
COMMUNICATIONS OF THE ACM May 2000/Vol. 43, No. 5 43

Human-in-the-loop computing has its limits.
What must we do differently to prepare for the
networking of thousands of embedded processors
per person? And how do we move from
human-centered to human-supervised computing?

F
or the past 40 years, most of the IT research community has
focused on interactive computing, J.C.R. Licklider’s powerful and
human-centered vision of human-computer symbiosis [3]. In tan-
dem with this research has come the creation of an IT industry that
is hurtling toward the human/machine/network breakpoint—the
point at which the number of networked interactive computers will

surpass the number of people on the planet.
We still have a long way to go before Licklider’s vision is attained—and are

many years from extending per-capita penetration to most parts of the world.
However, “missing science” may no longer be the factor limiting progress
toward these long-cherished goals. It is reasonable, though perhaps heretical,
to suggest that refinements of the existing science base will be sufficient to
drive these efforts forward.

It is time for a change. The computer science research community now
enjoys a rare and exciting opportunity to redefine its agenda and establish the
new goals that will propel society beyond interactive computing and the
human/machine breakpoint. In lifting our sights toward a world in which net-
worked computers outnumber human beings by a hundred or thousand to
one, we should consider what these “excess” computers will be doing and craft
a research agenda that can lead to increased human productivity and quality
of life.

�David Tennenhouse

PROACTIVE
COMPUTING

What Should We Do Differently?
Although I lack Licklider’s clarity as to what the next
40 years of computation might bring, I am con-
vinced that the first steps toward a new agenda must
include: a fundamental reexamination of the bound-
ary between the physical and virtual worlds; changes
in the time constants at which computation is
applied; and movement from human-centered to
human-supervised (or even unsupervised) comput-
ing. While some work has been done in each of
these areas, focusing significantly greater attention
on them will enable a new mode of operation,
which I refer to as proactive computing.

In this article, I describe three loci for new
research activities:

Getting physical. Proactive systems will be inti-
mately connected to the world around them, using
sensors and actuators to both monitor and shape
their physical surroundings. Research into “getting

physical” explores the pervasive coupling of net-
worked systems to their environments.

Getting real. Proactive computers will routinely
respond to external stimuli at faster-than-human
speeds. Research in this area must bridge the gap
between control theory and computer science.

Getting out. Interactive computing deliberately
places human beings in the loop. However, shrink-
ing time constants and sheer numbers demand
research into proactive modes of operation in
which humans are above the loop.

There are two simple reasons why we should divert
some of our intellectual resources to proactive com-
puting: The vast majority of new computers will be
proactive, and these nodes will be the principal
sources and sinks of information.

The bulk of the IT industry is presently
focused on office automation, e-commerce,
and their associated networking. Judging by
our current research profile, an independent
observer might believe that the distribution
of new computers is dominated by the 150
million or so new laptop, desktop, and
server nodes that will power the growth of
interactive computation.

Although the creation of an industry that
consumes such a large number of computers
per year is a tremendous achievement, these
numbers pale by comparison to the eight-
billion-or-more computational nodes that
will be deployed worldwide this year. As
shown in Figures 1 and 2, the vast majority
of these devices will be embedded in other

objects. Rather than being in direct contact with
human beings, they will be in direct contact with
their environments—able to monitor and shape the
physical phenomena that surround them.

Since the rate of growth of these embedded
devices exceeds that of their interactive cousins, the
computer science research community has no choice
but to follow the processors and invest a larger frac-
tion of its intellectual capital in this space. In doing
so, we would also be following the data, moving
from environments in which our sources of informa-
tion are largely human-mediated to those in which
computers directly tap tremendous sources of
grounded information concerning the world around
them. In fact, the essential reason for having more
devices than people, and for having them be distrib-
uted, rather than placed in glass rooms, is their inti-
mate connectivity with the physical world—and the
incremental sources and sinks of information they
provide.

