
SYNTHESIS OF EMBEDDED SOFTWARE FROM

SYNCHRONOUS DATAFLOW SPECIFICATIONS

Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee

ABSTRACT

The implementation of software for embedded digital signal processing (DSP) applica-
tions is an extremely complex process. The complexity arises from escalating functionality in the
applications; intense time-to-market pressures; and stringent cost, power and speed constraints.
To help cope with such complexity, DSP system designers have increasingly been employing
high-level, graphical design environments in which system specification is based on hierarchical
dataflow graphs. Consequently, a significant industry has emerged for the development of data-
flow-based DSP design environments. Leading products in this industry include SPW from
Cadence, COSSAP from Synopsys, ADS from Hewlett Packard, and DSP Station from Mentor
Graphics.

This paper reviews a set of algorithms for compiling dataflow programs for embedded
DSP applications into efficient implementations on programmable digital signal processors. The
algorithms focus primarily on the minimization of code size, and the minimization of the memory
required for the buffers that implement the communication channels in the input dataflow graph.
These are critical problems because programmable digital signal processors have very limited
amounts of on-chip memory, and the speed, power, and cost penalties for using off-chip memory
are often prohibitively high for embedded applications. Furthermore, memory demands of appli-
cations are increasing at a significantly higher rate than the rate of increase in on-chip memory
capacity offered by improved integrated circuit technology.

This research is part of the Ptolemy project, which is supported by the Defense Advanced
Research Projects Agency (DARPA), the Air Force Research Laboratory, the State of California MICRO
program, and the following companies: The Alta Group of Cadence Design Systems, Hewlett Packard,
Hitachi, Hughes Space and Communications, NEC, Philips, and Rockwell.

S. S. Bhattacharyya is with the Department of Electrical and Computer Engineering and the Insti-
tute for Advanced Computer Studies, University of Maryland, College Park.

P. K. Murthy is with Angeles Design Systems, San Jose, California.
E. A. Lee is with the Department of Electrical Engineering and Computer Sciences, University of

California at Berkeley.

In Journal of VLSI Signal Processing Systems, Vol 21, No. 2, pages 151-166, June 1999.
© 1999 Kluwer Academic Publishers.

2

1. Introduction

Numerous software design environments for digital signal processing applications, such

as those described in [6, 14, 16, 23, 24, 27], support code-generation for programmable digital

signal processors used in embedded systems. Traditionally, programmable digital signal proces-

sors have been programmed manually, in assembly language, and this is a tedious, error-prone

process at best. Hence, generating code automatically is a desirable goal. Since the amount of on-

chip memory in programmable digital signal processors is severely limited, it is imperative that

the generated code be parsimonious in its memory usage. Adding off-chip memory is often highly

unattractive due to increased cost, increased power requirements, and a speed penalty that will

affect the feasibility of real-time implementations.

One approach to automatic code generation is to specify the program in an imperative lan-

guage such as C, C++, or FORTRAN and use a good compiler. However, even the best compilers

today produce inefficient code [31], although a significant research community is evolving to

address the challenges of compiling imperative programming languages into implementations on

embedded processors such as programmable digital signal processors [20]. In addition, specifica-

tions in imperative languages are difficult to parallelize, are difficult to change due to side effects,

and offer few chances for any formal verification of program properties. An alternative is to use a

block diagram language based on a model of computation with strong formal properties such as

synchronous dataflow [17] to specify the system, and to perform code-generation starting from

this specification. One reason that a compiler for a block diagram language is likely to deliver bet-

ter performance than a compiler for an imperative language is that the underlying model of com-

putation often exposes restrictions on the control flow of the specification, and this can be

profitably exploited by the compiler.

Synchronous dataflow (SDF) [17] is a special case of dataflow. In SDF, a program is rep-

resented by a directed graph in which each vertex (actor) represents a computation, an edge spec-

ifies a FIFO buffer, and each actor produces (consumes) a fixed number of data values (tokens)

onto (from) each output (input) edge per invocation. A parameter on each edge specifies the num-

ber of initial tokens (called delays) residing on that edge.

One code-generation strategy followed in many block diagram programming environ-

3

ments is called threading; in this method, the underlying model (in this case, SDF) is scheduled

to generate a sequence of actor invocations (provided that the model can be scheduled at compile

time of-course). A code generator then steps through this schedule, and for each actor encoun-

tered in the schedule, the code generator inserts a code block that implements the computation

specified by the given actor. The individual code blocks, which can be specifications in assembly

language or any high level language, are obtained from a predefined library of actor code blocks.

Typically, in block diagram design tools for DSP, assembly language (feasible since the actors are

usually small, modular components) or C is used to specify the functionality of individual code

blocks. By “compiling an SDF graph”, we mean exactly the strategy described above for generat-

ing a software implementation from an SDF graph specification of the system in a block diagram

environment.

We also assume that the code-generator generates inline code; this is because the alterna-

tive of using subroutine calls can have unacceptable overhead, especially if there are many small

tasks. A key problem that arises with such an in-line code generation strategy is code-size explo-

sion. For example, if an actor appears 20 times in the schedule, then there will be 20 code blocks

in the generated code. Clearly, such code duplication can consume enormous amounts of memory,

especially if high actor invocation counts are involved.

Generally, the only mechanism to combat code size explosion while maintaining inline

code is the use of loops in the target code. If an actor’s code block is encapsulated by a loop, then

multiple invocations of that actor can be carried out without any code duplication. This paper is

devoted to the construction of efficient loop structures from SDF graphs to allow the advantages

of inline code generation under stringent memory constraints.

As mentioned earlier, a compiler for an imperative language cannot usually exploit the

restrictions in the overall control flow of a DSP application system. However, the individual actor

code blocks within an actor are usually much simpler, and may even correspond to basic blocks

that compilers are adept at handling. Hence, for DSP design tools in which individual actors can

be programmed using high level languages, compiling an SDF graph using the methods we

describe in this paper does not preclude the use of or obviate the need for a good imperative lan-

guage compiler. On the contrary, we believe that the most promising approach is a strategy that

4

combines powerful SDF optimizations at a coarse-grain level, with aggressive imperative com-

piler technology applied to optimize the internals of individual actor code blocks. We expect that

as compiler technology improves, such a hybrid approach will eventually produce code competi-

tive to hand-written code. However, in this paper, we only consider the code and buffer memory

optimization possible at the SDF graph level. Issues relating to the interaction between compila-

tion at the SDF graph level, and the lower-level compilation of individual actor code blocks form

an important direction for further study.

2. Synchronous dataflow

Fig. 1(a) shows a simple SDF graph. Each edge is annotated with the number of tokens

produced (consumed) by its source (sink) actor, and the “D” on the edge from actor to actor

specifies a unit delay. Each unit of delay is implemented as an initial token on the edge. Given an

SDF edge , we denote the source actor, sink actor, and delay of by , , and .

Also, and denote the number of tokens produced onto by and consumed

from by .

