
Scheduling Aperiodic Tasks in Dynamic PrioritySystemsMarco Spuri and Giorgio ButtazzoScuola Superiore S.Anna,via Carducci 40, 56100 Pisa, ItalyEmail: spuri@fastnet.it, giorgio@sssup.itAbstractIn this paper we present �ve new on-line algorithms for servicingsoft aperiodic requests in real-time systems, where a set of hard periodictasks is scheduled using the Earliest Deadline First (EDF) algorithm. Allthe proposed solutions can achieve full processor utilization and enhanceaperiodic responsiveness, still guaranteeing the execution of the periodictasks. Operation of the algorithms, performance, schedulability analysis,and implementation complexity are discussed and compared with classi-cal alternative solutions, such as background and polling service. Exten-sive simulations show that algorithms with contained run-time overheadpresent nearly optimal responsiveness.A valuable contribution of this work is to provide the real-time systemdesigner with a wide range of practical solutions which allow to balancee�ciency against implementation complexity.1 IntroductionMany complex control applications include tasks which have to be completedwithin strict time constraints, called deadlines. If meeting a given deadline iscritical for the system operation, and may cause catastrophic consequences, thatdeadline is considered to be hard. If meeting time constraints is desirable, butmissing a deadline does not cause any serious damage, then that deadline isconsidered to be soft. In addition to their criticalness, tasks that require regularactivations are called periodic, whereas tasks which have irregular arrival timesare called aperiodic.For example, in a robot control application, activities such as sensory ac-quisition, data processing, path planning, and low level control loops requireperiodic tasks that have to be executed at constant rates to insure robot stabil-ity. For this reason, periodic tasks often have hard deadlines. Aperiodic tasksare typically used to serve random processing requirements, such as operator1



requests or displaying activities, hence they usually have soft deadlines, or nodeadlines at all. Aperiodic tasks with hard deadlines are called sporadic tasks.Given a set of real-time tasks, a schedule is said to be feasible if all hardtasks complete within their deadlines. A critical task with a hard deadline is saidto be guaranteed at its activation time if the system is able to �nd a feasibleschedule for the newly arrived task and all previously guaranteed tasks. Anoperating system capable of guaranteeing and executing tasks with hard timeconstraints is called Hard Real-Time (HRT) system. In a critical application,the goal of an HRT system is not only to meet the deadlines of all hard tasks,but also to minimize the average response time for soft activities.The problem of scheduling a mixed set of hard periodic tasks and soft aperi-odic tasks in a dynamic environment has been widely considered when periodictasks are executed under the Rate Monotonic (RM) scheduling algorithm [11].Lehoczky et al. [10] investigated server mechanisms (Deferrable Server and Pri-ority Exchange) to enhance aperiodic responsiveness. The basic idea was to usea special periodic task to e�ciently serve possible aperiodic requests of execu-tion. Sprunt et al. [14] described a better service mechanism, called SporadicServer (SS). Then, Lehoczky and Ramos-Thuel [8] found an optimal servicemethod, called Slack Stealer, which is based on the idea of \stealing" all thepossible processing time from the periodic tasks, without causing their dead-lines to be missed. Although it is not practical, because of its high overhead,the algorithm provides a lower bound on aperiodic response times, as well as thebasis for nearly optimal implementable algorithms. In [13], the same authorsextended the algorithm to deal also with hard aperiodic tasks, as well as a morecomplex task model based on serially executed subtasks. In [6], Davis et al.present a similar algorithm, in which the slack is computed at run-time, thusmaking the algorithm applicable to a more general class of scheduling problems.All these methods assume that periodic tasks are scheduled by the RMalgorithm. Although RM is an optimal algorithm, it is static and in the generalcase cannot achieve full processor utilization. In the worst case, the maximumprocessor utilization that can be achieved is about 69% [11], whereas in theaverage case, for a random task set, Lehoczky et al. [9] showed that it can beabout 88%.For certain applications requiring high processor workload, a 69% or an 88%utilization bound can represent a serious limitation. Processor utilization can beincreased by using dynamic scheduling algorithms, such as the Earliest DeadlineFirst (EDF) [11] or the Least Slack algorithm [12]. Both algorithms have beenshown to be optimal and achieve full processor utilization, although EDF canrun with smaller overhead.Scheduling aperiodic tasks under the EDF algorithm has been investigatedby Chetto and Chetto [4] and Chetto et al. [5]. These authors propose ac-ceptance tests for guaranteeing single sporadic tasks, or group of precedencerelated aperiodic tasks. Although optimal from the processor utilization pointof view, these acceptance tests present a quite large overhead to be practical in2



real-world applications.Three server mechanisms under EDF have been recently proposed by Ghaz-alie and Baker in [7]. The authors describe a dynamic version of the knownDeferrable and Sporadic Servers [14], called Deadline Deferrable Server andDeadline Sporadic Server, respectively. Then, the latter is extended to obtaina simpler algorithm called Deadline Exchange Server.The aim of our work is to provide more e�cient algorithms for the jointscheduling of random soft aperiodic requests and hard periodic tasks underthe EDF policy. Our proposal includes �ve algorithms having di�erent im-plementation overheads and di�erent performances. We �rst present two al-gorithms, namely the Dynamic Priority Exchange and the Dynamic SporadicServer, which are extensions of previous work under Rate Monotonic (RM).Although much better than background and polling service, they do not o�erthe same improvement as the others. A completely new \bandwidth preservingalgorithm", called Total Bandwidth Server, is also introduced. The algorithmsigni�cantly enhances the performance of the previous servers and can be easilyimplemented with very little overhead, thus showing the best performance/costratio. Finally, we present an optimal algorithm, the EDL Server, and a closeapproximation of it, the Improved Priority Exchange, which has much less run-time overhead. They are both based on o�-line computations of the slack timeof the periodic tasks. The proposed algorithms provide a useful framework toassist an HRT system designer in selecting the most appropriate method for hisor her needs, by balancing e�ciency with implementation overhead.The rest of the paper is organized as follows. In section 2 we state ourassumptions. Section 3 describes the Dynamic Priority Exchange (DPE) algo-rithm, which is an extension of the Priority Exchange algorithm proposed byLehozcky et al. [10]. In section 4, an extension of the Sporadic Server [14] work-ing under EDF is presented. A new simple and e�cient algorithm, called TotalBandwidth Server, is introduced in section 5. In section 6, we describe an opti-mal algorithm and its main properties are shown. In section 7, a nearly optimalalgorithm is derived from DPE, using the insights gained in section 6. Simula-tion results are discussed in section 8. Finally, considerations and conclusionsare included in section 9.2 Assumptions and TerminologyIn the de�nition of our algorithms we will consider the following assumptions:� all periodic tasks �i : i = 1; :::; n have hard deadlines;� all aperiodic tasks Ji : i = 1; :::;m do not have deadlines;� each periodic task �i has a constant period Ti and a constant worst caseexecution time Ci, which is considered to be known, as it can be derivedby a static analysis of the source code;3