44 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

Proactive
■ Pervasive
■ Human-supervised

Interactive
■ Office/Document
■ Human-centered

Office vs. Field

M
an

ua
l v

s.
A

ut
on

om
ou

s
Figure 1. The four quadrants of

ubiquitous computing.

Figure 2. Where will the computers be?

15
0M

pe
r

ye

ar

Embedded
Computers

80%F
ix

ed
In

fr
as

tr
uc

tu
re

Ve
hi

cl
es

8B
pa

rt
s/

ye

ar

R
ob

ot
s

Interactive

Computers

Servers

R
obots 6%

Vehicles 12%

Interactive 2%

Where has computer science focused? Where are the processors?

Why Now?
To date, Internet deployment has
focused on breadth, expanding the
geographic reach of the network to
include nodes “in every office and
every home.” Although this broad-
ening of the Internet will continue
at an impressive rate, the number
of nodes can be increased an addi-
tional 50-fold by reaching down
into all of the embedded devices at
each geographic location.

This shift toward deeply net-
worked systems represents a pro-
found inflection point that
demands our attention because of
its sheer scale and systems implica-
tions. Historically, the lack of network connectivity
has stranded the data obtained by embedded
processors and led to rigid software regimes con-
strained by one-time programmability. However,
various efforts are beginning to unlock the informa-
tion derived by huge numbers of sensors and pro-
vide remote access to their actuators (see Pottie’s and
Kaiser’s “Wireless Integrated Network Sensors” in
this issue).

Isn’t this the same as ubiquitous computing? In his
1991 article [8], Mark Weiser, who was chief tech-
nologist of Xerox Palo Alto Research Center, forecast
that computation would become so ubiquitous that
individuals would no longer be conscious of its every
application, drawing instead on it as frequently and
reflexively as when they reach for a light switch. As
shown in Figure 3, the ubiquitous computing space
can be divided along two dimensions—one having to
do with the degree to which the applications are
office-centered, and the other having to do with the
degree to which the focus of the computational node
and its interfaces is on interacting with human beings
vs. interacting with the rest of its environment.

Although Weiser’s vision was quite sweeping,
few researchers have broken with our traditional
emphasis on human interaction. Instead, most
research has been confined to the figure’s lower-left
quadrant. Proactive computing represents an
agenda for the exploration of the upper-right quad-
rant of ubiquitous computing—and the expansion
of our intellectual horizons beyond the interactive
domain. In short, it’s time for researchers to declare
victory on office automation.

Let’s Get Physical
Herbert Simon, Nobel laureate and a professor at
Carnegie Mellon University, identified the impor-

tance of bridging the physical and virtual domains
quite some time ago [6]. However, the problem has
largely been ignored by the mainstream artificial
intelligence and computer science communities.1

Although we have done a marvelous job creating vir-
tual environments and exploring a limited range of
interface technologies, such as speech and graphics,
the degree to which interface research has been
human-centered may have blinded us to many
opportunities beyond interactive computing.

The challenge is to develop mechanisms that
allow the software properties we have exploited in
the development of our virtual worlds to be pushed
as close as possible to the physical environment—
right up to the converters and transducers that touch
the physical world. One example of an effort in this
direction is the SpectrumWare project [7] at MIT in
which samples corresponding to wide bands of the
radio-frequency spectrum are dropped, en masse,
into memory, so that traditional radio functions,
such as demodulation, can be performed by user-
mode application software. Making large swaths of
the spectrum accessible to the programmer opens
the door to new algorithmic approaches and wave-
forms that might not have been considered in tradi-
tional digital signal processing (DSP) environments.

The following paragraphs address some of the
node-level challenges and opportunities associated
with getting physical:

Sensors and actuators. One of the distinguishing
aspects of proactive nodes is that they will be
equipped with sensors and/or actuators. Recent
work on microelectromechanical systems (MEMS)

COMMUNICATIONS OF THE ACM May 2000/Vol. 43, No. 5 45

Figure 3. Projected CPU shipments in 2000.

Microcontroller Solutions
8,288,300,000

Cores
???