A schedule is a sequence of actor firings. We compile an SDF graph by first constructing

a valid schedule — a finite schedule that fires each actor at least once, does not deadlock, and

produces no net change in the number of tokens queued on each edge. Corresponding to each

actor in the schedule, we instantiate a code block that is obtained from a library of predefined

actors. The resulting sequence of code blocks is encapsulated within an infinite loop to generate a

software implementation of the SDF graph.

SDF graphs for which valid schedules exist are called consistent SDF graphs. In [17],

efficient algorithms are presented to determine whether or not a given SDF graph is consistent,

and to determine the minimum number of times that each actor must be fired in a valid schedule.

We represent these minimum numbers of firings by a vector , indexed by the actors in (we

Figure 1. Examples of SDF graphs.

A B C
2 1 3 1D

(a)

A B C
2 1 1 3D

(b)

A B

e e e()src e()snk e()d

e()p e()c e e()src

e e()snk

qG G

5

often suppress the subscript if is understood). These minimum numbers of firings can be

derived by finding the minimum positive integer solution to the balance equations for , which

specify that must satisfy

, for every edge in . (1)

The vector , when it exists, is called the repetitions vector of .

3. Constructing memory-efficient loop structures

This section informally outlines the interaction between the construction of valid sched-

ules for SDF graphs and the memory requirements of the compiled code.

To understand the problem of scheduling SDF graphs to minimize memory requirements,

it is useful to examine closely the mechanism by which iteration is specified in SDF. In an SDF

graph, iteration of actors in a valid schedule arises whenever the production and consumption

parameters along an edge in the graph differ. For example, consider the SDF graph in Figure 2(a),

which contains three actors, labeled , and . The -to- mismatch on the left edge implies

that within a valid schedule, must be invoked twice for every invocation of . Similarly, the

mismatch on the right edge implies that we must invoke twice for every invocation of .

Figure 2(b) shows four possible valid schedules that we could use to implement Figure

2(a). For example, the first schedule specifies that first we are to invoke , followed by , fol-

lowed by , followed by again, followed by three consecutive invocations of . The paren-

thesized terms in schedules , and are used to highlight repetitive invocation patterns in

these schedules. For example, the term in schedule represents a loop whose iteration

count is and whose body is the invocation sequence ; thus, represents the firing

sequence . Similarly, the term represents the invocation sequence .

Clearly, in addition to providing a convenient shorthand, these parenthesized loop terms, called

schedule loops, present the code generator with opportunities to organize loops in the target pro-

gram, and we see that schedule corresponds to a nested loop, while schedules and corre-

spond to cascades of loops. For example, if each schedule loop is implemented as a loop in the

target program, the code generated from schedule would have the structure shown in Figure

G

G

q

e()src()q p e()× e()snk()q c e()×= e G

q G

A B C 2 1

B A

C B

A B

C B C

2 3 4

2BC() 4

2 BC 2BC()

BCBC 2B 2C()() BCCBCC

2 3 4

4

6

2(c).

We see that if each schedule loop is converted to a loop in the target code, then each

appearance of an actor in the schedule corresponds to a code block in the target program. Thus,

since actor appears twice in schedule of Figure 2(b), we must duplicate the code block for

in the target program. Similarly, we see that the implementation of schedule , which corresponds

to the same invocation sequence as schedule with no looping applied, requires seven code

blocks. In contrast, in schedules and , each actor appears only once, and thus no code duplica-

tion is required across multiple invocations of the same actor. We refer to such schedules as single

appearance schedules, and we see that neglecting the code size overhead associated with the loop

control, any single appearance schedule yields an optimally compact inline implementation of an

SDF graph with regard to code size. Typically the loop control overhead is small, particularly in

Figure 2. An example used to illustrate the interaction between scheduling
SDF graphs and the memory requirements of the generated code.

20 10 1020
A B C

Valid Schedules

1. ABCBCCC

2. A(2 B(2 C))

3. A(2 B)(4 C)

4. A(2 BC)(2 C)

(a)

(b)

code block for A
for (i=0; i<2; i++) {

code block for B
code block for C

}
for (i=0; i<2; i++) {

code block for C
}

(c)

C 4 C

1

4

2 3

7

programmable digital signal processors, which usually have provisions to manage loop indices

and perform the loop test in hardware, without explicit software control.

Scheduling can also have a significant impact on the amount of memory required to

implement the buffers on the edges in an SDF graph. For example, in Figure 2(b), the buffering

requirements for the four schedules, assuming that one separate buffer is implemented for each

edge, are 50, 40, 60, and 50 respectively.

Note that this model of buffering — maintaining a separate memory buffer for each data

flow edge — is convenient and natural for code generation, and it is the model used, for example,

in the SDF-based code generation environments described in [6], [14], [24]. More technical

advantages of this buffering model are elaborated on in [22].

4. Relative prioritization of code and data minimization objectives

There are two natural angles for approaching the problem of joint minimization of code

size and buffer memory requirements. The first approach is to study the problem of constructing a

minimum buffer memory schedule, and then incorporate techniques for minimizing the code size

into the approach that is developed for minimizing buffer memory. Here, the objective is to con-

struct a minimum buffer memory implementation that has minimum code size over all minimum

buffer memory implementations. Conversely, first priority could be given to minimizing code

size. This would yield the goal of computing a minimum buffer memory schedule over all imple-

mentations that require minimum code size. Once such a priority-based algorithm is established,

post-processing techniques can be developed to balance the solutions computed by the priority-

based algorithm according to the code size and buffer memory capacities of the target implemen-

tation.

This paper focuses on the latter angle of attack — assigning first priority to code size min-

imization, and second priority to minimizing the buffer memory requirement. This approach is

preferable because for practical synchronous dataflow graphs, giving first priority to code size

minimization typically yields a significantly more favorable code size/buffer memory trade-off

than giving first priority to buffer memory minimization.

An example of this phenomenon is shown in Figure 3. The top part of this Figure depicts

8

an SDF representation of a sample rate conversion system for interfacing a compact disk player

(44.1 kHz) to a digital audio tape player (48 kHz). The sample rate conversion is performed in

four stages: 2:1, 4:3, 4:7, and 5:7. Explicit up samplers and down samplers are omitted, and it is

assumed that the FIR filters are general polyphase filters [26].

The bottom part of Figure 3 shows the code size and buffer memory costs for various

schedules when the implementation target is a single Motorola 56000 programmable data signal

processor. The first entry in this table corresponds to a minimum buffer implementation that does

not incorporate any use of loops to reduce the code size. This is the worst minimum buffer mem-

ory implementation. The second entry corresponds to a minimum buffer memory implementation

in which looping is optimally employed to reduce code size. This gives the memory costs for a

minimum buffer memory schedule that has minimum code size over all minimum data schedules.

The third entry shows the memory costs for a minimum code size schedule that has maximum

buffer memory costs over all minimum code size schedules. Finally, the fourth entry shows the

Figure 3. A comparison of the program and buffer memory requirements of various sched-
ules for a sample rate conversion application.

