constraints
Constraint (UCF Syntax) Description
INST “instance_name” LOC=P12; Place I/O at location P12.

INST “instance_name “
LOC=SLICE_X3Y2;

Spartan-3, Spartan-3A, Spartan-3E,
Virtex-4, and Virtex-5

Place logic in slice X3Y2 on the XY
SLICE grid.

INST “instance_name “
LOC=RAMB16_X0Y6;

Spartan-3, Spartan-3A, Spartan-3E, and
Virtex-4

Place the logic in the block RAM
located at RAMB16_X0Y6 on the XY
RAMB grid.

INST “instance_name “
LOC=MULT18X18_X0Y6;

Spartan-3 and Spartan-3A Place the logic in the multiplier located
at MULT18X18_X0Y6 on the XY MULT
grid.

INST “instance_name “
LOC=FIFO16_X0Y15;

Virtex-4 Place the logic in the FIFO located at
FIFO16_X0Y15 on the XY FIFO grid.

INST “instance_name “
LOC=IDELAYCTRL_X0Y3;

Virtex-4 and Virtex-5 Place the logic in the IDELAYCTRL
located at the IDELAYCTRL_X0Y3 on
the XY IDELAYCTRL grid.

Following is the syntax for multiple locations:

LOC= location1,location2 ,...,locationx

Separating each such constraint by a comma specifies multiple locations for an element.
When you specify multiple locations, PAR can use any of the specified locations.
Examples of multiple LOC constraints are provided in the following table.

Multiple LOC Constraint Examples
Constraint Description
INST “instance_name “
LOC=SLICE_X2Y10,
SLICE_X1Y10;

FPGA Place the logic in
SLICE_X2Y10 or in
SLICE_X1Y10 on the XY
SLICE grid.

Currently, using a single constraint there is no way to constrain multiple elements to a
single location or multiple elements to multiple locations.

Following is the syntax for a range of locations:

INST “ instance_name” LOC=location :location {SOFT };

You can define a range by specifying the two corners of a bounding box. Except for
Spartan-3, Spartan-3A, Spartan-3E, Virtex-4, and Virtex-5 devices, specify the upper left
and lower right corners of an area in which logic is to be placed. For FPGA devices,
specify the lower left and upper right corners. Use a colon (:) to separate the two
boundaries.

The logic represented by the symbol is placed somewhere inside the bounding box. The
default is to interpret the constraint as a “hard” requirement and to place it within the
box. If SOFT is specified, PAR may place the constraint elsewhere if better results can be
obtained at a location outside the bounding box. Examples of LOC constraints used to
specify a range are given in the following table.

Constraints Guide
160 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

LOC Range Constraint Examples
Constraint Description
INST “instance_name “
LOC=SLICE_X3Y5:SLICE_X5Y20;

FPGA Place logic in any slice within
the rectangular area bounded by
SLICE_X3Y5 (the lower left corner) and
SLICE_X5Y20 (the upper right corner)
on the XY SLICE grid.

LOC ranges can be supplemented with the keyword SOFT. Unlike AREA_GROUP, LOC
ranges do not influence the packing of symbols. LOC range is strictly a placement
constraint used by PAR.

Following is the LOC syntax for CPLD devices:

INST “instance_name” LOC=pin_name;

or

INST “ instance_name” LOC=FBff ;

or

INST “instance_name” LOC=FB ff_mm;

where
• pin_name is Pnn for numeric pin names or rc for row-column pin names
• ff is a function block number
• mm is a macrocell number within a function block

The two constraint formats for FBff and FBff_mm are only applicable for outputs and
bidirectional pins, not for inputs.

The first constraint format:

INST “instance_name” LOC=pin_name;

is applicable for all types of IO.

Syntax Examples
For examples of legal placement constraints for each type of logic element in FPGA
designs, see Syntax for FPGA Devices for this constraint, and the Relative Location
(RLOC) constraint. Logic elements include flip-flops, ROMs and RAMs, block RAMS,
FMAPs, BUFTs, CLBs, IOBs, I/Os, edge decoders, and global buffers.

The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to an instance
• Attribute Name: LOC
• Attribute Values: value

For valid values, see Syntax for FPGA Devices and Syntax for CPLD Devices for this
constraint.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute loc: string;

Specify the VHDL constraint as follows:

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 161

Chapter 4: Xilinx Constraints

attribute loc of {signal_name| label_name}: {signal |label} is “location”;

Set the LOC constraint on a bus as follows:

attribute loc of bus_name : signal is “ location_1 location_2 location_3...”;

To constrain only a portion of a bus (CPLD devices only), use the following syntax:

attribute loc of bus_name : signal is “* * location_1 * location_2...”;

For more information about location, see Syntax for FPGA Devices and Syntax for CPLD
Devices for this constraint.

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* LOC = “ location” *)

Set the LOC constraint on a bus as follows:

(* LOC = “location_1 location_2 location_3... ” *)

To constrain only a portion of a bus (CPLD devices only), use the following syntax:

(* LOC = “ * *location_1 location_2...” *)

For more information about location, see Syntax for FPGA Devices and Syntax for CPLD
Devices for this constraint.

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
The following statement specifies that each instance found under “FLIP_FLOPS” is to be
placed in any CLB in column 8.

INST “/FLIP_FLOPS/*” LOC=SLICE_X*Y8;

The following statement specifies that an instantiation of MUXBUF_D0_OUT be placed
in IOB location P110.

INST “MUXBUF_D0_OUT” LOC=P110;

The following statement specifies that the net DATA<1> be connected to the pad from
IOB location P111.

NET “DATA<1>” LOC=P111;

XCF Syntax
BEGIN MODEL “ entity_name”

PIN “signal_name” loc=string ;

INST “instance_name” loc=string ;

END;

PCF Syntax
LOC writes out a LOCATE constraint to the PCF file. For more information, see the
Locate (LOCATE) constraint.

Constraints Guide
162 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:
• Defining placement constraints
• Assigning placement constraints
• Defining I/O pin configurations
• Floorplanning and placement constraints

PACE Syntax
PACE is mainly used to assign location constraints to IOs. It can also be used to assign
certain IO properties such as IO Standards. You can access PACE from the Processes
window in the Project Navigator.

For more information, see the PACE help, especially the topics within Editing Pins
and Areas in the Procedures section. PACE is supported for CPLD devices only. It is
not supported for FPGA devices.

Digital Clock Manager (DCM) Constraint Examples
This section applies to all FPGA devices.

You can lock the DCM in the UCF file. The syntax is as follows:

INST “instance_name" LOC = DCM_XYB; (for all Spartan devices)

INST “instance_name" LOC = DCM_ADV_XYB; (for Virtex-4 and Virtex-5 devices)

A is the X coordinate, starting with 0 at the left-hand bottom corner. A increases in value
as you move across the device to the right.

B is the Y coordinate, starting with 0 at the left-hand bottom corner. B increases in
value as you move up the device.

Example

INST “myinstance” LOC = DCM_X0Y0;

Flip-Flop Constraint Examples
Flip-flop constraints can be assigned from the schematic or through the UCF file.

From the schematic, attach LOC constraints to the target flip-flop. The constraints are
then passed into the EDIF netlist and are read by PAR after the design is mapped.

The following examples show how the LOC constraint is applied to a schematic and to
a UCF (User Constraints File). The instance names of two flip-flops, /top-12/fdrd and
/top-54/fdsd, are used to show how you would enter the constraints in the UCF.

Slice-Based XY Grid Designations

Spartan-3 devices and higher and Virtex-4 devices and higher are the only architectures
that use slice-based XY grid designations.

Flip-flops can be constrained to a specific slice, a range of slices, a row or column of slices.

Example One
Place the flip-flop in SLICE_X1Y5. SLICE_X0Y0 is in the lower left corner of the device.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 163

Chapter 4: Xilinx Constraints

Schematic LOC=SLICE_XlY5

UCF INST “/top-12/fdrd” LOC=SLICE_X1Y5;

Example Two
Place the flip-flop in the rectangular area bounded by the SLICE_X1Y1 in the lower left
corner and SLICE_X5Y7 in the upper right corner.

Schematic LOC=SLICE_R1C1:SLICE_R5C7

UCF INST “/top-12/fdrd”
LOC=SLICE_X1Y1:SLICE_X5Y7;

Example Three
Place the flip-flops anywhere in the row of slices whose Y coordinate is 3. Use the
wildcard (*) character in place of either the X or Y value to specify an entire row (Y*)
or column (X*) of slices.

Schematic LOC=SLICE_X*Y3

UCF INST “/top-12/fdrd/top-54/fdsd”
LOC=SLICE_X*Y3;

Example Four
Place the flip-flop in either SLICE_X2Y4 or SLICE_X7Y9.

Schematic LOC=SLICE_X2Y4,SLICE_X7Y9

UCF INST “/top-54/fdsd” LOC=SLICE_X2Y4,
SLICE_X7Y9;

In Example Four, repeating the LOC constraint and separating each such constraint by a
comma specifies multiple locations for an element. When you specify multiple locations,
PAR can use any of the specified locations.

Example Five
Do not place the flip-flop in the column of slices whose X coordinate is 5. Use the
wildcard (*) character in place of either the X or Y value to specify an entire row (Y*)
or column (X*) of slices.

Schematic PROHIBIT=SLICE_X5Y*

UCF CONFIG PROHIBIT=SLICE_X5Y*;

I/O Constraint Examples
You can constrain I/Os to a specific IOB. You can assign I/O constraints from the
schematic or through the UCF file.

From the schematic, attach LOC constraints to the target PAD symbol. The constraints
are then passed into the netlist file and read by PAR after mapping.

Alternatively, in the UCF file a pad is identified by a unique instance name. The
following example shows how the LOC constraint is applied to a schematic and to
a UCF (User Constraints File). In the examples, the instance names of the I/Os are
/top-102/data0_pad and /top-117/q13_pad. The example uses a pin number to lock to
one pin.

Constraints Guide
164 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Schematic LOC=P17

UCF INST “/top-102/data0_pad” LOC=P17;

Place the I/O in the IOB at pin 17. For pin grid arrays, a pin name such as B3 or T1 is used.

IOB Constraint Examples
You can assign I/O pads, buffers, and registers to an individual IOB location. IOB
locations are identified by the corresponding package pin designation.

The following examples illustrate the format of IOB constraints. Specify LOC= and the
pin location. If the target symbol represents a soft macro containing only I/O elements,
for example, INFF8, the LOC constraint is applied to all I/O elements contained in that
macro. If the indicated I/O elements do not fit into the specified locations, an error
is generated.

The following UCF statement places the I/O element in location P13. For PGA packages,
the letter-number designation is used, for example, B3.

INST “ instance_name” LOC=P13;

You can prohibit the mapper from using a specific IOB. You might take this step to
keep user I/O signals away from semi-dedicated configuration pins. Such PROHIBIT
constraints can be assigned only through the UCF file.

IOBs are prohibited by specifying a PROHIBIT constraint preceded by the CONFIG
keyword, as shown in the following example.

Schematic None

UCF CONFIG PROHIBIT=p36, p37, p41;

Do not place user I/Os in the IOBs at pins 36, 37, or 41. For pin grid arrays, pin names
such as D14, C16, or H15 are used.

Mapping Constraint Examples (FMAP)
Mapping constraints control the mapping of logic into CLBs. They have two parts.
The first part is an FMAP component placed on the schematic. The second is a LOC
constraint that can be placed on the schematic or in the constraints file.

FMAP controls the mapping of logic into function generators. This symbol does not
define logic on the schematic; instead, it specifies how portions of logic shown elsewhere
on the schematic should be mapped into a function generator.

The FMAP symbol defines mapping into a four-input (F) function generator.

For the FMAP symbol as with the CLBMAP primitive, MAP=PUC or PUO is supported,
as well as the LOC constraint. (Currently, pin locking is not supported. MAP=PLC or
PLO is translated into PUC and PUO, respectively.)

Example One

Place the FMAP symbol in the SLICE at row 7, column 3.

Schematic LOC=SLICE_X7Y3

UCF INST “$1I323”LOC=SLICE_X2Y4,
SLICE_X3Y4;

Example Two

Place the FMAP symbol in either the SLICE at row 2, column 4 or the SLICE at row 3,
column 4.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 165

Chapter 4: Xilinx Constraints

Schematic LOC=SLICE_X2Y4, SLICE_X3Y4

UCF INST “top/dec0011”
LOC=CLB_R2C4,CLB_R3C4;

Example Three

Place the FMAP symbol in the area bounded by SLICE X5Y5 in the upper left corner and
SLICE X10Y8 in the lower right

Schematic LOC=SLICE_X5Y5:SLICE_X10Y8

UCF INST “$3I27”
LOC=SLICE_X5Y5:SLICE_X10Y8;

Multiplier Constraint Examples
This section applies to FPGA devices.

Multiplier constraints can be assigned from the schematic or through the UCF file. From
the schematic, attach the LOC constraints to a multiplier symbol. The constraints are
then passed into the netlist file and after mapping they are read by PAR. For more
information on attaching LOC constraints, see the application user guide. Alternatively,
in the constraints file a multiplier is identified by a unique instance name.

An FPGA multiplier has a different XY grid specification than slices and block RAMs.
• Spartan-3, Spartan-3A, and Spartan-3E devices are specified using

MULT18X18_X#Y#
• Virtex-4 and Virtex-5 devices are specified using DSP48_X#Y#, where the X and Y

coordinate values correspond to the multiplier grid array.
A multiplier located atMULT18X18_X0Y1 is not located at the same site as a flip-flop
located at SLICE_X0Y1 or a block RAM located at RAMB16_X0Y1.

For example, assume you have a device with two columns of multipliers, each column
containing two multipliers, where one column is on the right side of the chip and the
other is on the left. The multiplier located in the lower left corner isMULT18X18_X0Y0.
Because there are only two columns of multipliers, the multiplier located in the upper
right corner isMULT18X18_X1Y1.

Schematic LOC=MULT18X18_X0Y0

UCF INST “/top-7/rq” LOC=MULT18X18_X0Y0;

ROM Constraint Examples
Memory constraints can be assigned from the schematic or through the UCF file.

From the schematic, attach the LOC constraints to the memory symbol. The constraints
are then passed into the netlist file and after mapping they are read by PAR. For more
information on attaching LOC constraints, see the application user guide.

Alternatively, in the constraints file memory is identified by a unique instance name.
One or more memory instances of type ROM can be found in the input file. All memory
macros larger than 16 x 1 or 32 x 1 are broken down into these basic elements in the
netlist file.

In the following examples, the instance name of the ROM primitive is /top-7/rq.

Slice-Based XY Designations

Spartan-3 and higher and Virtex-4 and higher devices use slice-based XY grid
designations. You can constrain a ROM to a specific slice, a range of slices, or a row
or column of slices.

Constraints Guide
166 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Example One

Place the memory in the SLICE_X1Y1. SLICE_X1Y1 is in the lower left corner of the
device. You can apply a single-SLICE constraint such as this only to a 16 x 1 or 32 x 1
memory.

Schematic LOC=SLICE_X1Y1

UCF INST “/top-7/rq” LOC=SLICE_X1Y1;

Example Two

Place the memory in either SLICE_X2Y4 or SLICE_X7Y9.

Schematic LOC=SLICE_X2Y4, SLICE_X7Y9

UCF INST “/top-7/rq” LOC=SLICE_X2Y4,
SLICE_X7Y9;

Example Three

Do not place the memory in column of slices whose X coordinate is 5. You can use the
wildcard (*) character in place of either the X or Y coordinate value in the SLICE name to
specify an entire row (Y*) or column (X*) of slices.

Schematic PROHIBIT SLICE_X5Y*

UCF CONFIG PROHIBIT=SLICE_X5Y*;

Block RAM (RAMBs) Constraint Examples
This section applies to FPGA devices

Block RAM constraints can be assigned from the schematic or through the UCF file.
From the schematic, attach the LOC constraints to the block RAM symbol. The
constraints are then passed into the netlist file. After mapping they are read by PAR.
For more information on attaching LOC constraints, see the application user guide.
Alternatively, in the constraints file a memory is identified by a unique instance name.

Spartan-3 and Higher Devices

An FPGA block RAM has a different XY grid specification than a slice or multiplier. It is
specified using RAMB16_Xm Yn where the X and Y coordinate values correspond to
the block RAM grid array. A block RAM located at RAMB16_X0Y1 is not located at the
same site as a flip-flop located at SLICE_X0Y1.

For example, assume you have a device with two columns of block RAM, each column
containing two blocks, where one column is on the right side of the chip and the other is
on the left. The block RAM located in the lower left corner is RAMB16_X0Y0. Because
there are only two columns of block RAM, the block located in the upper right corner
is RAMB16_X1Y1.

Schematic LOC=RAMB16_X0Y0 (for all FPGA devices
except Virtex-5 devices)

LOC=RAMB36_X0Y0 (for Virtex-5 devices)

UCF INST “/top-7/rq” LOC=RAMB16_X0Y0;

Slice Constraint Examples
This section applies to all FPGA devices These are currently the only architectures that
use the slice-based XY grid designations.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 167

Chapter 4: Xilinx Constraints

You can assign soft macros and flip-flops to a single slice location, a list of slice locations,
or a rectangular block of slice locations.

Slice locations can be a fixed location or a range of locations. Use the following syntax
to denote fixed locations.

SLICE_XmY n

where
m and n are the X and Y coordinate values, respectively

They must be less than or equal to the number of slices in the target device. Use the
following syntax to denote a range of locations from the highest to the lowest.

SLICE_X mYn:SLICE_XmY n

Format of Slice Constraints

The following examples illustrate the format of slice constraints: LOC= and the slice
location. If the target symbol represents a soft macro, the LOC constraint is applied to all
appropriate symbols (flip-flops, maps) contained in that macro. If the indicated logic
does not fit into the specified blocks, an error is generated.

Slice Constraints Example One

The following UCF statement places logic in the designated slice.

INST “instance_name” LOC=SLICE_X133Y10;

Slice Constraints Example Two

The following UCF statement places logic within the first column of slices. The asterisk
(*) is a wildcard character

INST “instance_name” LOC=SLICE_X0Y*;

Slice Constraints Example Three

The following UCF statement places logic in any of the three designated slices. There is
no significance to the order of the LOC statements.

INST “ instance_name” LOC=SLICE_X0Y3, SLICE_X67Y120, SLICE_X3Y0;

Slice Constraints Example Four

The following UCF statement places logic within the rectangular block defined by the
first specified slice in the lower left corner and the second specified slice towards the
upper right corner.

INST “ instance_name" LOC=SLICE_X3Y22:SLICE_X10Y55;

Slices Prohibited
You can prohibit PAR from using a specific slice, a range of slices, or a row or column
of slices. Such prohibit constraints can be assigned only through the User Constraints
File (UCF). Slices are prohibited by specifying a Prohibit (PROHIBIT) constraint at the
design level, as shown in the following examples.

Slices Prohibited Example One
Do not place any logic in the SLICE_X0Y0. SLICE_X0Y0 is at the lower left corner of
the device.

Schematic None

UCF CONFIG PROHIBIT=SLICE_X0Y0;

Constraints Guide
168 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Slices Prohibited Example Two
Do not place any logic in the rectangular area bounded by SLICE_X2Y3 in the lower left
corner and SLICE_X10Y10 in the upper right.

Schematic None

UCF CONFIG
PROHIBIT=SLICE_X2Y3:SLICE_X10Y10;

Slices Prohibited Example Three
Do not place any logic in a slice whose location has 3 as the X coordinate. This designates
a column of prohibited slices. You can use the wildcard (*) character in place of either
the X or Y coordinate to specify an entire row (X*) or column (Y*) of slices.

Schematic None

UCF CONFIG PROHIBIT=SLICE_X3Y*;

Slices Prohibited Example Four
Do not place any logic in either SLICE_X2Y4 or SLICE_ X7Y9.

Schematic None

UCF CONFIG PROHIBIT=SLICE_X2Y4,
SLICE_X7Y9;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 169

Chapter 4: Xilinx Constraints

LOCATE (Locate)
The LOCATE (Locate) constraint:
• Is a basic placement constraint.
• Specifies any one of the following:

– a single location
– multiple single locations
– a location range

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
• CLB
• IOB
• DCM
• Clock logic
• Macros

Propagation Rules
• When attached to a macro, LOCATE propagates to all elements of the macro.
• When attached to a primitive, LOCATE applies to the entire primitive.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Single or Multiple Single Locations PCF Syntax
COMP “comp_name” LOCATE=[SOFT] “site_item1”... “site_itemn” [LEVEL n];

COMPGRP “group_name” LOCATE=[SOFT] “site_item1”... “site_itemn” [LEVEL n];

MACRO name LOCATE=[SOFT] “site_item1” “site_itemn” [LEVEL n];

Range of Locations PCF Syntax
COMP “comp_name” LOCATE=[SOFT] SITE “site_name” : SITE “site_name” [LEVEL n];

COMPGRP “group_name” LOCATE=[SOFT] SITE “site_name” : SITE “site_name”
[LEVEL n];

MACRO “macro_name” LOCATE=[SOFT] SITE “site_name” : SITE “site_name” [LEVEL
n];

where
• site_name is a component site (that is, a CLB or IOB location)
• site_item is one of the following:

– SITE "site_name"
– SITEGRP "site_group_name"

• n in LEVEL n is 0, 1, 2, 3, or 4

Constraints Guide
170 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

LOCK_PINS (Lock Pins)
The LOCK_PINS (Lock Pins) constraint:
• Instructs the implementation tools to not swap the pins of the LUT symbol to which

it is attached.
• Is distinct from the Lock Pins process in ISE® Design Suite, which is used to preserve

the existing pinout of a CPLD design.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Applies only to specific instances of LUT symbols.

Propagation Rules
Applies only to a single LUT instance.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute lock_pins: string;

Specify the VHDL constraint as follows:

attribute lock_pins of {component_name|label_name} : {component|label} is “all”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* LOCK_PINS = “all” *)

For more information on basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
• Using No Designator

INST “XSYM1” LOCK_PINS;
• Using the ALL Attribute

INST “XSYM1” LOCK_PINS=’ALL’;
• Using a PIN Assignment List

INST I_589 LOCK_PINS=I0:A2;
INST I_894 LOCK_PINS=I3:A1,I2:A4;
INST tvAgy LOCK_PINS=I0:A4,I1:A3,I2:A2,I3:A1;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 171

Chapter 4: Xilinx Constraints

LUTNM (Lookup Table Name)
The LUTNM (Lookup Table Name) constraint:
• Allows you to control the grouping of logical symbols into the LUT sites of Virtex®-5

devices.
• Is a string value property that is applied to two qualified symbols.
• Must be applied uniquely to two symbols within the design. These two symbols are

implemented in a shared LUT site within a SLICE component.
• Is functionally similar to BLKNM (Block Name).

Architecture Support
Applies to Virtex-5 devices only.

Applicable Elements
Can be applied to:
• Two symbols that are unique within the design
• Two 5-input or smaller function generator symbols (LUT, ROM, or RAM) if the total

number of unique input pins required for both symbols does not exceed 5 pins
• A 6-input read-only function generator symbol (LUT6, ROM64) in conjunction with

a 5-input read-only symbol (LUT5, ROM32) if:
– The total number of unique input pins required for both symbols does not

exceed 6 inputs, and
– The lower 32 bits of the 6-input symbol programming matches all 32 bits of the

5-input symbol programming.

Propagation Rules
LUTNM can be applied to two symbols that are unique within the design.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid element or symbol type
• Attribute Name

LUTNM
• Attribute Value

<user_defined>

VHDL Syntax
Before using LUTNM, declare it with the following syntax placed after the architecture
declaration, but before the begin statement in the top-level VHDL file:

attribute LUTNM: string;

Specify the VHDL constraint as follows:

attribute LUTNM of {LUT5_instance_name}: label is "value";

Constraints Guide
172 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

where

value

is any chosen name under which you want to group the two elements.

Example

architecture MY_DESIGN of top is
attribute LUTNM: string;

attribute LUTNM of LUT5_inst1: label is "logic_group1";
attribute LUTNM of LUT5_inst2: label is "logic_group1";

begin
-- LUT5: 5-input Look-Up Table

-- Virtex-5
-- Xilinx HDL Libraries Guide version 8.2i

LUT5_inst1 : LUT5
generic map (

INIT => X"a49b44c1")
port map (

O => aout, -- LUT output (1-bit)
I0 => d(0), -- LUT input (1-bit)
I1 => d(1), -- LUT input (1-bit)
I2 => d(2), -- LUT input (1-bit)
I3 => d(3), -- LUT input (1-bit)
I4 => d(4) -- LUT input (1-bit)

);
-- End of LUT5_inst1 instantiation
-- LUT5: 5-input Look-Up Table

-- Virtex-5
-- Xilinx HDL Libraries Guide version 8.2i

LUT5_inst2 : LUT5
generic map (

INIT => X"649d610a")
port map (

O => bout, -- LUT output (1-bit)
I0 => d(0), -- LUT input (1-bit)
I1 => d(1), -- LUT input (1-bit)
I2 => d(2), -- LUT input (1-bit)
I3 => d(3), -- LUT input (1-bit)
I4 => d(4) -- LUT input (1-bit)

);
-- End of LUT5_inst2 instantiation
END MY_DESIGN;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the following attribute specification before the port declaration in the top-level
Verilog code:

(* LUTNM = "value" *)

where

value is any chosen name under which you want to group the two elements.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 173

Chapter 4: Xilinx Constraints

Example

// LUT5: 5-input Look-Up Table
// Virtex-5
// Xilinx HDL Libraries Guide version 8.2i
(* LUTNM="logic_group1" *) LUT5 #(

.INIT(32’ha49b44c1)
) LUT5_inst1 (

.O(aout), // LUT output (1-bit)

.I0(d[0]), // LUT input (1-bit)

.I1(d[1]), // LUT input (1-bit)

.I2(d[2]), // LUT input (1-bit)

.I3(d[3]), // LUT input (1-bit)

.I4(d[4]) // LUT input (1-bit)
);
// End of LUT5_inst1 instantiation
// LUT5: 5-input Look-Up Table
// Virtex-5
// Xilinx HDL Libraries Guide version 8.2i
(* LUTNM="logic_group1" *) LUT5 #(

.INIT(32’h649d610a)
) LUT5_inst2 (

.O(bout), // LUT output (1-bit)

.I0(d[0]), // LUT input (1-bit)

.I1(d[1]), // LUT input (1-bit)

.I2(d[2]), // LUT input (1-bit)

.I3(d[3]), // LUT input (1-bit)

.I4(d[4]) // LUT input (1-bit)
);
// End of LUT5_inst2 instantiation

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
Placed on the output, or bi-directional port:

INST "LUT5_instance_name" LUTNM="value";

Where value is any chosen name under which you want to group the two elements.

Example

INST "LUT5_inst1" LUTNM="logic_group1";

INST "LUT5_inst2" LUTNM="logic_group1";

Constraints Guide
174 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

MAP (Map)
MAP (Map) is an advanced mapping constraint. Place MAP on an FMAP to specify
whether pin swapping and the merging of other functions with the logic in the map are
allowed. If merging with other functions is allowed, other logic can also be placed
within the CLB, if space allows.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
FMAP

Propagation Rules
Applies to the design element to which it is attached

Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
INST “ instance_name” MAP=[PUC | PUO | PLC | PLO] ;

where

• PUC

The CLB pins are unlocked (U) and the CLB is closed (C). The software can swap
signals among the pins on the CLB, but cannot add or remove logic from the CLB.

• PUO (default)

The CLB pins are unlocked (U) and the CLB is open (O). The software can swap
signals among the pins on the CLB, and can add or remove logic from the CLB.

• PLC

The CLB pins are locked (L) and the CLB is closed (C). The software cannot swap
signals among the pins on the CLB, and cannot add or remove logic from the CLB.