16 bit (ARM)

32 bit (MIPS)

ASSP

ASIC

4 bit
1,680,000,000

8 bit
4,770,000,000

16 bit
764,000,000

8 bit
20,200,000

16 bit
108,000,000

32 bit
153,100,000

32 bit
43,000,000

Texas
Instruments

Advanced
Micro Devices

x86

PowerPC

Source: DARPA

SPARC

Microcontroller
units

7,257,000,000

Embedded
Microprocessor

units
281,300,000

Digital signal
processor

600,000,000

Computational
Microprocessor

units
150,000,000

1Notable exceptions are our colleagues working on robotics. Although significant
work on embedded and real-time systems has also been performed within various
engineering disciplines, the approaches taken have been rather rigid compared with
mainstream computing.

has led to a great deal of innovation in this space,
and it is reasonable to assume that a wide range of
small and inexpensive sensors will become available
in the coming decade. Although progress on actua-
tors has been slower, MEMS may lead to the first
breakthroughs in actuator technologies since
hydraulics and the squirrel-cage motor.

Inexpensive network connectivity. Another chal-
lenge is the integration of network connectivity that
is inexpensive by present standards and tailored to
operate in environments in which the vast majority
of the network traffic is directly related to the nodes’
sample-processing functions. In particular, upper-
layer protocol stack and operating system interfaces
should be coordinated with the memory subsystem
so as to support the efficient exchange of “packe-
tized” sampled data. It will also be necessary to con-
sider the total cost of network connectivity,
including the per-node costs of the shared infra-

structure, such as base stations. Radical innovation
will be required to bring networking costs into line
with the $1-per-device price structure of the embed-
ded computing market.

Sample-friendly microarchitectures. Advances in
computer science frequently come from finding new
ways to trade excess computational capacity for new
functionality. Yet practitioners of embedded com-
puting are expending their creative energies in trying
to jam functionality into computational nodes that
are extremely primitive by the standards of modern
interactive computers.2 Although DSPs have signifi-
cantly greater processing capacity than microcon-
trollers, they present a synchronous, rigid
programming model that is impoverished and far
removed from that enjoyed by mainstream pro-
grammers.

The alternative is for processor and compiler
designers to create the surfeit of resources that will
inspire creative system designs. Proactive comput-
ing will leverage new architectures that streamline
the processing of the information acquired at indi-
vidual nodes. For example, one can imagine a uni-

form approach in which diverse forms of sampled
information are automatically packetized, time-
stamped, and buffered upon acquisition, allowing
their subsequent processing to proceed asynchro-
nously with respect to the external processes being
monitored. Similarly, time-stamped sample
streams destined for actuators could be automati-
cally clocked out to the digital-to-analog convert-
ers, thereby reconstituting signal timing at the edge
of the system without programmer intervention.
For example, the Berkeley Intelligent RAM effort
to develop processor-in-memory technology could
lay the groundwork for sample processing environ-
ments in which incoming samples are written
directly to the memory array for high-bandwidth
consumption by bursty software processes [5]. In
the reverse direction, time-sliced processes may
generate outgoing sample bursts on a faster-than-
real-time basis, knowing they will be presented to

the physical world at the appropriate rate.
Operating system implications. Sample-friendly

processor architectures will enable the bulk, if not all,
of the application software to be temporally decoupled
from the physical world, allowing the programmer to
enjoy many of the advantages of mainstream software
environments. For example, software processes operat-
ing in faster-than-real-time bursts can leverage tradi-
tional mechanisms, such as multitasking, and
statistical approaches, whose instantaneous processing
requirements are data-dependent. This decoupling
implies the need for operating system mechanisms
that “virtualize” the incoming and outgoing sample
streams and make them available to user-mode appli-
cation software.3 The addition of sample-processing
interfaces may represent the first significant opportu-
nity for innovation in OS functionality (vs. perfor-
mance optimization) since the addition of graphics
and networking support in the early 1980s.