� all periodic tasks are simultaneously activated at time t = 0; i.e., the �rstinstance of each periodic task has a request time ri(0) = 0;� the request time of the kth periodic instance is given by ri(k) = ri(k �1) + Ti;� the deadline of the kth periodic instance is given by di(k) = ri(k) + Ti;� the arrival time of each aperiodic task is unknown;� the worst case execution time of each aperiodic task is considered to beknown at its arrival time.For the sake of clarity, all properties of the proposed algorithms will be provenunder the above assumptions. However, they can easily be extended to handleperiodic tasks whose deadlines di�er from the end of the periods and that havenon null phasing. In this case, the guarantee tests would only provide su�cientconditions for the feasibility of the schedule.Shared resources can also be included using the same approach found in [7],assuming an access protocol like the Stack Resource Policy [1] or the DynamicPriority Ceiling [3]. The schedulability analysis would be consequently modi�edto take into account the blocking factors due to the mutually exclusive accessto resources.As a future work, we plan to treat also sporadic tasks and aperiodic taskswith �rm deadlines, that is, tasks that can be rejected if not guaranteed to meettheir deadlines [2].3 The Dynamic Priority Exchange AlgorithmIn this section we introduce the Dynamic Priority Exchange server, DPE fromnow on. The main idea of the algorithm is to let the server trade its run-timewith the run-time of lower priority periodic tasks (under EDF this means alonger deadline) in case there are no aperiodic requests pending. In this way,the server run-time is only exchanged with periodic tasks, but never wasted(unless there are idle times). It is simply preserved, even if at a lower priority,and it can be later reclaimed when aperiodic requests enter the system.3.1 De�nition of the DPE ServerIn [10] Lehoczky et al. introduce the Priority Exchange (PE) algorithm, a serverfor aperiodic requests under the RM algorithm. The DPE server is an extensionof the PE server adapted to work with the EDF algorithm.The algorithm is de�ned in the following way:� the DPE server has a speci�ed period TS and a capacity CS ;4



80 2 19

16

1 24232221

8

18

0 24

3

τ 2

203 164 5 6 1714 151312111097

126

1

0 18 24

3 7

DPE

τ

3 Figure 1: Dynamic Priority Exchange server example.� at the beginning of each period, the server's aperiodic capacity is set toCdS , where d is the deadline of the current server period;� each deadline d associated to the instances (completed or not) of the i-thperiodic task has an aperiodic capacity, CdSi , initially set to 0;� the aperiodic capacities (those greater than 0) receive priorities accord-ing to their deadlines and the EDF algorithm, like all the periodic taskinstances (ties are broken in favour of capacities, i.e., aperiodics);� whenever the highest priority entity in the system is an aperiodic capacityof C units of time (the server or one of the others) the following happens:{ if there are aperiodic requests in the system, these are served untilthey complete or the capacity is exhausted (each request consumes acapacity equal to its execution time);{ if there are no aperiodic requests pending, the periodic task havingthe shortest deadline is executed; a capacity equal to the length ofthe execution is added to the aperiodic capacity of the task deadlineand is subtracted from C (i.e., the deadlines of the highest prioritycapacity and the periodic task are exchanged);{ if neither aperiodic requests nor periodic task instances are pending,there is an idle time and the capacity C is consumed until, at most,it is exhausted.An example of schedule produced by the DPE algorithm is illustrated in Fig-ure 1.Two periodic tasks, �1 and �2, with periods 8 and 12 and worst case executiontimes 2 and 3 respectively, and a DPE server, with period 6 and capacity 3, arepresent in the system. At time t = 0, the aperiodic capacities C6S (with deadline5



6), C8S1 (with deadline 8) and C12S2 (with deadline 12) are set to 3, 0 and 0. Sinceno aperiodic requests are pending the two �rst periodic instances of �1 and �2are allowed to execute. Consequently, the 3 units of capacity C6S are consumedin the �rst three units of time. In the same interval two units of time areaccumulated in C8S1 (during the execution of �1) and one unit in C12S2 (at thebeginning of the �2's �rst execution). At time t = 3, C8S1 is the highest priorityentity in the system. Again �2 is allowed to keep executing. The two units ofC8S1 are consumed and accumulated in C12S2 . In the following three units of timethe processor is idle and C12S2 is consequently consumed. Note that C12S , set atvalue 3 at time t = 6, is preserved until time t = 8, when it becomes the highestpriority entity in the system (ties among aperiodic capacities are assumed to bebroken in a FIFO order).At time t = 14, an aperiodic request of 7 units of time enters the system.Since C18S is equal to 2, the �rst two units of time are served with deadline 18.The subsequent two units are served with the capacity C24S2 , i.e., with deadline24. Finally, the last three units are also served with deadline 24, because attime t = 18 the server capacity C24S is set to 3.3.2 Dynamic Priority Exchange SchedulabilityLet us now analyze the schedulability condition of a set of periodic tasks whichare scheduled, together with a DPE server, with the algorithm illustrated above.Intuitively, the server behaves like any other periodic task. The di�erence isthat it can trade its run-time with the run-time of lower priority tasks. Whena certain amount of time is traded, one or more lower priority tasks are runat a higher priority level, but their lower priority time is preserved for possibleaperiodic requests. This run-time exchange does not a�ect the schedulability ofthe task set, as shown in the following.As usual, let us de�ne the periodic tasks utilization factor asUP = nXi=1 CiTiand the server utilization factor asUS = CSTS :Our objective is to prove that the classical Liu and Layland result [11] for anEDF scheduler can be extended including the server utilization factor. In orderto do this, given a schedule S produced using the DPE algorithm, let us considera schedule S0 built in the following way:� the server is replaced with a periodic task of equal characteristics (i.e.,period TS and worst case execution time CS); in the new schedule, thetask executes when the server capacity in S decreases;6
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Figure 2: DPE server schedulability.� each execution of periodic instances during deadline exchanges (i.e., in-crease in the corresponding aperiodic capacity) is postponed until thecapacity decreases;� all other executions of periodic instances are left as in S.Note that, because of the de�nition of DPE, at any time there is at most onlyone aperiodic capacity decreasing in S, so S0 is well de�ned. Also observe that,in each feasible schedule produced by the DPE algorithm, all the aperiodic ca-pacities are exhausted before their respective deadlines (if one of these capacitieswould go beyond its deadline, introducing enough aperiodic requests we couldbuild a schedule in which the execution of subsequent periodic instances wouldbe delayed and some of them would miss their deadlines).In Figure 2 the schedule S0 built applying the de�nition to the schedule Sin Figure 1 is shown. Note that all the periodic executions corresponding toincreasing aperiodic capacities, have been moved to the corresponding intervalsin which the same capacities decrease (of course the length of the correspondingintervals is the same). Also note that, even with a di�erent schedule S, theschedule S0 would not change. The reason for this is that the \actual" taskexecution scheduled by EDF would be always at the time when the capacitydecreases, and not when increases. That is, the schedule S0 is invariant, and itonly depends on the characteristics of the server and on the periodic task set.This observation will let us prove the claimed result.Theorem 1 Given a set of periodic tasks with processor utilization UP and aDPE server with processor utilization US, the whole set is schedulable if andonly if UP + US � 1:Proof. All the schedules produced by the DPE algorithm have a uniquecorresponding EDF schedule S0, built following the de�nition above. Moreover,7