• PLO

The CLB pins are locked (L) and the CLB is open (O). The software cannot swap
signals among the pins on the CLB, but can add or remove logic from the CLB.

Currently, only PUC and PUO are observed. PLC and PLO are translated into PUC
and PUO, respectively.

The following statement allows pin swapping, and ensures that no logic other than that
defined by the original map is mapped into the function generators.

INST “$1I3245/map_of_the_world” map=puc;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 175

Chapter 4: Xilinx Constraints

MARK_DEBUG (Mark Debug)
The MARK_DEBUG (Mark Debug) constraint:

• Is a synthesis constraint
• Is used to mark nets for debugging with the ChipScope™ tool
In the PlanAhead™ software, nets marked for debugging are automatically listed in the:
• The ChipScope tool Unassigned Nets folder
• Set Up ChipScope Wizard

For more information, see:

PlanAhead User Guide (UG632)

Architecture Support
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Applies to the net to which it is attached.

Propagation Rules
If the net is a bus, MARK_DEBUG is propagated to the individual signals comprising
the bus.

Constraint Values
• true

The net is:
– Preserved from optimization.
– Marked for debugging with the ChipScope tool.

• false
The constraint is ignored.

• soft (XST only)
The net is marked for debugging only if it is not optimized away during XST synthesis.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax Example
Declare the VHDL constraint as follows:

attribute mark_debug : string;

Specify the VHDL constraint as follows:

attribute mark_debug of signal_name : signal is
“{TRUE|FALSE|SOFT}”;

Verilog Syntax Example
Place the Verilog constraint immediately before the module or instantiation.

Constraints Guide
176 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Specify the Verilog constraint as follows:

(* mark_debug = “{TRUE|FALSE|SOFT}” *) wire wire_name ;

XCF Syntax Example
Specify the XCF constraint as follows:

BEGIN MODEL “entity_name ”

NET “signal_name ” mark_debug = “{TRUE|FALSE|SOFT}” ;

END;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 177

Chapter 4: Xilinx Constraints

MAX_FANOUT (Max Fanout)
MAX_FANOUT (Max Fanout) limits the fanout of nets or signals. Depending on the
value of the constraint, both XST and MAP limit the fanout of a net when this constraint
is applied. The value can either be an integer (XST only) or REDUCE (MAP only).

MAX_FANOUT for XST
Default integer values for XST are shown in the following table. Max Fanout is both a
global and a local constraint in XST.

Max Fanout Default Values Devices
Default Value

Spartan®-3, Spartan-3E, Spartan-3A,
Spartan-3A D

500

Virtex®-4 500

Virtex-5 100000 (One Hundred Thousand)

Large fanouts can cause routability problems. XST tries to limit fanout by duplicating
gates or by inserting buffers. This limit is not a technology limit but a guide to XST. It
may happen that this limit is not exactly respected, especially when this limit is small
(less than 30).

In most cases, fanout control is performed by duplicating the gate driving the net with a
large fanout. If the duplication cannot be performed, buffers are inserted. These buffers
are protected against logic trimming at the implementation level by defining a Keep
(KEEP) attribute in the NGC file. If the register replication option is set to no, only
buffers are used to control fanout of flip-flops and latches.

Max Fanout is global for the design, but you can control maximum fanout independently
for each entity or module or for given individual signals by using constraints.

If the actual net fanout is less than the Max Fanout value, XST behavior depends on how
Max Fanout is specified.
• If the value of Max Fanout is set in ISE® Design Suite in the command line, or is

attached to a specific hierarchical block, XST interprets its value as a guidance.
• If Max Fanout is attached to a specific net, XST does not perform logic replication.

Putting Max Fanout on the net may prevent XST from having better timing
optimization.

For example, suppose that the critical path goes through the net, which actual fanout is
80 and set Max Fanout value to 100. If Max Fanout is specified in ISE Design Suite, XST
may replicate it, trying to improve timing. If Max Fanout is attached to the net itself,
XST does not perform logic replication.

MAX_FANOUT for MAP
MAX_FANOUT can also drive MAP to limit fanout by duplicating registers and/or
gates. The MAP register duplication option (-register_duplication) must be enabled
and MAX_FANOUT constraints must be applied locally to nets for this to occur. When
used during MAP, only the value of REDUCE is accepted. WhenMAX_FANOUT =
“REDUCE”, MAP limits fanout if it determines that it can provide an improvement
in performance with out causing problems in fitting the design. Review the physical
synthesis report (*PSR) generated by MAP to review whether or notMAX_FANOUT =
“REDUCE” caused fanout reduction to actually occur.

Constraints Guide
178 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Architecture Support
Applies to all FPGA devices. Does not apply to CPLD devices.

Applicable Elements
When the value is an integer, Max Fanout applies globally, or to a VHDL entity, a Verilog
module, or signal.

When the value is REDUCE, Max Fanout applies only to a signal.

Propagation Rules
Applies to the entity, module, or signal to which it is attached.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute max_fanout: string;

Specify the VHDL constraint as follows:

attribute max_fanout of {signal_name|entity_name}: {signal|entity} is "integer";

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* max_fanout = "integer" *)

XCF Syntax Example One
MODEL "entity_name" max_fanout=integer;

XCF Syntax Example Two
BEGIN MODEL "entity_name"

NET "signal_name" max_fanout=integer;

END;

XST Command Line Syntax
Define globally with the -max_fanout command line option of the run command:

-max_fanout integer

ISE Design Suite Syntax
Define globally in ISE Design Suite in Process > Properties > Xilinx-Specific Options >
Max Fanout.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 179

Chapter 4: Xilinx Constraints

UCF Syntax
When used with the MAP Register Duplication option, specify MAX_FANOUT in the
User Constraints File (UCF) as follows:

NET "signal_name" max_fanout=REDUCE;

Constraints Guide
180 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

MAXDELAY (Maximum Delay)
MAXDELAY (Maximum Delay) defines the maximum allowable delay on a net.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Applies to the net to which it is attached.

Propagation Rules
Applies to the net to which it is attached

Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a net
• Attribute Name: MAXDELAY
• Attribute Values: value units

where
value is the numerical time delay
units are:
– micro
– ms
– ns
– ps

VHDL Syntax
Declare the VHDL constraint as follows:

attribute maxdelay: string;

Specify the VHDL constraint as follows:

attribute maxdelay of signal_name: signal is “value [units]”;

where
• value is any positive integer
• units are:

– ps
– ns (default)
– micro
– ms
– GHz
– MHz
– kHz

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 181

Chapter 4: Xilinx Constraints

For more information on basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(*MAXDELAY = “value [units]” *)

where

• value is any positive integer

• units are:

– ps

– ns (default)

– micro

– ms

– GHz

– MHz

– kHz

For more information on basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
NET “net_name” MAXDELAY=value units;

where

• value is the numerical time delay.

• units are:

– micro

– ns

– ms

– ps

The following statement assigns a maximum delay of 10 nanoseconds to the net $SIG_4.

NET “$1I3245/$SIG_4” MAXDELAY=10 ns;

Constraints Guide
182 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

PCF Syntax
itemMAXDELAY = maxvalue [PRIORITY integer];

where

• item can be:

– ALLNETS

– NET name

– TIMEGRP name

– ALLPATHS

– PATH name

– path specification

• maxvalue can be a:

– numerical time value with units of micro, ms, ps, or ns

– numerical frequency value with units of GHz, MHz, or KHz

– TSidentifier

Constraints Editor Syntax
To open Constraints Editor, select ISE® Design Suite > Processes > User Constraints >
Exceptions > Timing Constraints > Nets.

FPGA Editor Syntax
To set MAXDELAY to all paths or nets, select File > Main Properties > Global Physical
Constraints.

To set MAXDELAY to a selected path or net, with a routed net selected, select Edit >
Properties of Selected Items > Physical Constraints.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 183

Chapter 4: Xilinx Constraints

MAXPT (Maximum Product Terms)
The MAXPT (Maximum Product Terms) constraint:

• Is an advanced constraint.

• Applies to CPLD devices only.

• Specifies the maximum number of product terms the fitter is permitted to use when
collapsing logic into the node to which MAXPT is applied.

• Overrides the Collapsing P-term Limit setting in ISE® Design Suite for the attached
node.

Architecture Support
Applies to CPLD devices only. Does not apply to FPGA devices.

Applicable Elements
Applies to signals.

Propagation Rules
Applies to the signal to which it is attached.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute maxpt: integer;

Specify the VHDL constraint as follows:

attribute maxpt of signal_name : signal is “integer”;

integer is any positive integer

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* MAXPT = “integer” *)

integer is any positive integer

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
Net “signal_name” maxpt=integer;

Constraints Guide
184 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

MAXSKEW (Maximum Skew)
The MAXSKEW (Maximum Skew) constraint:

• Is a timing constraint

• Is used to control the maximum amount of skew on a net.

• Is commonly used to control the skew of local clocks, or clocks that are not on the
global clock network.

• Is not necessary, and is not recommended, for global clock networks.

Skew is the difference between the delays of all loads driven by the net. Because the
constraint identifies all loads driven by the net, skew may be reported between loads
that have no logical connection. You can control the maximum allowable skew on a net
by attaching MAXSKEW directly to the net.

To understand what MAXSKEW defines, consider the following example.

In the preceding diagram, for ta(2), 2 ns is the maximum delay for the Register A clock.
For tb(4), 4 ns is the maximum delay for the Register B clock. MAXSKEW defines the
maximum of tb minus the maximum of ta, that is, 4-2=2.

In some cases, relative minimum delays are used on a net for setup and hold timing
analysis. When MAXSKEW is applied to network resources which use relative
minimum delays, MAXSKEW takes relative minimum delays into account in the
calculation of skew.

Overuse of MAXSKEW, or too tight of a requirement (value), can cause long PAR
runtimes.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Nets

Propagation Rules
Applies to the net to which it is attached.

yntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 185

Chapter 4: Xilinx Constraints

Schematic Syntax
• Attach to a net
• Attribute Name

MAXSKEW
• Attribute Values

allowable_skew
units
where
– allowable_skew is the timing requirement
– units are ms, micro, ns (default), or ps

VHDL Syntax
Declare the VHDL constraint as follows:

attribute maxskew: string;

Specify the VHDL constraint as follows:

attribute maxskew of signal_name : signal is “allowable_skew [units]”;

where
• allowable_skew is the timing requirement
• units are ms, micro, ns (default), or ps

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* MAXSKEW = “allowable_skew [units] ” *)

where
• allowable_skew is the timing requirement
• units are ms, micro, ns (default), or ps

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
NET “ net_name” MAXSKEW=allowable_skew [units];

where
• allowable_skew is the timing requirement
• units are ms, micro, ns (default), or ps

The following statement specifies a maximum skew of 3 ns on net $SIG_6.

NET “$1I3245/$SIG_6” MAXSKEW=3 ns;

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

Constraints Guide
186 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

FPGA Editor Syntax
To set constraints in FPGA Editor, select Edit > Properties of Selected Items. With a
routed net selected, you can set MAXSKEW from the Physical Constraints tab.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 187

Chapter 4: Xilinx Constraints

MCB Performance (MCB_PERFORMANCE)
Note This constraint applies to Spartan®-6 devices only.

Spartan-6 devices have a Memory Controller Block (MCB) which can support two
different performance targets depending on voltage settings and conditions on the
VCCINT power supply. The performance targets are listed in the device data sheet. To
specify the desired MCB performance level in the ISE® Design Suite tools, use the MCB
Performance (MCB_PERFORMANCE) configuration constraint in the User Constraints
File (UCF) supplied to the tools upon implementation.

MCB_PERFORMANCE is supported in the User Constraints File (UCF) only.

The syntax is as follows:

CONFIG MCB_PERFORMANCE=[STANDARD|EXTENDED];

MCB_PERFORMANCE can be specified as follows:

• None

If MCB_PERFORMANCE is not specified, the default is STANDARD.

• STANDARD

To target the MCB to normal performance and the full voltage range on VCCINT as
shown in the device data sheet, specify STANDARD in the UCF.

CONFIG MCB_PERFORMANCE= STANDARD;

• EXTENDED

To target the MCB to a faster performance, specify EXTENDED in the UCF.

CONFIG MCB_PERFORMANCE=EXTENDED;

There are explicit voltage requirements when using EXTENDED. For more
information, see the device data sheet.

Note VCCINT voltage settings in the UCF and timing tools, and as reported by the
ISE Design Suite tools, are independent of this setting. They may report a different
voltage for analysis than required by the MCB_PERFORMANCE setting. Voltage
requirements of this rail must be set properly based on both this attribute and the
Voltage settings for timing analysis.

Constraints Guide
188 www.xilinx.com UG625 (v. 13.2) July 6, 2011

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 4: Xilinx Constraints

MIODELAY_GROUP (MIODELAY Group)
The MIODELAY_GROUP (MIODELAY Group) constraint:

• Is a design implementation constraint.

• Combines two or more IODELAY_GROUP constraints into a single Master
IODELAY_GROUP to enable automatic replication and placement of IDELAYCTRL
constraints in a design.

Architecture Support
MIODELAY_GROUP applies to Virtex®-4 and Virtex-5 devices. For Virtex-4 devices,
MIODELAY_GROUP is supported only when using the Timing Driven Pack and
Placement Option in MAP.

Applicable Elements
MIODELAY_GROUP is applied to two or more defined IODELAY_GROUPs.

Propagation Rules
MIODELAY_GROUP is applied to an existing IODELAY_GROUP. The
MIODELAY_GROUP is propagated to all of the design elements that belonged to the
original IODELAY_GROUP. It is illegal to attach MIODELAY_GROUP to a net, signal,
or pin.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF Syntax
MIODELAY_GROUP "master_group_name" = iodelay_group1 iodelay_group2 ... ;

where

• master_group_name

– represents the master group being defined

– contains all of the elements in iodelay_group1 and iodelay_group2

• iodelay_group1 and iodelay_group2 are predefined IODELAY groups

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 189

Chapter 4: Xilinx Constraints

NODELAY (No Delay)
The NODELAY (No Delay) constraint:
• Is an advanced mapping constraint.

The default configuration of IOB flip-flops in designs includes an input delay that
results in an external hold time on the input data path. This delay can be removed
by placing NODELAY on input flip-flops or latches, resulting in a smaller setup
time but a positive hold time. The input delay element is active in the default
configuration for Spartan®-3, Spartan-3A, and Spartan-3E devices.

• Can be attached to I/O symbols and the following special function access symbols:
– TDI
– TMS
– TCK

Architecture Support
Spartan-3, Spartan-3A, and Spartan-3E devices are supported.

IOBDELAY=NONE, which is applicable to all FPGA devices, is the preferred method
of applying this constraint. For more information see IOBDELAY (Input Output Block
Delay).

Applicable Elements
Input register

You can also attach NODELAY to a net connected to a pad component in a User
Constraints File (UCF). NGDBuild transfers the constraint from the net to the pad
instance in the NGD file so that it can be processed by the mapper. Use the following
UCF syntax:

NET “ net_name” NODELAY;

Propagation Rules
NODELAY is illegal when attached to a net or signal except when the net or signal is
connected to a pad. In this case, NODELAY is treated as attached to the pad instance.

When attached to a design element, NODELAY is propagated to all applicable elements
in the hierarchy within the design element.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid instance
• Attribute Name

NODELAY
• Attribute Values

TRUE
FALSE

Constraints Guide
190 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

VHDL Syntax
Declare the VHDL constraint as follows:

attribute nodelay: string;

Specify the VHDL constraint as follows:

attribute nodelay of {component_name|signal_name|label_name} :
{component|signal|label} is “{TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* NODELAY = “{TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
The following statement specifies that IOB register inreg67 not have an input delay.

INST “$1I87/inreg67” NODELAY;

The following statement specifies that there be no input delay to the pad that is attached
to net1.

NET “net1” NODELAY;

XCF Syntax
BEGIN MODEL “entity_name ”

NET "signal_name" nodelay=true;

INST "instance_name" nodelay=true;

END;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 191

Chapter 4: Xilinx Constraints

NOREDUCE (No Reduce)
The NOREDUCE (No Reduce) constraint:
• Is a fitter and synthesis constraint.
• Prevents minimization of redundant logic terms that are typically included in a

design to avoid logic hazards or race conditions.
• Identifies the output node of a combinatorial feedback loop to ensure correct

mapping.
When constructing combinatorial feedback latches in a design, always apply
NOREDUCE to the latch’s output net and include redundant logic terms when necessary
to avoid race conditions.

Architecture Support
Applies to CPLD devices only. Does not apply to FPGA devices.

Applicable Elements
Applies to the net to which it is attached.

Propagation Rules
This constraint is a net constraint. Any attachment to a design element is illegal.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a net
• Attribute Name

NOREDUCE
• Attribute Values

– TRUE
– FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute NOREDUCE: string;

Specify the VHDL constraint as follows:

attribute NOREDUCE of signal_name: signal is “{TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* NOREDUCE = “{TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

Constraints Guide
192 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

UCF and NCF Syntax
The following statement specifies that there be no Boolean logic reduction or logic
collapse from the net named $SIG_12 forward.

NET “$SIG_12” NOREDUCE;

XCF Syntax
BEGIN MODEL “entity_name”

NET “signal_name” noreduce={true | false};

END;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 193

Chapter 4: Xilinx Constraints

OFFSET IN (Offset In)
The OFFSET IN (Offset In) constraint:
• Specifies the timing requirements of an input interface to the FPGA device.
• Specifies the clock and data timing relationship at the external pads of the FPGA

device.
An OFFSET IN constraint specification checks the setup and hold timing requirements
of all synchronous elements associated with the constraint.

The OFFSET IN constraint is specified using a clock net name. The clock net associated
with the OFFSET IN constraint is the external clock pad. Because the constraint specifies
the clock and data relationship at the external pads of the FPGA, the OFFSET IN
constraint cannot be specified using an internal clock net. However, the OFFSET IN
constraint automatically accounts for any phase or delay adjustments on the clock path
due to components such as the DCM, PLL, MMCM, or IDELAY when analyzing the
setup and hold timing requirements at the capturing synchronous element. In addition,
the constraint propagates through the clock network and automatically applies to all
clocks derived from the original external clock.

The OFFSET IN constraint is global in scope by default. In the global OFFSET IN
constraint, all synchronous elements that are clocked by the specified clock net, and
capture external data, are covered by the constraint. The scope of the synchronous
elements covered by the constraint can be restricted by specifying time groups on a
subset of input data pads, a subset of the capturing synchronous elements, or both.

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
• Global
• Net-Specific
• Pad Time Group

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Although User Constraints File (UCF) examples are given below, Xilinx® recommends
specifying the OFFSET IN constraint using Constraints Editor.

Global Method
The global method is the default OFFSET IN constraint. The global OFFSET IN
constraint applies to all synchronous elements that capture incoming data and are
triggered by the specified clock signal.

Global Method UCF Syntax Example
OFFSET = IN “offset_time” [units] [VALID <datavalid_time> [UNITS]] {BEFORE|AFTER}
“clk_name” [{RISING|FALLING}];

Global Method PCF Syntax Example
OFFSET = IN “offset_time” [units] [VALID <datavalid_time> [UNITS]] {BEFORE|AFTER}
COMP “clk_iob_name” [{RISING|FALLING}];

Constraints Guide
194 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

where
• “offset_time” [units] is the difference in time between the capturing clock edge and the

start of the data to be captured. The time can be specified with or without explicitly
declaring the units. If no units are specified, the default value is nanoseconds. The
valid values for this parameter are: ps, ns, micro, and ms.

• [VALID <datavalid_time> [UNITS]] is the valid duration of the data to be captured.
This field is required for a hold time verification of the input interface. This value
can be specified with or without explicitly declaring the units. If no units are
specified, the default value is nanoseconds. The valid values for this field are: ps,
ns, micro, and ms.

• BEFORE|AFTER defines the timing relationship of the start of data to the clock
edge. The best method of defining the clock and data relationship is to use the
BEFORE option. BEFORE describes the time the data begins to be valid relative to
the capturing clock edge. Positive values of BEFORE indicate the data begins prior
to the capturing clock edge. Negative values of BEFORE indicate the data begins
following the capturing clock edge.

Note OFFSET = IN can be used with the AFTER option only if the RISING or
FALLING qualifiers are not used.

• “clk_name” defines the fully hierarchical name of the input clock pad net.
• RISING|FALLING are the optional keywords used to define the capturing clock

edge in which the clock and data relationship is specified against. In addition, these
use of these keywords automatically partition rising and falling edge registers in
dual data rate (DDR) interfaces into separate groups for analysis.

Note The RISING|FALLING keywords can be used only with the BEFORE type of
OFFSET IN constraints.

Input Group Method
When a group of inputs captured by the same clock have a shared timing requirement,
the inputs can be grouped together to create a single timing constraint. The inputs can
be grouped together by input signal names using pad groups, or by the synchronous
elements using register groups. By grouping separate signals together into a single time
group, the memory and runtime of the implementation tools is reduced. In addition, the
timing report will contain bus-based skew and clock centering information.

Input Group Method UCF Syntax Example
[TIMEGRP “pad_groupname”]OFFSET = IN “offset_time” [units] [VALID <datavalid_time>
[UNITS]] {AFTER “clk_name” [TIMEGRP “reg_groupname”] | BEFORE “clk_name”
[TIMEGRP “reg_groupname”] [{RISING|FALLING}]};

Input Group Method PCF Syntax Example
[TIMEGRP “inputpad_grpname”] OFFSET = IN “offset_time” [units] [VALID
<datavalid_time> [UNITS]] {AFTER COMP “clk_iob_name” [TIMEGRP “reg_groupname”]
| BEFORE COMP “clk_iob_name” [TIMEGRP “reg_groupname”] [{RISING|FALLING}]};

where
• [TIMEGRP “pad_groupname”] is the optional input pad time group. This time group

can be used to limit the scope of the OFFSET IN constraint to only the synchronous
elements fed by the input pad nets contained in the timegroup.

• [TIMEGRP “reg_groupname”] is the optional synchronous element time group. This
time group can be used to limit the scope of the OFFSET IN constraint to only the
synchronous elements which capture input data with the specified clock and are
contained in the time group.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 195

Chapter 4: Xilinx Constraints

Net Specific Method
OFFSET IN can also be used to specify an input constraint for a specific data net in a
schematic, a specific input pad net in the UCF, or a specific input component in the
PCF file.

Schematic Syntax When Attached to a Net

OFFSET = IN “offset_time” [units] [VALID <datavalid_time> [UNITS]] {BEFORE|AFTER}
“clk_name” [TIMEGRP “reg_groupname”] [{RISING|FALLING}];

Net Specific Method UCF Syntax Example
NET “pad_net_name”OFFSET = IN “offset_time” [units] [VALID <datavalid_time> [UNITS]]
{BEFORE|AFTER} “clk_name” [TIMEGRP “reg_groupname”] [{RISING|FALLING}];

Net Specific Method PCF Syntax Example
COMP “pad_net_name” OFFSET = IN “offset_time” [units] [VALID <datavalid_time>
[UNITS]] {BEFORE|AFTER} COMP “clk_iob_name” [TIMEGRP “reg_groupname”]
[{RISING|FALLING}];

where

• pad_net_name” is the name of the input data net attached to the pad.

For the definition of the other variables and keywords, see Global Method above.

• The PCF specification uses IO Blocks (COMPs) instead of NETs.

If the IOB COMP name is omitted in the PCF, or the NET name is omitted in the
UCF, the OFFSET IN specification is assumed to be global.

UCF Source Synchronous DDR Edge Aligned Example
The Source Synchronous Dual Data Rate (DDR) Edge aligned case consists of an
interface where the clock is sent from the transmitting device edge aligned with the data
to the FPGA. In a dual data rate interface, data is captured with both the rising and
falling clock edges. In the DDR case, separate OFFSET IN constraints must be defined
for the rising and falling clock edge registers capturing the data. The use of the RISING
and FALLING keywords with the OFFSET IN constraint simplifies this task.

Example Waveform
In this example a dual data rate interface is shown with a clock period of 5 ns and 50/50
duty cycle. The rising and falling data is valid for 2 ns and is centered in the high and
low portion of the clock waveform. This results in a 250 ps margin before and after
data valid window.

Rising Edge Constraints
The rising edge OFFSET IN constraint defines the time that the data becomes valid prior
to rising clock edge used to capture the data. In this example, the data becomes valid 250
ps after the rising clock edge. This results in anOFFSET IN BEFORE value of -250 ps with
the value negative because it begins after the clock edge. Once the data begins, it remains
valid for 2 ns. This results in a VALID value of 2 ns. The RISING keyword is used with
this constraint to indicate that the constraint applies to only the rising edge synchronous
elements, and that the OFFSET IN BEFORE value is specified to the rising clock edge.

Constraints Guide
196 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Falling Edge Constraints
The falling edge OFFSET IN constraint defines the time that the data becomes valid
prior to falling clock edge used to capture the data. In this example, the data becomes
valid 250 ps after the falling clock edge. This results in an OFFSET IN BEFORE value
of -250 ps with the value negative because it begins after the clock edge. Once the data
begins, it remains valid for 2 ns. This results in a VALID value of 2 ns. The FALLING
keyword is used with this constraint to indicate that the constraint applies to only the
falling edge synchronous elements, and that the OFFSET IN BEFORE value is specified
to the falling clock edge.

For more information about the RISING and FALLING keywords, see the Timing
Constraints User Guide.

UCF Syntax
The complete UCF syntax of the clock PERIOD and OFFSET IN constraint for the
example is shown below.

NET “clock” TNM_NET = CLK;
TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%;

OFFSET = IN -250 ps VALID 2 ns BEFORE clock RISING;
OFFSET = IN -250 ps VALID 2 ns BEFORE clock FALLING

UCF Source Synchronous DDR Center Aligned Example
The Source Synchronous Dual Data Rate (DDR) Center aligned case consists of an
interface where the clock is sent from the transmitting device aligned with the center of
the data. In a dual data rate interface, data is captured with both the rising and falling
clock edges. In the DDR case, separate OFFSET IN constraints must be defined for
the rising and falling clock edge registers capturing the data. Using the RISING and
FALLING keywords with the OFFSET IN constraint simplifies this task.

Example Waveform
In this example a dual data rate interface is shown with a clock period of 5 ns and 50/50
duty cycle. The rising and falling data is valid for 2 ns and is centered over the high and
low clock edges. This results in a 250 ps margin before and after data valid window.

Rising Edge Constraints
The rising edge OFFSET IN constraint defines the time that the data becomes valid prior
to rising clock edge used to capture the data. In this example, the data becomes valid 1 ns
before the rising clock edge. This results in anOFFSET IN BEFORE value of 1 ns with the
value positive because it begins before the clock edge. Once the data begins, it remains
valid for 2 ns. This results in a VALID value of 2 ns. The RISING keyword is used with
this constraint to indicate that the constraint applies to only the rising edge synchronous
elements, and that the OFFSET IN BEFORE value is specified to the rising clock edge.

Falling Edge Constraints
The falling edge OFFSET IN constraint defines the time that the data becomes valid
prior to falling clock edge used to capture the data. In this example, the data becomes
valid 1 ns before the falling clock edge. This results in an OFFSET IN BEFORE value
of 1 ns with the value positive because it begins before the clock edge. Once the data
begins, it remains valid for 2 ns. This results in a VALID value of 2 ns. The FALLING
keyword is used with this constraint to indicate that the constraint applies to only the
falling edge synchronous elements, and that the OFFSET IN BEFORE value is specified
to the falling clock edge.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 197

Chapter 4: Xilinx Constraints

UCF Syntax
The complete UCF syntax of the clock PERIOD and OFFSET IN constraint for the
example is shown below.

NET “clock” TNM_NET = CLK;
TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%;

OFFSET = IN 1 ns VALID 2 ns BEFORE clock RISING;
OFFSET = IN 1 ns VALID 2 ns BEFORE clock FALLING;

UCF System Synchronous SDR Examples
The System Synchronous Single Data Rate (SDR) case consists of an interface where the
clock is sent from the transmitting device with one clock edge and captured by the
FPGA with the next clock edge. In the single data rate interface data is sent once per
clock cycle and requires only one OFFSET IN constraint.