Aggregating Nodes into Systems
Leveraging large numbers of computers, many of
which are embedded in infrastructure, such as roads,

46 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

> How are things different when the interface is being used to

supervise thousands of computers and/or millions of knowbots?

2Butler Lampson, a Turing award winner, has suggested that because a design team
may have a limited creativity reservoir, it ought to leverage brute force when it is
possible to do so, husbanding the creativity budget to finesse problems that would
outstrip the growth of computational resources.

3Protection mechanisms used to isolate the streams of different processes might be
based on concepts like those explored in the Safe I/O work of Ian Pratt, a lecturer at
the University of Cambridge Computer Laboratory, and in the user-mode protocol
stacks developed within the network research community.

buildings, and transportation systems, will demand
new systems and networking technologies that
aggregate and share their capabilities.

The Sensor Information Technology Program at
the Defense Advanced Research Projects Agency
(DARPA) provides a domain-specific example of
some of the new directions that are ripe for investi-
gation. Traditional sensor networks are dedicated to
a single application and organized hierarchically.
However, proactive sensor networks might be based
on very different concepts, including:

Sensor multiplexing. Instead of dedicating nodes
to specific users and applications, the sensors might
be viewed as offering network-based services that
can be browsed by authorized users. Since the
bandwidth to and from individual sensors will be
limited, scaling to large numbers of potential users
is likely to depend on intelligent multicasting tech-
nology, such as that being investigated by Deborah
Estrin and others at the University of Southern
California (netweb.usc.edu/SCADDS/).

Inverse and peer tasking. Present-day sensors
operate in a master-slave environment in which
they are “tasked” by a superior authority. However,
future designs might leverage mobile code to invert
the traditional hierarchy. For example, a sensor
observing an event of interest might launch an
applet into the network that changes the tasking of
its peer nodes—or even the tasking of server nodes
that would have been its superiors in a traditional
hierarchy.

Querying and fusion of real-time observations.
Since individual users will be able to leverage large
numbers of sensors of many different types, and
since the capabilities, configuration, and location of
these sensors will be dynamic, relational querying
may be a viable alternative to traditional sensor
tasking. For example, a user could pose an SQL-
like query to his or her environment, have the
query automatically decomposed into subqueries
that are then routed to appropriate nodes within
the network, and have the responses fused on their
return. In practice, the decomposition and fusion
operations are likely to be network-based, leverag-
ing active networks [9] and associated technologies,
such as intentional naming [1], geographic address-
ing, and in-casting.

Sample provenance. For security, legal, and
scientific purposes, it will be essential for proac-
tive systems to develop and retain chains of evi-
dence that can be used to convincingly trace
sampled information, working backward through
any fusion and processing mechanisms to the ini-

tial point of acquisition of the information.

Although these sensor network activities are quite
novel, they are only the tip of the iceberg with
respect to the new systems organizations that will be
required.

Let’s Get Real
In addition to passing the one-computer-per-person
breakpoint, many proactive environments will pass
a significant real-time breakpoint, operating at
faster-than-human speeds. This is a major change
from interactive computing, in which we lock our
systems into operating at exactly the same frequency
as we do.

Building systems that operate at higher frequen-
cies is not in and of itself a novelty and, in fact, such
systems as automobile antilock braking have been
fielded in very large numbers with surprisingly good
results. However, the growing rate at which faster-
than-human systems will be deployed suggests an
urgent need to lay the intellectual groundwork for
their principled design and analysis.

Software-enabled control. When we speak of a
proactive system being faster than human, all we
are really saying is that the latency between the sys-
tem’s inputs and outputs is shorter than humans
could sustain. However, the real step up in com-
plexity arises because proactive computers will fre-
quently be closing a feedback loop, that is, their
actuators will be influencing the environment
being sensed. Although a large body of knowledge
concerning control systems has been developed
over the years, it has been conceived primarily from
the perspective of mechanical and electrical engi-
neers and is rather conservative by the standards of
software designers. (This perspective is far from
surprising; few computer science students are
taught anything at all concerning information and
control theory.)