Code Data

Minimum buffer schedule, no looping 13735 32

Minimum buffer schedule, with looping 9400 32

Worst minimum code size schedule 170 1021

Best minimum code size schedule 170 264

CA D E F
1 3 2 7 8 7 5 1

DATCD

B
1 2

9

memory cost for a minimum code size schedule that has minimum buffer memory cost over all

minimum code size schedules. Comparing the second and fourth entries of the table in Figure 3,

we see that in most implementation contexts, the optimal solution that results when we give first

priority to code size minimization is clearly preferable to the optimal solution that results when

we give first priority to buffer memory minimization: the “best minimum code size schedule” has

a code size cost that is 55 times less than that of the “best minimum buffer schedule,” while the

buffer memory cost of the best minimum code size schedule is only 8 times larger; furthermore,

the best minimum code size schedule can be accommodated within the on-chip memories of most

programmable digital signal processors, while the 9400-word code size cost of the best minimum

buffer schedule is too large for many processors.

5. Buffer memory metrics

Given an edge in , we define the total number of samples exchanged on , denoted

, or simply if is understood, by

. (2)

Thus, is the number of tokens produced onto in one period of a valid schedule.

For example, in Figure 1(a), , and thus,

.

Given an SDF graph , a valid schedule , and an edge in ,

 denotes the maximum number of tokens that are queued on during an execu-

tion of . For Figure 1(a), if

 and ,

then and .

We define the buffer memory requirement of a schedule by

. (3)

Thus,

 and .

e G e

e G,()TNSE e()TNSE G

e()TNSE qG e()src() e()p×=

e()TNSE e

q A B C, ,() 3 6 2, ,()=

A B,()()TNSE B C,()()TNSE 6= =

G V E,()= S e G

e S,()max_tokens e

S

S1 3A() 6B() 2C()= S2 3A 2B()() 2C()=

A B,() S1,()max_tokens 7= A B,() S2,()max_tokens 3=

S

S()buffer_memory e S,()max_tokens
e E∈

∑≡

S1()buffer_memory 7 6+ 13= = S2()buffer_memory 3 6+ 9= =

10

A valid single appearance schedule that minimizes the buffer memory requirement over

all valid single appearance schedules is called a buffer memory optimal schedule.

If is a subset of actors in a connected, consistent SDF graph ,

,1 (4)

and we refer to this quantity as the repetition count of .

6. Subindependence

Since valid single appearance schedules implement the full repetition inherent in an SDF

graph without requiring subroutines or code duplication, it is useful to examine the topological

conditions required for such schedules to exist. First, suppose that is a connected, consistent

acyclic SDF graph containing actors. Then we can take some root actor of and fire all

 invocations of in succession. After all invocations of have fired, we can remove

 from , pick a root actor of the new acyclic SDF graph, and schedule its repeti-

tions in succession. Clearly, we can repeat this process until no actors are left, to obtain the single

appearance schedule for . Thus, we see that any con-

sistent acyclic SDF graph has at least one valid single appearance schedule.

The following result has been established concerning the existence of single appearance

schedules for general SDF graph topologies (SDF graphs that are not necessarily acyclic) [4].

Theorem 1: • An SDF graph has a single appearance schedule if and only if each strongly con-

nected component has a single appearance schedule.

• A strongly connected SDF graph has a single appearance schedule only if we can

partition the actors into two subsets and such that is precedence-independent of

throughout a single schedule period. That is, for each edge α directed from a member of to a

member of , .

This form of precedence-independence is referred to as subindependence. Thus a strongly

connected SDF graph has a single appearance schedule only if its actors can be partitioned into

1. The greatest common divisor is denoted by gcd.

Z G

ρG Z() qG A() A Z∈{ }()gcd≡

Z

G

n R1 G

qG R1() R1 R1

R1 G R2 qG R2()

qG R1()R1() qG R2()R2()… qG Rn()Rn() G

P1 P2 P1 P2

P2

P1 d α() c α()q α()snk()≥

11

subsets and such that is subindependent of . If such a partition exists, the strongly

connected SDF graph is loosely interdependent, otherwise it is tightly interdependent. The fol-

lowing theorem relates the concept of loose interdependence the existence of to single appearance

schedules [3]:

Theorem 2: A strongly connected, consistent SDF graph has a single appearance schedule if

and only if every strongly connected subgraph of is loosely interdependent.

Partitioning loosely interdependent SDF graphs based on subindependence relationships

defines a decomposition process for hierarchically scheduling SDF graphs. This decomposition

process leads to single appearances schedules whenever they exist [3].

However, this method of decomposition is useful even when single appearance schedules

do not exist. This is due to two key properties of tightly interdependent SDF graphs:

• Tight interdependence is “additive”: If and are two subsets of actors in an SDF graph

such that is non-empty, and the subgraphs associated with and are both tightly

interdependent, then the subgraph associated with is tightly interdependent. Thus each

SDF graph has a unique set of non-overlapping “maximal” tightly interdependent subgraphs,

which are called the tightly interdependent components of .

• Partitioning a loosely interdependent SDF graph based on subindependence cannot decom-

pose a tightly interdependent subgraph of . Thus, if , partition the actors of such that

 is subindependent of , and if is a subset of actors whose corresponding subgraph is

tightly interdependent, then or .

Thus, if a loosely interdependent SDF graph is recursively decomposed based on subinde-

pendence, the decomposition process will always terminate on the same subgraphs — the tightly

interdependent components.

7. Loose Interdependence Algorithms

This property of tightly interdependent subgraphs has been applied to develop a flexible

scheduling framework for optimized compilation of SDF graphs. The scheduling framework is

based on a class of uniprocessor scheduling algorithms that we call loose interdependence algo-

rithms. A loose interdependence algorithm consists of three component algorithms, which we call

P1 P2 P1 P2

G

G

Z1 Z2

Z1 Z2∩() Z1 Z2

Z1 Z2∪()

G

G

G

G P1 P2 G

P1 P2 T

T P1⊆ T P2⊆

12

the acyclic scheduling algorithm, the subindependence partitioning algorithm, and the tight

scheduling algorithm. The acyclic scheduling algorithm is any algorithm for constructing single

appearance schedules for acyclic SDF graphs; the subindependence partitioning algorithm is any

algorithm that determines whether a strongly connected SDF graph is loosely interdependent and

if so, finds a subindependent partition; and the tight scheduling algorithm is any algorithm that

generates a valid schedule for a tightly interdependent SDF graph. The precise manner in which

the three component sub-algorithms interact to define a loose interdependence algorithm is speci-

fied in [3].

The following useful properties of loose interdependence algorithms are established in [3].

• Any loose interdependence algorithm constructs a single appearance schedule when one exists.

• If N is an actor in the input SDF graph and N is not contained in a tightly interdependent compo-

nent of G, then any loose interdependence algorithm schedules G in such a way that N appears

only once.

• If N is an actor within a tightly interdependent component of the input SDF graph, then the

number of times that N appears in the schedule generated by a loose interdependence algorithm is

determined entirely by the tight scheduling algorithm.