Example Waveform
In this example a single data rate interface is shown with a clock period of 5 ns and 50/50
duty cycle. The data is valid for 4 ns and begins 500 ps after the transmitting clock edge.

Input Constraints
The OFFSET IN constraint defines the time that the data becomes valid prior to rising
clock edge used to capture the data. In this example, the data becomes valid 500 ps after
the transmitting clock edge, or 4.5 ns before the clock edge used to capture the data.
This results in an OFFSET IN BEFORE value of 4.5 ns with the value positive because
it begins before the clock edge. Once the data begins, it remains valid for 4 ns. This
results in a VALID value of 4 ns.

UCF Syntax
The complete UCF syntax of the clock PERIOD and OFFSET IN constraint for the
example is shown below.

NET “clock” TNM_NET = CLK;
TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%;
OFFSET = IN 4.5 ns VALID 4 ns BEFORE clock;

Schematic Syntax
• Attach to a specific net

• Attribute Name

OFFSET

• Attribute Values

– IN|OUT

– BEFORE|AFTER clk_pad_netname

XCF Syntax
The XCF syntax is the same as the UCF syntax. However, the XCF syntax supports only
the OFFSET IN BEFORE method.

Constraints Guide
198 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 199

Chapter 4: Xilinx Constraints

OFFSET OUT (Offset Out)
The OFFSET OUT (Offset Out) constraint:
• Specifies the timing requirements of an output interface from the FPGA device.
• Specifies the time from the clock edge at the input pin of the FPGA device until data

becomes valid at the output pin of the FPGA device.
• Is specified using a clock net name.

The clock net associated with OFFSET OUT is the external clock pad. Because the
constraint specifies the time from the clock edge at the input pin of the FPGA device to
the data at the output pin of the FPGA device, OFFSET OUT cannot be specified using
an internal clock net. However, OFFSET OUT automatically accounts for any phase or
delay adjustments on the clock path due to components such as the DCM, PLL, MMCM,
or IDELAY when analyzing the output timing requirements. In addition, the constraint
propagates through the clock network and automatically applies to all clocks derived
from the original external clock.

OFFSET OUT is global in scope by default. In the global OFFSET OUT, all synchronous
elements that are clocked by the specified clock net, and transmit external data, are
covered by the constraint. The scope of the synchronous elements covered by the
constraint can be restricted by specifying time groups on a subset of output data pads, a
subset of the transmitting synchronous elements, or both.

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
• Global
• Nets
• Time groups

Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Although UCF examples are provided, Xilinx® recommends using the Constraints
Editor to specify OFFSET OUT.

Global Method
The global method is the default OFFSET OUT. The global OFFSET OUT applies to all
synchronous elements that transmit outgoing data and are triggered by the specified
clock signal.

Note You can use BEFOREwith the RISING or FALLING keywords. However, if the
REFERENCE_PINkeyword is used, then you must use the AFTERkeyword and cannot
use the BEFOREkeyword.

UCF Syntax Example
OFFSET = OUT “offset_time” [units] {BEFORE “clk_name”| AFTER “clk_name”
[REFERENCE_PIN “ref_pin”]} [{RISING | FALLING}];

PCF Syntax Example
OFFSET = OUT “offset_time” [units] {BEFORE COMP “clk_iob_name” | AFTER COMP
“clk_iob_name” [REFERENCE_PIN “ref_pin”]} [{RISING | FALLING}];

Constraints Guide
200 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

where
• offset_time [units] is an optional parameter that defines the time from the clock edge

at the input pin of the FPGA device until data first becomes valid at the data output
pin.
– If the offset_time value is specified:

♦ A timing constraint is applied to these paths
♦ Errors against that constraint are reported

– If the offset_time value is omitted:
♦ A timing constraint is not generated
♦ The output timing and bus skew of the interface are reported

The report-only option is best used in source synchronous interfaces where the clock
to output time is of a lesser concern than the skew of the output bus.

• BEFORE|AFTERdefines the timing relationship from the clock edge to the start of
data.
The best method for defining the clock and data requirement is to use the AFTER
option. AFTERdescribes the time the data begins to be valid after the clock edge
at the pin of the FPGA device.

• clk_name defines the fully hierarchical name of the input clock pad net.
• REFERENCE_PIN

– Is an optional keyword that is most commonly used in source synchronous
output interfaces where the clock is regenerated and sent with the data

– Allows a bus skew analysis of the output signals relative to the ref_pin signal.
If REFERENCE_PINis not specified, the bus skew report is referenced to the signal
with the minimum clock to output delay.

• RISING|FALLING

– Are optional keywords that define the transmitting clock edge of the
synchronous elements sending the data

– Automatically divide rising and falling edge registers in dual data rate (DDR)
interfaces into separate groups for analysis

For more information about the RISING and FALLING keywords, see the Timing
Constraints User Guide.

Output Group Method
When a group of output transmitted by the same clock have a shared timing
requirement, the outputs can be grouped together to create a single timing constraint.
The outputs can be grouped together by output signal names using pad groups, or by
synchronous elements using register groups. By grouping separate signals together into
a single time group, the memory and runtime of the implementation tools is reduced. In
addition, the timing report will contain bus-based skew and clock centering information.

UCF Syntax Example
[TIMEGRP “pad_groupname”] OFFSET = OUT “offset_time” [units] {BEFORE|AFTER}
“clk_name”[REFERENCE_PIN “ref_pin”] [TIMEGRP “reg_groupname”] [{RISING |
FALLING}];

PCF Syntax Example
[TIMEGRP “pad_groupname”] OFFSET = OUT “offset_time” [units] {BEFORE|AFTER}
COMP “clk_iob_name”[REFERENCE_PIN “ref_pin”] [TIMEGRP “reg_groupname”]
[{RISING | FALLING}];

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 201

Chapter 4: Xilinx Constraints

where
• The group specific method is identical to the general method with the additions

noted below. For the definition of the other variables and keywords, see Global
Method above.

• [TIMEGRP “pad_groupname”] is the optional output pad time group. This time
group can be used to limit the scope of the OFFSET OUT constraint to only the
synchronous elements feeding the output pad nets contained in the time group.

• [TIMEGRP “reg_groupname”] is the optional synchronous element time group. This
time group can be used to limit the scope of the OFFSET OUT constraint to only the
synchronous elements which transmit output data with the specified clock and are
contained in the time group.

Net Specific Method
OFFSET OUT can also be used to specify an output constraint for a specific data net in a
schematic, a specific output pad net in the UCF, or a specific output component in the
PCF file.

Schematic Syntax When Attached to a Net Example
OFFSET = OUT “offset_time” [units] {BEFORE|AFTER} “clk_name” [TIMEGRP
“reg_groupname”] [REFERENCE_PIN “ref_pin”] [{RISING | FALLING}];

UCF Syntax

NET “pad_net_name” OFFSET = OUT “offset_time” [units] {BEFORE|AFTER} “clk_name”
[TIMEGRP “reg_groupname”] [REFERENCE_PIN “ref_pin”] [{RISING | FALLING}];

PCF Syntax

COMP “pad_net_name” OFFSET = OUT “offset_time” [units] {BEFORE|AFTER}
“clk_name” [TIMEGRP “reg_groupname”] [REFERENCE_PIN “ref_pin”] [{RISING
| FALLING}];

where:
• The group specific method is identical to the general method with the additions

noted below. For the definition of the other variables and keywords, see Global
Method above.

• “pad_net_name” is the name of the output data net attached to the pad.
• The PCF specification uses IO Blocks (COMPs) instead of NETs.
• If the IOB COMP name is omitted in the PCF, or the NET name is omitted in the

UCF, the OFFSET OUT specification is assumed to be global.

UCF Source Synchronous DDR Example
The Source Synchronous Dual Data Rate (DDR) case consists of an interface where the
clock is regenerated inside the FPGA and sent with the data to the capturing device.
In a DDR interface, data is transmitted with both the rising and falling clock edges. In
the DDR case, separate OFFSET OUT constraints must be defined for the rising and
falling clock edge registers transmitting the data. The use of the RISING and FALLING
keywords with the OFFSET OUT constraint simplifies this task. Also, for a bus skew
analysis relative to the regenerated clock, the REFERENCE_PINkeyword is used.

In this example a clock signal called clock enters the FPGA. This clock signal triggers the
data output synchronous elements. In addition, a regenerated clock called TxClock is
created and sent along with the data. Because this is a source synchronous interface,
the absolute clock to output time is not required, and the OFFSET OUT AFTER value is
omitted to generate a report only constraint.

Constraints Guide
202 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

UCF Syntax
NET “clock” TNM_NET = CLK;
TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%;

OFFSET = OUT AFTER clock REFERENCE_PIN “TxClock” RISING;
OFFSET = OUT AFTER clock REFERENCE_PIN “TxClock” FALLING;

UCF System Synchronous SDR Example
The System Synchronous Single Data Rate (SDR) case consists of an interface where the
input clock is used to transmit the data to the receiving device. In the SDR interface,
data is transmitted once per clock cycle. In this case a single OFFSET OUT requirement
is needed to constrain the interface.

In this example a clock signal called clock enters the FPGA. This clock signal trigger
the data output synchronous elements. Because this is a system synchronous interface,
the absolute clock to output time is required to constraint the interface. In this case,
a regenerated clock is not present, and the REFERENCE_PINkeyword is omitted to
request the default skew reporting.

UCF Syntax
NET “clock” TNM_NET = CLK;
TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%;

OFFSET = OUT 5 ns AFTER “clock”;

Schematic Syntax
• Attach to a specific net

• Attribute Name: OFFSET

• Attribute Values: OUT offset_time BEFORE|AFTER clk_pad_netname

XCF Syntax
The XCF syntax is the same as the UCF syntax. However, the XCF syntax supports
only the OFFSET OUT AFTER method.

Constraints Editor Syntax
For information on Constraints Editor and Constraints Editor syntax in ISE® Design
Suite, see the ISE Design Suite Help.

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 203

Chapter 4: Xilinx Constraints

Open Drain (OPEN_DRAIN)
CoolRunner™-II outputs can be configured to drive the primary macrocell output
function as an open-drain output signal on the pin. Open Drain (OPEN_DRAIN) applies
to non tristate (always active) outputs in the design. The output structure is configured
as open-drain so that a one state on the output signal in the design produces a high-Z on
the device pin instead of a driven High voltage.

The high-Z behavior associated with OPEN_DRAIN is not exhibited during functional
simulation, but is represented accurately during post-fit timing simulation.

The logically-equivalent alternative to using OPEN_DRAIN is to take the original
output-pad signal in the design and use it as a tristate disable for a constant-zero
output data value. The CPLD Fitter automatically optimizes all tristate outputs with
constant-zero data value in the design to take advantage of the open-drain capability
of the device.

Architecture Support
Applies to CoolRunner™-II devices only.

Applicable Elements
• Output pads
• Pad nets

Propagation Rules
This constraint is a net or signal constraint. Any attachment to a macro, entity, or
module is illegal.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to an output pad net
• Attribute Name

OPEN_DRAIN
• Attribute Values

– TRUE
– FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute OPEN_DRAIN: string;

Specify the VHDL constraint as follows:

attribute OPEN_DRAIN of signal_name : signal is “{TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
204 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* OPEN_DRAIN = “{TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
NET “mysignal” OPEN_DRAIN;

XCF Syntax
BEGIN MODEL “entity_name”

NET "signal_name" OPEN_DRAIN=true;

END;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 205

Chapter 4: Xilinx Constraints

OUT_TERM (Out Term)
The OUT_TERM (Out Term) constraint:
• Is a basic mapping constraint.
• Sets a configuration of output termination resistors
Out Term is valid:
• on an output pad NET
• on an output pad INST
• for the entire design

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
This constraint may be used with an FPGA device in one or more of the following design
elements, or categories of design elements:
• IOB input components (such as IBUF)
• Output Pad Net
Not all devices support all elements. To see which design elements can be used with
which devices, see the Libraries Guides. For more information, see the device data sheet.

Propagation Rules
OUT_TERM is illegal when attached to a net or signal, except when the net or signal is
connected to a pad. In this case, OUT_TERM is treated as attached to the pad instance.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
• NONE
• TUNED
• UNTUNED_25
• UNTUNED_50
• UNTUNED_75

Schematic Syntax
• Attach to a pad net
• Attribute Name

OUT_TERM
• Attribute Values

See Values section above.

VHDL Syntax
Declare the VHDL constraint as follows:

Constraints Guide
206 www.xilinx.com UG625 (v. 13.2) July 6, 2011

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 4: Xilinx Constraints

Attribute OUT_TERM: string;

Specify the VHDL constraint as follows:

attribute OUT_TERM of signal_name: signal is
“{NONE|TUNED|UNTUNED_25|UNTUNED_50|UNTUNED_75}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* OUT_TERM = “{NONE|TUNED|UNTUNED_25|UNTUNED_50|UNTUNED_75
}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
The following statement configures the IO to use a PULLUP.

NET "pad_net_name"OUT_TERM = “{NONE|
TUNED|UNTUNED_25|UNTUNED_50|UNTUNED_75 }” ;

The following statement configures OUT_TERM to be used globally.

DEFAULT OUT_TERM = TUNED;

XCF Syntax
BEGIN MODEL “entity_name”

NET "signal_name" out_term=tuned;

END;

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 207

Chapter 4: Xilinx Constraints

PERIOD (Period)
PERIOD (Period) is a basic timing constraint and synthesis constraint. A clock period
specification checks timing between all synchronous elements within the clock domain
as defined in the destination element group. The group may contain paths that pass
between clock domains if the clocks are defined as a function of one or the other.

Derived period constraints are defined in terms of the same units as their reference
constraint.

The period specification is attached to the clock net. The definition of a clock period is
unlike a FROM-TO style specification because the timing analysis tools automatically
take into account any inversions of the clock net at register clock pins, lock phase, and
includes all synchronous item types in the analysis. It also checks for hold violations.

A PERIOD constraint on the clock net in the following figure would generate a check
for delays on all paths that terminate at a pin that has a setup or hold timing constraint
relative to the clock net. This could include the data paths CLB1.Q to CLB2.D, as well as
the path EN to CLB2.EC (if the enable were synchronous with respect to the clock).

Paths for PERIOD Constraint

The timing tools do not check pad-to-register paths relative to setup requirements. For
example, in the preceding figure, the path from D1 to Pin Dof CLB1 is not included in
the PERIOD constraint. The same is true for CLOCK_TO_OUT.

Special rules that apply when using TNM and TNM_NET with the PERIOD constraint
for DLL, DCM, PLL, andMMCM are discussed below.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Applies to nets that feed forward to drive flip-flop clock pins.

Propagation Rules
Applies to the signal to which it is attached.

Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Constraints Guide
208 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

TIMESPEC PERIOD Method
The primary, recommended method for defining a clock period allows more complex
derivative relationships to be defined as well as a simple clock period. The following
constraint is defined using the TIMESPECkeyword in conjunction with a TNM
constraint attached to the relevant clock net.

UCF Syntax

TIMESPEC “TSidentifier”=PERIOD “TNM_reference” period {HIGH | LOW}
[high_or_low_time] INPUT_JITTER value;

where
• identifier is a reference identifier that has a unique name
• TNM_reference identifies the group of elements to which the period constraint

applies. This is typically the name of a TNM_NET that was attached to a clock
net, but it can be any TNM group or user group (TIMEGRP) that contains only
synchronous elements.

The following rules apply:
• The variable name period is the required clock period.
• The default units for period are nanoseconds, but the number can be followed by

ps, ns, micro, or ms. The period can also be specified as a frequency value, using
units of MHz, GHz, or kHZ.

• Units may be entered with or without a leading space.
• Units are case-insensitive.
• The HIGH|LOW keyword indicates whether the first pulse in the period is

high or low, and the optional high_or_low_time is the polarity of the first pulse.
This defines the initial clock edge and is used in the OFFSET constraint. HIGH
is the default logic level if the logic level is not specified.

• If an actual time is specified, it must be less than the period.
• If no high_or_low_time is specified the default duty cycle is 50%.
• The default units for high_or_low_time is ns, but the number can be followed by

% or by ps, ns, micro, or ms to specify an actual time measurement.
• INPUT_JITTER is the random, peak-to-peak jitter on an input clock. The default

units are picoseconds.
Examples

Clock net sys_clk has the constraint tnm=master_clk attached to it and the following
constraint is attached to TIMESPEC.

UCF Syntax

TIMESPEC TS_master = PERIOD “master_clk” 50 HIGH 30 INPUT_JITTER 50;

This period constraint applies to the netmaster_clk, and defines a clock period of 50
nanoseconds, with an initial 30 nanosecond high time, and INPUT_JITTER at 50 ps.

TIMESPEC TS_clkinA = PERIOD “clkinA” 21 ns LOW 50% INPUT_JITTER 500
ps; TIMESPEC TS_clkinB = PERIOD “clkinB” 21 ns HIGH 50% INPUT_JITTER
500 ps;

NET PERIOD Method
Caution! This is a secondary method, and is not recommended.

Another method of defining a clock period is to attach the following constraint directly
to a net in the path that drives the register clock pins.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 209

Chapter 4: Xilinx Constraints

Schematic Syntax

PERIOD = period {HIGH|LOW} [high_or_low_time] INPUT_JITTER value;
UCF Syntax

NET “net_name” PERIOD = period {HIGH|LOW} [high_or_low_time]
INPUT_JITTER value;
• period is the required clock period. The default units are nanoseconds, but the

timing number can be followed by ps, ns, micro, or ms. The period can also be
specified as a frequency value, using units of MHz, GHz, or kHZ.

• Units may be entered with or without a leading space.
• Units are case-insensitive.
• The HIGH|LOW keyword indicates whether the first pulse in the period is

high or low, and the optional high_or_low_time is the duty cycle of the first pulse.
HIGH is the default logic level if the logic level is not specified.

• If an actual time is specified, it must be less than the period.
• If no high or low time is specified the default duty cycle is 50%.
• The default unit for high_or_low_time is ns, but the number can be followed by

% or by ps, ns, micro or ms to specify an actual time measurement.

The PERIOD constraint is forward traced in exactly the same way a TNM would
be and attaches itself to all of the synchronous elements that the forward tracing
reaches. If a more complex form of tracing behavior is required (for example, where
gated clocks are used in the design), you must place the PERIOD constraint on a
particular net or use the preferred method described in the next section.

Specifying Derived Clocks
The preferred method of defining a clock period uses an identifier, allowing another
clock period specification to reference it. Xilinx® recommends using the sameHIGH/LOW
keyword on the derived PERIOD constraints as the master PERIOD constraint. If the
master PERIOD constraint has the HIGHkeyword or is the default, Xilinx recommends
using the same HIGH keyword on the derived PERIOD constraints. To define the
relationship in the case of a derived clock, use the following syntax:

UCF Syntax

TIMESPEC "TSidentifier"=PERIOD "timegroup_name" "TSidentifier" [* or /] factor
PHASE [+ |-] phase_value [units];

where
• identifier is a reference identifier that has a unique name
• factor is a floating point number

Note You can omit the [* or /] factor if the specification being defined has the
same value as the one being referenced (that is, they differ only in phase); this is
the same as using "* 1".

• phase_value is a floating point number
• units are ps, ms, micro, or ns (default)

The following rules apply:
• If an actual time is specified it must be less than the period.
• If no high_or_low_time is specified, the default duty cycle is 50%.
• The default units for high_or_low_time is ns, but the number can be followed by

% or by ps, ns, micro, or ms to specify an actual time measurement.

Constraints Guide
210 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Examples of a Primary Clock with Derived Clocks

Period for primary clock:

TIMESPEC “TS01” = PERIOD "clk0" 10.0 ns;

Period for clock phase-shifted forward by 180 degrees:

TIMESPEC “TS02” = PERIOD "clk180" TS01 PHASE + 5.0 ns;

Period for clock phase-shifted backward by 90 degrees:

TIMESPEC “TS03” = PERIOD "clk90" TS01 PHASE - 2.5 ns;

Period for clock doubled and phase-shifted forward by 180 degrees (which is 90
degrees relative to TS01):

TIMESPEC “TS04” = PERIOD "clk180" TS01 / 2 PHASE + 2.5 nS;

Schematic Syntax
• Attach to a net. Following is an example of the syntax format.
• Attribute Name: PERIOD
• Attribute Values: period [units] [{HIGH|LOW} [high_or_low_time [hi_lo_units]]

VHDL Syntax
For XST, PERIOD applies only to a specific clock signal.

Note PERIOD constraints in the source code (VHDL or Verilog) will not propagate
to the netlist.

Declare the VHDL constraint as follows:

attribute period: string;

Specify the VHDL constraint as follows:

attribute period of signal_name : signal is “period [units]”;

where
• period is the required clock period
• units is an optional field to indicate the units for a clock period. The default is

nanoseconds (ns), but the timing number can be followed by ps, ns, or micro to
indicate the intended units.

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
For XST, PERIOD applies only to a specific clock signal.

Note PERIOD constraints in the source code (VHDL or Verilog) will not propagate
to the netlist.

Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* PERIOD = “period [units]” *)
• period is the required clock period
• units is an optional field to indicate the units for a clock period. The default is

nanoseconds (ns), but the timing number can be followed by ps, ns, or micro to
indicate the intended units.

For more information about basic Verilog syntax, see Verilog Attributes.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 211

Chapter 4: Xilinx Constraints

UCF and NCF Syntax
Following are examples of UCF and NCF syntax.

• TIMESPEC PERIOD Method, Recommended

• NET PERIOD Method, Not Recommended

TIMESPEC PERIOD Method, Recommended
This is the primary, recommended method.

TIMESPEC “TSidentifier”=PERIOD “TNM_reference period” [units] [{HIGH | LOW}
[high_or_low_time [hi_lo_units]]] INPUT_JITTER value [units];

where

• identifier is a reference identifier that has a unique name

• TNM_reference is the identifier name that is attached to a clock net (or a net in the
clock path) using the TNM or TNM_NET constraint

When a TNM_NET constraint is traced into the CLKIN input of a DLL, DCM,
PLL, or MMCM component, new PERIOD specifications may be created at the
DLL/DCM/PLL/MMCM outputs. If new PERIOD specifications are created, new
TNM_NET groups to use in those specifications are also created.

Each new TNM_NET group is named the same as the corresponding
DLL/DCM/PLL/MMCM output net (outputnetname). The new PERIOD specification
becomes "TS_outputnetname=PERIOD outputnetname value units."

The new TNM_NET groups are then traced forward from the DLL/DCM/PLL/MMCM
output net to tag all synchronous elements controlled by that clock signal. The new
groups and specifications are shown in the timing analysis reports.

The following rules apply:

• period is the required clock period.

• units is an optional field to indicate the units for a clock period. The default is
nanoseconds (ns), but the timing number can be followed by ps, ms, micro, or %
to indicate the intended units.

• HIGH or LOW indicates whether the first pulse is to be High or Low.

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no
high_or_low_time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the high_or_low_time number can be followed by ps, micro,
ms, or % if the High or Low time is an actual time measurement.

The following statement assigns a clock period of 40 ns to the net named CLOCK, with
the first pulse being High and having a duration of 25 nanoseconds.

NET “CLOCK” PERIOD=40 HIGH 25;

NET PERIOD Method, Not Recommended
Caution! This is a secondary method, and is not recommended.

NET “net_name” PERIOD=period [units] [{HIGH|LOW} [high_or_low_time [hi_lo_units]]];

Constraints Guide
212 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

where

• period is the required clock period

• units is an optional field to indicate the units for a clock period. The default is
nanoseconds (ns), but the timing number can be followed by ps, ns, or micro to
indicate the intended units.

• HIGH or LOW can be optionally specified to indicate whether the first pulse is
to be High or Low.

• hi_lo_units can be ns (default), ps, or micro

The following rules apply:

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword.

• If an actual time is specified, it must be less than the period.

• If no high_or_low_time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle.

• The default is nanoseconds (ns), but the high_or_low_time number can be followed
by ps, micro, ms, or % if the High or Low time is an actual time measurement.

Constraints Editor Syntax
To open Constraints Editor:

1. In the ISE® Design Suite Processes window, double-click Create Timing Constraint.

2. In the Constraint Type list box under Timing Constraints, double-click Clock
Domains.

XCF Syntax
XCF syntax is the same as UCF syntax

Both the simple and preferred are supported with the following limitation: HIGH/LOW
values are not taken into account during timing estimation/optimization and only
propagated to the final netlist if WRITE_TIMING_CONSTRAINTS = yes.

PCF Syntax
“TSidentifier”=PERIOD perioditem periodvalue INPUT_JITTER value;

where

• perioditem can be:

– NET name

– TIMEGRP name

• periodvalue can be:

– TSidentifier PHASE [+ | -] time

– TSidentifier PHASE time

– TSidentifier PHASE [+ | -] time [LOW | HIGH] time

– TSidentifier PHASE time [LOW | HIGH] time

– TSidentifier PHASE [+ | -] time [LOW | HIGH] percent

– TSidentifier PHASE time [LOW | HIGH] percent

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 213

Chapter 4: Xilinx Constraints

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:
• Defining placement constraints
• Assigning placement constraints
• Defining I/O pin configurations
• Floorplanning and placement constraints

FPGA Editor Syntax
To set constraints, in the FPGA Editor main window, click Properties of Selected Items
from the Edit menu. To set PERIOD constraint, click Properties of Selected Items
from the Edit menu with a net selected. You can set the constraint from the Physical
Constraints tab.

PERIOD Specifications on CLKDLLs, DCMs, PLLs, and MMCMs
When a Timing Name (TNM) or Timing Name Net (TNM_NET) property traces into an
input pin on a DLL, DCM, PLL, or MMCM, it is handled as described in the following
paragraphs.

The checking and transformations described are performed by the logical TimeSpec
processing code, which is run during NGDBuild, or the translate process. (The checking
timing specifications status message indicates that the logical TimeSpec processing is
being run.) The modifications are saved in the built NGD, used by the Mapper and the
Map phase passed through the PCF file to the Place and Route (PAR) phase and TRACE.

However, note that the data saved in the built NGD is distinct from the original
TimeSpec user-applied properties, which are left unchanged by this process. Therefore,
the Constraints Editor does not see these new groups or specifications, but sees (and
possibly modifies) the original user-applied ones.

Conditions for Transformation

When a TNM_NET property is traced into the CLKIN pin of a DLL, DCM, PLL, or
MMCM, the TNM group and its usage are examined. The TNM is pushed through
the CLKDLL, DCM, PLL, or MMCM (as described below) only if the following
conditions are met:
• The TNM group is used in exactly one PERIOD specification.
• The TNM group is not used in any FROM-TO or OFFSET specifications.
• The TNM group is not referenced in any user group definition.

If any of the above conditions are not met, the TNM is not be pushed through the
CLKDLL/DCM/PLL/MMCM, and a warning message is issued. This does not
prevent the TNM from tracing into other elements in the standard fashion, but if it
traces nowhere else, and is used in a specification, an error results.

Definition of New PERIOD Specifications

If the CLK0 output on the CLKDLL, DCM, PLL, or MMCM is the only one being
used (and neither CLKIN_DIVIDE_BY_2 nor CLKOUT_PHASE_SHIFT=FIXED
are used), the original PERIOD specification is simply transferred to that clock
output. Otherwise, for each clock output pin used on the CLKDLL, DCM, PLL, or
MMCM, a new TNM group is created on the connected net, and a new PERIOD
specification is created for that group. The following table shows how the new
PERIOD specifications is defined, assuming an original PERIOD specification
named TS_CLKIN.