Given hundreds of millions of instructions per
control interval and sufficient memory to support
state spaces numbering in the billions, it should be
possible to develop software-friendly approaches that
afford increased system flexibility and performance.
One promising line of research is exploring a
dynamic approach in which context-dependent con-
trol systems are created on a just-in-time basis. A
background process will engage in the synthesis of
potential replacements for the online control state
machine, and provision is made for seamless trans-
fers of control from one state machine to another.
Other lines of investigation include: faster-than-real-
time simulations that race ahead of the system being

COMMUNICATIONS OF THE ACM May 2000/Vol. 43, No. 5 47

controlled to predict its near-term performance
under a range of possible inputs; and systems whose
behavior is less precisely controlled than at present.
In the latter case, the control system ensures opera-
tion only within gross bounds that are known to be
safe, leaving the detailed operation of the system to
heuristic and/or statistical algorithms whose stability
is only coarsely bounded.

Network-enabled control. It is likely that the con-
trol elements of proactive systems will be intercon-
nected using packet-based networking, thus
suggesting another aspect of control theory that
should be revisited. Typically, the delay through
packet networks is variable, whereas the delay
through traditional control loops is fixed. For sys-
tems that have a sufficiently large number of com-
ponents, it may also be important to develop control
regimens that tolerate statistical variations in com-
ponent availability and connectivity, leading to new

ways of thinking about fault tolerance in distributed
control systems.

Online measurement and tuning. Although low-
latency components are not a sufficient condition
for faster-than-human computing, they are a neces-
sary one. Unfortunately, much of our hardware and
software exhibits far more latency when it is
deployed than it does in the laboratory, apparently
suffering from “latency rot” after it is fielded. In
many cases, this degradation is due to the off-line
tuning of parameter values that account for differ-
ences in hardware, software, and network configura-
tions that can vary greatly over the life of a system.
If we are to get serious about reliable system opera-
tion at high frequencies, then we must get serious
about online measurement and tuning capabilities.

Let’s Get Out
Getting humans out of the interactive loop and into
supervisory and policy-making roles is a necessity
for systems with faster-than-human response times.
Similarly, the sheer numbers of networked comput-
ers will preclude human cognizance at the level of
individual nodes.

Robotics represents one aspect of autonomous
operation in which a beachhead has been established.

Unfortunately, much of the work to date has focused
on “mechatronics,” rather than on software, with the
result that some telesupervised vehicles require
greater human participation (albeit remotely) than
their manned counterparts. However, new DARPA
robotics research programs are driving toward yet
another proactive breakpoint—the point at which
unmanned vehicles will outnumber their human
supervisors. These programs emphasize development
of novel software capabilities and reusable software
platforms that will allow researchers to build on each
other’s accomplishments.

Robotics systems might outnumber humans by
only thousands to one over the coming decade.
However, the multiplier attainable by software-
based “knowbots” is virtually unlimited, and think-
ing in terms of millions of active agents per user is
not unreasonable. Unfortunately, a great deal of
agent research has concerned itself with relatively

small systems, rather than working on the larger
problem: Given a few billion human users, each of
whom is able to generate a sizable agent con-
stituency, we should anticipate interaction spaces
involving many trillions of agents. Since these agents
will interact with each other as they go about our
business, we need to invent technologies that sustain
human control over agent-based systems, yet allow
agents to autonomously negotiate with each other in
ways that honor overall systems objectives and con-
straints.

Getting humans out of the loop suggests the need
for work in three additional research spaces: user
interfaces, software, and reuse.

User vs. supervisory interfaces. While consider-
able work remains to be done on the nature of the
human-computer interface for interactive comput-
ing, we should start thinking about the interface to
proactive computing. How should humans interface
with systems whose response times are faster than
their own? How are things different when the inter-
face is being used to supervise thousands of com-
puters and/or millions of knowbots?