The last property states that the effect of the tight scheduling algorithm is independent of

the subindependence partitioning algorithm, and vice-versa. Any subindependence partitioning

algorithm guarantees that there is only one appearance for each actor outside the tightly interde-

pendent components, and the tight scheduling algorithm completely determines the number of

appearances for actors inside the tightly interdependent components. For example, if we develop

a new subindependence partitioning algorithm that is more efficient in some way (e.g. it is faster,

or reduces buffering cost more), we can substitute it for any existing subindependence partition-

ing algorithm without changing the compactness of the resulting looped schedules. Similarly, if

we develop a new tight scheduling algorithm that schedules any tightly interdependent graph

more compactly than the existing tight scheduling algorithm, we are guaranteed that using the

new algorithm instead of the old one will lead to more compact schedules overall.

13

8. Modem example

Figure 4(a) shows an SDF implementation of a modem taken from [17]. The repetitions

vector is given by

.

There is one strongly connected component, corresponding to actors

.

This strongly connected component is clustered to give an acyclic graph as depicted in Figure

4(b). A possible single appearance schedule for this clustered graph is

. (5)

Now the strongly connected component has a subindependent partition given by

and . Since the subgraphs corresponding to these two subsets of actors

In Filt Hil Eq Deci Deco OutMul

Fork
Biq

Biq

Add sc Fork

Mul

Conj

A B C D E F G H

I

J

K

L M N

O

P

Figure 4. a) A block diagram of a modem application. b) Acyclic graph after clustering the
strongly connected components in a).

1 1 1 8 2 4
2

2 2

2

2 2

2 2 1 1

1

2

1 1

1

1

1 1

1 1

1

1 1 2 1

1

1 2

2

2
2

2

2D

D

In Filt Hil

A B C

1 1 1 8 2
Ω1 Deco Out

G H

2 1 14

a)

b)

2

A B … P, , ,()q 16 16 2 1 1 1 1 1 1 1 1 1 1 2 1 1, , , , , , , , , , , , , , ,[]T=

D O E F I J K L M N P, , , , , , , , , ,

16A() 16B() 2C()Ω1GH

D I,{ }

O E F J K L M N P, , , , , , , ,{ }

14

are both acyclic, the recursive application of a loose interdependence algorithm terminates by

applying the acyclic scheduling algorithm to each of the partitions, yielding the single appearance

schedule for this strongly connected component. This schedule is then sub-

stituted into the top-level schedule (5) to give a single appearance schedule for the entire graph:

.

9. Minimizing buffer memory

In the scheduling framework above, the acyclic scheduling algorithm can be designed

such that the total buffer-memory requirement is minimized to a certain extent (which we will

elaborate on later). In this section, we assume that the SDF graph is acyclic; the non-acyclic case

will be dealt with later.

It is shown in [22] that the buffer-memory minimization problem is NP-complete, even for

arbitrary, acyclic homogenous1 SDF graphs. Two heuristics, along with a post-processing algo-

rithm have been developed; these two algorithms are complementary in the sense that one per-

forms well on graphs having a more regular topology and regular rate changes, while the other

performs well on graphs having irregular topologies and irregular rate changes.

Essentially, for an acyclic graph, the problem of constructing a buffer-memory optimal

single appearance schedule boils down to generating an appropriate topological ordering of the

vertices in the graph, and then generating an optimal loop hierarchy. The number of topological

sorts in an acyclic graph can be exponential in the size of the graph; for example, a complete

bipartite graph with actors has possible topological sorts. Each topological sort gives a

valid flat single appearance schedule (i.e, a single appearance schedule with no nested loops). The

post-processing step then computes a buffer-memory optimal loop hierarchy. For example, the

graph in Figure 5 shows a bipartite graph with 4 actors. The repetitions vector for the graph is

given by , and there are 4 possible topological sorts for the graph. The flat sched-

ule corresponding to the topological sort is given by . This can

be nested as , and this schedule has a buffer memory requirement of

208. The flat schedule corresponding to the topological sort , when nested optimally, gives

1. A homogenous SDF graph has for all edges .

DIJKLM 2N()OPFE

16A() 16B() 2C()DIJKLM 2N()OPFEGH

p e() c e() 1= = e

2n n!()2

12 36 9 16, , ,()T

ABCD 12A() 36B() 9C() 16D()

3 4A() 3 4B()C()() 16D()

ABDC

15

the schedule , with a buffer memory requirement of 120.

The post-processing step of computing a loop hierarchy for a given actor ordering can be

accomplished optimally for delayless graphs by using a dynamic programming algorithm [22],

called the dynamic programming post-optimization (DPPO) algorithm. An extension of this algo-

rithm, called generalized DPPO (GDPPO), has been developed to optimally handle actor order-

ings for SDF graphs that have delays and that may contain cycles [5]. Given any consistent SDF

graph , and an ordering of the actors in , GDPPO computes a single appearance schedule

that minimizes the buffer memory requirement over all single appearance schedules that have the

given actor ordering (assuming that at least one valid single appearance schedule exists that has

the given actor ordering). Here, by the actor ordering of a single appearance schedule, we mean

the lexical order in which the actors appear — for example, the actor ordering associated with the

schedule is . The running time of GDPPO algorithm on

sparse SDF graphs is , where is the set of vertices.

10. The Buffer Memory Lower Bound

In [2] the following lower bound on is derived, given a consistent SDF

graph , an edge in , and a valid single appearance schedule .

Definition 1: The buffer memory lower bound (BMLB) of an SDF edge , denoted

, is given by

, (6)

A

B D

C3 4

4
4

1 3

94

Figure 5. A bipartite SDF graph to illustrate
the different buffer memory requirements pos-
sible with different topological sorts.

4 3A() 9B() 4D()() 9C()

G L G

4 3A() 9B() 4D()() 9C() A B D C, , ,()

O V 3() V

e S,()max_tokens

G e G S

e

e()BMLB

e()BMLB
η e() e()d+() if e()d η e()<()

e()d if e()d η e()≥()

=

16

where .

If is an SDF graph, then

. (7)

is called the BMLB of , and a valid single appearance schedule for that satisfies

 for all is called a BMLB schedule for .

Not all consistent SDF graphs have valid BMLB schedules. For example the SDF graph of

Figure 1(a) does not have a BMLB schedule. In contrast, for the SDF graph in Figure 1(b), it can

easily be verified that the schedule , which has a buffer memory requirement of

, is a BMLB schedule.

Although BMLB schedules do not exist for all SDF graphs, empirical observations sug-

gest that many practical graphs have BMLB schedules [5].

11. Pairwise Grouping of Adjacent Nodes

The first of the two heuristics that we discuss for generating topological orderings of acy-

clic SDF graphs with the objective of buffer memory minimization is a bottom-up procedure

called Acyclic Pairwise Grouping of Adjacent Nodes (APGAN). In this technique, a cluster

hierarchy is constructed by clustering exactly two adjacent vertices at each step. At each cluster-

ization step, a pair of adjacent actors is chosen that maximizes over all adjacent pairs that are

clusterable, which means that they do not introduce cycles in the graph when clustered.