the task set in S0 is periodic and has processor utilization U = UP + US, thatis, S' is feasible if and only if UP + US � 1. Now, if UP + US � 1, observingthat in each schedule S the completion time of a periodic instance is less thanor equal to the completion time of the corresponding instance in the scheduleS0, being S0 feasible we can conclude that also S is feasible, that is, the set isschedulable by the DPE algorithm.Viceversa, if the set is schedulable, observing that S0 is a particular scheduleproduced by the DPE algorithm when there are enough aperiodic requests, wecan conclude that UP + US � 1.3.3 Resource ReclaimingIn most typical real-time systems, the processor load of periodic activities, eitherstatically or dynamically, is guaranteed a-priori. This means that the maximumpossible load reachable by periodic tasks is taken into account. When this peakis not reached, that is, the actual execution times are lower than the worstcase values, it is not always obvious how to reclaim the spare time for real-timeactivities (a trivial approach is to execute background tasks).In a system with a DPE server is very simple to reclaim the spare time ofperiodic tasks for aperiodic requests. It is su�cient that when a periodic taskcompletes, its spare time is added to the corresponding aperiodic capacity. Anexample of this behaviour is depicted in Figure 3. When the �rst aperiodicrequest enters the system at time t = 4, one unit of time is available withdeadline 8, and three units are available with deadline 12. The aperiodic requestcan thus be serviced immediately for all the seven units of time required, asshown in the schedule.Without the reclaiming described, at time t = 4 there would be a half unit oftime available with deadline 8 and two and a half units available with deadline12. The request would be serviced immediately for six units of time, but thelast unit would be delayed until time t = 11, when it would be serviced inbackground (neither periodic tasks nor aperiodic capacities would be ready atthat time).Note that reclaiming the spare time of periodic tasks as aperiodic capacitiesdoes not a�ect the schedulability of the system. It is su�cient to observe that,when a periodic task has spare time, this time has been already \allocated"to a priority level corresponding to its deadline when the task set has beenguaranteed. That is, the spare time can be safely used if requested with the samedeadline. But this is exactly the same as adding it to the task correspondingaperiodic capacity.
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3 Figure 3: DPE server resource reclaiming.3.4 Implementation ComplexityThe Priority Exchange server has been said to be quite di�cult to implementand to have a quite large run-time overhead [14]. Let us now evaluate thecomplexity of the implementation of a DPE server in a uniprocessor systemusing EDF as scheduling algorithm.If we assume that the scheduler and the dispatcher are able to manipulatequeues with two sorts of entities, tasks and aperiodic capacities, the serverinvolves only some more operations in the book-keeping of these capacities. Inparticular, at each system tick it may be necessary, in case of deadline exchange,to update the values of two capacities and to check whether the \running" oneis exhausted. The increase in complexity, with respect to EDF, is of course verylow.Furthermore, the ready queue can be at most twice as long as without theserver (there is at most one aperiodic capacity for each periodic task instance).That is, the complexity of the routines that manipulate this queue can be at mostdoubled, if we use a linear list (using a binary heap the increase in complexityis practically negligible).From these simple observations we can conclude that whereas the implemen-tation of a DPE server is not trivial, the run-time overhead does not signi�cantlyincrease the typical overhead of a system using an EDF scheduler.4 The Dynamic Sporadic Server1 AlgorithmIn [14], another e�cient algorithm, called Sporadic Server (SS), for servicingaperiodic requests in uniprocessor systems using a Rate Monotonic scheduleris introduced. Since this algorithm exhibits nice properties, namely e�ciency1A similar algorithm called Deadline Sporadic Server has been independently developedby Ghazalie and Baker, and has been recently described in [7].9