Software creation. In addition to getting humans
out of the operational loop, it will be necessary to
reduce human involvement in the software-creation

48 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

> One can imagine the underpinning of computer science taking a

leap from deterministic to probabilistic models in much the way that

physics moved from classical to quantum mechanics.

process. Reduced programmer involvement is desir-
able because of both the sheer variety of nodes to be
populated with software and the difficulty of creat-
ing software that interacts directly with the physical
world. The interaction problem is rooted in the need
to propagate physical constraints through all of the
components along the feedback loop(s), that is, all of
the software modules interposed between the sensors
and transducers. The research challenge is to develop
software-creation techniques that automate this
process, possibly through direct generation from
specifications, as in model-based systems. An alter-
native approach is to leverage compiler technology
that automatically “weaves” constraints into code
fragments and “specializes” them, using concepts
similar to those recently developed in the Aspect-
Oriented Programming project at Xerox PARC [2]
and the Ensemble effort at Cornell University [4].

A few good abstractions. The simple reuse of
robotics and/or embedded software remains elusive.
While component software is often touted as a
panacea in this regard, something much simpler and
more fundamental might go a long way in the right
direction—the identification of significant chunks
of functionality that are frequently re-created, along
with the specification of a few good abstractions that
express their behaviors. A useful analogy can be
found in transaction processing, where the informal
specification of a single abstraction—the atomic
transaction—moved the field from a swamp of unre-
liable and customized solutions to an environment
in which: the solution space is understood; reusable
software can be purchased; the programmer is largely
relieved of the details of fault tolerance; and, most
important, systems realizing 24/7 operation are
widely deployed. The development of just one or
two powerful abstractions for embedded systems
functionality would go a long way toward increased
software productivity.

Let’s Reinvent Computer Science
Declaring at least a partial victory on the interactive
front—especially on office automation—represents
a tremendous opportunity to reexamine assumptions
and revisit questions that cross-cut many aspects of
computer science, including systems architecture,
networking, theory, and human-computer interac-
tion. Cross-cutting opportunities ripe for investiga-
tion include:

Active technologies. The automated linking of an
applet into a running browser may seem like a small
thing to the end user and, to a computer scientist,
may be viewed as just another demonstration of the
power of interpretation. However, the scale and

speed with which programs in the field can now be
dynamically augmented represents a major change
in our ability to assemble, distribute, and update
software.

Active technologies—the techniques supporting
code mobility—are important in proactive environ-
ments for two reasons: The software running on net-
worked embedded processors can be changed on the
fly, enabling wholesale transition in thinking con-
cerning embedded functionality; and by launching
applets into the network, the lowliest of embedded
processors can command the resources of larger sys-
tems, providing a very different look and feel to the
programmer.

Leveraging large numbers. Information technol-
ogy is finally reaching a scale where probabilistic
methods should play a larger role in systems design.
Some of the dimensions becoming significant are:

• Numbers of users and nodes;
• Amount of current information (such as the num-

ber of samples) on which each instance of a com-
putation is based;

• Corpus of historical information (such as the num-
ber of historical samples) available to build a statis-
tical model of past experience; and

• Scale of the problem and solution spaces being
explored.

Over the past few decades a familiar pattern has
emerged: A researcher in an application domain
(such as speech, vision, or data mining) adopts hid-
den Markov models to his or her problem; the
researcher is pilloried by his or her colleagues; the
approach is later shown to be superior and is widely
adopted. Given the number of domains in which
this pattern has been repeated, it is worth exploring
whether some broader conjectures can be supported.
In the extreme, one can imagine the underpinning of
computer science taking a leap from deterministic to
probabilistic models, with hidden Markov models or
Bayesian networks supplanting finite state machines,
in much the way that physics moved from classical
to quantum mechanics.

Various theory and systems researchers are already
exploring this space. For example, Eric Horvitz, a
Microsoft researcher, has identified a number of key
challenges in computer science that might best be
attacked using probabilistic methods (www.
research.microsoft.com/~horvitz/). One particularly
exciting opportunity leverages the feedback proper-
ties of proactive systems. Given an algorithm whose
statistical performance has been characterized, one
might develop an online procedure that recognizes

COMMUNICATIONS OF THE ACM May 2000/Vol. 43, No. 5 49

instances that likely lie in the tail of the run-time
distribution, that is, cases where the expected resid-
ual runtime of the algorithm is intolerably large. In
these situations, feedback mechanisms can be used
to kick the system into a different state that is likely
to have a shorter runtime.