Figure 6 illustrates the operation of APGAN. Figure 6(a) shows the input SDF graph. Here

, and for , represents the th hierarchical

actor instantiated by APGAN. The repetition counts of the adjacent pairs are given by

, and (8)

. (9)

Thus, APGAN will select one of the three adjacent pairs , , or for its first

clusterization step. The adjacent pair introduces a cycle when clustered, while the other

η e() e()p e()c
e()p e()c,{ }()gcd

--=

G V E,()=

e()BMLB
e E∈

∑

G S G

e S,()max_tokens e()BMLB= e E∈ G

A 2B 3C()()

3 3+ 6=

ρG

A B C D E, , , ,()q 6 2 4 5 1, , , ,()= i 1 2 3 4, , ,= Ωi i

ρ A B,{ }() ρ A C,{ }() ρ B C,{ }() 2= = =

ρ C D,{ }() ρ E D,{ }() ρ B E,{ }() 1= = =

A B,{ } A C,{ } B C,{ }

A C,{ }

17

two adjacent pairs do not introduce cycles. Thus, APGAN chooses arbitrarily between

and as the first adjacent pair to cluster.

Fig. 6(b) shows the graph that results from clustering into the hierarchical actor

. In this graph, , and it is easily verified that uniquely

maximizes over all adjacent pairs. Since does not introduce a cycle, APGAN selects

this adjacent pair for its second clusterization step. Fig. 6(c) shows the resulting graph.

Figs. 6(d&e) show the results of the remaining two clusterizations in our illustration of

APGAN. We define the subgraph corresponding to to be the subgraph that is clustered in

the th clusterization step. A valid single appearance schedule for Fig. 6(a) can easily be con-

structed by recursively traversing the hierarchy induced by the subgraphs corresponding to the

s. We start by constructing a schedule for the top-level subgraph, the subgraph corresponding

to . This yields the “top-level” schedule (we suppress loops that have an iteration

count of one) for the subgraph corresponding to . We continue in this manner to yield the valid

single appearance schedule for Fig. 6(a).

From and Fig. 6(a) it easily verified that and ,

where is the set of edges in Fig. 6(a), are identically equal to , and thus in the execution of

APGAN illustrated in Fig. 6, a BMLB schedule is returned.

C

D

Ω1

E

3

21
5

4

2 10

1

2

6

D

Ω2

E

10

4

2 10

1

2

Ω2

Ω3

10

20

1

2
Ω4

(b)

(c)

(d)

(e)

A

C

D

B

E

1

3

2

3

21
5

4

2 10

1

2

(a)

Figure 6. An illustration of APGAN.

A B,{ }

B C,{ }

A B,{ }

Ω1 Ω1 C D E, , ,()q 2 4 5 1, , ,()= Ω1 C,{ }

ρ Ω1 C,{ }

Ωi

i

Ωi

Ω4 2Ω2()Ω3

Ω4

Sp 2 3A()B 2C()() 5D()E≡

Sp Sp()buffer_memory e()BMLB
e E∈

∑

E 43

18

The APGAN approach, as we have defined it here, does not uniquely specify the sequence

of clusterizations that will be performed. The APGAN technique together with an unambiguous

protocol for deciding between adjacent pairs that are tied for the highest repetition count form an

APGAN instance, which generates a unique schedule for a given graph. We say that an adjacent

pair is an APGAN candidate if it does not introduce a cycle, and its repetition count is greater

than or equal to that of all other adjacent pairs that do not introduce cycles. Thus, an APGAN

instance is any algorithm that takes a consistent, acyclic SDF graph, repeatedly clusters APGAN

candidates, and then outputs the schedule corresponding to a recursive traversal of the resulting

cluster hierarchy.

It is shown in [2] that APGAN is optimal for a class of acyclic SDF graphs in the follow-

ing sense:

Theorem 3: If is a connected, acyclic SDF graph that has a BMLB schedule,

 for all , and is an APGAN instance, then the schedule obtained by applying

 to is a BMLB schedule for .

Hence, whenever the achievable lower bound on the buffer memory (that is, the buffer

memory requirement of the single appearance schedule having the lowest possible buffer memory

requirement) coincides with the BMLB, and inequality in the statement of Theorem 3 holds,

APGAN will always find a BMLB schedule. If the achievable lower bound is greater than the

BMLB, then the schedule returned by APGAN could have a buffer memory requirement greater

than the achievable lower bound.

Many practical systems, such as QMF filter banks, fall into the category of SDF graphs

that satisfy the conditions of Theorem 3 [2].

12. Recursive Partitioning by Minimum Cuts

APGAN constructs a single appearance schedule in a bottom-up fashion by starting with

the innermost loops and working outward. An alternative approach, called Recursive Partition-

ing by Minimum Cuts (RPMC), computes a schedule by recursively partitioning the SDF graph

in such a way that outer loops are constructed before the inner loops. Each partition is constructed

by finding the cut (partition of the set of actors) across which the minimum amount of data is

G V E,()=

e()d η e()< e E∈ P

P G G

19

transferred. The cut that is produced must have the property that all edges that cross the cut have

the same direction. This is to ensure that all actors on the left side of the partition can be scheduled

before any on the right side are scheduled. A constraint that the partition be fairly evenly sized is

also imposed. This is to increase the possibility of having gcd’s that are greater than unity for the

repetitions of the actors in the subsets produced by the partition, thus reducing the buffer memory

requirement [22].

Suppose that is a connected, consistent SDF graph. A cut of is a partition

of the actor set into two disjoint sets and . The cut is legal if for all edges crossing the

cut (that is, all edges that have one incident actor in and the other in), we have

 and . Given a bounding constant , the cut results in bounded

sets if it satisfies

, . (10)

The weight of edge is defined as .

The weight of the cut is the total weight of all the edges crossing the cut. The problem then

is to find the minimum weight legal cut into bounded sets for the graph. This problem is believed

to be NP-complete, although a proof has not been discovered [22]. Kernighan and Lin [11]

devised a heuristic procedure for computing cuts into bounded sets but they considered only undi-

rected graphs. Methods based on network flows [8] do not work because the minimum cut given

by the max-flow-min-cut theorem may not be legal and may not be bounded [22]. Hence, a heu-

ristic solution is needed for finding legal minimum cuts into bounded sets.

One technique is to use the max-flow-min-cut theorem [8] to generate a minimum cut.

Legality can be ensured by adding reverse edges for each edge . The capacities of the

reverse edges are set to infinity, ensuring that any edge that crosses the cut in the reverse direction

is an edge of infinite capacity [19]. However, this cut may not be bounded. One way to make this

cut bounded would be to simply examine actors on the side with the larger number of actors, and

move those over to the other side that increase the cost the least, until the bound is satisfied.