Constraints Guide
214 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

New PERIOD Specifications
Output Pin Period Value Phase Shift Duty Cycle
CLK0 TS_CLKIN * 1 none Copied from TS_CLKIN if

DUTY_CYCLE_CORRECTION
is FALSE.
Otherwise, 50%

CLK90 TS_CLKIN * 1 PHASE + (clk0_period * 1/4) Copied from TS_CLKIN if
DUTY_CYCLE_CORRECTION
is FALSE.
Otherwise, 50%

CLK180 TS_CLKIN * 1 PHASE + (clk0_period * 1/2) Copied from TS_CLKIN if
DUTY_CYCLE_CORRECTION
is FALSE.
Otherwise, 50%

CLK270 TS_CLKIN * 1 PHASE + (clk0_period * 3/4) Copied from TS_CLKIN if
DUTY_CYCLE_CORRECTION
is FALSE.
Otherwise, 50%

CLK2X TS_CLKIN / 2 none 50%

CLK2X180 TS_CLKIN / 2 PHASE + (clk2X_period * 1/2) 50%

CLKDV TS_CLKIN * clkdv_divide

where clkdv_divide
is the value of the
CLKDV_DIVIDE
property (default 2.0)

none 50% except for non-integer
divides in high-frequency mode
(CLKDLLHF, or DCM with
DLL_FREQUENCY_MODE=
HIGH):

CLKDV_DIVIDE

1.5 33.33% HIGH

2.5 40.00% HIGH

3.5 42.86% HIGH

4.5 44.44% HIGH

5.5 45.45% HIGH

6.5 46.15% HIGH

7.5 46.67% HIGH

CLKFX none

CLKFX180 TS_CLKIN / clkfx_factor

where clkfx_factor is the
value of the

CLKFX_MULTIPLY
property (default 4.0)

divided by the value of
the CLKFX_DIVIDE

property (default 1.0).

PHASE + (clkfx_period * 1/2) 50%

The Period Value shown in this table assumes that the original specification,
TS_CLKIN, is expressed as a time. If TS_CLKIN is expressed as a frequency, the
multiply or divide operation is reversed.

If the DCM attribute FIXED_PHASE_SHIFT or VARIABLE_PHASE_SHIFT is used,
the amount of phase specified is also included in the PHASE value.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 215

Chapter 4: Xilinx Constraints

PIN (Pin)
The PIN (Pin) User Constraints File (UCF) constraint:

• Defines a net location when used with Location (LOC).

• Is used in creating design flows.

• Is translated into a COMP/LOCATE constraint in the PCF file.

See PCF Syntax below.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Applies to nets.

Propagation Rules
Not applicable.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF Syntax
PIN “module.pin ” LOC=location ;

PIN mod.pin TIG;

PCF Syntax
COMP "name" LOCATE = SITE "location ";

This constraint specifies that the pseudo component that is created for the pin on the
module should be located in the site location. Pseudo logic is created only when a net
connects from a pin on one module to a pin on another module.

Constraints Guide
216 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Post CRC (POST_CRC)
Post CRC (POST_CRC) enables or disables the configuration logic CRC error detection
feature allowing for notification of any possible change to the configuration memory.
For Spartan-3A devices, it also reserves the multi-use INIT pin for signaling of a
configuration CRC failure. This also allows the banking rules used by PlanAhead™,
PAR, and BitGen to refrain from using the IOB that drives the INIT pin. During
configuration, the INIT pin operates as normal. After configuration, if POST_CRC
analysis is enabled, the INIT pin serves as a CRC status pin. If comparison of the
real-time computed CRC differs from the pre-computed CRC, a configuration memory
change has been detected and the INIT pin is driven low.

For more information, see the device data sheet.

Values for POST_CRC
Value Description
ENABLE Enables the Post CRC checking feature

DISABLE Disables the Post CRC checking features
(default)

Architecture Support
Applies to Virtex®-5, Virtex-6, Spartan®-3A, and Spartan-6 devices.

Applicable Elements
Applies to the entire design.

Propagation Rules
Applies to the entire design.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF Syntax
CONFIG POST_CRC = {ENABLE|DISABLE|ONESHOT};

PCF Syntax
CONFIG POST_CRC = {ENABLE|DISABLE|ONESHOT};

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 217

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 4: Xilinx Constraints

Post CRC Action (POST_CRC_ACTION)
The Post CRC Action (POST_CRC_ACTION) constraint:
• Is a configuration logic CRC error detection mode supported for Spartan®-3A,

Spartan-6, and Virtex®-6 devices only.
• Compares a pre-computed CRC for the configuration bitstream against a CRC

computed by internal logic based on periodic readback of the configuration memory
cells.

• Determines whether a CRC mismatch detection continues or whether the CRC
operation is halted.

• Is applicable only when POST_CRC is set to ENABLE.

Architecture Support
Applies to the following devices:
• Spartan-3A
• Spartan-6
• Virtex-6

Applicable Elements
Applies to the entire device and is not specified on any particular design element.

Propagation Rules
Applies to the entire design or device.

Values
Value Description
HALT If a CRC mismatch is detected, cease reading back the bitstream, computing the

comparison CRC, and making the comparison against the pre-computed CRC
(Default for Spartan-6 devices).

CONTINUE If a CRC mismatch is detected by the CRC comparison, continue reading back
the bitstream, computing the comparison CRC, and making the comparison
against the pre-computed CRC (Default for Virtex-6 devices).

CORRECT_AND_CONTINUE If a CRC mismatch is detected by the CRC comparison, it is corrected and
continues reading back the bitstream, computing the comparison CRC, and
making the comparison against the pre-computed CRC.

CORRECT_AND_HALT If a CRC mismatch is detected, it is corrected and ceases reading back the
bitstream, computing the comparison CRC, and making the comparison against
the pre-computed CRC.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF Syntax
CONFIG POST_CRC_ACTION = [HALT|CONTINUE];

PCF Syntax
CONFIG POST_CRC_ACTION = [HALT|CONTINUE];

Constraints Guide
218 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Post CRC Frequency (POST_CRC_FREQ)
The Post CRC Frequency (POST_CRC_FREQ) constraint:

• Is supported for the following devices only:

– Spartan®-3A

– Spartan-6

– Virtex®-6

• Is a configuration logic CRC error detection mode.

A pre-computed CRC for the configuration bitstream is compared against a CRC
computed by internal logic based on periodic readback of the configuration memory
cells.

• Controls the frequency with which the configuration CRC check is performed for
all devices that support this constraint.

• Is applicable only when POST_CRC is set to ENABLE.

Frequency Range (MHz) Steps (MHz) Default Value (MHz)
Spartan-3A 1 to 100 1, 3, 6, 7, 8, 10, 12, 13, 17, 22,

25, 27, 33, 44, 50, 100
1

Spartan-6 1 to 100 1, 2, 4, 6, 10, 12, 16, 22, 26, 33,
40, 50, 66

1

Virtex-6 1 to 50 1, 2, 3, 6, 13, 25, 50 1

Architecture Support
Applies to Spartan®-3A, Spartan-6, and Virtex®-6 devices only.

Applicable Elements
Applies to the entire device and is not specified on any particular design element.

Propagation Rules
Applies to the entire design.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF Syntax
CONFIG POST_CRC_FREQ = [1|3|6|7|8|10|12|13|17|22|25|27|33|44|50|100];

PCF Syntax
CONFIG POST_CRC_FREQ = [1|3|6|7|8|10|12|13|17|22|25|27|33|44|50|100];

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 219

Chapter 4: Xilinx Constraints

Post CRC INIT Flag (POST_CRC_INIT_FLAG)
The Post CRC INIT Flag (POST_CRC_INIT_FLAG) constraint:
• Is a logic CRC error detection mode.
• Supports Virtex®-5 devices, Virtex-6 devices, and Spartan®-6 devices.
• Replaces POST_CRC_SIGNAL previously available for Virtex-5 device designs only.
• Is applicable only when POST_CRC is set to enable.
In logic CRC error detection mode, a pre-computed CRC for the configuration bitstream
is compared against a CRC computed by internal logic based on periodic readback of the
configuration memory cells. POST_CRC_INIT_FLAG determines whether the INIT_B
pin is enabled as an output for the SEU (Single Event Upset) error signal.

Spartan-6 devices do not have a FRAME_ECC site, so the INIT_B pin is the only
potential source for the CRC error signal. For Virtex-5 devices and Virtex-6 devices,
the error condition is always available from the FRAME_ECC_VIRTEX5 and
FRAME_ECC_VIRTEX6 sites.

Values for POST_CRC_INIT_FLAG
Value Description
DISABLE Virtex-5 devices and Virtex-6 devices

Disables the use of the INIT_B pin, with the FRAME_ECC site
as the sole source of the CRC error signal.

Spartan-6 devices

Does not have FRAME_ECC so the INIT status flag is turned off.

ENABLE Leaves the INIT_B pin enabled as a source of the CRC error
signal.

ENABLE is the default.

Architecture Support
Applies to Virtex®-5, Virtex-6, and Spartan®-6 devices only.

Applicable Elements
Applies to the entire device and is not specified on any particular design element.

Propagation Rules
Applies to the entire design or device.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF Syntax
CONFIG POST_CRC_INIT_FLAG = [DISABLE|ENABLE];

PCF Syntax
CONFIG POST_CRC_INIT_FLAG = [DISABLE|ENABLE];

Constraints Guide
220 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Post CRC Signal (POST_CRC_SIGNAL)
Virtex®-5 devices support a configuration logic CRC error detection mode called
Post CRC Signal (POST_CRC_SIGNAL). In this mode, a pre-computed CRC for the
configuration bitstream is compared against a CRC computed by internal logic based on
periodic readback of the configuration memory cells. POST_CRC_SIGNAL determines
whether the INIT_B pin is enabled as an output for the SEU (Single Event Upset) error
signal. The error condition is still available from the FRAME_ECC_VIRTEX5 site. This
constraint is only applicable when POST_CRC is set to ENABLE.

Values for POST_CRC_SIGNAL
Value Description
FRAME_ECC_ONLY Disables the use of the INIT_B pin, with the FRAME_ECC site

as the sole source of the CRC error signal

INIT_AND_FRAME_ECC Leaves the INIT_B pin enabled as a source of the CRC error
signal (default)

Architecture Support
Applies to Virtex®-5 devices only.

Applicable Elements
Applies to the entire device and is not specified on any particular design element.

Propagation Rules
Applies to the entire design.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF Syntax
CONFIG POST_CRC_SIGNAL = [FRAME_ECC_ONLY|INIT_AND_FRAME_ECC];

PCF Syntax
CONFIG POST_CRC_SIGNAL = [FRAME_ECC_ONLY|INIT_AND_FRAME_ECC];

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 221

Chapter 4: Xilinx Constraints

Post CRC Source (POST_CRC_SOURCE)
Post CRC Source (POST_CRC_SOURCE) specifies the source of the CRC value when the
configuration logic CRC error detection feature is used for notification of any possible
change to the configuration memory.

Architecture Support
Applies to Virtex®-5, Virtex-6, and Spartan®-6 devices.

Applicable Elements
Applies to the entire design.

Propagation Rules
Applies to the entire design.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
• PRE_COMPUTED

A pre-computed bitstream CRC will be used.

• FIRST_READBACK

The first computed CRC will be used.

UCF and NCF Syntax
CONFIG POST_CRC_SOURCE = {PRE_COMPUTED|FIRST_READBACK};

PCF Syntax
Same as UCF and NCF Syntax above.

Constraints Guide
222 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

PRIORITY (Priority)
The PRIORITY (Priority) constraint:

• Is an advanced timing constraint.

• Is used in situations where there is a conflict between two timing constraints that
cover the same path.

The lower the PRIORITY value, the higher the priority. This value does not affect which
paths are placed and routed first. It affects only which constraint controls the path when
two constraints of equal priority cover the same path.

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
Timing Specifications (TIMESPEC)

Propagation Rules
Not applicable.

Values
Every timing constraint has a priority of 0 as soon as it is written in the UCF. If a timing
constraint is to take precedence over every other constraint, a negative number is
required behind the PRIORITY keyword.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
normal_timespec_syntax PRIORITY integer ;

where

• normal_timespec_syntax is a legal timing specification

• integer represents the priority (the smaller the number, the higher the priority)

The number can be positive, negative, or zero. The value has meaning only when
compared with other PRIORITY values. The lower the value, the higher the priority.

TIMESPEC “TS01”=FROM “GROUPA” TO “GROUPB” 40 PRIORITY 4;

The constraint with a PRIORITY keyword always has a higher priority than the one
without it.

PCF Syntax
Same as UCF and NCF Syntax above.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 223

Chapter 4: Xilinx Constraints

PROHIBIT (Prohibit)
The PROHIBIT (Prohibit) constraint:

• Is a basic placement constraint.

• Disallows the use of a site within PAR, FPGA Editor, and the CPLD fitter.

For an FPGA device, use the following location types to define the physical location
of an element.

Location Types for FPGA Devices
Element Type Location Specification Meaning
IOB P12 IOB location (chip carrier)

A12 IOB location (pin grid)

T, B, L, R Applies to IOBs and indicates edge
locations (bottom, left, top, right) for
Spartan®-3, Spartan-3A, Spartan-3E,
Virtex®-4 and Virtex-5 devices

LB, RB, LT, RT, BR, TR, BL, TL Applies to IOBs and indicates half
edges (for example, left bottom, right
bottom) for Spartan-3, Spartan-3A,
Spartan-3E, Virtex-4 and Virtex-5
devices

Bank 0, Bank 1, Bank 2, Bank 3, Bank 4,
Bank 5, Bank 6, Bank 7

Applies to IOBs and indicates
half edges (banks) for Spartan-3,
Spartan-3A, Spartan-3E, Virtex-4 and
Virtex-5 devices

Slice SLICE_X22Y3 Slice location for Spartan-3, Spartan-3A,
Spartan-3E, Virtex-4 and Virtex-5
devices

block RAM RAMB16_X2Y56 Block RAM location for Spartan-3,
Spartan-3A, Spartan-3E, Virtex-4 and
Virtex-5 devices

Multiplier MULT18X18_X55Y82 Multiplier location for Spartan-3,
Spartan-3A, Spartan-3E, Virtex-4 and
Virtex-5 devices

Global Clock BUFGMUX0P Global clock buffer location for
Spartan-3, Spartan-3A, Spartan-3E,
Virtex-4 and Virtex-5 devices

Digital Clock Manager (DCM) DCM_X[A]Y[B] Digital Clock Manager for Spartan-3,
Spartan-3A, Spartan-3E, Virtex-4 and
Virtex-5 devices

Phase Lock Loop (PLL) PLL_X[A]Y[B] Phase Lock Loop for Spartan-3,
Spartan-3A, Spartan-3E, Virtex-4 and
Virtex-5 devices

Mixed-Mode Clock Manager
(MMCM)

MMCM_X[A]Y[B] Mixed-Mode Clock Manager for
Virtex-6

You can use the wildcard character (*) to replace a single location with a range as shown
in the following example.

SLICE_X*Y5

Any slice of an FPGA device whose Y-coordinate is 5

Constraints Guide
224 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

The following are not supported:
• Dot extensions on ranges. For example, LOC=SLICE_X3Y5:SLICE_X5Y7.G
• The wildcard character for Spartan-3, Spartan-3A, Spartan-3E, Virtex-4 and Virtex-5

global buffers or DLL locations.

Location Types for CPLD Devices
CPLD devices support only the location type pin_name

where
pin_name is Pnn for numeric pin names or rc for row-column pin names

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
Sites

Propagation Rules
It is illegal to attach PROHIBIT to a net, signal, entity, module, or macro.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF Syntax
In a UCF file, PROHIBIT must be preceded by the keyword CONFIG.

For a single location:

CONFIG PROHIBIT=location;

For multiple single locations

CONFIG PROHIBIT=location1, location2, ... ,locationn;

For a range of locations:

CONFIG PROHIBIT=location1:location2;where
location is a legal location type for the part type

For more information, see Location Types for FPGA Devices and Location Types for CPLD
Devices below. For examples of using the location types, see the Location (LOC)
constraint. CPLD devices do not support the "Range of locations" form of PROHIBIT.

The following statement prohibits use of the site P45.

CONFIG PROHIBIT=P45;

The following statement prohibits use of the slice at the SLICE_X6Y8 site.

CONFIG PROHIBIT=SLICE_X6Y8;

PCF Syntax
For single or multiple single locations:

COMP “comp_name” PROHIBIT = [SOFT] “site_group”...”site_group”;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 225

Chapter 4: Xilinx Constraints

COMPGRP “group_name” PROHIBIT = [SOFT] “site_group”...”site_group”;

MACRO “name” PROHIBIT = [SOFT] “site_group”...”site_group”;

For a range of locations:

COMP “comp_name” PROHIBIT = [SOFT] “site_group”... “site_group”;

COMPGRP “group_name” PROHIBIT = [SOFT] “site_group”... “site_group”;

MACRO “name” PROHIBIT = [SOFT] “site_group”...”site_group”;

where

• site_group is one of the following:

– SITE “site_name”

– SITEGRP “site_group_name”

• site_name is a component site (that is, a CLB or IOB location).

PlanAhead™ Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Pinout and Area Constraints Editor (PACE) Syntax
Pinout and Area Constraints Editor (PACE) can be used to set PROHIBIT. For more
information, see the Prohibit Mode command section in the PACE Help.

Note PACE is supported for CPLD devices only.

FPGA Editor Syntax
FPGA Editor supports PROHIBIT. The constraint is written to the Physical Constraints
File (PCF) by the Editor. For more information, see the Prohibit Constraint topic in
the FPGA Editor Help.

Constraints Guide
226 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

PULLDOWN (Pulldown)
The PULLDOWN (Pulldown) constraint:
• Is a basic mapping constraint.
• Guarantees a logic Low level to allow tri-stated nets to avoid floating when not

being driven.

KEEPER, PULLUP, and PULLDOWN are valid only on pad NETs, not on INSTs of
any kind.

Architecture Support
Applies to all FPGA devices and the CoolRunner™-II CPLD device only.

Applicable Elements
• Input
• Tristate outputs
• Bidirectional pad nets

Propagation Rules
This constraint is a net constraint. Any attachment to a design element is illegal.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a pad net
• Attribute Name

PULLDOWN
• Attribute Values

TRUE
FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute PULLDOWN: string;

Specify the VHDL constraint as follows:

attribute PULLDOWN of signal_name: signal is “{YES|NO|TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* PULLDOWN = “{YES|NO|TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 227

Chapter 4: Xilinx Constraints

UCF and NCF Syntax
The following statement configures the IO to use a PULLDOWN.

NET "pad_net_name" PULLDOWN;

The following statement configures PULLDOWN to be used globally.

DEFAULT PULLDOWN = TRUE;

XCF Syntax
BEGIN MODEL “entity_name”

NET "signal_name" pulldown=true;

END;

PlanAhead™ Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
228 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

PULLUP (Pullup)
The PULLUP (Pullup) constraint:
• Is a basic mapping constraint.
• Guarantees a logic High level to allow tri-stated nets to avoid floating when not

being driven.

KEEPER, PULLUP, and PULLDOWN are only valid on pad NET, not on INST of any
kind.

For CoolRunner™-II designs, KEEPER and PULLUP are mutually exclusive across
the whole device.

NGDBUILD ignores the following:
• DEFAULT KEEPER = FALSE
• DEFAULT PULLUP = FALSE
• DEFAULT PULLDOWN = FALSE

Architecture Support
Applies to all FPGA devices and the CoolRunner™ XPLA3 and CoolRunner-II CPLD
devices.

Applicable Elements
• Input
• Tristate outputs
• Bidirectional pad nets

Propagation Rules
This constraint is a net constraint. Any attachment to a design element is illegal.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a pad net
• Attribute Name

PULLUP
• Attribute Values

TRUE
FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute PULLUP: string;

Specify the VHDL constraint as follows:

attribute PULLUP of signal_name: signal is “{YES|NO|TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 229

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* PULLUP = “{YES|NO|TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
The following statement configures the IO to use a PULLUP.

NET "pad_net_name" PULLUP;

The following statement configures PULLUP to be used globally.

DEFAULT PULLUP = TRUE;

XCF Syntax
BEGIN MODEL “entity_name”

NET "signal_name" pullup=true;

END;

PlanAhead™ Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
230 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

PWR_MODE (Power Mode)
The PWR_MODE (Power Mode) constraint:
• Is an advanced fitter constraint.
• Defines the mode, Low power, or High performance (standard power), of the

macrocell that implements the tagged element

If the tagged function is collapsed forward into its fanouts, PWR_MODE is not applied.

Architecture Support
Applies to XC9500 devices only.

Applicable Elements
• Nets
• Any instance

Propagation Rules
When attached to a net, attaches to all applicable elements that drive the net.

When attached to a design element, propagates to all applicable elements in the
hierarchy within the design element.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a net or an instance
• Attribute Name

PWR_MODE
• Attribute Values

– LOW
– STD

VHDL Syntax
Declare the VHDL constraint as follows:

attribute PWR_MODE: string;

Specify the VHDL constraint as follows:

attribute PWR_MODE of {signal_name|component_name|label_name}:
{signal|component|label} is “{LOW|STD}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* PWR_MODE = “{LOW|STD} *)

For more information about basic Verilog syntax, see Verilog Attributes.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 231

Chapter 4: Xilinx Constraints

UCF and NCF Syntax
The following statement specifies that the macrocell that implements the net $SIG_0
is in Low power mode.

NET “$1187/$SIG_0” PWR_MODE=LOW;

XCF Syntax
BEGIN MODEL “entity_name”

NET "signal_name" PWR_MODE={LOW|STD};

INST "instance_name" PWR_MODE={LOW|STD};

END;

Constraints Guide
232 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

REG (Registers)
The REG (Registers) constraint:
• Is a basic fitter constraint.
• Specifies how a register is to be implemented in the CPLD macrocell.
• Has the following values:

– CE
When applied to a flip-flop primitive with a CE input, CE forces the CE input to
be implemented using a clock enable product term in the macrocell. Normally
the fitter uses the register CE input only if all logic on the CE input can be
implemented using the single CE product term. Otherwise the fitter decomposes
the CE input into the D (or T) logic expression unless REG=CE is applied. CE
product terms are not available in XC9500 devices (REG=CE is ignored). In
XC9500XL devices, the CE product term is available only for registers that do
not use both the CLR and PRE inputs.

– TFF
Indicates that the register is to be implemented as a T-type flip-flop in the
CPLD macrocell. If applied to a D-flip-flop primitive, the D-input expression is
transformed to T-input form and implemented with a T-flip-flop. Automatic
transformation between D and T flip-flops is normally performed by the CPLD
fitter.

Architecture Support
Applies to CPLD devices only. Does not apply to FPGA devices.

Applicable Elements
Applies to registers.

Propagation Rules
When attached to a design element, propagates to all applicable elements in the
hierarchy within the design element.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a flip-flop instance or macro containing flip-flops
• Attribute Name

REG

VHDL Syntax
Declare the VHDL constraint as follows:

attribute REG: string;

Specify the VHDL constraint as follows:

attribute REG of signal_name: signal is “{CE|TFF}”;

For more information on CE and TFF, see the UCF and NCF Syntax below.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 233

Chapter 4: Xilinx Constraints

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* REG = {CE|TFF} *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST “instance_name” REG = {CE | TFF};

The following statement specifies that the CE pin input be implemented using the clock
enable product term of the XC9500XL macrocell.

INST “Q1” REG=CE;

XCF Syntax
BEGIN MODEL “entity_name”

NET "signal_name" REG={CE|TFF};

END;

Constraints Guide
234 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

RLOC (Relative Location)
The Relative Location (RLOC) constraint:

• Is a basic mapping and placement constraint.

• Is a synthesis constraint.

• Groups logic elements into discrete sets and allows you to define the location of any
element within the set relative to other elements in the set, regardless of eventual
placement in the overall design.

• Allows you to place logic blocks relative to each other to increase speed and use
die resources efficiently.

• Provides an order and structure to related design elements without requiring you
to specify their absolute placement on the FPGA die.

• Allows you to replace any existing hard macro with an equivalent that can be
directly simulated.

Two coordinate systems can be used when defining RLOC constraints for all FPGA
architectures:

• Original grid system

Does NOT use a universal coordinate system for all component types

• New RPM grid system

DOES use a universal coordinate system for all component types

Therefore, with the RPM grid system, you can create a relocatable RPM macro
containing different types of components, such as Block RAM and slice components.

In the Unified Libraries, you can use RLOC constraints with BUFT and CLB related
primitives, that is, FMAP. You can also use them on non-primitive macro symbols.
There are some restrictions on the use of RLOC constraints on BUFT symbols. For more
information, see Set Modifiers below. You cannot use RLOC constraints with decoders or
clocks. You can use LOC constraints on all primitives:

• BUFT

• CLB

• CLB

• decoder

• clock

Although RLOC constraints control the relative placement of logic blocks, they do
not guarantee that the same routing resources are used to connect the logic blocks
from implementation to implementation. In order to control the routing used, see the
DIRECTED_ROUTING constraint.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 235

Chapter 4: Xilinx Constraints

Applicable Elements
For the design elements that can be used with particular device families, see the Libraries
Guides. For more information, see the device data sheet.
• Registers
• ROM
• RAMS, RAMD
• BUFT

Can be used only if the associated RPM has an RLOC_ORIGIN that causes the
RLOC values in the RPM to be changed to LOC values.

• LUT, MUXF5, MUXF6, MUXCY, XORCY, MULT_AND, SRL16, SRL16E, MUXF7
(Spartan®-3, Spartan-3A, Spartan-3E devices only)

• MUXF8 (all FPGA devices only)
• Block RAMs
• Multipliers
• DSP48

Propagation Rules
RLOC is a design element constraint and any attachment to a net is illegal. When
attached to a design element, RLOC propagates to all applicable elements in the
hierarchy within the design element.

NGDBuild continues to propagate LOC constraints down the design hierarchy. It
adds this constraint to appropriate objects that are not members of a set. While RLOC
constraint propagation is limited to sets, the LOC constraint is applied from its start
point all the way down the hierarchy.

When the design is flattened, the row and column numbers of an RLOC constraint on an
element are added to the row and column numbers of the RLOC constraints of the set
members below it in the hierarchy. This feature gives you the ability to modify existing
RLOC values in submodules and macros without changing the previously assigned
RLOC values on the primitive symbols.

Constraint Syntax
The RLOC constraint is specified using the slice-based XY coordinate system.

RLOC=XmYn

where
• m is an integer representing the X coordinate
• n is an integer representing the Y coordinate

Using RPM Grid
While Relative Location constraints are applied to symbols in the logical design in the
same way as a standard RPM, the grid values are different. The RPM Grid coordinates
are determined by selecting the site in question in FPGA Editor and reading the grid
coordinates in the history window. For example, selecting the lower leftmost slice site
results in the following:

site "SLICE_X0Y0", type = SLICE (RPM grid X3Y4)

Slice X0Y0 in the original grid system is now shown as X3Y4 in the RPM Grid system.
Any symbols intended for this slice should have the following constraint applied:

Constraints Guide
236 www.xilinx.com UG625 (v. 13.2) July 6, 2011

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 4: Xilinx Constraints

RLOC = X3Y4

FPGA Editor should generally be used to look up grid values for a specific device. In
addition to the RLOC constraints, one symbol in the macro must have the following
constraint applied:

RPM_GRID = GRID

Not all synthesis tools recognize and pass the RPM_GRID attribute. You may need to
assign this attribute using the User Constraints File (UCF) constraint.

INST “instance_name ” RPM_GRID = GRID

where

instance_name is the full hierarchical path to the symbol name.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 237

Chapter 4: Xilinx Constraints

Set Modifiers
A modifier modifies the RLOC constraints associated with design elements. Since it
modifies the RLOC constraints of all the members of a set, it must be applied in a way
that propagates it to all the members of the set easily and intuitively. For this reason, the
RLOC modifiers of a set are placed at the start of the set. The following set modifiers
apply to RLOC constraints.