Reinventing engineering. Although the classical
engineering disciplines have embraced computers in
many ways, they have not embraced computer sci-
ence. Instead, programmable devices have been used
to emulate traditional solutions. Very little has been
done by way of adopting lessons learned in the
mainstream computer science systems and theory
communities or in rethinking the fundamentals of
the various engineering disciplines in light of cheap,
plentiful, and networked computation.

Safety, social, and ethical issues. An important
class of problems that lies beyond the scope of this
article has to do with the broader implications of
being proactive. For example, getting physical intro-
duces a range of problems arising from the invasive
and pervasive nature of the technologies, while get-
ting real and getting out introduce questions of del-
egation, safety, and accountability when computers

are authorized to make decisions on our behalf.
Curriculum development. The computer science

teaching curriculum should be enriched with mate-
rials that prepare students to deal with the boundary
between the physical and the virtual worlds. As
probabilistic methods, information theory, and con-
trol theory become essential tools of the trade, they
need to be integrated into the academic program.

Conclusion
Over the past 40 years, computer science has
addressed only about 2% of the world’s computing
requirements. Its time to get physical, get real, and
get out and build proactive systems.

The agenda described here was shaped while I was director of DARPA’s Information
Technology Office, and the article indirectly refers to various efforts sponsored through
ITO’s research programs (see www.darpa.mil/ito). My thinking in this area has been pro-
foundly influenced by the exceptional DARPA program managers I was privileged to
serve with and by the many outstanding members of the computer science research com-
munity who gave freely of their time and energy during my tenure at DARPA. The views
expressed here are my own and do not necessarily represent those of the Intel Corporation.

References
1. Adjie-Winoto, W., et al. The design and implementation of an inten-

tional naming system. In Proceedings of the 17th ACM Symposium on
Operating Systems Principles (Charleston, S.C., Dec. 12–15). ACM
Press, New York, 1999.
2. Irwin, J., Loingtier, J.-M., Lopes, C., Maeda, C., Mendhekar, A.,

Lamping, J., and Kiczales, G. Aspect-oriented programming. Lect.
Notes Comp. Sci 1241, 220–242.

3. Licklider, J.C.R. Man-computer symbiosis. IRE Transact. Hum. Fact.
Engineer. 1, 1 (Mar. 1960), 4–11.

4. Liu, X., et al. Building reliable, high-performance communication
systems from components. In Proceedings of the 17th ACM Symposium
on Operating Systems Principles (Charleston, S.C., Dec. 12–15). ACM
Press, New York, 1999.

5. Patterson, D, Anderson, T, Cardwell, N., Fromm, R., Keeton, K.,
Kozyrakis, C., Thomas, R., and Yelick, K. A case for intelligent RAM.
IEEE Micro 17, 2 (Mar.-Apr. 1997), 34–44.

6. Simon, H. The Sciences of the Artificial. MIT Press, Cambridge,
Mass., 1969.

7. Tennenhouse, D. and Bose, V. The SpectrumWare approach to wire-
less signal processing. Wireless Nets. 2, 1 (Jan. 1996), 1–12.

8. Weiser, M. The computer for the 21st century. Sci. Am. 265, 3 (Sept.
1991), 94–104.

9. Wetherall, D. Active network vision and reality: Lessons from a cap-
sule-based system. In Proceedings of the 17th ACM Symposium on
Operating Systems Principles (Charleston, S.C., Dec. 12–15). ACM
Press, New York, 1999.

David Tennenhouse (david.tennenhouse@intel.com) is a vice
president and director of research of Intel Corp.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2000 ACM 0002-0782/00/0500 $5.00

c

50 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