Another technique for constructing legal minimum cuts into bounded sets is to examine

the set of cuts produced by taking an actor and all of its descendants as the actor set and the

G V E,()= G

V VL VR e

VL VR

e()src VL∈ e()snk VR∈ K V≤

VR K≤ VL K≤

e w e() e()TNSE≡

v u,() u v,()

VR

20

set of cuts produced by taking an actor and all of its ancestors as the set . For each such cut, an

optimization step is applied that attempts to improve the cost of the cut. Consider a cut produced

by setting

(11)

for some actor , and let be the set of independent, boundary actors of in . A bound-

ary actor in is an actor that is not the predecessor of any other actor in . Following Ker-

nighan and Lin [11], for each of these actors, we can compute the cost difference that results if the

actor is moved into . This cost difference for an actor in is defined to be the differ-

ence between the total weight of all input edges of and the total weight of output edges of .

We then move those actors across that reduce the cost. We apply this optimization step for all cuts

of the form and for each actor in the graph and take the

best one as the minimum cut. Since there are actors in the graph, cuts are examined.

Moreover, the cut produced will have bounded sets since cuts that produce unbounded sets are

discarded.

RPMC now proceeds by partitioning the graph by computing the legal minimum cut and

forming the schedule , where are schedules for and

respectively that are obtained recursively by partitioning and . It can be shown that the

running time of RPMC for sparse SDF graphs, including post-optimization by GDPPO, is

 [22].

13. Application to general SDF topologies

The APGAN and RPMC algorithms work on acyclic SDF graphs, and thus are suitable for

use as the acyclic scheduling algorithm in the scheduling framework described in Section 7. In

this manner, we can obtain single appearance schedules for cyclic graphs that minimize buffer

memory costs to a limited extent. In particular, if buffer-memory considerations are not taken into

account in either the subindependence partitioning algorithm or the tight scheduling algorithm,

there is no guarantee that the resulting schedule will be optimal or even near-optimal with respect

to the buffer memory requirement. Combining buffer-memory considerations into the latter two

VL

VL ancs v() v{ }∪() VR, V \ VL= =

v TR v() v VR

VR VR

VL a TR v()

a a

ancs v() v{ }∪() desc v() v{ }∪() v

V 2 V

ρ G VL()SL() ρ G VR()SR() SL SR, GL GR

GL GR

O V 3()

21

components of the scheduling framework is an important topic for future work.

14. Experimental observations

APGAN and RPMC (with the second of the two legal bounded cut heuristics mentioned)

have been tested on many practical examples, as well as randomly generated graphs. Many practi-

cal systems, such as QMF filter banks fall into the category of SDF graphs having BMLB sched-

ules; hence, on these APGAN performs optimally. It is interesting to note that on non-uniform

filter bank structures, the BMLB cannot be achieved, and on such structures, RPMC gives signif-

icantly better schedules than APGAN. Also, RPMC outperforms APGAN by almost 2 to 1 on ran-

dom SDF graphs. Details of these experiments can be found in [2, 21]. It would be interesting to

see the impact of using the first heuristic (based on the network flow formulation) for generating

legal minimum cuts into bounded sets on RPMC performance; we have not done these experi-

ments yet.

15. Application to multidimensional SDF graphs

The synchronous dataflow model suffers from the limitation that its streams are one-

dimensional. For multidimensional signal processing algorithms, it is necessary to have a model

in which this restriction is not present, so that effective use can be made of the inherent data-par-

allelism that exists in such systems. As for one-dimensional systems, the specification model for

multidimensional systems should expose to the compiler or hardware synthesis tool as much

static information as possible so that run-time decision making is avoided as much as possible,

and so that effective use can be made of both functional and data parallelism. Most multidimen-

sional signal processing systems also have a predictable flow of control, like one-dimensional

systems, and for this reason, an extension of SDF, called multidimensional synchronous dataflow

was proposed in [18].

Although a multidimensional stream can be embedded within a one dimensional stream, it

may be awkward to do so [7]. In particular, compile-time information about the flow of control

may not be immediately evident. The multidimensional SDF (MDSDF) model is a straightfor-

ward extension of one-dimensional SDF. Figure 7 shows a trivially simple two-dimensional SDF

22

graph. The numbers of tokens produced and consumed are now given as -tuples. Instead of one

balance equation for each edge, there are now . The balance equations for Figure 7 are

, (12)

These equations should be solved for the smallest integers , which then give the num-

ber of repetitions of each actor in each dimension .

As a simple application of MDSDF, consider a portion of an image coding system that

takes a pixel image and divides it into blocks on which it computes a DCT. At the

top level of the hierarchy, the dataflow graph is shown in Figure 8. The solution to the balance

equations is given by

, , . (13)

A segment of the index space for the stream on the edge connecting actor A to the DCT is

shown in the Figure. The segment corresponds to one firing of actor A. The space is divided into

regions of tokens that are consumed on each of the five vertical firings of each of the 6 horizontal

A B

Figure 7. A simple MD-SDF graph.

OA 1, OA 2,,() IB 1, IB 2,,()

d1 d2,()

M

M

rA 1, OA 1, rB 1, IB 1,= rA 2, OA 2, rB 2, IB 2,=

rX i,

X i

40 48× 8 8×

40 48,()
A DCT

8 8,()

dimension 2

d
im

e
n

s
io

n
 1

8 8,()

Figure 8. An image processing application in MD-SDF.

rA 1, rA 2, 1= = rDCT 1, 5= rDCT 2, 6=

23

firings. The precedence graph constructed automatically from this shows that the 30 firings of the

DCT are independent of one another, and hence can proceed in parallel. Distribution of data to

these independent firings can be automated.

A delay in MD-SDF is associated with a tuple as shown in Figure 7. It can be interpreted

as specifying boundary conditions on the index space. Thus, for 2D-SDF, as shown in the Figure,

it specifies the number of initial rows and columns. It can also be interpreted as specifying the

direction in the index space of a dependence between two single assignment variables, much as

done in reduced dependence graphs [12].

All of the scheduling techniques discussed in the earlier sections of this paper extend to

the MDSDF model. The extension of RPMC and GDPPO can be handled in a straightforward

manner by simply changing the buffer cost formulation appropriately [21]. In the remainder of

this section, we define an extension of the buffer memory lower bound to multidimensional sys-

tems, and we present a multidimensional version of the APGAN algorithm along with its associ-

ated optimality result (i.e. the MDSDF version of Theorem 3). In this discussion, we assume 2

dimensions for notational simplicity, unless otherwise stated. We use the notation to mean

the th invocation of actor in a complete valid schedule. In an MDSDF schedule, a single

appearance schedule such as corresponds to a loop structure of the form:

for x = 0 to 3
for y = 0 to 1

fire

end fory, forx

for x = 0 to 5
for y = 0 to 3

fire

end fory, forx.