READY

EXE

IDLEFigure 4: DSS state transition diagram.and simplicity, we have studied how a similar policy could be extended to workunder a dynamic EDF scheduler.4.1 De�nition of the Dynamic Sporadic ServerSimilarly to other servers, the DSS algorithm also has a speci�ed capacity CSand a period TS . The main idea is always to preserve the server execution time(i.e., its capacity) for possible aperiodic requests. The di�erence from previousserver algorithms is that the capacity is not replenished at its full value at thebeginning of each period of the server, but only when it has been consumed. Thetimes at which the replenishments occur are chosen very carefully, according to areplenishment rule, which allows the system to achieve full processor utilization.The main di�erence between the SS algorithm described in [14] and ourdynamic version is that, whereas the SS has a �xed priority chosen according tothe RM algorithm (that is, according to its period TS), our version has a dynamicpriority. This dynamic priority is assigned choosing a suitable deadline, whosevalue is set to the next de�ned replenishment time.In order to describe the Dynamic SS algorithm (DSS), let us consider thethree states in which the server, as any other task in the system, can be: IDLE,READY and EXE. Figure 4 illustrates the three states and all possible transi-tions among them. The DSS algorithm is described in terms of these transitions:IDLE ! READY : either an aperiodic request has entered the system andCS > 0, or CS has become greater than zero (a replenishment has oc-curred); in either case, the next replenishment time and the current dead-line of the server are both set to t+ TS, where t is the current time2;READY ! IDLE : the server has the highest priority in the system (i.e., theshortest deadline), but there are no aperiodic requests to service3;2One way to improve the performance of the server would be, as in the de�nition of theDeadline Sporadic Server of [7], to allow this transition also when a periodic task instancewith deadline d � t+ TS starts to execute. This should let the server have a greater priorityto serve forthcoming aperiodic requests.3Similarly to the previous situation, we could try to improve the performance of the server10



0

0

8 16 24

0 12 24

3
T S C S

T C

T C

1

2 2

1

= 6 = 3

= 2= 8

= 12 = 3

ri re
i re i re i

2 1 1

22 2 1

re i

3

Figure 5: Dynamic Sporadic Server example.READY ! EXE : the server has the highest priority in the system and thereare aperiodic requests to service; while requests are served, a capacityequal to their execution times is consumed accordingly;EXE ! READY : the server is preempted by a higher priority task;EXE ! IDLE : either an aperiodic request has been served and there areno other requests pending, or the server capacity has been exhausted; areplenishment of the consumed server execution time is scheduled to occurat the replenishment time set during the last transition IDLE! READY.At the beginning, when the system is started, the server is in READY state,has full capacity CS , and deadline and next replenishment time set to TS . InFigure 5, an example of schedule produced by the DSS algorithm is shown.At time t = 0, the server has the highest priority in the system (its deadlineis 6). Since there are no aperiodic requests it immediately enters the IDLEstate. At time t = 3, an aperiodic request with execution time 2 arrives. Theserver enters again the READY state setting the next replenishment time andits deadline to t = 3 + TS = 9. That is, it becomes the highest priority taskin the system and the request is serviced at once. At time t = 5, the requestis completed, the server goes in IDLE state and a replenishment to CS of twounits of time is scheduled to occur at time t = 9.At time t = 6, a second aperiodic requests arrives. Being CS > 0 the servergoes in READY state and the next replenishment time and its deadline are setto t = 6 + TS = 12. Again the server becomes the highest priority task in thesystem (we assume that ties among tasks are always resolved in favour of thealso checking whether the �rst task in the ready queue has a deadline d such that dS < d �t+ TS . In this case we could assign the server a deadline dS = d, leave the server in READYstate and execute the task with deadline d. 11



server) and the request is serviced immediately. This time, however, the serverhas only a capacity of one unit of time. Consequently, at time t = 7 the capacityis exhausted, the server goes in IDLE state, a replenishment of one unit of timeis scheduled for t = 12, and the aperiodic request is delayed until CS becomesagain greater than zero. This is true at time t = 9, when a replenishment of twounits of time occurs. The server goes consequently in READY state, setting thenext replenishment time and its deadline to t = 9+ TS = 15. Being the highestpriority task, the pending aperiodic request is serviced until completion, whichhappens one unit of time later. A replenishment of one unit is then scheduledto occur at time t = 15.Note that, if a second aperiodic request arrives while another one is beingserviced, or, equivalently, when the server is in READY state, provided thatenough capacity is available, even the second request is serviced with the samepriority (deadline) of the �rst one. In Figure 5 this happens at time t = 15. Thesecond aperiodic request is serviced with the same deadline (20) as the requestarrived at time t = 14.4.2 Dynamic Sporadic Server SchedulabilityIn order to prove the schedulability bound for the Dynamic Sporadic Server,we will �rst show that the server behaves, as intuitive, like a periodic task withperiod TS and execution time CS .Lemma 1 In each interval of time [t1; t2], such that the Dynamic SporadicServer is in IDLE state at t1, if Cape is the total execution time demanded foraperiodic requests in the same interval (that is, Cape is the server time betweent1 and t2 demanded with a deadline less than or equal to t2), thenCape � � t2 � t1TS �CS :Proof. First note that since replenishments are always equal to the timeconsumed, the server capacity is at any time less than or equal to CS . Also,the replenishment policy establishes that the consumed capacity cannot be re-claimed before than TS units of time after the instant at which the server hasbecome ready. This means that after t1, at most CS time can be demanded ineach subsequent interval of time of length TS . The thesis follows.We are now able to show that not only the DSS behaves like a periodic task,but also that a full processor utilization is still achieved.Theorem 2 Given a set of n periodic tasks with processor utilization UP and aDynamic Sporadic Server with processor utilization US, the whole set is schedu-lable if and only if UP + US � 1:12