• RLOC modifies the values of other RLOC constraints below the element in the
hierarchy of the set

Regardless of the set type, RLOC values (row, column, extension or XY values) on an
element always propagate down the hierarchy and are added at lower levels of the
hierarchy to RLOC constraints on elements in the same set.

• RLOC_ORIGIN (Relative Location Origin) sets the exact die location of the set
members. This constraint lets you change the RLOC values into absolute LOC
constraints that respect the structure of the set.

The design resolution program (NGCBuild) translates the RLOC_ORIGIN constraint
into LOC constraints. The row and column values of the RLOC_ORIGIN are added
individually to the members of the set after all RLOC modifications have been made
to their row and column values by addition through the hierarchy. The final values
are then turned into LOC constraints on individual primitives.

• RLOC_RANGE (Relative Location Range) limits the members of a set to a certain
range on the die.

In this case, the set could “float” as a unit within the range until a final placement.
Since every member of the set must fit within the range, it is important that you
specify a range that defines an area large enough to respect the spatial structure
of the set.

You cannot use RLOC_RANGE on sets that include BUFT symbols.

• USE_RLOC (Use Relative Location) turns the RLOC constraints on and off for a
specific element or section of a set. USE_RLOC can be either TRUE or FALSE.

The application of USE_RLOC is strictly based on hierarchy. A USE_RLOC
constraint attached to an element applies to all its underlying elements that are
members of the same set. If it is attached to a symbol that defines the start of a set,
the constraint is applied to all the underlying member elements, which represent
the entire set.

When USE_RLOC=FALSE is applied, the RLOC and set constraints are removed
from the affected symbols in the NCD file. This process is different than that
followed for the RLOC_ORIGIN constraint. For RLOC_ORIGIN, the mapper
generates and outputs a LOC constraint in addition to all the set and RLOC
constraints in the PCF file. The mapper does not retain the original constraints
in the presence of USE_RLOC=FALSE because these cannot be turned on again
in later programs.

You can attach USE_RLOC directly to a primitive symbol so that it affects only
that symbol.

Constraints Guide
238 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Linking Sets
Set Linkage

This example shows the process of linking together elements through the design
hierarchy. The complete RLOC specification, RLOC=R mCn or RLOC=XmXn, is
required for a real design.

Note In this and other illustrations in this section, the sets are shaded differently to
distinguish one set from another.

All design elements with RLOC constraints at a single node of the design hierarchy are
considered to be in the same H_SET set unless they are assigned another type of set
constraint, an RLOC_ORIGIN constraint, or an RLOC_RANGE constraint. In this figure,
RLOC constraints have been added on primitives and non-primitives C, D, F, G, H, I, J,
K,M,N,O, P,Q, and R. No RLOC constraints were placed on B, E, L, or . Macros C and
D have an RLOC constraint at node A, so all the primitives below C and D that have
RLOCs are members of a single H_SET set.

The name of this H_SET set is A/h_set because it is at node A that the set starts. The start
of an H_SET set is the lowest common ancestor of all the RLOC-tagged constraints that
constitute the elements of that H_SET set.

Because element E does not have an RLOC constraint, it is not linked to the A/h_set set.
The RLOC-tagged elementsM and N, which lie below element E, are therefore in their
own H_SET set. The start of that H_SET set is A/E, giving it the name A/E/h_set.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 239

Chapter 4: Xilinx Constraints

Similarly, theQ and R primitives are in their own H_SET set because they are not linked
through element L to any other design elements. The lowest common ancestor for their
H_SET set is L, which gives it the name A/D/L/h_set. After the flattening, NGDBuild
attaches the sets to the primitives shown in the following tale.

Set Primitives
H_SET=A/h_set F, G, H, O, P, J, K

H_SET=A/D/L/h_set Q, R

H_SET=A/E/h_set N

Consider a situation in which a set is created at the top of the design. There is no lowest
common ancestor if macro A also has an RLOC constraint, since A is at the top of the
design and has no ancestor. In this case, the base name h_set has no hierarchically
qualified prefix, and the name of the H_SET set is simply h_set.

Modifying Sets
The RLOC constraint assigns a primitive an RLOC value (the row and column numbers
with the optional extensions), specifies its membership in a set, and links together
elements at different levels of the hierarchy. In the Three H_SET Sets example, the RLOC
constraint on macros C andD links together all the objects with RLOC constraints below
them. An RLOC constraint is also used to modify the RLOC values of constraints below
it in the hierarchy. In other words, RLOC values of elements affect the RLOC values of
all other member elements of the same H_SET set that lie below the given element
in the design hierarchy.

When the design is flattened, the XY values of an RLOC constraint on an element are
added to the XY values of the RLOC constraints of the set members below it in the
hierarchy. This feature allows you to modify existing RLOC values in submodules
and macros without changing the previously assigned RLOC values on the primitive
symbols.

The following sections describe the effect of the hierarchy on set modification.

Adding RLOC Values Down the Hierarchy Example (Slice-Based
XY Designations)

This example illustrates the process of adding RLOC values down the hierarchy. The
row and column values between the parentheses show the addition function performed

Constraints Guide
240 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

by the mapper. The italicized text prefixed by => is added by MAP during the design
resolution process and replaces the original RLOC constraint that you added.

Modifying RLOC Values of Same Macro and Linking Together
as One Set

The ability to modify RLOC values down the hierarchy is particularly valuable when
instantiating the same macro more than once. Typically, macros are designed with
RLOC constraints that are modified when the macro is instantiated.

This example is a variation of the previous example. The RLOC constraint on Inst1 and
Inst2 now link all the objects in one H_SET set.

Because the RLOC=X0Y0modifier on the Inst1macro does not affect the objects below
it, the mapper adds only the H_SET tag to the objects and leaves the RLOC values as
they are. However, the RLOC=X1Y0modifier on the Inst2macro causes MAP to change
the RLOC values on objects below it, as well as to add the H_SET tag, as shown in
the italicized text.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 241

Chapter 4: Xilinx Constraints

Separating Elements from H_SET Sets
The HU_SET (HU Set) constraint is a variation of the implicit H_SET (hierarchy set).
HU_SET defines the start of a new set. Like H_SET, HU_SET is defined by the design
hierarchy. However, you can use HU_SET to assign a user-defined name to the HU_SET.

This example demonstrates how HU_SET constraints designate elements as set
members, break links between elements tagged with RLOC constraints in the hierarchy
to separate them from H_SET sets, and generate names as identifiers of these sets.

The user-defined HU_SET constraint on E separates its underlying design elements,
namely H, I, J, K, L, andM from the implicit H_SET=A/h_set that contains primitive
members B, C, F, and G. The HU_SET set that is defined at E includes H, I, and L
(through the element J).

The mapper hierarchically qualifies the name value “bar” on element E to be A/bar,
since A is the lowest common ancestor for all the elements of the HU_SET set, and
attaches it to the set member primitives H, I, and L. An HU_SET constraint on K starts
another set that includesM, which receives the HU_SET=A/E/bar constraint after
processing by the mapper.

The same name field is used for the two HU_SET constraints, but because they are
attached to symbols at different levels of the hierarchy, they define two different sets.

Constraints Guide
242 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Linking Two HU_SET Sets

This example shows how HU_SET constraints link elements in the same node together
by naming them with the same identifier. Because of the same name (bar) on two
elements, D and E, the elements tagged with RLOC constraints below D and E become
part of the same HU_SET.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 243

Chapter 4: Xilinx Constraints

Using RLOCs with Xilinx Macros
Xilinx®-supplied flip-flop macros include an RLOC=R0C0 constraint on the underlying
primitive, which allows you to attach an RLOC to the macro symbol. This symbol links
the underlying primitive to the set that contains the macro symbol.

Simply attach an appropriate RLOC constraint to the instantiation of the Xilinx flip-flop
macro. The mapper adds the RLOC value that you specified to the underlying primitive
so that it has the desired value.

In this example, the RLOC = R1C1 constraint is attached to the instantiation (Inst1) of an
example macro. It is added to the R0C0 value of the RLOC constraint on the flip-flop
within the macro to obtain the new RLOC values.

If the RLOC=X1Y1 constraint is attached to Inst1 of a macro, the X0Y0 value of the
RLOC constraint on the flip-flop within the macro would be used to obtain the new
RLOC values.

If you do not put an RLOC constraint on the flip-flop macro symbol, the underlying
primitive symbol is the lone member of a set. The mapper removes RLOC constraints
from a primitive that is the only member of a set or from a macro that has no RLOC
objects below it.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to an instance
• Attribute Name

RLOC
• Attribute Values

See Constraint Syntax above.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute rloc: string;

Constraints Guide
244 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Specify the VHDL constraint as follows:

attribute rloc of {component_name|entity_name| label_name}: {component |entity|label}
is “[element]X mYn[.extension]”;

For descriptions of valid values, see Guidelines for Specifying Relative Locations.

For more information about basic VHDL syntax, see VHDL Attributes.

The following code sample shows how to use RLOCs with a VHDL generate statement.
The code is a simple example showing how to auto-generate the RLOCs for several
instantiated FDEs. This methodology can be used with virtually any primitive.

Note The user must create the itoa function.
LEN:for i in 0 to bits-1 generate

constant row :natural:=((width-1)/2)-(i/2);
constant column:natural:=0;
constant slice:natural:=0;
constant rloc_str : string := "R" & itoa(row) & "C" & itoa(column) & ".S" & itoa(slice);
attribute RLOC of U1: label is rloc_str;

begin
U1: FDE port map (

Q=> dd(j),
D=> ff_d,
C=> clk,
CE =>lcl_en(en_idx));

end generate LEN;

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* RLOC = “[element]XmY n[.extension]” *)

For descriptions of valid value, see Guidelines for Specifying Relative Locations in
this chapter.

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
For all FPGA devices, the following statement specifies that an instantiation of FF1 be
placed in a slice that is +4 X coordinates and +4 Y coordinates relative to the origin slice.

INST “/V2/design/FF1” RLOC=X4Y4;

XCF Syntax
For Virtex®-4 and Virtex-5 devices:

BEGIN MODEL “entity_name ”

INST "instance_name " rloc=[element]XmYn [.extension] ;

END;

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:
• Defining placement constraints
• Assigning placement constraints
• Defining I/O pin configurations
• Floorplanning and placement constraints

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 245

Chapter 4: Xilinx Constraints

Guidelines for Specifying Relative Locations
The slice-based coordinate system for assigning elements to relative location uses the
following general syntax.

RLOC=XmYn

where

• m and n are the relative X axis (left/right) value and the relative Y axis (up/down)
value, respectively.

• X and Y numbers can be zero or any positive or negative integer

Because the X and Y numbers in RLOC constraints define only the order and relationship
between design elements, and not their absolute die locations, their numbering can
include negative numbers. Even though you can use any integer for RLOC constraints,
Xilinx® recommends small integers for clarity and ease of use.

The absolute values of X and Y is not important in RLOC specifications, but rather their
relative values or differences. For example, if design element A has an RLOC=X3Y4
constraint and design element B has an RLOC=X6Y7 constraint, the absolute values of
X (3 and 6) are not important in themselves. However, the difference between them is
significant. In this case, 3 (6-3) specifies that the location of design element B is three
slices away from the location of design element A.

To capture this information, a normalization process is used and y coordinate-wise,
element is 3 (7-4) slices above element A. In the example just given, normalization
reduces the RLOC on design element A to X0Y0, and the RLOC on design element B
to X3Y3.

In Spartan®-3 devices and higher and Virtex®-4 devices and higher, slices are numbered
on an XY grid beginning in the lower left corner of the chip. X ascends in value
horizontally to the right. Y ascends in value vertically up. RLOC constraints follow
the Cartesian-based convention.

Constraints Guide
246 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Different RLOC Specifications for Four Flip-Flop Primitives

This figure demonstrates the use of RLOC constraints. In diagram (a), four flip-flop
primitives named A, B, C, and D are assigned RLOC constraints. These RLOC
constraints require each flip-flop to be placed in a different slice with the slices stacked
in the order shown: A below B, C, and D.

To place more than one of these flip-flop primitives per slice, specify the RLOC
constraints as shown in the diagram. The arrangement in the figure requires that A and
B be placed in a single slice, and that C and D be placed in another slice immediately to
the right of the AB slice.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 247

Chapter 4: Xilinx Constraints

Relative Location (RLOC) Sets
Relative Location (RLOC) constraints give order and structure to related design
elements. This section describes RLOC sets, which are groups of related design elements
to which RLOC constraints have been applied. For example, the four flip-flops in
Different RLOC Specifications for Four Flip-Flop Primitives are related by RLOC
constraints and form a set. Elements in a set are related by RLOC constraints to other
elements in the same set. Each member of a set must have an RLOC constraint, which
relates it to other elements in the same set. You can create multiple sets, but a design
element can belong to only one set.

Sets can be defined explicitly through the use of a set parameter or implicitly through
the structure of the design hierarchy.

Four distinct types of rules are associated with each set.

• Definition rules define the requirements for membership in a set.

• Linkage rules specify how elements can be linked to other elements to form a single
set.

• Modification rules dictate how to specify parameters that modify RLOC values of all
the members of the set.

• Naming rules specify the nomenclature of sets.

These rules are discussed in the sections that follow.

The following sections discuss three different set constraints:

• U_SET (U SET)

• H_SET (H Set)

• HU_SET (HU Set)

Elements must be tagged with both the RLOC constraint and one of these set constraints
to belong to a set.

U_SET (U SET)
U_SET (U SET) allows you to group into a single set design elements with attached
RLOC constraints that are distributed throughout the design hierarchy. The letter U in
the name U_SET indicates that the set is user-defined.

U_SET allows you to group elements, even though they are not directly related by the
design hierarchy. By attaching a U_SET constraint to design elements, you can explicitly
define the members of a set.

The design elements tagged with a U_SET constraint can exist anywhere in the
design hierarchy. They can be primitive or non-primitive symbols. When attached to
non-primitive symbols, the U_SET constraint propagates to all the primitive symbols
with RLOC constraints that are below it in the hierarchy.

The syntax of U_SET is:

U_SET=set_name

where

set_name is the user-specified identifier of the set

All design elements with RLOC constraints tagged with the same U_SET constraint name
belong to the same set. Names therefore must be unique among all the sets in the design.

Constraints Guide
248 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

H_SET (H Set)
In contrast to U_SET, which you explicitly define by tagging design elements, H_SET (H
Set) is defined implicitly through the design hierarchy. The combination of the design
hierarchy and the presence of RLOC constraints on elements defines a hierarchical
set, or H_SET set.

You can not use H_SET to tag the design elements to indicate their set membership. The
set is defined automatically by the design hierarchy.

All design elements with RLOC constraints at a single node of the design hierarchy are
considered to be in the same H_SET set unless they are tagged with another type of
set constraint such as Relative Location Origin (RLOC_ORIGIN) or Relative Location
Range (RLOC_RANGE). If you explicitly tag any element with RLOC_ORIGIN,
RLOC_RANGE, U_SET, or HU_SET, it is removed from an H_SET set.

Most designs contain only H_SET constraints, since they are the underlying mechanism
for relationally placed macros. The Relative Location Origin (RLOC_ORIGIN) or
Relative Location Range (RLOC_RANGE) constraints are discussed further in Set
Modifiers.

NGDBuild does the following:

1. Recognizes the implicit H_SET set

2. Derives its name or identifier

3. Attaches the H_SET constraint to the correct members of the set

4. Writes them to the output file

HU_SET (HU Set)
HU_SET (HU Set) is a variation of the implicit H_SET. Like H_SET, HU_SET is defined
by the design hierarchy. However, you can use the HU_SET constraint to assign a
user-defined name to the HU_SET.

The syntax of HU_SET is:

HU_SET=set_name

where

• set_name is the identifier of the set

• set_name must be unique among all the sets in the design

This user-defined name is the base name of the HU_SET set. Like the H_SET set, in
which the base name of h_set is prefixed by the hierarchical name of the lowest common
ancestor of the set elements, the user-defined base name of an HU_SET set is prefixed by
the hierarchical name of the lowest common ancestor of the set elements.

You must define the base names to ensure unique hierarchically qualified names for
the sets before the mapper resolves the design and attaches the hierarchical names as
prefixes.

HU_SET defines the start of a new set. All design elements at the same node that have the
same user-defined value for the HU_SET constraint are members of the same HU_SET
set. Along with the HU_SET constraint, elements can also have an RLOC constraint.

The presence of an RLOC constraint in an H_SET constraint links the element to all
elements tagged with RLOC constraints above and below in the hierarchy. However, in
the case of an HU_SET constraint, the presence of an RLOC constraint along with the
HU_SET constraint on a design element does not automatically link the element to other
elements with RLOC constraints at the same hierarchy level or above.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 249

Chapter 4: Xilinx Constraints

Macro A Instantiated Twice

Note In this figure and the other related figures shown in the subsequent sections,
the italicized text prefixed by => is added by NGDBuild during the design flattening
process. You add all other text.

This figure demonstrates a typical use of the implicit H_SET. The figure shows only
the first RLOC portion of the constraint.

In a real design, the RLOC constraint must be specified completely with:

RLOC=R mCn

For Spartan®-3 devices and higher and Virtex®-4 devices and higher the RLOC
constraint must be specified completely with:

RLOC=XmYn

In this example, macroA is originally designed with RLOC constraints on four flip-flops:

• A
• B
• C
• D

The macro is then instantiated twice in the design:
• Inst1
• Inst2

When the design is flattened, two different H_SET sets are recognized because two
distinct levels of hierarchy contain elements with RLOC constraints. NGDBuild creates
and attaches the appropriate H_SET constraint to the set members:
• H_SET=Inst1/h_set for the macro instantiated in Inst1
• H_SET=Inst2/h_set for the macro instantiated in Inst2

The design implementation programs place each of the two sets individually as a unit
with relative ordering within each set specified by the RLOC constraints. However, the
two sets are regarded to be completely independent of each other.

Constraints Guide
250 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

The name of the H_SET set is derived from the symbol or node in the hierarchy that
includes all the RLOC elements. Inst1 is the node (instantiating macro) that includes
the four flip-flop elements with RLOC constraints shown on the left of the figure.
Therefore, the name of this H_SET set is the hierarchically qualified name of Inst1
followed by h_set.

The Inst1 symbol is considered the start of the H_SET, which gives a convenient handle
to the entire H_SET and attaches constraints that modify the entire H_SET. Constraints
that modify sets are discussed in the Save Net Flag (SAVE NET FLAG) constraint.

This figure demonstrates the simplest use of a set that is defined and confined to a single
level of hierarchy. Through linkage and modification, you can also create an H_SET set
that is linked through two or more levels of hierarchy.

Linkage allows you to link elements through the hierarchy into a single set. On the
other hand, modification allows you to modify RLOC values of the members of a set
through the hierarchy.

RLOC Set Summary
The following table summarizes the RLOC set types and the constraints that identify
members of these sets.

Summary of Set Types
Type Definition Naming Linkage Modification
U_SET= name All elements with

the same user-tagged
U_SET constraint
value are members of
the same U_SET set.

The name of the
set is the same as
the user-defined
name without
any hierarchical
qualification.

U_SET links elements
to all other elements
with the same
value for the U_SET
constraint.

U_SET is modified
by applying
RLOC_ORIGIN
or RLOC_RANGE
constraints on,
at most, one
of the U_SET
constraint-tagged
elements.

HU_SET= name All elements with the
same hierarchically
qualified name are
members of the same
set.

The lowest common
ancestor of the
members is prefixed to
the user-defined name
to obtain the name of
the set.

HU_SET links to other
elements at the same
node with the same
HU_SET constraint
value. It links to
elements with RLOC
constraints below.

The start of the set
is made up of the
elements on the
same node that
are tagged with
the same HU_SET
constraint value. A
RLOC_ORIGIN or
a RLOC_RANGE
constraint can be
applied to, at most,
one of these start
elements of an
HU_SET set.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 251

Chapter 4: Xilinx Constraints

RLOC_ORIGIN (Relative Location Origin)
The RLOC_ORIGIN (Relative Location Origin) constraint:
• Is a placement constraint.
• Fixes the members of a set at exact die locations.
• Must specify a single location, not a range or a list of several locations.

For more information, see Set Modifiers in the Relative Location (RLOC) constraint.
• Is required for a set that includes BUFT symbols.
• Cannot be attached to a BUFT instance.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Instances or macros that are members of sets

Propagation Rules
RLOC_ORIGIN is a macro constraint and any attachment to a net is illegal.

When RLOC_ORIGIN is used in conjunction with an implicit H_SET, it must be placed
on the element that is the start of the H_SET set, that is, on the lowest common ancestor
of all the members of the set.

If you apply RLOC_ORIGIN to an HU_SET constraint, place it on the element at the
start of the HU_SET set, that is, on an element with the HU_SET constraint.

However, since there could be several elements linked together with the HU_SET
constraint at the same node, the RLOC_ORIGIN constraint can be applied to only one of
these elements to prevent more than one RLOC_ORIGIN constraint from being applied
to the HU_SET set.

Similarly, when used with a U_SET constraint, the RLOC_ORIGIN constraint can be
placed on only one element with the U_SET constraint. If you attach the RLOC_ORIGIN
constraint to an element that has only an RLOC constraint, the membership of that
element in any set is removed, and the element is considered the start of a new H_SET
set with the specified RLOC_ORIGIN constraint attached to the newly created set.

Constraint Syntax
To specify a single origin for an RLOC set, use the following syntax, which is equivalent
to placing an RLOC_ORIGIN constraint on the schematic.

set_name RLOC_ORIGIN=Xm Yn

where
• set_name can be the name of any type of RLOC set:

– U_SET
– HU_SET
– system-generated H_SET

• The origin itself is expressed as an X and Y value representing the location of the
elements at RLOC=X0Y0

Constraints Guide
252 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to an instance that is a member of a set
• Attribute Name

RLOC_ORIGIN
• Attribute Values

For a list of the constraint values, see the UCF and NCF Syntax section below.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute rloc_origin: string;

Specify the VHDL constraint as follows:

attribute rloc_origin of {component_name |entity_name|label_name} : {component|entity
|label} is “ value”;

For Spartan®-3, Spartan-3A, Spartan-3E, Virtex®-4 and Virtex-5 devices, value is X mYn.

For a list of the constraint values, see the UCF and NCF Syntax section below.

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* RLOC_ORIGIN = “ value” *)

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-4 and Virtex-5 devices, value is X mYn.

For a list of the constraint values, see the UCF and NCF Syntax section below.

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax for Architectures Using Slice-Based XY Coordinates
This section applies to Spartan-3, Spartan-3A, Spartan-3E, Virtex-4, and Virtex-5 devices.

RLOC_ORIGIN=X mYn

where
m and n are positive or negative integers (including zero) representing relative X and Y
coordinates, respectively

The following statement specifies that an instantiation of FF1, which is a member of a
set, be placed in the slice at X4Y4 relative to FF1.

INST “/archive/designs/FF1” RLOC_ORIGIN=X4Y4;

For example, if RLOC=X0Y2 for FF1, then the instantiation of FF1 is placed in the slice
that is:
• 0 rows to the right of X4
• 2 rows up from Y4 (X4Y6)

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 253

Chapter 4: Xilinx Constraints

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
254 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

RLOC_RANGE (Relative Location Range)
The RLOC_RANGE (Relative Location Range) constraint:
• Is a placement constraint.
• Is similar to RLOC_ORIGIN except that it limits the members of a set to a certain

range on the die. The range or list of locations is meant to apply to all applicable
elements with RLOCs, not just to the origin of the set

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Instances or macros that are members of sets

Propagation Rules
RLOC_RANGE is a macro constraint and any attachment to a net is illegal.

The bounding rectangle applies to all elements in a relationally placed macro, not just
to the origin of the set.

The values of the RLOC_RANGE constraint are not simply added to the RLOC values of
the elements. In fact, the RLOC_RANGE constraint does not change the values of the
RLOC constraints on underlying elements. It is an additional constraint that is attached
automatically by the mapper to every member of a set.

The RLOC_RANGE constraint is attached to design elements in exactly the same
way as the RLOC_ORIGIN constraint. The values of the RLOC_RANGE constraint,
like RLOC_ORIGIN values, must be non-zero positive numbers since they directly
correspond to die locations.

If a particular RLOC set is constrained by an RLOC_ORIGIN or an RLOC_RANGE
constraint in the design netlist and is also constrained in the User Constraints File (UCF)
file, the UCF constraint overrides the netlist constraint.

Constraint Syntax
RLOC_RANGE=Xm1 Yn1:X m2Yn2

where
the relative X values (m1 andm2) and Y values (n1 and n2) can be:
– non-zero positive numbers
– the wildcard (*) character

This syntax allows for three kinds of range specifications:
• Xm1Yn1:Xm2 Yn2

A rectangular region bounded by the corners Xm1Yn1 and Xm2 Yn2
• X*Yn1:X*Ym2

The region on the Y-axis between n1 and n2 (any X value)
• Xm1Y*:Xm2

A region on the X-axis between m1 and m2 (any Y value)

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 255

Chapter 4: Xilinx Constraints

For the second and third kinds of specifications with wildcards, applying the wildcard
character (*) differently on either side of the separator colon creates an error. For
example, specifying X*Y1:X2Y* is an error since the wildcard asterisk is applied to the X
value on one side and to the Y value on the other side of the separator colon.

To specify a range, use the following syntax, which is equivalent to placing an
RLOC_RANGE constraint on the schematic.

set_name RLOC_RANGE=X m1Yn1 :Xm2Y n2

The range identifies a rectangular area. You can substitute a wildcard (*) character for
either the X value or the Y value of both corners of the range.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to an instance that is a member of a set
• Attribute Name

RLOC_RANGE
• Attribute Values

– positive integers (including zero)
– the wildcard (*) character

VHDL Syntax
Declare the VHDL constraint as follows:

attribute rloc_range: string;

Specify the VHDL constraint as follows:

attribute rloc_range of {component_name|entity_name|label_name}:
{component|entity|label} is “value”;

For Spartan®-3, Spartan-3A, Spartan-3E, Virtex®-4 and Virtex-5 devices value is:

Xm1Yn1:Xm2Yn2

For a list of the constraint values, see the UCF and NCF Syntax section below.

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* RLOC_RANGE = “value” *)

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-4 and Virtex-5 devices, value is:

Xm1Yn1:Xm2Yn2

For a list of the constraint values, see the UCF and NCF Syntax section below.

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
This section is applicable Spartan-3 devices and up, and Virtex-4 devices and up.

RLOC_RANGE=Xm1Yn1:Xm2Yn2

Constraints Guide
256 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

where

the relative X values (m1 and m2) and Y values (n1 and n2) can be:

– positive integers (including zero)

– the wildcard (*) character

The following statement specifies that an instantiation of the macroMACRO4 be placed
relative to other members of the set within a region that is bounded by:

• X4Y4 in the lower left corner

• X10Y10 in the upper right corner

INST “/archive/designs/MACRO4” RLOC_RANGE=X4Y4:X10Y10;

XCF Syntax
MODEL “entity_name” rloc_range=value;

BEGIN MODEL “entity_name”

INST "instance_name" rloc_range=value;

END;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 257

Chapter 4: Xilinx Constraints

SAVE NET FLAG (Save Net Flag)
The SAVE NET FLAG (Save Net Flag) constraint:

• Is a basic mapping constraint.

• When attached to nets or signals, affects the mapping, placement, and routing of the
design by preventing the removal of unconnected signals.

• Prevents the removal of loadless or driverless signals.

– For loadless signals, SAVE NET FLAG acts as a dummy OBUF load connected
to the signal.

– For driverless signals, SAVE NET FLAG acts as a dummy IBUF driver connected
to the signal.

• Can be abbreviated as S NET FLAG.

If you do not have SAVE NET FLAG on a net, any signal that cannot be observed or
controlled via a path to an I/O primitive is removed.