15.1 The Buffer Memory Lower Bound (BMLB) for MDSDF graphs

The BMLB of an MDSDF graph can be computed in a manner similar to the SDF BMLB

computation. First, we define

, (14)

A i j,[]

i j,() A

4 2,() A 6 4,()B()

A x y,[]

B x y,[]

x AB()
rA 1,

gcd rA 1, rB 1,,()
--------------------------------------OA 1, y AB(),

rA 2,

gcd rA 2, rB 2,,()
--------------------------------------OA 2,= =

24

for an edge with delays. Then, the BMLB for the edge can be expressed

as [21]

. (15)

15.2 APGAN for MDSDF graphs

APGAN can be applied to acyclic MDSDF graphs in the following manner [21]. First, define the

following two quantities:

 and . (16)

The clustering function is a tuple and is then given by

. (17)

At each step in the algorithm, we cluster the adjacent pair that maximizes

component-wise. This means that for any other adjacent clusterable pair , with

 we should have . If such a pair

does not exist, we pick the adjacent clusterable pair that maximizes

.

The following result extends the “APGAN optimality property” of Theorem 3 to the

MDSDF version of APGAN defined above.

Theorem 4: When applied to a consistent MDSDF graph, APGAN will return a BMLB sched-

ule whenever one exists, provided that the delay on each edge satisfies:

where

.

A B,() d1 d2,() A B,()

BMLB AB()
x AB() d1+() y AB() d2+() d1 x d2 y<∨<

d1d2 d1 x d2 y≥∧≥

=

ρ 1 A B,{ }() gcd rA 1, rB 1,,()= ρ 2 A B,{ }() gcd rA 2, rB 2,,()=

ρ A B,{ }() ρ 1 A B,{ }() ρ 2 A B,{ }(),()≡

A B,() ρ A B,{ }()

X Y,{ }

ρ ' X Y,{ }() ρ '1 X Y,{ }() ρ '2 X Y,{ }(),()= ρ 1 ρ '1≥ ρ 2 ρ '2≥,

U V,{ }

ρ 1 U V,{ }() ρ 2 U V,{ }()

d1 d2,() A B,()

d1 x d2 y<∨<

x
rA 1,

gcd rA 1, rB 1,,()
-------------------------------------- OA 1, y,

rA 2,

gcd rA 2, rB 2,,()
--------------------------------------OA 2,= =

25

15.3 MDSDF APGAN example

Consider the example graph shown in Figure 9. The repetitions vector is given by

. The clusterable pairs are , , and

. The clustering function values are , , and

. Hence, is the pair chosen for clustering since its clustering function

has maximum component-wise value over the three clusterable pairs. Similarly, at the next step,

there are two clusterable pairs, and , and the clustering function values are

 and . So is clustered next, and the final

schedule is . It can be verified that this is

indeed a BMLB schedule.

The graph in Figure 10 shows an example where there is no adjacent pair whose clustering

function has the maximum-componentwise value. Hence, the graph does not have a BMLB

schedule either, as is verified by looking at the two possible nested single appearance schedules.

The repetitions vector is given by . The clustering function values for the

two clusterable pairs are and . The two possible nested

single appearance schedules are

A

B

C D

(3,1)
(1,2)

(2,1)
(1,4)

(2,1)

(3,2)

(1,3) (4,2)

Figure 9. An MDSDF graph that has a BMLB schedule.

W1

C D(2,2)
(1,4)

(3,2)

(1,3) (4,2)

(6,1)

W2 D
(2,3) (4,2)

r A B C D, , ,() 2 8,() 6 4,() 4 2,() 1 3,(), , ,{ }= A B,{ } B C,{ }

C D,{ } ρ A B,{ }() 2 4,()= ρ B C,{ }() 2 2,()=

ρ C D,{ }() 1 1,()= A B,{ }

W1 C,{ } C D,{ }

ρ W1 C,{ }() 2 2,()= ρ C D,{ }() 1 1,()= W1 C,{ }

2 2,() 1 2,() 1 2,()A 3 1,()B () 2 1,()C () 1 3,() D

A B
(3,3) (2,1)

C
(3,1) (2,5)

Figure 10. An example of a graph that does not have a BMLB schedule.

4 5,() 6 15,() 9 3,(), ,{ }

ρ A B,{ }() 2 5,()= ρ B C,{ }() 3 3,()=

26

 and .

Neither of these is a BMLB schedule. The APGAN algorithm in this case will choose to cluster

 first because ; this results in the first of the two schedules given above. The

first schedule has higher buffering requirements than the second; hence, APGAN is not optimal

when the graph does not have a BMLB schedule.

16. Alternative approaches for scheduling SDF graphs

The techniques in this paper focus on compiling SDF graphs to minimize the code size

and data memory size. At the Aachen University of Technology, as part of the COSSAP software

synthesis environment for DSP, Ritz et al. have investigated the minimization of code size in con-

junction with a different secondary optimization criterion: minimization of the context-switch

overhead, or the average rate at which actor activations occur [25]. An actor activation occurs

whenever two distinct actors are invoked in succession; for example, the schedule

results in five activations per schedule period.

In multiprocessor computers, different iterations of a loop can be executed in parallel on

different processors. To achieve this, the code for the loop is replicated across the processors. This

is in contrast to our problem, which involves a uniprocessor implementation target, and in which

there are no explicitly specified loops (within the schedule period). We would like to detect the

opportunity to construct multiple invocations of the same firing sequence, and we wish to group

these invocations successively in time so that they form successive iterations of a single loop.

Loop distribution and loop fusion [29] can be used to improve data locality for looped

schedules of SDF graphs. Also, the use of iteration space tiling, as discussed in [28, 29], can be

used to improve locality for code synthesized for a looped schedule of an SDF graph. However,

each loop transformation and schedule rearrangement applies to a localized section of the target

code. The scheduling techniques described in this paper use dataflow properties to guide a sched-

uler to more efficient solutions; loop transformations can then be applied to refine the resulting

schedules. We believe that this will be more efficient than constructing naive schedules, and rely-

ing solely on loop transformations to achieve adequate data locality.

Ade, Lauwereins, and Peperstraete develop upper bounds on the minimum buffer memory

2 5,() 2 1,()A 3 3,()B() 9 3,()C 4 5,()A 3 3,() 2 5,() B 3 1,()C()

A B,{ } 2 5× 3 3×>

2 2B()() 5C()

27

requirement for certain classes of SDF graphs [1]. Since these bounds attempt to minimize over

all valid schedules, and since single appearance schedules generally have much larger buffer

memory requirements than schedules that are optimized for minimum buffer memory only, these

bounds cannot consistently give close estimates of the minimum buffer memory requirement for

single appearance schedules.

Lauwereins, Wauters, Ade, and Peperstraete present a generalization of SDF called cyclo-

static dataflow [13]. A major advantage of cyclo-static dataflow is that it can eliminate large

amounts of token traffic arising from the need to generate dummy tokens in corresponding (pure)

SDF representations. Although cyclostatic dataflow can reduce the amount of buffering for

graphs having certain multirate actors like explicit downsamplers, it is not clear whether this

model can in general be used to derive schedules that are as compact as single appearance sched-

ules for pure SDF graphs but have lower buffering requirements than those arising from the tech-

niques discussed in this paper.

A linear programming framework for minimizing the memory requirement of a synchro-

nous dataflow graph in a parallel processing context is explored by Govindarajan and Gao in [10].