Proof. \If". Suppose there is an overow at time t. The overow is pre-ceded by a period of continuous utilization of the processor. Furthermore, froma certain point t0 on, only instances of tasks ready at t0 or later and havingdeadlines less than or equal to t are run (the server may be one of these tasks).Let C be the total execution time demanded by these instances. Since there isan overow at time t, we must havet� t0 < C:We also know that C � nXi=1 � t� t0Ti �Ci + Cape� nXi=1 � t� t0Ti �Ci + � t� t0TS �CS� nXi=1 t� t0Ti Ci + t� t0TS CS� (t� t0)(UP + US):It follows that UP + US > 1;a contradiction.\Only If". If there are enough aperiodic requests, the demanded serverexecution time is CS for each subsequent TS units of time. That is, the serverbehaves exactly as a periodic task with period TS and execution time CS . Beingthe processor utilization U = UP +US, from Theorem 7 of [11] we can concludethat UP + US � 1.4.3 Implementation ComplexityIn order to implement the DSS algorithm, the dispatcher and the scheduler,besides the usual task entries, must be able to manage the server entry in thesystem queues. This only means to manage a further queue (of aperiodic tasks)associated with the server.Similarly to the DPE server, the system book-keeping is involved in theupdates of the server capacity. This happens in two di�erent situations. First,during aperiodic services the capacity must be decreased at each system tickin order to check whether it has been exhausted. Second, when a scheduledreplenishment time is encountered, the capacity must be increased with thespeci�ed value.Again, we can expect that the implementation of the Dynamic SporadicServer is quite straightforward and that the run-time overhead is very low.13
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Figure 7: Total Bandwidth server example.5.1 De�nition of the TB ServerThe de�nition of the TB server is very simple. When the k-th aperiodic requestarrives at time t = rk, it receives a deadlinedk = max(rk; dk�1) + CkUS ;where Ck is the execution time of the request and US is the server utilizationfactor (i.e., its bandwidth). By de�nition d0 = 0. The request is then insertedinto the ready queue of the system and scheduled by EDF, as any other periodicinstance or aperiodic request already present in the system.Note that we can keep track of the bandwidth already assigned to otherrequests by simply taking the maximum between rk and dk�1. Intuitively, asit will be shown in Lemma 2, the assignment of the deadlines is such thatin each interval of time the ratio allocated by EDF to the aperiodic requestsnever exceeds the server utilization US , that is, the processor utilization of theaperiodic tasks is at most US .In Figure 7, the same situation of Figure 6 is treated with a TB serverinstead of a Sporadic Server. The �rst aperiodic request, arrived at time t = 6,is serviced (i.e., scheduled) with deadline d1 = r1 + C1US = 6 + 10:25 = 10. 10being the earliest deadline in the system, the aperiodic activity is executedimmediately. Similarly, the second request receives the deadline d2 = r2+ C2US =21, but it is not serviced immediately, since at time t = 13 there is an activeperiodic task with a shorter deadline (18). Finally, the third aperiodic request,arrived at time t = 18, receives the deadline d3 = max(r3; d2)+ C2US = 21+ 10:25 =25 and is serviced at time t = 22. The response times of the �rst two requestsare considerably improved, while for the third one we have no changes.In Figure 8, a TB server with a high bandwidth is shown. Note that theresponse times of the aperiodic requests are very short. This is due to the high15
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Figure 8: High capacity Total Bandwidth server example.value of US , which lets the requests to demand their computation time withshort deadlines, that is, with high priority.5.2 Total Bandwidth SchedulabilitySince we have de�ned the TB server in such a way that the aperiodic load neverexceeds US , we expect to achieve a full processor utilization. As for the SporadicServer, we �rst need to prove that the aperiodic processor utilization does notactually exceeds US .Lemma 2 In each interval of time [t1; t2], if Cape is the total execution timedemanded by aperiodic requests arrived at t1 or later and served with deadlinesless than or equal to t2, then Cape � (t2 � t1)US :Proof. By de�nition Cape = Xt1�rk;dk�t2 Ck:Given the deadline assignment of the TB server, there must be two indexes k1and k2 such that Xt1�rk;dk�t2 Ck = k2Xk=k1 Ck:It follows that Cape = k2Xk=k1 Ck16



= k2Xk=k1[dk �max(rk ; dk�1)]US= US k2Xk=k1[dk �max(rk ; dk�1)]� US [dk2 �max(rk1 ; dk1�1)]� US(t2 � t1):Now we can prove the claimed result.Theorem 3 Given a set of n periodic tasks with processor utilization UP and aTB server with processor utilization US, the whole set is schedulable if and onlyif UP + US � 1:Proof. \If". Suppose there is an overow at time t. The overow is precededby a period of continuous utilization of the processor. Furthermore, from acertain point t0 on, only instances of tasks (periodic or aperiodic) ready at t0 orlater and having deadlines less than or equal to t are run. Let C be the totalexecution time demanded by these instances. Since there is an overow at timet, we must have t� t0 < C:We also know that C � nXi=1 � t� t0Ti �Ci + Cape� nXi=1 t� t0Ti Ci + (t� t0)US� (t� t0)(UP + US):It follows that UP + US > 1;a contradiction.\Only If". If an aperiodic request enters the system periodically, say eachTS > 0 units of time, and has execution time CS = TSUS , the server behavesexactly as a periodic task with period TS and execution time CS . Being theprocessor utilization U = UP+US , again from Theorem 7 of [11] we can concludethat UP + US � 1. 17