SAVE NET FLAG may prevent the trimming of logic connected to the signal.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
• Nets

• Signals

Propagation Rules
This constraint:

• Is a net or signal constraint. Any attachment to a design element is illegal

• Prevents the removal of unconnected signals. If you do not have the S constraint on
a net, any signal not connected to logic or an I/O primitive is removed.

SAVE NET FLAG Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a net or signal

• Attribute Name

• Attribute Values

– TRUE

– FALSE

Constraints Guide
258 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

VHDL Syntax
Declare the VHDL constraint as follows:

attribute S: string;

Specify the VHDL constraint as follows:

attribute S of signal_name : signal is ”{YES|NO|TRUE|FALSE }”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* S = {YES|NO|TRUE|FALSE} *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
The following statement specifies that the net or signal named $SIG_9 should not be
removed.

NET $SIG_9 S;

XCF Syntax
BEGIN MODEL entity_name

NET "signal_name" s=true;

END;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 259

Chapter 4: Xilinx Constraints

SCHMITT_TRIGGER (Schmitt Trigger)
The SCHMITT_TRIGGER (Schmitt Trigger) constraint:
• Causes the attached input pad to be configured with Schmitt Trigger (hysteresis).
• Applies to any input pad in the design.

Architecture Support
Applies to CoolRunner™-II devices only.

Applicable Elements
All input pads and pad nets

Propagation Rules
This constraint is a net or signal constraint. Any attachment to a macro, entity, or
module is illegal.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a net
• Attribute Name

SCHMITT_TRIGGER
• Attribute Values

TRUE
FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute SCHMITT_TRIGGER: string;

Specify the VHDL constraint as follows:

attribute SCHMITT_TRIGGER of signal_name : signal is “{TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* SCHMITT_TRIGGER = “{TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

Constraints Guide
260 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

UCF and NCF Syntax
NET “mysignal” SCHMITT_TRIGGER;

XCF Syntax
BEGIN MODEL “entity_name ”

NET "signal_name" SCHMITT_TRIGGER=true;

END;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 261

Chapter 4: Xilinx Constraints

SIM Collision Check (SIM_COLLISION_CHECK)
The SIM Collision Check (SIM_COLLISION_CHECK) constraint is used to specify
simulation model behavior when a read/write collision occurs on a memory location
of Block RAM.

Architecture Support
This constraint applies to Virtex®-4 devices and higher only. It does not apply to
Spartan® devices or to CPLD devices.

Applicable Elements
Block RAM primitive elements

Propagation Rules
It is illegal to attach this constraint to a net or signal.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
• ALL

Generates both a WARNING message and X’s on the output during simulation.
• NONE

Ignores collisions leading to unpredictable results during simulation.
• WARNING_ONLY

Generates a WARNING message during simulation if there is a read/write collision
on a memory location in the Virtex-4 block RAM memory,

• GENERATE_X_ONLY
Generates X’s on the outputs during simulation.

Schematic Syntax
• Attached to a block RAM primitive
• Attribute Name

SIM_COLLISION_CHECK
• Attribute Values

See Values section above.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute sim_collision_check: string;

Specify the VHDL constraint as follows:

attribute sim_collision_check of {component_name|label_name}: {component|label} is
“sim_collision_check_value”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
262 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

// synthesis attribute sim_collision_check [of] {module_name|instance_name} [is]
“sim_collision_check_value”;

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
The following statement sets the SIM_COLLISION_CHECK constraint for an
instantiation of an I/O primitive element y2.

INST “$1187/y2
SIM_COLLISION_CHECK={WARNING_ONLY|GENERATE_X_ONLY|ALL|NONE};

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 263

Chapter 4: Xilinx Constraints

SLEW (Slew)
The SLEW (Slew) constraint:

• Defines the slew rate (rate of transition) behavior of each individual output to the
device.

• May be placed on any output or bi-directional port to specify the port slew rate to be:

– SLOW (default)

– FAST
– QUIETIO (Spartan®-3A devices)

Use the slowest SLEW attribute available to the device while still allowing applicable
I/O timing to be met in order to minimize any possible signal integrity issues.

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
Output primitives, output pads, bidirectional pads.

You can also attach SLEW to the net connected to the pad component in a User
Constraints File (UCF). NGCBuild transfers SLEW from the net to the pad instance in
the NGD file so that it can be processed by the mapper. Use the following syntax:

NET “net_name” slew={FAST|SLOW};

Propagation Rules
SLEW should only be placed on a top-level output or bi-directional port.

Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
• FAST
• SLOW
• QUIETIO

Spartan-3A devices only

Schematic Syntax
Specify a new attribute to an output port, or bi-directional port:

• Attribute Name

SLEW
• Attribute Values

See Values section above.

Constraints Guide
264 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

VHDL Syntax
Before using SLEW, declare it with the following syntax placed after the architecture
declaration, but before the begin statement in the top-level VHDL file:

attribute SLEW: string;

Specify the VHDL constraint as follows:

attribute SLEW of {top_level_port_name}: signal is " value";

VHDL Syntax Example
entity top is

port (FAST_OUT: out std_logic);

end top;

architecture MY_DESIGN of top is

attribute SLEW: string;

attribute SLEW of FAST_OUT: signal is "FAST";

begin

For more information on basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the following attribute specification before the port declaration in the top-level
Verilog code:

(* SLEW="value" *)

Verilog Syntax Example
module top (

(* SLEW="FAST" *) output FAST_OUT

);

For more information about basic Verilog syntax, see Verilog Attributes.

User Constraints File (UCF) and Netlist Constraints File (NCF) Syntax
Placed on output or bi-directional port:

NET "top_level_port_name" SLEW="value ";

UCF and NCF Syntax Example
NET "FAST_OUT" SLEW="FAST";

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:
• Defining placement constraints
• Assigning placement constraints
• Defining I/O pin configurations
• Floorplanning and placement constraints

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 265

Chapter 4: Xilinx Constraints

PACE Syntax
To set SLEW in PACE, select the pin value in the Design Objects window.

PACE is supported for CPLD devices only.

Constraints Guide
266 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

SLOW (Slow)
The SLOW (Slow) constraint:
• Is a basic fitter constraint
• Enables the slew rate limited control

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
• Output primitives
• Output pads
• Bidirectional pads

You can also attach SLOW to the net connected to the pad component in a User
Constraints File (UCF). NGCBuild transfers SLOW from the net to the pad instance in
the Native Generic Database (NGD) file so that it can be processed by the mapper.

Use the following UCF syntax:

NET “net_name” SLOW;

Propagation Rules
SLOW is illegal when attached to a net except when the net is connected to a pad. In
this case, SLOW is treated as attached to the pad instance.

When attached to a design element, SLOW propagates to all applicable elements in
the hierarchy within the design element.

Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid instance
• Attribute Name

SLOW
• Attribute Values

– TRUE
– FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute SLOW : string;

Specify the VHDL constraint as follows:

attribute SLOW of {signal_name|entity_name} : {signal|entity} is “{TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 267

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* SLOW = “{TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
The following statement establishes a slow slew rate for an instantiation of the element
y2.

INST “$1I87/y2” SLOW;

The following statement establishes a slow slew rate for the pad to which net1 is
connected.

NET “net1” SLOW;

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
268 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

STEPPING (Stepping)
The STEPPING (Stepping) constraint is assigned a value that matches the step level
marking on the silicon. The step level identifies specific device capabilities. Xilinx®
recommends that the step level be set for the design using STEPPING. Otherwise, the
software uses a default target device.

For more information on STEPPING, see Xilinx Answer Record 20947, Stepping FAQs.

Architecture Support
• CoolRunner™-II

• Spartan®-3A, Spartan-3E, Virtex®-4, Virtex-5

Applicable Elements
The STEPPING attribute is a global CONFIG constraint and is not attached to any
instance or signal name.

Propagation Rules
Applies to the entire design.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF Syntax
CONFIG STEPPING=”n”;

where

n is the target stepping level (ES, SCD1, 1, 2, 3, ...)

UCF Syntax Example
CONFIG STEPPING="1";

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 269

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=20947

Chapter 4: Xilinx Constraints

SUSPEND (Suspend)
The SUSPEND (Suspend) constraint:

• Defines the behavior of each individual output when the FPGA device is placed in
the SUSPEND power-reduction mode.

• May be placed on any output or bi-directional port to specify the port to be:

– tristated (3STATE) OR

– pulled high (3STATE_PULLUP) or low (3STATE_PULLDOWN) OR

– driven to the last value (3STATE_KEEPER or DRIVE_LAST_VALUE)

• Has a default value of 3STATE

Architecture Support
Applies to Spartan®-3A and Spartan-6 devices only.

Applicable Elements
Place this constraint only on a top-level output or bi-directional port targeting a
Spartan-3A device or a Spartan-6 device.

Propagation Rules
Place this constraint only on a top-level output or bi-directional port.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
• DRIVE_LAST_VALUE

• 3STATE

• 3STATE_PULLUP

• 3STATE_PULLDOWN

• 3STATE_KEEPER

Schematic Syntax
Specify a new attribute to an output port or bidirectional port:

• Attribute Name

SUSPEND

• Attribute Values

See Values section above.

Constraints Guide
270 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

VHDL Syntax
Before using this constraint, declare it with the following syntax placed after the
architecture declaration but before the begin statement in the top-level VHDL file:

attribute SUSPEND: string;

After the constraint has been declared, specify the VHDL constraint as follows:

attribute SUSPEND of {top_level_port_name} : signal is "value";

Example:

entity top is
port (STATUS: out std_logic);
end top;architecture MY_DESIGN of top is
attribute SUSPEND: string;
attribute SUSPEND of STATUS: signal is "DRIVE_LAST_VALUE";
begin

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the following attribute specification before the port declaration in the top-level
Verilog code:

(* SUSPEND="value" *)

Example:

module top ((* SUSPEND="DRIVE_LAST_VALUE" *) output STATUS);

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
Placed on an output or bi-directional port:

NET "top_level_port_name" SUSPEND="value";

Example:

NET "STATUS" SUSPEND="DRIVE_LAST_VALUE";

PACE Syntax
To set this constraint from the Pinout and Area Constraints Editor (PACE), select the
appropriate pin value from the Design Objects window.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 271

Chapter 4: Xilinx Constraints

SYSTEM_JITTER (System Jitter)
The SYSTEM_JITTER (System Jitter) constraint:
• Specifies the system jitter of the design.
• Depends on design conditions such as:

– the number of flip-flops changing at one time
– the number of I/Os changing

• Applies globally to all clocks in the design.
• Is combined with the INPUT_JITTER keyword on the PERIOD constraint, as well

as any jitter or phase error in the clock network, to generate the Clock Uncertainty
value that is shown in the timing report.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Applies to the entire design.

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
value is a numerical value. The default is ps.

Schematic Syntax
• Attach to a valid instance
• Attribute Name

SYSTEM_JITTER
• Attribute Values

See Values section above.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute SYSTEM_JITTER: string;

Specify the VHDL constraint as follows:

attribute SYSTEM_JITTER of {component_name | signal_name | entity_name |
label_name}: {component | signal | entity| label} is “value ps”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
272 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* SYSTEM_JITTER = “value ps” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
SYSTEM_JITTER= value ps;

XCF Syntax
MODEL “entity_name ” SYSTEM_JITTER = value ps;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 273

Chapter 4: Xilinx Constraints

TEMPERATURE (Temperature)
The TEMPERATURE (Temperature) constraint:
• Is a timing constraint.
• Allows the specification of the operating junction temperature.
• Provides a means of prorating device delay characteristics based on the specified

temperature.

Prorating is a scaling operation on existing speed file delays and is applied globally to
all delays. Newer devices may not support TEMPERATURE prorating until the timing
information (speed files) are marked as production status.

Each architecture has its own specific range of valid operating temperatures. If the
entered temperature does not fall within the supported range, TEMPERATURE is
ignored and an architecture-specific worst-case value is used instead. Also note that the
error message for this condition does not appear until static timing.

Architecture Support
• Spartan®-3A
• Spartan-3E
• Virtex®-4
• Virtex-5

Applicable Elements
Applies globally to the entire design.

Propagation Rules
This constraint is a design element constraint. Any attachment to a net is illegal.

Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
TEMPERATURE=value [C |F| K];

where

value
• is a real number specifying the temperature
• C, K, and F are the temperature units

– F is degrees Fahrenheit
– K is degrees Kelvin
– C is degrees Celsius (default)

The following statement specifies that the analysis for everything relating to speed file
delays assumes a junction temperature of 25 degrees Celsius.

TEMPERATURE=25 C;

Constraints Guide
274 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 275

Chapter 4: Xilinx Constraints

TIG (Timing Ignore)
The TIG (Timing Ignore) constraint:
• Is a timing constraint and a synthesis constraint.
• Causes paths that fan forward from the point of application (of TIG) to be treated as

if they do not exist (for the purposes of timing analysis) during implementation.
• Can be applied relative to a specific timing specification.
• Can have any of the following values:

– Empty (global TIG that blocks all paths)
– A single TSid to block
– A comma separated list of TSids to block, for example

• Is fully supported by XST.

Example

NET “RESET” TIG=TS_fast, TS_even_faster;

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
• Nets
• Pins
• Instances

Propagation Rules
If TIG is attached to a net, primitive pin, or macro pin, all paths that fan forward from the
point of application of the constraint are treated as if they do not exist for the purposes
of timing analysis during implementation. In the following figure:
• NET C is ignored
• The lower path of NET B that runs through the two OR gates is not ignored

TIG Example

Constraints Guide
276 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

The following constraint would be attached to a net to inform the timing analysis tools
that it should ignore paths through the net for specification TS43.

Schematic Syntax TIG = TS43

UCF Syntax NET “ net_name” TIG = TS43;

You cannot perform path analysis in the presence of combinatorial loops. Therefore,
the timing software ignores certain connections to break combinatorial loops. You can
use the TIG constraint to direct the timing tools to ignore specified nets or load pins,
consequently controlling how loops are broken.

Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Note TIG does not affect the timing reported at the bottom of the XST report. TIG
applies only to the timing reported by Timing Analyzer.

Schematic Syntax
• Attach to a net or pin
• Attribute Name

TIG
• Attribute Values

value

UCF and NCF Syntax
NET “ net_name” TIG;

PIN “ff_inst.RST” TIG=TS_1;

INST “instance_name ” TIG=TS_2;

TIG=TS identifier1 . . . TS identifiern

identifier refers to a timing specification that should be ignored

When attached to an instance, TIG is pushed to the output pins of that instance. When
attached to a net, TIG pushes to the drive pin of the net. When attached to a pin, TIG
applies to the pin.

The following statement specifies that the timing specifications TS_fast and
TS_even_faster is ignored on all paths fanning forward from the net RESET.

NET “RESET” TIG=TS_fast, TS_even_faster;

XST Constraint File (XCF) Syntax
The XST Constraint File (XCF) syntax is the same as the User Constraints File (UCF)
syntax.

XST fully supports the TIG constraint. TIG can be applied to the nets, situated in the
CORE files:
• Electronic Data Interchange Format (EDIF)
• Native Generic Database (NGD)

Constraints Editor Syntax
For information on Constraints Editor and Constraints Editor syntax in ISE® Design
Suite, see the ISE Design Suite Help.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 277

Chapter 4: Xilinx Constraints

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Physical Constraints File (PCF) Syntax
The basic Physical Constraints File (PCF) syntax is:

item TIG;

item TIG =;

item TIG = TSidentifier ;

where

item is one of the following:

• PIN name

• PATH name

• path specification

• NET name

• TIMEGRP name

• BEL name

• COMP name

• MACRO name

Constraints Guide
278 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

TIMEGRP (Timing Group)
The TIMEGRP (Timing Group) constraint:

• Uses the Timing Name (TNM) identifier to group design elements together for
timing analysis.

• Allows you to:

– Define groups in terms of other groups

– Create a group that is a combination of existing groups

– Place TIMEGRP constraints in a User Constraints File (UCF) or a Netlist
Constraints File (NCF)

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
• Design elements

• Nets

Propagation Rules
Applies to all elements or nets within the group.

Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Syntax Examples

Combining Multiple Groups into One
You can define a group by combining other groups.

Multiple Groups UCF Syntax Example One
The following syntax example illustrates the simple combining of two groups.

TIMEGRP “big_group”="small_group” “medium_group”;

In this syntax example, small_group and medium_group are existing groups defined using
a TNM or TIMEGRP attribute.

Multiple Groups UCF Syntax Example Two
A circular definition, as shown below, causes an error when you run your design
through NGCBuild:

TIMEGRP “many_ffs”=”ffs1” “ffs2”;

TIMEGRP “ffs1”=”many_ffs” “ffs3”;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 279

Chapter 4: Xilinx Constraints

Creating Groups by Exclusion
You can define a group that includes all elements of one group except the elements that
belong to another group, as illustrated by the following syntax examples.

Groups by Exclusion UCF Syntax Example One
TIMEGRP “group1”="group2" EXCEPT “group3”;

where

• group1 represents the group being defined. It contains all of the elements in group2
except those that are also in group3.

• group2 and group3 can be a:

– valid TNM

– predefined group

– TIMEGRP attribute

Groups by Exclusion UCF Syntax Example Two
As illustrated by the following example, you can specify multiple groups to include
or exclude when creating the new group.

TIMEGRP “group1”=” “group2” “group3” EXCEPT "group4" "group5";

The example defines a group1 that includes the members of group2 and group3, except for
those members that are part of group4 or group5. All of the groups before the keyword
EXCEPT are included, and all of the groups after the keyword are excluded.

Defining Flip-Flop Subgroups by Clock Sense
You can create subgroups using the RISING and FALLING keywords to group flip-flops
triggered by rising and falling edges.

Clock Sense UCF Syntax Example One
TIMEGRP “group1”=RISING FFS;

TIMEGRP “group2”=RISING “ffs_group”;

TIMEGRP “group3”=FALLING FFS;

TIMEGRP “group4”=FALLING “ffs_group”;

where

• group1 to group4 are the new groups being defined.

• The ffs_group must be a group that includes only flip-flops.

Although keywords (such as EXCEPT,RISING, and FALLING) appear in the
documentation in uppercase, you can enter them in either lowercase or uppercase. You
cannot enter them in a combination of lowercase and uppercase.

Clock Sense UCF Syntax Example Two
The following example defines a group of flip-flops that switch on the falling edge of
the clock.

TIMEGRP “falling_ffs”=FALLING FFS;

Constraints Guide
280 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Defining Latch Subgroups by Gate Sense
Groups of type LATCHES (no matter how these groups are defined) can be easily
separated into transparent high and transparent low subgroups. The TRANSHIand
TRANSLOkeywords are provided for this purpose and are used in TIMEGRP statements
like the RISING and FALLING keywords for flip-flop groups.

Gate Sense UCF Syntax Example One
TIMEGRP “lowgroup”=TRANSLO “latchgroup”;

TIMEGRP “highgroup”=TRANSHI “latchgroup”;

Creating Groups by Pattern Matching
When creating groups, you can use wildcard characters to define groups of symbols
whose associated net names match a specific pattern. This is typically used in schematic
designs where net names are specified, not instance names. Synthesis plans typically use
INST/TNM syntax. For more information, see Timing Name (TNM).

Using Wildcards to Specify Net Names
The following wildcard characters enable you to select a group of symbols whose output
net names match a specific string or pattern:

• Asterisk *

Represents any string of zero or more characters

• Question mark ?

Represents a single character

For example:

• DATA* specifies any net name that begins with DATA, such as:

– DATA

– DATA1

– DATA22

– DATABASE

• NUMBER? specifies any net name that begins with NUMBER and ends with one
single character, such as:

– NUMBER1

– NUMBERS

– but not

♦ NUMBER

♦ NUMBER12

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 281

Chapter 4: Xilinx Constraints

You can also specify more than one wildcard character. For example:

• *AT? specifies any net name that:

– Begins with any series of characters followed by AT

– Ends with any one character, such as

♦ BAT1

♦ CAT2

♦ THAT5

• *AT* specifies any net name that:

– Begins with any series of characters followed by AT

– Ends with any series of characters, such as

♦ BAT11

♦ CAT26

♦ THAT50

Wildcards UCF Syntax Example One
The syntax for creating a group using pattern matching is:

TIMEGRP “group_name”=predefined_group(“pattern”);

where

• predefined_group can be one of the following predefined groups only:

– FF

– LATCH

– PAD

– RAM

– HSIOS

– DSP

– BRAM_PORTA

– BRAM_PORTB

– MULT

For the definitions of these groups, see UCF and NCF Syntax in Timing Name Net
(TNM_NET).

Note The use of the predefined type MULTS would not be correct if multipliers are
not available in the architecture.

• pattern is any string of characters used in conjunction with one or more wildcard
characters.

Constraints Guide
282 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

When specifying a net name, you must use its full hierarchical path name so PAR can
find the net in the flattened design.
• For the following, specify the output net name:

– FF
– RAM
– LATCH
– PAD
– CPU
– DSP
– HSIOS
– MULT

• For pads, specify the external net name.

Wildcards UCF Syntax Example Two
The following example illustrates a group that includes the flip-flops that source nets
whose names begin with $1I3/FRED.

TIMEGRP “group1”=FFS(“$1I3/FRED*”);

Wildcards UCF Syntax Example Three
The following example illustrates a group that excludes certain flip-flops whose output
net names match the specified pattern.

TIMEGRP “this_group”=FFS EXCEPT FFS(“a*”);

where
this_group includes all flip-flops except those whose output net names begin with the
letter

Wildcards UCF Syntax Example Four
The following example defines a group named some_latches.

TIMEGRP “some_latches”=latches(“$113/xyz*”);

where
the group some_latches contains all input latches whose output net names start with
$1I3/xyz.

Additional Pattern Matching Information
In addition to using pattern matching when you create timing groups, you can specify a
predefined group qualified by a pattern any place you specify a predefined group. The
syntax below illustrates how pattern matching can be used within a timing specification.

Pattern Matching UCF Syntax Example One
TIMESPEC “TSidentifier”=FROM predefined_group(“pattern”) TO
predefined_group(“pattern”) value;

Pattern Matching UCF Syntax Example Two
Instead of specifying one pattern, you can specify a list of patterns separated by a colon.

TIMEGRP “some_ffs”=FFS(“a*:b?:c*d”);

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 283

Chapter 4: Xilinx Constraints

where
The group some_ffs contains flip-flops whose output net names adhere to one of the
rules shown in the following table.

Pattern Meaning
a* Starts with a

b? Contains two characters, the first of which is b

c*d Starts with c and ends with d

Defining Area Groups Using Timing Groups
For more information, see Defining From Timing Groups in the Area Group
(AREA_GROUP) constraint.

Timing Groups UCF Syntax Example One
TIMEGRP “newgroup"="existing_grp1" "existimg_grp2" ["existing_grp3" ...];

where
newgroup is a newly created group that consists of:
– existing groups created via TNMs
– predefined groups
– other TIMEGRP attributes

Timing Groups UCF Syntax Example Two
TIMEGRP “GROUP1” = “gr2” “GROUP3”;

TIMEGRP “GROUP3” = FFS except “grp5”;

XCF Syntax
XST supports TIMEGRP with the following limitations:
• Groups Creation by Exclusion is not supported
• When a group is defined on the basis of another user group with pattern matching:

– TIMEGRP TG1 = FFS (machine*);
Supported

– TIMEGRP TG2 = TG1 (machine_clk1*);
Not supported

Constraints Editor Syntax
For information on Constraints Editor and Constraints Editor syntax in ISE® Design
Suite, see the ISE Design Suite Help.

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:
• Defining placement constraints
• Assigning placement constraints
• Defining I/O pin configurations
• Floorplanning and placement constraints

Constraints Guide
284 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

PCF Syntax
TIMEGRP name;

TIMEGRP name = list of elements;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 285

Chapter 4: Xilinx Constraints

TIMESPEC (Timing Specifications)
The TIMESPEC (Timing Specifications) constraint:
• Is a basic timing related constraint
• Serves as a placeholder for timing specifications, which are called TS attribute

definitions.
Every TS attribute:
• Begins with the letters TS
• Ends with a unique identifier that can consist of:

– letters
– numbers
– the underscore character (_)

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
TS identifiers

Propagation Rules
Not applicable.

Constraint Syntax
The value parameter defines the maximum delay for the attribute. Nanoseconds are the
default units for specifying delay time in TS attributes. You can also specify delay using
other units, such as picoseconds or megahertz.

Keywords, such as FROM,TO, andTS, appear in the documentation in uppercase.
However, you can enter them in the TIMESPEC primitive in either uppercase or
lowercase. The characters in the keywords must be all uppercase or all lowercase.
Examples of acceptable keywords are:
• FROM

• PERIOD

• TO

• from

• to

Examples of unacceptable keywords are:
• From

• To
• fRoM

• tO

TSidentifier name
If a TSidentifier name is referenced in a property value, it must be entered in uppercase
letters. For example, the TSID1 in the second constraint below must be entered in
uppercase letters to match the TSID1 name in the first constraint.

Constraints Guide
286 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

TIMESPEC “TSID1” = FROM “gr1” TO “gr2” 50;

TIMESPEC “TSMAIN” = FROM “here” TO “there” TSID1 /2;

Separators
A colon may be used as a separator instead of a space in all timing specifications.

FROM-TO Syntax
Use the following User Constraints File (UCF) syntax to specify timing requirements
between specific end points.

TIMESPEC “TSidentifier”=FROM “source_group” TO “dest_group” value units;

TIMESPEC “TSidentifier”=FROM “source_group” value units;

TIMESPEC “TSidentifier”=TO “dest_group” value units;

Unspecified FROMor TO, as in the second and third syntax statements, implies all points.

Note Although you can use a FROMor TOstatement to imply all points, you cannot use
an unspecified THRUstatement by itself to imply all points.

The From-To statements are TS attributes that reside in the TIMESPEC primitive. The
parameters source_group and dest_groupmust be one of the following:
• Predefined groups
• Previously created TNM identifiers
• Groups defined in TIMEGRP symbols
• TPSYNC groups

Predefined groups consist of:
• FF

• LATCH

• RAM

• PAD

• CPU

• DSP

• HSIO

• BRAM_PORTA

• BRAM_PORTB

• MULT

These groups are defined in the UCF and NCF Syntax section in the TNM_NET
constraint, and are discussed in Grouping Constraints of the Constraints Type chapter.

Keywords, such as FROM,TO, andTS appear in the documentation in uppercase.
However, you use them in TIMESPEC in either uppercase or lowercase. You cannot
enter them in a combination of lowercase and uppercase.

The value parameter defines the maximum delay for the attribute. Nanoseconds are the
default units for specifying delay time in TS attributes. You can also specify delay using
other units, such as picoseconds or megahertz.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 287

Chapter 4: Xilinx Constraints

TIMESPEC Examples of FROM-TO TS Attributes
UCF and NCF Syntax -

TIMESPEC “TS_master”=PERIOD “master_clk” 50 HIGH 30;

TIMESPEC “TS_THIS”=FROM FFS TO RAMS 35;

TIMESPEC “TS_THAT”=FROM PADS TO LATCHES 35;

UCF Syntax Examples
A TS attribute defines the allowable delay for paths in your design. The basic syntax
for a TS attribute is:

TIMESPEC "TSidentifier"=PERIOD "timegroup_name" value [units];

where

• TSidentifier is a unique name for the TS attribute

• value is a numerical value

• units can be ms, micro, ps, ns

TIMESPEC "TSidentifier"=PERIOD "timegroup_name" "TSidentifier" [* or /] factor PHASE
[+ |-] phase_value [units];

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
288 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

TNM (Timing Name)
TNM (Timing Name) is a basic grouping constraint. Use TNM to identify the elements
that make up a group which you can then use in a timing specification.

TNM tags specific FF, RAM, LATCH, PAD, CPU, HSIOS andMULT elements as
members of a group to simplify the application of timing specifications to the group.

The RISING and FALLING keywords may also be used with TNM.

A TNM based upon a PAD name that is associated with a Partition is not supported. A
TNM based upon a net name within a Partition is supported.