Here the goal is to minimize the buffer cost without sacrificing throughput — just as one of the

goals in this paper is to minimize buffering cost without sacrificing code compactness.

17. Summary

This paper has reviewed a set of techniques for mapping SDF programs for embedded dig-

ital signal processing applications into efficient implementations on programmable processors.

The techniques have focused on the minimization of code size, and the minimization of the mem-

ory required for the buffers that implement the edges in the input dataflow graph. Even though

some of the associated problems have been shown to be NP-complete, we have described algo-

rithms that solve subsets of these problems optimally, and have described a framework in which

these algorithms can be combined with heuristics to give a comprehensive solution.

There are two central themes that underlie the techniques discussed in this paper. These

themes are based on the concept of single appearance schedules, which is a class of code-size-

minimizing schedules for SDF programs. The first theme is a uniprocessor scheduling framework

28

that operates by decomposing the input SDF graph into a hierarchy of acyclic subgraphs. The

scheduling framework constructs single appearance schedules whenever they exist, and when sin-

gle appearance schedules do not exist, the framework guarantees optimal code size for all actors

that are not contained in a certain type of subgraph called tightly independent subgraphs. The sec-

ond theme involves a pair of complementary algorithms that construct single appearance sched-

ules for acyclic SDF graphs that minimize the buffer memory requirement. These complementary

algorithms can easily be incorporated into the scheduling framework to handle the acyclic graphs

that result from the decomposition process.

These techniques have all been implemented in the Ptolemy software environment [6].

Additionally, APGAN, DPPO, and the scheduling framework based on loose interdependence

algorithms have been implemented by the Alta Group of Cadence in the Signal Processing Work-

system, a widely-used design environment for DSP applications. A detailed, comprehensive treat-

ment of the techniques discussed in this paper, including complete pseudocode specifications of

the algorithms, can be found in [5].

18. References

[1] M. Ade, R. Lauwereins, and J. A. Peperstraete, “Buffer Memory Requirements in DSP Appli-

cations,” presented at IEEE Workshop on Rapid System Prototyping, Grenoble, June, 1994.

[2] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “APGAN and RPMC: Complementary Heu-

ristics for Translating DSP Block Diagrams into Efficient Software Implementations,” Journal of

Design Automation for Embedded Systems, January, 1997.

[3] S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee, “Generating Compact Code from Data-

flow Specifications of Multirate Signal Processing Algorithms,” IEEE Transactions on Circuits

and Systems — I: Fundamental Theory and Applications, Vol. 42, No. 3, pp. 138-150, March,

1995.

[4] S. S. Bhattacharyya and E. A. Lee, “Looped Schedules for Dataflow Descriptions of Multirate

Signal Processing Algorithms,” Journal of Formal Methods in System Design, Vol. 5, No. 3,

December, 1994.

29

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow Graphs,

Kluwer Academic Publishers, Norwell, Ma, 1996.

[6] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simulating

and Prototyping Heterogeneous Systems,” International Journal of Computer Simulation, Vol. 4,

April, 1994.

[7] M. C. Chen, “Developing a Multidimensional Synchronous Dataflow Domain in Ptolemy”,

MS Report, UC Berkeley, June 1994.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill,

1990.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability-A guide to the theory of NP-

completeness, Freeman, 1979.

[10] S. R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing Memory Requirements in Rate-

Optimal Schedules,” Proceedings of the International Conference on Application Specific Array

Processors, August, 1994.

[11] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,” Bell

System Technical Journal, Vol. 49, (No.2):291-308, February, 1970.

[12] P.S. Y. Kung, VLSI Array Processors, Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[13] R. Lauwereins, P. Wauters, M. Ade, and J. A. Pererstraete, “Geometric Parallelism and

Cyclo-Static Dataflow in GRAPE-II,” IEEE Workshop on Rapid System Prototyping, June, 1994.

[14] R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans, and J. Van Ginderdeuren,

“GRAPE: A CASE Tool for Digital Signal Parallel Processing,” IEEE ASSP Magazine, Vol. 7,

(No.2):32-43, April, 1990.

[15] E. A. Lee and T. M. Parks, “Dataflow Process Networks,” Proceedings of the IEEE, Vol. 83,

No. 5, May, 1995.

[16] E. A. Lee, W. H. Ho, E. Goei, J. Bier, and S. S. Bhattacharyya, “Gabriel: A Design Environ-

ment for DSP,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.37,

(No.11):1751-62, November, 1989.

30

[17] E. A. Lee and D. G. Messerschmitt, “Synchronous Dataflow,” Proceedings of the IEEE, Sep-

tember, 1987.

[18] E. A. Lee, “Multidimensional Streams Rooted in Dataflow,” Proceedings of the IFIP Work-

ing Conference on Architectures and Compilation Techniques for Fine and Medium Grained Par-

allelism, Orlando, January, 1993.

[19] S Majumdar, S. C. Nandy, B.B.Bhattacharyya, “Partitioning VLSI Floorplans by Staircase

Channels for Global Routing,” VLSI Design 1998, Chennai, India, January 1998.

[20] Marwedel, G. Goossens (editors), Code Generation for Embedded Processors, Kluwer Aca-

demic Publishers, 1995.

[21] P. K. Murthy, “Scheduling Techniques for Synchronous and Multidimensional Synchronous

Dataflow,” Ph.D. Thesis, Technical Memorandum UCB/ERL M96/79, Electronics Research Lab-

oratory, University of California, Berkeley, Ca 94720, December 1996.

[22] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, “Combined Code and Data Minimization

for Synchronous Dataflow Programs,” Journal of Formal Methods in System Design, July, 1997.

[23] D. R. O’Hallaron, The Assign Parallel Program Generator, Memorandum CMU-CS-91-141,

School of Computer Science, Carnegie Mellon University, May, 1991.

[24] S. Ritz, S. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Processing Sys-

tems,” Proceedings of the International Conference on Application Specific Array Processors,

Berkeley, pp. 679-93, August, 1992.

[25] S. Ritz, S. Pankert, and H. Meyr, “Optimum Vectorization of Scalable Synchronous Dataflow

Graphs”, technical report IS2/DSP93.1a, Aachen University of Technology, Germany, January,

1993.

[26] P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, 1993.

[27] M. Veiga, J. Parera, and J. Santos, “Programming DSP Systems on Multiprocessor Architec-

tures,” Proceedings of the International Conference on Acoustics, Speech, and Signal Processing,

Albuquerque, pp. 965-8 Vol. 2, April, 1990.

[28] M. E. Wolf and M. S. Lam, “A Data Locality Optimizing Algorithm”, ACM Conference on

Programming Language Design and Implementation, San Francisco, California, June, 1991.

31

[29] M. Wolfe, “Optimizing Supercompilers for Supercomputers”, MIT Press, 1989.

[30] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers, ACM Press,

1990.

[31] V. Zivojnovic, H. Schraut, M. Willems, and R. Schoenen, “DSPs, GPPs, and Multimedia

Applications — An Evaluation Using DSPStone,” Proceedings of ICSPAT, November, 1995.