5.3 Implementation ComplexityThe implementation of the TB server is the simplest among those seen so far. Inorder to correctly assign the deadline to the new issued request, we only need tokeep track of the deadline assigned to the last aperiodic request (dk�1). Then,the request can be queued into the ready queue and treated by EDF as anyother periodic instance. Hence, the overhead is practically negligible.6 The EDL AlgorithmThe Total Bandwidth algorithm is able to achieve good aperiodic response timeswith extreme simplicity. Still we could desire a better performance if we agreeto pay something more. For example, looking at the schedule in Figure 7, wecould argue that the second and the third aperiodic requests may be served assoon as they arrive, without compromising the schedulability of the system. Thereason for this is that, when the requests arrive, the active periodic instanceshave enough e�ective laxity (i.e., the interval between the completion time andthe deadline) to be safely preempted. The main idea of the EDL algorithmis to take advantage of these laxities. In order to do this, the idle times of aparticular EDF schedule of the periodic task set are computed, and an optimalreplenishment policy for the capacity of an aperiodic server is derived from thesevalues.6.1 De�nition of the EDL ServerThe de�nition of the EDL server makes use of some results presented by Chettoand Chetto in [4]. In this paper, two di�erent implementations of EDF, namelyEDS and EDL, are studied. Under EDS the active tasks are processed as soonas possible, while under EDL they are processed as late as possible. An accu-rate characterization of the idle times produced by the two algorithms is given.Moreover, a formal proof of the optimality, in the sense that it guarantees themaximum idle time in a given interval, is stated for EDL. In the original paper,this result is used to build an acceptance test for sporadic tasks (i.e., aperiod-ics with hard deadlines) entering the system, while here it is used to build anoptimal server mechanism for soft aperiodic activities.Let us introduce the terminology used by the authors in [4]. With fXY theydenote the availability functionfXY (t) = � 1 if the processor is idle at t0 otherwise,de�ned with respect to a task set Y and a scheduling algorithmX . The functionfEDLJ , with J = f�1; �2g, is depicted in Figure 9. The integral of fXY on aninterval of time [t1; t2] is denoted by 
XY (t1; t2): it gives the total idle time inthe speci�ed interval. 18
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The procedure to recompute at each new arrival the idle times of EDL ap-plied to J (t) is described in [4] and is not reported here. It is interesting tonotice that not all the idle times have to be recomputed, but only those preced-ing the deadline of the current active periodic task with the longest deadline.However, the worst case complexity of the algorithm, which is O(Nn), whereN is the number of distinct periodic requests that occur in [0; H [, and n is thenumber of periodic tasks, is relatively high and can give the algorithm littlepractical interest. As for the \Slack Stealer", the EDL server will be used toprovide a lower bound to the aperiodic response times, and to build a nearlyoptimal implementable algorithm, described in the next section.6.2 EDL Server PropertiesThe analysis of the EDL server schedulability is quite straightforward. In fact,the server allocates to the aperiodic activities only the idle times of a particularEDF schedule, without compromising the timeliness of the periodic tasks. Thisis more precisely stated in the following Theorem.Theorem 5 Given a set of n periodic tasks with processor utilization UP andthe corresponding EDL server (the behaviour of the server strictly depends onthe characteristics of the periodic task set), the whole set is schedulable if andonly if UP � 1(the server automatically allocates the bandwidth 1�UP to aperiodic requests).Proof. \If". The condition is su�cient for the schedulability of the periodictask set under EDF (Theorem 7 of [11]), thus even under EDL, which is aparticular implementation of EDF. The algorithm schedules the periodic tasksaccording to one or the other implementation, depending on the absence orthe presence of aperiodic requests in the system. In the latter situation theexecutions of the aperiodic tasks are scheduled during the precomputed idletimes of the periodic tasks. In both cases the timeliness of the periodic task setis una�ected, that is, no deadline is missed.\Only If". Trivial, since the condition is necessary even for only the periodictask set (Theorem 7 of [11]). We now want to establish another nice propertyof the EDL server. In particular, we want to prove the property of optimalityaddressed above, that is, the response times of the aperiodic requests under theEDL algorithm are the best achievable. This is exactly what is stated by thefollowing Lemma.Lemma 3 Let X be any on-line preemptive algorithm, J a periodic task set,and J an aperiodic request. If cXJ[fJg(J) is the completion time of J whenJ [ fJg is scheduled by X, thencEDL serverJ[fJg (J) � cXJ[fJg(J):21



Proof. Suppose J arrives at time t. Let J (t) be the set of the currentactive periodic instances (ready but not yet completed) and the future periodicinstances. The new task J is scheduled together with the tasks in J (t). Inparticular, consider the schedule S of J [ fJg under X . Let X 0 be anotheralgorithm that schedules the tasks in J (t) at the same time as in S, and S0be the corresponding schedule. J is executed during some idle periods of S0.Applying Theorem 4 with the origin of the time axis translated to t (this canbe done since X is on-line), we know that for each t0 � t
EDLJ (t)(t; t0) � 
X0J (t)(t; t0):Recall now that, when there are aperiodic requests, the EDL server allocatestheir executions exactly during the idle times of EDL. Being
EDLJ (t)(t; cEDL serverJ[fJg (J)) � 
X0J (t)(t; cEDL serverJ[fJg (J))it follows that cEDLJ[fJg(J) � cXJ[fJg(J):That is, under the EDL server, J is never completed later than under X .7 The Improved Priority Exchange AlgorithmAlthough optimal, the algorithm described in the previous section has too muchoverhead to be considered practical. However, its main idea can be usefullyadopted to develop an implementable algorithm, still maintaining a nearly op-timal behaviour, as shown later in the discussion of the simulations.What makes the EDL server not practical is the complexity of computingthe idle times at each new aperiodic arrival. This computation must be doneeach time in order to take into account the periodic instances partially executedor already completed at the time of arrival. The time \advanced" to the peri-odic instances becomes idle time that the server can use to schedule aperiodicrequests, in addition to the idle time of an ideal EDL scheduler.We can avoid the heavy idle time computation using the mechanism of pri-ority exchanges. With this mechanism, in fact, the system can easily keep trackof the time advanced to periodic tasks and possibly reclaim it at the right pri-ority level. The idle times of the EDL algorithm can be precomputed o�-line.The server can use them to schedule aperiodic requests, when there are any,or to advance the execution of periodic tasks. In the latter case the idle timeadvanced can be saved as aperiodic capacity at the priority levels of the periodictasks executed. 22
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Figure 11: Improved Priority Exchange server example.7.1 De�nition of the IPE ServerThe algorithm described here, called Improved Priority Exchange (IPE), isbased on the idea pointed out above. In particular, we modify the DPE serverusing the idle times of an EDL scheduler. First, we obtain a far more e�cientreplenishment policy for the server. Second, the resulting server is no longerperiodic and it can always run at the highest priority in the system.The IPE server is thus de�ned in the following way:� the IPE server has an aperiodic capacity, initially set to 0;� at each instant t = ei + kH , with 0 � i � p and k � 0, a replenishmentof ��i units of time is scheduled for the server capacity, that is, at timet = e0 the server will receive ��0 units of time (the two vectors E and D�have been de�ned in the previous section);� the server priority is always the highest in the system, regardless of anyother deadline;� all other rules of IPE (aperiodic requests and periodic instances executions,exchange and consumption of capacities) are the same as for a DPE server.The same task set of Figure 10 is scheduled with an IPE server in Figure 11.Note that the server replenishments are set according to the function fEDLJ ,illustrated in Figure 9.When the aperiodic request arrives at time t = 8, one unit of time is im-mediately allocated to it by the server. However, other two units are availableat the priority level corresponding to the deadline 12, due to previous deadlineexchanges, and are allocated right after the �rst one. The last one is allocatedlater, at time t = 12, when the server receives a further unit of time. In thissituation, the optimality of the response time is kept. As we will show later,23