TNM and TNM_NET

Placing TNM on a net groups together flip-flops, latches, RAM, or pads driven by
that net.

TNM does not propagate through IBUF or BUFG components. The TNM will end up
on the input pad.

Alternatively, the TNM_NET attribute does propagate through IBUF and global clock
buffers.

Xilinx® recommends:

• Use TNM to group instances and macros (hierarchical blocks)

• To group input pads, use a TNM on the net, driven by a pad.

• Use TNM_NET to group several (many) logic elements driven by a net, such as
clocks, clock enables, chip enables, read/writes, and resets.

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
You can attach TNM to a net, an element pin, a primitive, or a macro.

You can attach TNM to the net connected to the pad component in a User Constraints
File (UCF) file. NGCBuild transfers the constraint from the net to the pad instance in the
NGDBuild file so that it can be processed by the mapper. Use the following UCF syntax:

NET “net_name” TNM=”property_value”;

Propagation Rules
When attached to a net or signal, TNM propagates to all synchronous elements and
PADS driven by that net. No special propagation is required.

When attached to a design element, TNM propagates to all applicable elements in the
hierarchy within the design element.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 289

Chapter 4: Xilinx Constraints

The following rules apply to TNM.
• TNM applied to pad nets does not propagate forward through IBUFs. The TNM is

applied to the external pad. This case includes the net attached to the D input of
an IFD. See Timing Name Net (TNM_NET) if you want the TNM to trace forward
from an input pad net.

• TNM applied to an IBUF instance is illegal.
• TNM applied to the output pin of an IBUF propagates the TNM to the next

appropriate element.
• TNM applied to an IBUF element stays attached to that element.
• TNM applied to a clock-pad-net does not propagate forward through the clock

buffer.
• When TNM is applied to a macro, all the elements in the macro have that timing

name.

Placing TNM on Nets

You can place TNM on any net in the design. The constraint indicates that the TNM
value should be attached to all valid elements fed by all paths that fan forward from the
tagged net. Forward tracing stops at FFS, RAMS, LATCHES, PADS, CPUS, HSIOS, and
MULTS. TNM does not propagate across IBUFs if they are attached to the input pad net.

Placing TNM on Macro or Primitive Pins

You can place TNM on any component pin in the design if the design entry package
allows placement of constraints on primitive pins. The constraint indicates that the
TNM value should be attached to all valid elements fed by all paths that fan forward
from the tagged pin. Forward tracing stops at FFS, RAMS, LATCHES, PADS, CPUS,
HSIOS, and MULTS.

The syntax for the UCF file is:

PIN “pin_name” TNM=”FLOPS”;

Placing TNM on Primitive Symbols

You can group individual logic primitives explicitly by placing a constraint on each
instance.

The flip-flops tagged with TNM form a group called FLOPS. The untagged flip-flops
are not part of the group. See the UCF syntax example.

Place only one TNM on each symbol, driver pin, or macro driver pin.

UCF Syntax

INST “instance_name” TNM=FLOPS;

Placing TNM on Nets or Pins to Group Flip-Flops and Latches

You can easily group flip-flops, latches, or both by flagging a common input net,
typically either a clock net or an enable net. If you attach a TNM to a net or driver pin,
that TNM applies to all flip-flops and input latches that are reached through the net or
pin. That is, that path is traced forward, through any number of gates or buffers, until it
reaches a flip-flop or input latch. That element is added to the specified TNM group.

The TNM parameter on nets or pins is allowed to have a qualifier. For example, in
UCF files:

{NET|PIN} "net_or_pin_name" TNM=FFS data;

{NET|PIN} "net_or_pin_name" TNM=RAMS fifo;

{NET|PIN} "net_or_pin_name" TNM=RAMS capture;

Constraints Guide
290 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

A qualified TNM is traced forward until it reaches the first storage element (FFS, RAMS,
LATCHES, PADS, CPUS, HSIOS, and MULTS). If that type of storage element matches
the qualifier, the storage element is given that TNM value. Whether or not there is a
match, the TNM is not traced through that storage element.

TNM parameters on nets or pins are never traced through a storage element (FFS,
RAMS, LATCHES, PADS, CPUS, HSIOS, and MULTS).

TNM Syntax
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
{NET|INST|PIN} "net_or_pin_or_inst_name " TNM= [predefined_group] identifier ;

where

• predefined_group can be:

– All of the members of a predefined group using the keywords FFS, RAMS,
LATCHES, PADS, CPUS, HSIOS, and MULTS as follows:

♦ FFS refers to all CLB and IOB flip-flops. Flip-flops built from function
generators are not included.

♦ RAMS refers to all RAMs for architectures with RAMS. This includes LUT
RAMS and BLOCK RAMS.

♦ PADS refers to all I/O pads.

♦ LATCHES refers to all CLB or IOB latches. Latches built from function
generators are not included.

♦ MULTS group the Spartan®-3, Spartan-3A, and Spartan-3E registered
multiplier.

– A subset of elements in a predefined_group can be defined as follows:

predefined_group (name_qualifier1... name_qualifiern)

where

name_qualifiern can be any combination of letters, numbers, or underscores. The
name_qualifier type (net or instance) is based on the element type that TNM is
placed on. If the TNM is on a NET, the name_qualifier is a net name. If the TNM
is an instance (INST), the name_qualifier is an instance name.

Example

NET clk TNM = FFS (my_flop) Grp1;

INST clk TNM = FFS (my_macro) Grp2;

• identifier can be any combination of letters, numbers, or underscores.

identifier cannot be any the following reserved words: FFS, RAMS, LATCHES, PADS,
CPUS, HSIOS, MULTS, RISING, FALLING, TRANSHI, TRANSLO, or EXCEPT.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 291

Chapter 4: Xilinx Constraints

Do not use the reserved words in the table below as identifier.

Reserved Words (Constraints)
ADD ALU ASSIGN

BEL BLKNM CAP

CLKDV_DIVIDE CLBNM CMOS

CYMODE DECODE DEF

DIVIDE1_BY DIVIDE2_BY DOUBLE

DRIVE DUTY_CYCLE_CORRECTION FAST

FBKINV FILE F_SET

HBLKNM HU_SET H_SET

INIT INIT OX INTERNAL

IOB IOSTANDARD LIBVER

LOC LOWPWR MAP

MEDFAST MEDSLOW MINIM

NODELAY OPT OSC

RES RLOC RLOC_ORIGIN

RLOC_RANGE SCHNM SLOW

STARTUP_WAIT SYSTEM TNM

TRIM TS TTL

TYPE USE_RLOC U_SET

You can specify as many groups of end points as are necessary to describe the
performance requirements of your design. However, to simplify the specification
process and reduce the Place and Route (PAR) time, use as few groups as possible.

XCF Syntax
See UCF and NCF Syntax below.

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

PlanAhead Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
292 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

TNM_NET (Timing Name Net)
The TNM_NET (Timing Name Net) constraint:
• Is a basic grouping constraint.
• Identifies the elements that make up a group, which can then be used in a timing

specification.
• Is essentially equivalent to Timing Name (TNM) on a net except for input pad nets

Special rules apply when using Timing Name (TNM) with Period (PERIOD) for
DLL, DCM, PLL, and MMCM. For more information, see PERIOD Specifications on
CLKDLLs, DCMs, PLLs, and MMCM.

A TNM_NET is a property normally used in conjunction with an HDL design to
tag a specific net. All downstream synchronous elements and pads tagged with the
TNM_NET identifier are considered a group.

TNM_NET tags specific synchronous elements, pads, and latches as members of a group
to simplify the application of timing specifications to the group. NGCBuild never
transfers a Timing Name (TNM) constraint from the attached net to an input pad, as it
does with Timing Name (TNM).

TNM and TNM_NET

Placing TNM on a net groups together flip-flops, latches, RAM, or pads driven by
that net.

TNM does not propagate through IBUF or BUFG components. The TNM will end up
on the input pad.

Alternatively, the TNM_NET attribute does propagate through IBUF and global clock
buffers.

Xilinx® recommends:
• Use TNM to group instances and macros (hierarchical blocks)
• To group input pads, use a TNM on the net, driven by a pad.
• Use TNM_NET to group several (many) logic elements driven by a net, such as

clocks, clock enables, chip enables, read/writes, and resets.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Nets

Rules
The following rules apply to TNM_NET:
• TNM_NET constraints applied to pad nets propagate forward through the IBUF or

OBUF and any other combinatorial logic to synchronous logic or pads.
• TNM_NET constraints applied to a clock-pad-net propagate forward through the

clock buffer.
• Special rules apply when using TNM_NET with Period (PERIOD) for Virtex®-4

and Virtex-5 DLLs, DCMs, and PLLs.

Use TNM_NET to define certain types of nets that cannot be adequately described
by the Timing Name (TNM) constraint.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 293

Chapter 4: Xilinx Constraints

For example, consider the following design

TNM Associated with the IPAD

In the preceding design, a Timing Name (TNM) constraint associated with the IPAD
symbol includes only the PAD symbol as a member in a timing analysis group. For
example, the following UCF file entry creates a time group that includes the IPAD
symbol only.

NET “PADCLK” TNM= “PADGRP”; (UCF file example)

However, using Timing Name (TNM) to define a time group for the net PADCLK
creates an empty time group.

NET “PADCLK” TNM=FFS “FFGRP”;(UCF file example)

All properties that apply to a pad are transferred from the net to the PAD symbol. Since
the TNM is transferred from the net to the PAD symbol, the qualifier, “FFS” does not
match the PAD symbol.

To overcome this obstacle for schematic designs using Timing Name (TNM), you can
create a time group for the INTCLK net.

NET “INTCLK” TNM=FFS FFGRP;(UCF file example)

However, for HDL designs, the only meaningful net names are the ones connected
directly to pads. Then, use TNM_NET to create the FFGRP time group.

NET PADCLK TNM_NET=FFS FFGRP;(UCF file example)

NGDBuild does not transfer a TNM_NET constraint from a net to an IPAD as it does
with TNM.

You can use TNM_NET in Netlist Constraints File (NCF) or User Constraints File (UCF)
files as a property attached to a net in an input netlist (EDIF or NGC). TNM_NET is not
supported in PCF files.

You can use TNM_NET with nets or instances. If TNM_NET is used with any other
object such as a pin or symbol, a warning is generated and the TNM_NET definition is
ignored.

Propagation Rules
It is illegal to attach TNM_NET to a design element.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Constraints Guide
294 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Schematic Syntax
• Attach to a net
• Attribute Name

TNM_NET
• Attribute Values identifier

For a list of the constraint values, see the UCF and NCF Syntax section below.

UCF and NCF Syntax
{NET|INST} “net_name” TNM_NET=[predefined_group:]identifier;
• predefined_group can be:

– All of the members of a predefined group using the following keywords:
♦ FF
♦ LATCH
♦ PAD
♦ RAM
♦ HSIOS
♦ DSP
♦ BRAM_PORTA
♦ BRAM_PORTB
♦ MULT
♦ FFS refers to all CLB and IOB flip-flops. Flip-flops built from function

generators are not included.
♦ RAMS refers to all RAMs for architectures with RAMS. This includes LUT

RAMS and BLOCK RAMS.
♦ PADS refers to all I/O pads.
♦ MULTS group the Spartan®-3, Spartan-3A, and Spartan-3E registered

multiplier.
♦ DSPS is used to group DSP elements like the Virtex-4 DSP48.
♦ LATCHES refers to all CLB or IOB latches. Latches built from function

generators are not included.
– A subset of elements in a predefined_group can be defined as follows:

predefined_group (name_qualifier1... name_qualifiern)
where
name_qualifiern can be any combination of letters, numbers, or underscores. The
name_qualifier type (net or instance) is based on the element type that TNM_NET
is placed on. If the TNM_NET is on a NET, the name_qualifier is a net name. If
the TNM_NET is an instance (INST), the name_qualifier is an instance name.
Example
NET clk TNM_NET = FFS (my_flop) Grp1;
INST clk TNM_NET = FFS (my_macro) Grp2;

• identifier can be any combination of letters, numbers, or underscores.

The identifier cannot be any the following reserved words: FFS, RAMS, LATCHES,
PADS, CPUS, HSIOS, MULTS, RISING, FALLING, TRANSHI, TRANSLO, or EXCEPT.

In addition, do not use the reserved words shown in the TNM (Timing Name) constraint
Reserved Words table as identifier.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 295

Chapter 4: Xilinx Constraints

The following statement identifies all flip-flops fanning out from the PADCLK net as a
member of the timing group GRP1.

NET “PADCLK” TNM_NET=FFS ”GRP1”;

XCF Syntax
XST supports TNM_NET with the following limitation: only a single pattern supported
for predefined groups.

The following command syntax is supported:

NET “PADCLK” TNM_NET=FFS ”GRP1”;

The following command syntax is not supported:

NET “PADCLK” TNM_NET = FFS(machine/*:xcounter/*) TG1;

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

PlanAhead™ Syntax
For more information about using the PlanAhead software to create constraints, see
Floorplanning the Design in the PlanAhead User Guide (UG632). See PlanAhead in this
Guide for information about:

• Defining placement constraints

• Assigning placement constraints

• Defining I/O pin configurations

• Floorplanning and placement constraints

Constraints Guide
296 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

TPSYNC (Timing Point Synchronization)
The TPSYNC (Timing Point Synchronization) constraint:

• Is a grouping constraint.

• Flags a particular point or a set of points with an identifier for use in subsequent
timing specifications. If you use the same identifier on several points, timing
analysis treats the points as a group

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
• Nets

• Instances

• Pins

Propagation Rules
When the timing of a design must be designed from or to a point that is not a
synchronous element or I/O pad, the following rules apply if a TPSYNC timing point is
attached to any of the following.

• Net

The source of the net is identified as a potential source or destination for timing
specifications.

• Macro pin

All of the sources inside the macro that drive the pin to which the constraint is
attached are identified as potential sources or destinations for timing specifications.
If the macro pin is an input pin (that is, if there are no sources for the pin in the
macro), then all of the load pins in the macro are flagged as synchronous points.

• The output pin of a primitive

The output is flagged as a potential source or destination for timing specifications.

• The input pin of a primitive

The input of the primitive is flagged as a potential source or destination for timing
specifications.

• An instance

The output of that element is identified as a potential source or destination for
timing specifications.

• A primitive symbol

Attached to a primitive symbol, TPSYNC identifies the outputs of that element as a
potential source or destination for timing specifications. See the following figure.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 297

Chapter 4: Xilinx Constraints

TPSYNC Attached to Macro Pins
POINTY applies to the inverter.

TPSYNC Attached to a Primitive Symbol

Working with Two Gates
Using a TPSYNC timing point to define a synchronous point in a design implies that
the flagged point cannot be merged into a function generator. For example, in the
following diagram, because of the TPSYNC definition, the two gates cannot be merged
into a single function generator.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
identifier is a name that is used in timing specifications in the same way that groups
are used

Schematic Syntax
• Attached to a net, instance, or pin
• Attribute Name

TPSYNC
• Attribute Values

See Values section above.

Constraints Guide
298 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

UCF and NCF Syntax
NET “net_name” TPSYNC=identifier;

INST “instance_name” TPSYNC=identifier;

PIN “pin_name” TPSYNC=identifier;

All flagged points are used as a source or destination or both for the specification where
the TPSYNC identifier is used.

The name for the identifier must be unique to any identifier used for a TNM or
TNM_NET grouping constraint.

The following statement identifies latch as a potential source or destination for timing
specifications for the net logic_latch.

NET “logic_latch” TPSYNC=latch;

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 299

Chapter 4: Xilinx Constraints

TPTHRU (Timing Thru Points)
The TPTHRU (Timing Thru Points) constraint:
• Is a grouping constraint.
• Flags a particular point or set of points with an identifier for reference in subsequent

timing specifications.

Note If you use the same identifier on several points, timing analysis treats the
points as a group. For more information, see TIMESPEC (Timing Specifications).

• Defines intermediates points on a path to which a specification applies.
For more information, see TSidentifier (Timing Specification Identifier).

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
• Nets
• Pins
• Instances

Propagation Rules
Not applicable

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a net, instance, or pin
• Attribute Name

TPTHRU
• Attribute Values

identifier
For more information, see UCF and NCF Syntax below.

UCF and NCF Syntax
NET “net_name” TPTHRU=identifier;

INST “instance_name” TPTHRU=identifier;

PIN “instance_name.pin_name” TPTHRU=”thru_group_name”;

where
identifier is used in timing specifications to further qualify timing paths within a design.

The identifier name must be different from any identifier used for a TNM constraint.

Constraints Guide
300 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Using TPTHRU in a FROM TO Constraint
It is sometimes convenient to define intermediate points on a path to which a
specification applies. This defines the maximum allowable delay and has the syntax
shown in the following sections.

UCF Syntax with TIMESPEC
TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_point” [THRU
“thru_point”] TO “dest_group” allowable_delay [units];

TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_point” [THRU
“thru_point”] allowable_delay [units];

where

• identifier is an ASCII string made up of the characters A..Z, a..z, 0..9, and underscore
(_)

• source_group and dest_group are user-defined groups, predefined groups or TPSYNCs

• thru_point is an intermediate point used to qualify the path, defined using a
TPTHRU constraint

• allowable_delay is the timing requirement

• units is an optional field to indicate the units for the allowable delay. Default units
are nanoseconds, but the timing number can be followed by ps, ns, micro, ms, GHz,
MHz, or KHz to indicate the intended units.

The example shows how to use the TPTHRU constraint with the THRU constraint on a
schematic. The UCF syntax is as follows.

INST “FLOPA” TNM=”A”;

INST “FLOPB” TNM=”B”;

NET “MYNET” TPTHRU=”ABC”;

TIMESPEC “TSpath1”=FROM “A” THRU “ABC” TO “B” 30;

The following statement identifies the net on_the_way as an intermediate point on a
path to which the timing specification named “here” applies.

NET “on_the_way” TPTHRU=”here”;

Note The following NCF construct is not supported.

TIMESPECT “TS_1”=THRU “Thru_grp” 30.0

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

PCF Syntax
PATH "name"=FROM "source" THRU "thru_pt1" THRU "thru_ptn" TO "destination";

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 301

Chapter 4: Xilinx Constraints

You are not required to have a FROM, THRU, and TO. You can have almost any
combination, such as:

• FROM-TO

• FROM-THRU-TO

• THRU-TO

• TO

• FROM

• FROM-THRU-THRU-THRU-TO

• FROM-THRU

There is no restriction on the number of THRU points. The source, THRU points, and
destination can be a net, bel, comp, macro, pin, or timegroup.

Constraints Guide
302 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

TSidentifier (Timing Specification Identifier)
TSidentifier (Timing Specification Identifier) is a basic timing constraint. TSidentifier
properties beginning with the letters TS are used with the TIMESPEC in a User
Constraints File (UCF). The value of TSidentifier corresponds to a specific timing
specification that can then be applied to paths in the design.

Architecture Support
Applies to all FPGA devices and all CPLD devices.

Applicable Elements
TIMESPEC keywords

Propagation Rules
It is illegal to attach TSidentifier to a net, signal, or design element.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
All the following syntax definitions use a space as a separator. The use of a colon as
a separator is optional.

Defining a Maximum Allowable Delay
TIMESPEC “TSidentifier”=FROM “source_group” TO “dest_group” allowable_delay [units];

Defining Intermediate Points (UCF)
TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_point” [THRU
“thru_point1”... “thru_pointn”] TO “dest_group” allowable_delay [units];

where
• identifier is an ASCII string made up of the characters A-Z, a-z, 0-9, and _
• source_group and dest_group are user-defined or predefined groups
• thru_point is an intermediate point used to qualify the path, defined using a

TPTHRU constraint
• allowable_delay is the timing requirement value
• units is an optional field to indicate the units for the allowable delay. The default

units are nanoseconds (ns), but the timing number can be followed by ps, ns, micro,
ms, GHz, MHz, or kHz to indicate the intended units.

Defining a Linked Specification
This allows you to link the timing number used in one specification to another
specification.

TIMESPEC “TSidentifier”=FROM “source_group” TO “dest_group” another_TSid [/ |
*] number;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 303

Chapter 4: Xilinx Constraints

where

• identifier is an ASCII string made up of the characters A-Z, a-z, 0-9, and _

• source_group and dest_group are user-defined or predefined groups

• another_Tsid is the name of another timespec

• number is a floating point number

Defining a Clock Period
This allows more complex derivative relationships to be defined as well as a simple
clock period.

TIMESPEC “TSidentifier”=PERIOD “TNM_reference” value [units] [{HIGH | LOW}
[high_or_low_time [hi_lo_units]]] INPUT_JITTER value;

where

• identifier is a reference identifier with a unique name

• TNM_reference is the identifier name attached to a clock net (or a net in the clock
path) using a TNM constraint

• value is the required clock period

• units is an optional field to indicate the units for the allowable delay. The default
units are nanoseconds (ns), but the timing number can be followed by micro, ms, ps,
ns, GHz, MHz, or kHz to indicate the intended units

• HIGH or LOW can be optionally specified to indicate whether the first pulse is
to be High or Low

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, micro,
ms, ns or % if the High or Low time is an actual time measurement.

Specifying Derived Clocks
TIMESPEC “TSidentifier”=PERIOD “TNM_reference” “another_PERIOD_identifier” [/ | *]
number [{HIGH | LOW} [high_or_low_time [hi_lo_units]]] INPUT_JITTER value;

where

• TNM_reference is the identifier name attached to a clock net (or a net in the clock
path) using a TNM constraint

• another_PERIOD_identifier is the name of the identifier used on another period
specification

• number is a floating point number

• HIGH or LOW can be optionally specified to indicate whether the first pulse is
to be High or Low

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, micro,
ms, or % if the High or Low time is an actual time measurement.

Constraints Guide
304 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Ignoring Paths
Note This form is not supported for CPLD devices.

There are situations in which a path that exercises a certain net should be ignored
because all paths through the net, instance, or instance pin are not important from a
timing specification point of view.

TIMESPEC “TSidentifier”=FROM “source_group” TO “dest_group” TIG;

or

TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_point” [THRU
“thru_point1”... “thru_pointn”] TO “dest_group” TIG;

where

• identifier is an ASCII string made up of the characters A-Z, a-z 0-9, and _

• source_group and dest_group are user-defined or predefined groups

• thru_point is an intermediate point used to qualify the path, defined using a
TPTHRU constraint

The following statement says that the timing specification TS_35 calls for a maximum
allowable delay of 50 ns between the groups here and there.

TIMESPEC “TS_35”=FROM “here” TO “there” 50;

The following statement says that the timing specification TS_70 calls for a 25 ns clock
period for clock_a, with the first pulse being High for a duration of 15 ns.

TIMESPEC “TS_70”=PERIOD “clock_a” 25 high 15;

For more information, see Logical Constraints and Physical Constraints in Chapter 2,
“Constraint Types.”

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

Clock period constraints are entered using the Clock Domains entry. Input setup time
is entered using the Inputs entry. Clock-to-output delay is entered using the Outputs
entry. Pad-to-pad delays are entered using the Exceptions > Paths category.

PCF Syntax
The same as the UCF syntax without the TIMESPECkeyword.

FPGA Editor Syntax
For information on setting constraints in FPGA Editor, including syntax, see the FPGA
Editor Help.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 305

Chapter 4: Xilinx Constraints

U SET (U_SET)
The U_SET (U SET) constraint:
• Is an advanced mapping constraint.
• Groups design elements with attached RLOC constraints that are distributed

throughout the design hierarchy into a single set.
The elements that are members of a U_SET can cross the design hierarchy. You can
arbitrarily select objects without regard to the design hierarchy and tag them as
members of a U_SET. For more information, see RLOC Sets.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
This constraint may be used with an FPGA device in one or more of the following design
elements, or categories of design elements. Not all devices support all elements. To see
which design elements can be used with which devices, see the Libraries Guides. For
more information, see the device data sheet.

• Registers
• Macro Instance
• FMAP
• ROM
• RAMS
• RAMD
• BUFT
• MULT18X18S
• RAMB4_Sm_Sn
• RAMB4_Sn
• RAMB16_Sm_Sn
• RAMB16_Sn
• RAMB16
• DSP48

Propagation Rules
This constraint is a macro constraint. Any attachment to a net is illegal.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a valid instance
• Attribute Name: U_SET
• Attribute Values: name

where
name is the identifier of the set

Constraints Guide
306 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

VHDL Syntax
Declare the VHDL constraint as follows:

attribute U_SET: string;

Specify the VHDL constraint as follows:

attribute U_SET of {component_name |label_name}: {component|label} is name;

where

name is the identifier of the set

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* U_SET = name *)

where

name is the identifier of the set

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST "instance_name" U_SET= name;

where

name is the identifier of the set

This name is absolute. It is not prefixed by a hierarchical qualifier.

The following statement specifies that the design element ELEM_1 be in a set called
JET_SET.

INST "$1I3245/ELEM_1" U_SET=JET_SET;

XCF Syntax
BEGIN MODEL entity_name

INST "instance_name" U_SET=uset_name;

END;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 307

Chapter 4: Xilinx Constraints

Use Internal VREF (USE_INTERNAL_VREF)
The Use Internal Vref (USE_INTERNAL_VREF) constraint:
• Provides a means of assigning a voltage value to the internal Vref feature for a

given IO bank.
• Frees the Vref pins of IO banks from their function of providing a voltage reference.
• Allows you to specify the Vref pins for either Vref or an alternative use.

Architecture Support
Applies to Virtex®-6 devices only.

Applicable Elements
This constraint can be specified for an instance, comp or net.

Propagation Rules
USE_INTERNAL_VREF is illegal when attached to a net except when the net is
connected to a pad. In this case, USE_INTERNAL_VREF is treated as attached to the
pad instance. When attached to a design element, USE_INTERNAL_VREF applies to
the entity to which it is attached.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
• TRUE

Turns on the constraint for a specific element
• FALSE

Turns off the constraint for a specific element
• DONT_CARE

Allows the tools to determine the use of the Vref pin

Schematic Syntax
• Attribute Name

USE_INTERNAL_VREF
• Attribute Values

See Values section above.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* USE_INTERNAL_VREF = “{TRUE|FALSE|DONT_CARE}” *)

The default is DONT_CARE.

For more information about basic Verilog syntax, see Verilog Attributes.

Constraints Guide
308 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

UCF and NCF Syntax
INST “instance_name” USE_INTERNAL_VREF={TRUE|FALSE|DONT_CARE};

The default is TRUE.

XCF Syntax
MODEL “entity_name” use_internal_vref ={true|false|dont_care}

The default is TRUE.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 309

Chapter 4: Xilinx Constraints

USE_LUTNM (Use LUTNM)
The USE_LUTNM (Use LUTNM) constraint:

• Is an advanced mapping and placement constraint.

• Turns LUTNM (Lookup Table Name) on or off for a specific element or section
of a set.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Applies to instances or macros that are members of sets.

Propagation Rules
It is illegal to attach USE_LUTNM to a net.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
• TRUE

Turns on the constraint for a specific element
• FALSE

Turns off the constraint for a specific element

The default is TRUE.

Schematic Syntax
• Attach to a member of a set

• Attribute Name

USE_LUTNM

• Attribute Values

See Values section above.

VHDL Syntax
Declare the VHDL constraint as follows:

attribute USE_LUTNM: string;

Specify the VHDL constraint as follows:

attribute USE_LUTNM of entity_name: entity is “{TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
310 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* USE_LUTNM = “{TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST “instance_name” USE_LUTNM={TRUE|FALSE};

XCF Syntax
MODEL “entity_name” use_lutnm={true|false};

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 311

Chapter 4: Xilinx Constraints

USE_RLOC (Use Relative Location)
The USE_RLOC (Use Relative Location) constraint:
• Is an advanced mapping and placement constraint.
• Turns RLOC on or off for a specific element or section of a set.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
Applies to instances or macros that are members of sets.