there are only rare situations in which the optimal EDL server performs slightlybetter than IPE, that is, almost always IPE exhibits a nearly optimal behaviour.7.2 IPE Server SchedulabilityIn order to analyze the schedulability of an IPE server, it is useful to de�nea transformation among schedules similar to that de�ned for the DPE server.In particular, given a schedule S produced by the IPE algorithm, we build theschedule S0 in the following way:� each execution of periodic instances during deadline exchanges (i.e., in-crease in the corresponding aperiodic capacity) is postponed until thecapacity decreases;� all other executions of periodic instances are left as in S.In this case, the server is not substituted with another task. Again S0 is wellde�ned and is invariant, that is, it does not depend on S, but only on theperiodic task set. Moreover, S0 is the schedule produced by EDL applied to theperiodic task set (compare Figure 9 with Figure 11). The optimal schedulabilityis stated by the following Theorem.Theorem 6 Given a set of n periodic tasks with processor utilization UP andthe corresponding IPE server (the parameters of the server depend on the peri-odic task set), the whole set is schedulable if and only ifUP � 1(the server automatically allocates the bandwidth 1�UP to aperiodic requests).Proof. \If". The condition is su�cient for the schedulability of the periodictask set under EDF (Theorem 7 of [11]), thus even under EDL, which is aparticular implementation of EDF. Now, observe that in each schedule producedby the IPE algorithm the completion times of the periodic instances are nevergreater than the completion times of the corresponding instances in S0, which isthe schedule of the periodic task set under EDL. That is, no periodic instancecan miss its deadline. The thesis follows.\Only If". Trivial, since the condition is necessary even for the periodic taskset only (Theorem 7 of [11]).7.3 Resource ReclaimingThe resource reclaiming, that is, the reclaiming of unused periodic executiontime, can be done in the same way as for the DPE server. When a periodictask completes, its spare time is added to the corresponding aperiodic capacity.Again, this behaviour does not a�ect the schedulability of the system. Thereason is of course the same as for the DPE server.24



7.4 Implementation ComplexityAs for the resource reclaiming, even the implementation complexity of IPE issimilar to that of any other DPE server, at least from the time point of you.The two vectors E and D� are in fact precomputed before the system is run.The replenishments of the server capacity are no longer periodic, but this doesnot change the complexity. Finally, all the rest is perfectly the same, hence eventhe consideration on the implementation complexity are comparable.What can change dramatically is the memory requirement. If the periods ofperiodic tasks are not harmonically related, we could have a huge hiperperiodH = lcm(T1; : : : ; Tn), which would mean a great memory occupancy to storethe two vectors E and D�.8 Performance ResultsDPE, DSS, TBS, EDL and IPE algorithms have been simulated to compare theaverage response times of soft aperiodic tasks with respect to the response timesobtained with background scheduling. This form of aperiodic scheduling is thesimplest possible: the aperiodic tasks are executed only when the processorwould be otherwise idle, that is, no periodic task instances are ready to run.For completeness, also a Polling server has been compared with the otheralgorithms. In this case, a periodic task for aperiodic service is created and,given its period and its maximum capacity, it is scheduled as any other periodictask. When the server is run, if aperiodic requests are pending they are servedwithin the limit of the server capacity, otherwise the current periodic instanceis completed.In all simulations, a set of ten periodic tasks with periods ranging from100 and 1000 was chosen. Three periodic loads were simulated, by setting theprocessor utilization factor Up at 40%, 65% and 90%, referred in the followingas low, medium and high periodic load, respectively.The aperiodic load for these simulations was varied across the range of pro-cessor utilization unused by the periodic tasks. The interarrival times (withaverage Ta) for the aperiodic tasks were modeled using a Poisson arrival pat-tern, whereas the aperiodic service times (with average Ts) were modeled usingan exponential distribution.Where applicable, the processor utilization of the servers was set to all theutilization left by the periodic tasks, that is, US = 1 � UP . The period of theperiodic servers, namely Polling, DPE and DSS, was set equal to the averageaperiodic interarrival time (Ta) and, consequently, the capacity was set to CS =TaUS.Unless otherwise stated, the data plotted for each algorithm represent theratio of the average aperiodic response time relative to the response time ofbackground aperiodic service. The average is computed over ten simulations,25