Propagation Rules
It is illegal to attach USE_RLOC to a net. When attached to a design element, U_SET
propagates to all applicable elements in the hierarchy within the design element.

Using the USE_RLOC Constraint to Control RLOC Application on
H_SET and HU_SET Sets

Applying USE_RLOC on U_SET sets is a special case because of the lack of hierarchy
in the U_SET set. Because USE_RLOC propagates strictly in a hierarchical manner, the
members of a U_SET set that are in different parts of the design hierarchy must be
tagged separately with USE_RLOC. No single USE_RLOC constraint is propagated to
all the members of the set that lie in different parts of the hierarchy.

Constraints Guide
312 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

If you create a U_SET set through an instantiating macro, you can attach USE_RLOC
to the instantiating macro to allow it to propagate hierarchically to all the members
of the set.

You can create this instantiating macro by placing U_SET on a macro and letting the
mapper propagate that constraint to every symbol with an RLOC constraint below
it in the hierarchy.

Using the USE_RLOC Constraint to Control RLOC Application
on U_SET Sets

This illustration shows the use of USE_RLOC=FALSE. The USE_RLOC=FALSE on
primitive E removes it from the U_SET set, and USE_RLOC=FALSE on element F
propagates to primitive G and removes it from the U_SET set.

While propagating the USE_RLOC constraint, the mapper ignores underlying
USE_RLOC constraints if it encounters elements higher in the hierarchy that already
have USE_RLOC constraints. For example, if the mapper encounters an underlying
element with a USE_RLOC=TRUE during the propagation of a USE_RLOC=FALSE, it
ignores the newly encountered TRUE constraint.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
• TRUE (default) turns RLOC on for a specific element
• FALSE turns RLOC off for a specific element

Schematic Syntax
• Attach to a member of a set
• Attribute Name

USE_RLOC
• Attribute Values

See Values section above.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 313

Chapter 4: Xilinx Constraints

VHDL Syntax
Declare the VHDL constraint as follows:

attribute USE_RLOC: string;

Specify the VHDL constraint as follows:

attribute USE_RLOC of entity_name: entity is “{TRUE | FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* USE_RLOC = “{TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST “instance_name” USE_RLOC={TRUE | FALSE};

XCF Syntax
MODEL “entity_name” use_rloc={true | false};

Constraints Guide
314 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

Use Low Skew Lines (USELOWSKEWLINES)
The Use Low Skew Lines (USELOWSKEWLINES) constraint:
• Is a PAR routing constraint.
• Specifies the use of low skew routing resources for any net. You can use these

resources for both internally generated and externally generated signals.
Externally generated signals are those driven by IOBs. USELOWSKEWLINES on a net
directs PAR to route the net on one of the low skew resources. When this constraint is
used, the timing tool automatically accounts for and reports skew on register-to-register
paths that utilize those low skew resources. Specify USELOWSKEWLINES only when
all four primary global clocks have been used.

Architecture Support
Applies to Virtex®-4 devices and higher and to Spartan®-3 devices and higher.

Applicable Elements
Nets

Propagation Rules
Applies to attached net

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
• YES
• NO
• TRUE
• FALSE

Schematic Syntax
• Attach to an output net
• Attribute Name

USELOWSKEWLINES
• Attribute Values

– TRUE
– FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute USELOWSKEWLINES: string;

Specify the VHDL constraint as follows:

attribute USELOWSKEWLINES of signal_name: signal is “{YES|NO|TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 315

Chapter 4: Xilinx Constraints

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* USELOWSKEWLINES = “{YES|NO|TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
This statement forces net $1I87/1N6745 to be routed on one of the device’s low skew
resources.

NET “$1I87/$1N6745” USELOWSKEWLINES;

XCF Syntax
BEGIN MODEL “entity_name”

NET “signal_name” uselowskewlines={yes|true};

END;

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

PCF Syntax
Same as UCF and NCF Syntax above.

Constraints Guide
316 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

VCCAUX (VCCAUX)
The VCCAUX (VCCAUX) constraint:

• Defines the voltage value of the VCCAUX pin for Spartan®-3A and Spartan-6
devices.

• Affects the banking rules for I/O placement within the automated placer, as well as
in the PACE pin assignments software.

• Affects the end-generated bitstream for the device.

Architecture Support
Applies to Spartan-3A and Spartan-6 devices.

Applicable Elements
VCCAUX is a global attribute for Spartan-3A and Spartan-6 devices and is not attached
to any particular element.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
• 2.5

• 3.3

UCF and NCF Syntax
CONFIG VCCAUX="value";

Example

CONFIG VCCAUX=3.3;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 317

Chapter 4: Xilinx Constraints

VCCAUX_IO
The auxiliary I/O (VCCAUX_IO) supply rail is specific to the HP I/O banks only. It is
used to power some of the I/O circuitry in the HP bank, including the single-ended and
differential input buffer circuits. HP I/O banks contain both VCCAUX_IO pins, as well
as the "regular" VCCAUX pins which power the various internal block features. Inside
the 7 series device packages, the VCCAUX_IO pins are connected together in groups
of three to four I/O banks. The number of I/O banks that have their VCCAUX_IO pins
grouped together depends on the particular 7 series part and package combination. See
the 7 Series Packaging and Pinout Guide for banks that are grouped together for each part
and package combination. The VCCAUX and VCCAUX_IO supplies must turn on
before the VCCO supply. See the 7 Series FPGA Data Sheet for more details regarding
power supply requirements.

Architecture Support
Applies to Kintex™-7 and Virtex®-7 devices

Applicable Elements
See the SelectIO™ User Guide.

Propagation Rules
See the SelectIO User Guide.

Syntax
The following sections show the syntax for this constraint.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
Attribute Name: VCCAUX_IO

VHDL Syntax
Declare the VHDL constraint as follows:

attribute VCCAUX_IO: string;

Specify the VHDL constraint as follows:

attribute VCCAUX_IO of {component_name |label_name}: {component|label} is
“{NORMAL|HIGH|DONTCARE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* VCCAUX_IO = { NORMAL|HIGH|DONTCARE} *)

For more information about basic Verilog syntax, see Verilog Attributes.

Constraints Guide
318 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

UCF and NCF Syntax
NET “net_name” VCCAUX_IO=(0| NORMAL|HIGH|DONTCARE);
INST “instance_name” VCCAUX_IO=(NORMAL|HIGH|DONTCARE);

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 319

Chapter 4: Xilinx Constraints

VOLTAGE (Voltage)
The VOLTAGE (Voltage) constraint:
• Is a timing constraint.
• Allows the specification of the operating voltage, which provides a means of

prorating delay characteristics based on the specified voltage.
Prorating is a scaling operation on existing speed file delays and is applied globally
to all delays.

Note Newer devices may not support VOLTAGE prorating until the timing information
(speed files) are marked as production status.

Each architecture has its own specific range of supported voltages. If the entered
voltage does not fall within the supported range, the constraint is ignored and an
architecture-specific default value is used instead. The error message for this condition
appears during static timing.

Architecture Support
The following FPGA devices are supported for VOLTAGE:
• Spartan®-3A
• Spartan-3E
• Virtex®-4
• Virtex-5

Applicable Elements
Applies globally to the entire design.

Propagation Rules
It is illegal to attach this constraint to a net, signal, or design element.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

UCF and NCF Syntax
VOLTAGE=value [V];

where
• value is a real number specifying the voltage
• V indicates volts, the default voltage unit

The following statement specifies that the analysis for everything relating to speed file
delays assumes an operating power of 5 volts.

VOLTAGE=5;

Constraints Editor Syntax
For information on setting constraints in Constraints Editor, including syntax, see the
Constraints Editor Help.

PCF Syntax
Same as UCF Syntax.

Constraints Guide
320 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

VREF (VREF)
The VREF (VREF) constraint:

• Applies to the design as a global attribute (not directly applicable to any element
in the design).

• Configures listed pins as VREF supply pins to be used in conjunction with other I/O
pins designated with one of the SSTL or HSTL I/O Standards.

Because VREF is selectable on any I/O in CoolRunner™-II designs, it allows you to select
which pins are VREF pins. Double-check pin assignment in the report (RPT) file. If you
do not specify any VREF pins for the differential I/O standards, HSTL and SSTL, or if
you do not specify sufficient VREF pins within the required proximity of differential
I/O pins, the fitter automatically assigns sufficient VREF.

Architecture Support
Applies only to CoolRunner-II devices with 128 macrocells and larger.

Applicable Elements
Applies globally to the entire design.

Propagation Rules
Configures listed pins as VREF supply pins to be used in conjunction with other I/O pins
designated with one of the SSTL or HSTL I/O Standards.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
• Pnn

where

nn is a numeric pin number

• rc

where

– r=alphabetic row

– c=numeric column

Schematic Syntax
VREF=value_list (on CONFIG symbol)

UCF and NCF Syntax
CONFIG VREF=value_list;

CONFIG VREF=P12,P13;

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 321

Chapter 4: Xilinx Constraints

WIREAND (Wire And)
The WIREAND (Wire And) constraint:
• Is an advanced fitter constraint
• Forces a tagged node to be implemented as a wired AND function in the

interconnect (UIM and Fastconnect)

Architecture Support
Applies to XC9500 devices only.

Applicable Elements
Any net

Propagation Rules
This constraint is a net constraint. Any attachment to a design element is illegal.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Schematic Syntax
• Attach to a net
• Attribute Name

WIREAND
• Attribute Values

– TRUE
– FALSE

VHDL Syntax
Declare the VHDL constraint as follows:

attribute WIREAND: string;

Specify the VHDL constraint as follows:

attribute WIREAND of signal_name : signal is “{YES|NO|TRUE|FALSE}”;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* WIREAND = “{YES|NO|TRUE|FALSE}” *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
The following statement specifies that the net named SIG_11 be implemented as a wired
AND when optimized.

NET “$I16789/SIG_11” WIREAND;

Constraints Guide
322 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Chapter 4: Xilinx Constraints

XBLKNM (XBLKNM)
The XBLKNM (XBLKNM) constraint:
• Is an advanced mapping constraint.
• Assigns block names to qualifying primitives and logic elements.
If the same XBLKNM attribute is assigned to more than one instance, the software
attempts to pack logic with the same block name into one or more slices. Conversely, two
symbols with different XBLKNM names are not mapped into the same block. Placing the
same XBLKNM constraints on instances that do not fit within one block creates an error.

Specifying identical XBLKNM attributes on FMAP symbols tells the software to group
the associated function generators into a single slice. Using XBLKNM, you can partition
a complete slice without constraining the slice to a physical location on the device.

Hierarchical paths are not prefixed to XBLKNM attributes, so XBLKNM attributes for
different slices must be unique throughout the entire design.

The BLKNM attribute allows any elements except those with a different BLKNM to be
mapped into the same physical component. XBLKNM, however, allows only elements
with the same XBLKNM to be mapped into the same physical component. Elements
without an XBLKNM cannot be not mapped into the same physical component as those
with an XBLKNM.

XBLKNM can also be used with block RAMs.

Architecture Support
Applies to FPGA devices. Does not apply to CPLD devices.

Applicable Elements
For information about which design elements can be used with which device families,
see the Libraries Guides. For more information, see the device data sheet.

Propagation Rules
Applies to the design element to which it is attached.

Syntax Examples
The following examples show how to use this constraint with particular tools or
methods. If a tool or method is not listed, you cannot use this constraint with it.

Values
block_name is a valid block name for that type of symbol

Schematic Syntax
• Attach to a valid instance
• Attribute Name

XBLKNM
• Attribute Values

See Values section above.

VHDL Syntax
Declare the VHDL constraint as follows:

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 323

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 4: Xilinx Constraints

attribute XBLKNM: string;

Specify the VHDL constraint as follows:

attribute XBLKNM of {component_name|label_name}: {component|label} is block_name;

For more information about basic VHDL syntax, see VHDL Attributes.

Verilog Syntax
Place the Verilog constraint immediately before the module or instantiation.

Specify the Verilog constraint as follows:

(* XBLKNM = "block_name" *)

For more information about basic Verilog syntax, see Verilog Attributes.

UCF and NCF Syntax
INST "instance_name" XBLKNM=block_name;

The following statement assigns an instantiation of an element named flip_flop2 to a
block named U1358.

INST "$1I87/flip_flop2" XBLKNM=U1358;

XCF Syntax
BEGIN MODEL "entity_name"

INST "instance_name" xblknm=xblknm_name;

END;

Constraints Guide
324 www.xilinx.com UG625 (v. 13.2) July 6, 2011

Appendix

Additional Resources
• Xilinx Glossary -

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf

• Xilinx Documentation - http://www.xilinx.com/support/documentation

• Xilinx Support - http://www.xilinx.com/support

Constraints Guide
UG625 (v. 13.2) July 6, 2011 www.xilinx.com 325

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=glossary
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=xilinx+literature
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

	Software Manuals
	Constraints Guide
	Revision History
	Table of Contents
	Chapter 1 Constraint Types
	Attributes and Constraints
	Attributes
	Attributes Examples
	Implementation Constraints
	Implementation Constraints Examples

	CPLD Fitter
	Grouping Constraints for Timing
	Using Predefined Groups
	Predefined Group Examples
	BRAMS_PORTA and BRAMS_PORTB Examples
	Grouping Constraints

	Logical Constraints
	Physical Constraints
	Mapping
	Physical Constraints File (PCF)

	Mapping Directives
	Placement Constraints
	Specifying Constraints
	Case Sensitivity
	Netlist Mapping and Placement Constraints
	Relative Location (RLOC) Constraints
	Placement Constraints

	Routing Directives
	Synthesis Constraints
	Synthesis Constraint Documentation

	Timing Constraints
	Timing and Grouping Constraints
	Specifying Timing Constraints
	Applying XST Timing Constraints
	Command Line Switch
	XST Constraint File (XCF)

	UCF Timing Constraint Support
	From-To
	OFFSET IN
	OFFSET OUT
	TIG
	TIMEGRP
	TNM
	TNM Net

	Timing Model
	Constraint Priority

	Configuration Constraints

	Chapter 2 Entry Strategies for Xilinx Constraints
	Constraints Entry Methods
	Constraints Entry Table
	Schematic Design
	VHDL Attributes
	Verilog Attributes
	Verilog Limitations
	Verilog Meta Comments

	User Constraints File (UCF)
	UCF Flow
	Manual Entry of Timing Constraints
	Constraint Conflicts in Multiple UCF Files

	UCF and NCF File Syntax
	General Rules for UCF and NCF
	Conflict in Constraints
	Syntax
	Specifying Attributes for TIMEGRP and TIMESPEC
	Using Reserved Words
	Wildcards
	Traversing Hierarchies
	Entering Multiple Constraints
	File Name
	Instances and Blocks

	Physical Constraints File (PCF)
	Netlist Constraints File (NCF)
	Constraints Editor
	Input/Output
	Starting Constraints Editor
	Running Constraints Editor From ISE Design Suite
	Running Constraints Editor As a Standalone Tool
	Running Constraints Editor From the Command Line With No Data Lo
	Running Constraints Editor From the Command Line With the NGD Fi
	Running Constraints Editor From the Command Line With the NGD Fi
	Running Constraints Editor From the Command Line As a Background

	ISE Design Suite
	PlanAhead
	Assigning Placement Constraints
	Defining I/O Pin Configurations
	Pin Assignment Overview
	Reviewing I/O Pin Data Information
	Pin Assignment
	I/O Planning Documentation
	Floorplanning and Placement Constraints
	Placement LOC Constraint Assignment
	Area Group Assignment

	Setting Constraints in PACE
	Partial Design Pin Preassignment
	FPGA Editor
	Locked Nets and Components
	Interaction Between Constraints

	XST Constraint File (XCF)
	Constraint Priority
	File Priorities
	Timing Specification Priorities
	OFFSET Priorities
	MAXSKEW and MAXDELAY Priorities
	Constraint Priority Exceptions
	Constraint Set Interaction

	Chapter 3 Timing Constraint Strategies
	Basic Constraints Methodology
	Input Timing Constraints
	Input Timing Constraints Overview
	System Synchronous Inputs
	Source Synchronous Inputs

	Register-to-Register Timing Constraints
	Register-to-Register Timing Constraints Overview
	Automatically Related DCM/PLL/MMCM Clocks
	Manually Related Clock Domains
	Asynchronous Clock Domains

	Output Timing Constraints
	Output Timing Constraints Overview
	System Synchronous Output
	Source Synchronous Outputs

	Exception Timing Constraints
	Exception Timing Constraints Overview
	False Paths
	Multi-Cycle Paths

	Chapter 4 Xilinx Constraints
	Constraint Information
	AREA_GROUP (Area Group)
	Architecture Support
	Applicable Elements
	Propagation Rules
	AREA_GROUP UCF Syntax
	RANGE
	Comma Separated RANGE Specifications Are Ignored
	Types of Logic Legal in the RANGE Constraint
	Sites That Do Not Conform to the Normal X, Y Format
	COMPRESSION
	GROUP
	PLACE

	Syntax Examples
	Defining From Timing Groups
	TNM_NET Groups
	TNM and TIMEGRP Groups
	PERIOD Specifications

	ASYNC_REG (Asynchronous Register)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax Examples

	BEL (BEL)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Constraint Values
	Syntax Examples

	BLKNM (Block Name)
	Architecture Support
	Applicable Elements
	Propagation Rules

	BUFG (BUFG)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Clock Dedicated Route (CLOCK_DEDICATED_ROUTE)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	COLLAPSE (Collapse)
	Architecture Support
	Applicable Elements
	Propagation Rules

	COMPGRP (Component Group)
	Architecture Support
	Applicable Elements

	CONFIG_MODE (Configuration Mode)
	Architecture Support
	Applicable Elements
	Propagation Rules

	COOL_CLK (CoolCLOCK)
	Architecture Support
	Applicable Elements
	Propagation Rules

	DATA_GATE (Data Gate)
	Architecture Support
	Applicable Elements
	Propagation Rules

	DCI Cascade (DCI_CASCADE)
	Architecture Support
	Applicable Elements
	Propagation Rules

	DCI Value (DCI_VALUE)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Default (DEFAULT)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Constraint Syntax

	DIFF_TERM (Diff_Term)
	Architecture Support
	Applicable Elements

	DIRECTED_ROUTING (Directed Routing)
	Architecture Support
	Applicable Elements
	Propagation Rules

	DISABLE (Disable)
	Architecture Support
	Applicable Elements
	Propagation Rules

	DRIVE (Drive)
	Architecture Support
	Applicable Elements
	Propagation Rules

	DROP_SPEC (Drop Specifications)
	Architecture Support
	Applicable Elements
	Propagation Rules

	ENABLE (Enable)
	Architecture Support
	Applicable Elements
	Propagation Rules

	ENABLE_SUSPEND (Enable Suspend)
	Architecture Support
	Applicable Elements
	Propagation Rules

	FAST (Fast)
	Architecture Support
	Applicable Elements
	Propagation Rules

	FEEDBACK (Feedback)
	Architecture Support
	Applicable Elements
	Propagation Rules

	FILE (File)
	Architecture Support
	Applicable Elements
	Propagation Rules

	FLOAT (Float)
	Architecture Support
	Applicable Elements
	Propagation Rules

	FROM-THRU-TO (From Thru To)
	Architecture Support
	Applicable Elements
	Propagation Rules

	FROM-TO (From To)
	Architecture Support
	Applicable Elements
	Propagation Rules

	FSM_STYLE (FSM Style)
	HBLKNM (Hierarchical Block Name)
	Architecture Support
	Applicable Elements
	Propagation Rules

	HIODELAY_GROUP (HIODELAY Group)
	Architecture Support
	Applicable Elements
	Propagation Rules

	HLUTNM (Hierarchical Lookup Table Name)
	Architecture Support
	HLUTNM Applicable Elements
	Propagation Rules

	H_SET (H Set)
	HU_SET (HU Set)
	Architecture Support
	Applicable Elements
	Propagation Rules

	IBUF_DELAY_VALUE (Input Buffer Delay Value)
	Architecture Support
	Applicable Elements

	IFD_DELAY_VALUE (IFD Delay Value)
	Architecture Support
	Applicable Elements
	Propagation Rules

	IN_TERM (In Term)
	Architecture Support
	Applicable Elements
	Propagation Rules

	INREG (Input Registers)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Internal Vref Bank (INTERNAL_VREF_BANK)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	IOB (IOB)
	Architecture Support
	Applicable Elements
	Propagation Rules

	IOBDELAY (Input Output Block Delay)
	Architecture Support
	Applicable Elements
	Propagation Rules

	IODELAY_GROUP (IODELAY Group)
	Limitations with LOC
	Architecture Support
	Applicable Elements
	Propagation Rules

	IOSTANDARD (Input Output Standard)
	IOSTANDARD for FPGA Devices
	IOSTANDARD for CPLD Devices
	Architecture Support
	Applicable Elements
	Propagation Rules

	KEEP (Keep)
	Architecture Support
	Applicable Elements
	Propagation Rules

	KEEP_HIERARCHY (Keep Hierarchy)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Keeper (KEEPER)
	Architecture Support
	Applicable Elements
	Propagation Rules

	LOC (Location)
	LOC Description for FPGA Devices
	LOC Description for CPLD Devices
	LOC Priority
	Architecture Support
	Applicable Elements
	Propagation Rules
	Constraint Syntax
	Digital Clock Manager (DCM) Constraint Examples
	Flip-Flop Constraint Examples
	I/O Constraint Examples
	IOB Constraint Examples
	Mapping Constraint Examples (FMAP)
	Multiplier Constraint Examples
	ROM Constraint Examples
	Block RAM (RAMBs) Constraint Examples
	Slice Constraint Examples
	Slices Prohibited

	LOCATE (Locate)
	Architecture Support
	Applicable Elements
	Propagation Rules

	LOCK_PINS (Lock Pins)
	Architecture Support
	Applicable Elements
	Propagation Rules

	LUTNM (Lookup Table Name)
	Architecture Support
	Applicable Elements
	Propagation Rules

	MAP (Map)
	Architecture Support
	Applicable Elements
	Propagation Rules

	MARK_DEBUG (Mark Debug)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Constraint Values

	MAX_FANOUT (Max Fanout)
	MAX_FANOUT for XST
	MAX_FANOUT for MAP
	Architecture Support
	Applicable Elements
	Propagation Rules

	MAXDELAY (Maximum Delay)
	Architecture Support
	Applicable Elements
	Propagation Rules

	MAXPT (Maximum Product Terms)
	Architecture Support
	Applicable Elements
	Propagation Rules

	MAXSKEW (Maximum Skew)
	Architecture Support
	Applicable Elements
	Propagation Rules

	MCB Performance (MCB_PERFORMANCE)
	MIODELAY_GROUP (MIODELAY Group)
	Architecture Support
	Applicable Elements
	Propagation Rules

	NODELAY (No Delay)
	Architecture Support
	Applicable Elements
	Propagation Rules

	NOREDUCE (No Reduce)
	Architecture Support
	Applicable Elements
	Propagation Rules

	OFFSET IN (Offset In)
	Architecture Support
	Applicable Elements

	OFFSET OUT (Offset Out)
	Architecture Support
	Applicable Elements

	Open Drain (OPEN_DRAIN)
	Architecture Support
	Applicable Elements
	Propagation Rules

	OUT_TERM (Out Term)
	Architecture Support
	Applicable Elements
	Propagation Rules

	PERIOD (Period)
	Architecture Support
	Applicable Elements
	Propagation Rules
	NO TITLE
	PERIOD Specifications on CLKDLLs, DCMs, PLLs, and MMCMs

	PIN (Pin)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Post CRC (POST_CRC)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Post CRC Action (POST_CRC_ACTION)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Post CRC Frequency (POST_CRC_FREQ)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Post CRC INIT Flag (POST_CRC_INIT_FLAG)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Post CRC Signal (POST_CRC_SIGNAL)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Post CRC Source (POST_CRC_SOURCE)
	Architecture Support
	Applicable Elements
	Propagation Rules

	PRIORITY (Priority)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Values

	PROHIBIT (Prohibit)
	Location Types for FPGA Devices
	Location Types for CPLD Devices
	Architecture Support
	Applicable Elements
	Propagation Rules

	PULLDOWN (Pulldown)
	Architecture Support
	Applicable Elements
	Propagation Rules

	PULLUP (Pullup)
	Architecture Support
	Applicable Elements
	Propagation Rules

	PWR_MODE (Power Mode)
	Architecture Support
	Applicable Elements
	Propagation Rules

	REG (Registers)
	Architecture Support
	Applicable Elements
	Propagation Rules

	RLOC (Relative Location)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Constraint Syntax
	Using RPM Grid
	Set Modifiers
	Linking Sets
	Modifying Sets
	Using RLOCs with Xilinx Macros
	Guidelines for Specifying Relative Locations
	Relative Location (RLOC) Sets
	U_SET (U SET)
	H_SET (H Set)
	HU_SET (HU Set)
	RLOC Set Summary

	RLOC_ORIGIN (Relative Location Origin)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Constraint Syntax

	RLOC_RANGE (Relative Location Range)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Constraint Syntax

	SAVE NET FLAG (Save Net Flag)
	Architecture Support
	Applicable Elements
	Propagation Rules

	SCHMITT_TRIGGER (Schmitt Trigger)
	Architecture Support
	Applicable Elements
	Propagation Rules

	SIM Collision Check (SIM_COLLISION_CHECK)
	Architecture Support
	Applicable Elements
	Propagation Rules

	SLEW (Slew)
	Architecture Support
	Applicable Elements
	Propagation Rules

	SLOW (Slow)
	Architecture Support
	Applicable Elements
	Propagation Rules

	STEPPING (Stepping)
	Architecture Support
	Applicable Elements
	Propagation Rules

	SUSPEND (Suspend)
	Architecture Support
	Applicable Elements
	Propagation Rules

	SYSTEM_JITTER (System Jitter)
	Architecture Support
	Applicable Elements
	Propagation Rules

	TEMPERATURE (Temperature)
	Architecture Support
	Applicable Elements
	Propagation Rules

	TIG (Timing Ignore)
	Architecture Support
	Applicable Elements
	Propagation Rules

	TIMEGRP (Timing Group)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	TIMESPEC (Timing Specifications)
	Architecture Support
	Applicable Elements
	Propagation Rules
	Constraint Syntax
	TSidentifier name
	Separators
	FROM-TO Syntax

	TNM (Timing Name)
	Architecture Support
	Applicable Elements
	Propagation Rules

	TNM_NET (Timing Name Net)
	Architecture Support
	Applicable Elements
	Rules
	Propagation Rules

	TPSYNC (Timing Point Synchronization)
	Architecture Support
	Applicable Elements
	Propagation Rules

	TPTHRU (Timing Thru Points)
	Architecture Support
	Applicable Elements
	Propagation Rules

	TSidentifier (Timing Specification Identifier)
	Architecture Support
	Applicable Elements
	Propagation Rules

	U SET (U_SET)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Use Internal VREF (USE_INTERNAL_VREF)
	Architecture Support
	Applicable Elements
	Propagation Rules

	USE_LUTNM (Use LUTNM)
	Architecture Support
	Applicable Elements
	Propagation Rules

	USE_RLOC (Use Relative Location)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Use Low Skew Lines (USELOWSKEWLINES)
	Architecture Support
	Applicable Elements
	Propagation Rules

	VCCAUX (VCCAUX)
	Architecture Support
	Applicable Elements

	VCCAUX_IO
	Architecture Support
	Applicable Elements
	Propagation Rules
	Syntax

	VOLTAGE (Voltage)
	Architecture Support
	Applicable Elements
	Propagation Rules

	VREF (VREF)
	Architecture Support
	Applicable Elements
	Propagation Rules

	WIREAND (Wire And)
	Architecture Support
	Applicable Elements
	Propagation Rules

	XBLKNM (XBLKNM)
	Architecture Support
	Applicable Elements
	Propagation Rules

	Appendix Additional Resources