in which a total of one hundred thousand aperiodic requests were generated.In this way, an average response time equivalent to background service has avalue of 1:0 on all the graphs. Hence, a value less than 1:0 corresponds to animprovement in the average aperiodic response time over background service.The lower the response time curve lies on these graphs, the better the algorithmis for improving aperiodic responsiveness.8.1 Experiment 1: IPE vs. EDLIn the �rst experiment, we have compared the performance of our IPE algorithmversus the optimal EDL server mechanism. The three graphs shown in Figure 12correspond to three di�erent periodic loads, low, medium and high, as addressedabove. The aperiodic load was generated using a mean interarrival time Ta =100 and varying the average aperiodic service time Ts so that the total loadcovered, roughly, the range from Up to the full processor utilization.As can be clearly seen from the graphs, for small and medium periodic loadsthe two algorithms do not have signi�cant di�erences in their performances.However, even for a high periodic load, the di�erence is so small that can bereasonably considered negligible for any practical application.Although IPE and EDL have very similar performances, they di�er signi�-cantly in their implementation complexity. As mentioned in previous sections,the EDL algorithm needs to recompute the server parameters quite frequently(namely, when an aperiodic request enters the system and all previous aperiod-ics have been completely serviced). This overhead can be too expensive in termsof cpu time to use the algorithm in practical applications. On the other hand,for the IPE algorithm we only have to compute o�-line the parameters of theserver. Then, at run-time, assuming we have enough memory, the implementa-tion complexity is the same as for a DPE server, which is quite reasonable.In summary, IPE has nearly the same performance of EDL, but with muchless overhead. For this reason, the EDL server performance is not reported inall subsequent simulations. Moreover, the performance of the IPE server willbe the reference in the following experiments.8.2 Experiment 2: Response Time vs. Aperiodic LoadIn the second experiment, we tested the performance of all algorithms as afunction of the aperiodic load. The load was varied by changing the averageaperiodic service time, while the average interarrival time was set at the valueof Ta = 100.Figure 13 presents the results of these simulations. In this �gure, threegraphs are presented, which correspond to the di�erent periodic loads simu-lated, low, medium and high respectively. In each graph, the average aperiodicresponse time of each algorithm is plotted with respect to that of backgroundservice as a function of the mean aperiodic load Uape = TsTa .26
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(c)Figure 12: Comparison between IPE and EDL server.27
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(c)Figure 13: Algorithms performance with di�erent processor loads.28
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Figure 14: Algorithms performance with increasing aperiodic interarrival times.As can be seen from each graph, the TBS and IPE algorithms can provide asigni�cant reduction in average aperiodic response time compared to backgroundor polling aperiodic service, whereas the performance of the DPE and DSSalgorithms depends on the aperiodic load. For low aperiodic load, DPE andDSS perform as well as TBS and IPE, but as the aperiodic load increases theirperformance tends to be similar to that one shown by the Polling server.Note that, in all graphs, TBS and IPE have about the same responsivenesswhen the aperiodic load is low, and they exhibit a slightly di�erent behaviourfor heavy aperiodic loads.8.3 Experiment 3: Response Time vs. Interarrival TimeThe performance of the proposed algorithms has also been compared as a func-tion of the interarrival time Ta. Since the period of periodic tasks was chosenbetween 100 and 1000 units of time, the average interarrival time of aperiodictasks was varied from 10 and 900 time units. In this experiment, the averageperiodic load was �xed at Up = 65%, and the average aperiodic load was set atUape = 25%.In order to maintain the aperiodic load constant, the average aperiodic ser-vice time Ts was computed as Ts = Ta � Uape. As a consequence, in the graphreported in Figure 14, the smaller the interarrival time on the x-axis, the smallerthe aperiodic service time. This means that, for low values of Ta the aperiodicload is generated by a large number of small tasks, whereas for higher values of29
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Figure 15: Algorithms performance with increasing periodic load.Ta the same aperiodic load is generated by a small number of long tasks.As can be seen from the �gure, all algorithms perform much better whenthe aperiodic load is generated by a large number of small tasks rather than asmall number of long activities. Moreover, note that, as the interarrival timeTa increases, and the tasks' execution time becomes longer, the IDE algorithmshows its superiority with respect to the others, which tend to have about thesame performance, instead.8.4 Experiment 4: Response Time vs. UpIn this experiment, the proposed algorithms have been compared with di�erentperiodic loads Up. The graph shown in Figure 15 plots the average aperiodicresponse times when the processor utilization factor was varied from 10% to60%. In this simulation, the aperiodic load was generated by setting Ta = 100and Ts = 30, thus the total load was varied from 40% to 90%.As can be seen from the graph, for very low periodic loads all aperiodic ser-vice algorithms show a behaviour similar to background service. As the periodicload increases, their performance improves substantially with respect to back-ground service. In particular, DPE and DSS have a comparable performance,which tends to approach that of the Polling server for high periodic loads. Onthe other hand, TBS and IPE outperform all other algorithms in all situations.The improvement is particularly signi�cant with medium and high workloads.With a very high workload, TBS is no more able to achieve the same good30



performance of IPE, even though it is much better than the other algorithms.8.5 Experiment 5: Response Time vs. Unused PeriodicTask Computation TimeThe goal of this experiment was to verify the e�ectiveness of the resource re-claiming technique, described in Section 3.3, which can be used in the algorithmsDPE and IPE. In order to do this, we have compared the performance of the�ve algorithms (Polling, DPE, DSS, TBS and IPE) on a number of task sets, inwhich the actual execution times of periodic tasks were less than the worst caseones. The estimated periodic load, computed using the worst case executiontimes, was set to 65%. The mean interarrival time of the aperiodic requests wasset to 100 units, while the mean aperiodic service time was set to 25 units, thusgiving a total estimated processor load of 90%. The actual execution time aeti;jof the jth instance of the ith periodic task was generated using the followingformula: aeti;j = Ci � rnd(1� 2�; 1);where Ci is the worst case execution time of the task, rnd(a; b) is a function thatreturns a random number in the interval [a; b], using a uniform distribution, andthe parameter �, which is Ci�E[aeti;j ]Ci , represents the average ratio of the unusedcomputation times.The result of the simulation can be seen in the graph shown in Figure 16.In the vertical axis the average response time of each algorithm is representedas a function of the parameter �, which ranges from 0 to 0:5. The case � = 0corresponds to the situation in which the actual execution times are equal tothe worst case ones. In this particular situation the result is equivalent to thatshown in a previous experiment.As soon as � becomes greater than zero, that is, the actual execution timesbecome less than the worst case ones, the performance of the DPE server tendsto be much better, and also tends to approach the performance of the TBserver. This behaviour is con�rmed for all other values of �, thus proving thee�ectiveness of the reclaiming technique used in the DPE and IPE algorithms.From the graph, we can see that the TBS algorithm shows a good behaviour,too, although no explicit reclaiming has been designed for it. Finally, also thePolling and the Sporadic servers show good improvements, due to the loweractual periodic load. However, their performance is always signi�cantly worse,compared to the others.9 Discussion and ConclusionsIn this paper we have introduced �ve novel on-line scheduling algorithms for real-time systems with dynamic priorities. Namely, all algorithms exploit the well31
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Figure 16: Response times vs. unused computation times.known Earliest Deadline First policy to deal with both soft aperiodic and hardperiodic tasks. All algorithms have been characterized in terms of schedulabilityand implementation complexity. For two of them, DPE and IPE, a simpleresource reclaiming technique has been designed and proven to be e�ective.Finally, extensive comparisons have been carried out in di�erent experiments.The experimental simulations have established that, from a performancepoint of view, IPE and EDL show the best results. Although optimal, EDL isfar from being reasonably practical, due to the overall complexity. On the otherhand, IPE is able to achieve a comparable performance with much less com-putational overhead. Both algorithms may have signi�cant memory demandswhen the periods of the periodic tasks are not harmonically related.The Total Bandwidth algorithm has shown a very good performance, some-times comparable to that of the nearly optimal of IPE. Observing that its im-plementation complexity is among the simplest, one could consider this to be agood candidate for practical systems.Even though a bit more complex, the DPE and the DSS algorithms showslightly worse performance, although they both provide better responsivenessthan the Polling server and the naive background service.With this work we have covered a wide spectrum of algorithms dealing withaperiodic service. Considering also other works in the literature, the real-timedesigner that wishes to build a system with dynamic priorities should now havea su�cient number of choices for designing an e�cient aperiodic service mecha-nism. In particular, in all those applications in which the periodic load is �xed,32
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