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ABSTRACT

The implementation of software for embedded digital signal processing (DSP) applica-
tions is an extremely complex process. The complexity arises from escalating functionality in the
applications; intense time-to-market pressures; and stringent cost, power and speed constraints.
To help cope with such complexity, DSP system designers have increasingly been employing
high-level, graphical design environments in which system specification is based on hierarchical
dataflow graphs. Consequently, a significant industry has emerged for the development of data-
flow-based DSP design environments. Leading products in this industry include SPW from
Cadence, COSSAP from Synopsys, ADS from Hewlett Packard, and DSP Station from Mentor
Graphics.

This paper reviews a set of algorithms for compiling dataflow programs for embedded
DSP applications into efficient implementations on programmable digital signal processors. The
algorithms focus primarily on the minimization of code size, and the minimization of the memory
required for the buffers that implement the communication channels in the input dataflow graph.
These are critical problems because programmable digital signal processors have very limited
amounts of on-chip memory, and the speed, power, and cost penalties for using off-chip memory
are often prohibitively high for embedded applications. Furthermore, memory demands of appli-
cations are increasing at a significantly higher rate than the rate of increase in on-chip memory
capacity offered by improved integrated circuit technology.
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1.  Introduction

Numerous software design environments for digital signal processing applications, such 

as those described in [6, 14, 16, 23, 24, 27], support code-generation for programmable digital 

signal processors used in embedded systems. Traditionally, programmable digital signal proces-

sors have been programmed manually, in assembly language, and this is a tedious, error-prone 

process at best. Hence, generating code automatically is a desirable goal. Since the amount of on-

chip memory in programmable digital signal processors is severely limited, it is imperative that 

the generated code be parsimonious in its memory usage. Adding off-chip memory is often highly 

unattractive due to increased cost, increased power requirements, and a speed penalty that will 

affect the feasibility of real-time implementations. 

One approach to automatic code generation is to specify the program in an imperative lan-

guage such as C, C++, or FORTRAN and use a good compiler. However, even the best compilers 

today produce inefficient code [31], although a significant research community is evolving to 

address the challenges of compiling imperative programming languages into implementations on 

embedded processors such as programmable digital signal processors [20]. In addition, specifica-

tions in imperative languages are difficult to parallelize, are difficult to change due to side effects, 

and offer few chances for any formal verification of program properties. An alternative is to use a 

block diagram language based on a model of computation with strong formal properties such as 

synchronous dataflow [17] to specify the system, and to perform code-generation starting from 

this specification. One reason that a compiler for a block diagram language is likely to deliver bet-

ter performance than a compiler for an imperative language is that the underlying model of com-

putation often exposes restrictions on the control flow of the specification, and this can be 

profitably exploited by the compiler.

Synchronous dataflow (SDF) [17] is a special case of dataflow. In SDF, a program is rep-

resented by a directed graph in which each vertex (actor) represents a computation, an edge spec-

ifies a FIFO buffer, and each actor produces (consumes) a fixed number of data values (tokens) 

onto (from) each output (input) edge per invocation. A parameter on each edge specifies the num-

ber of initial tokens (called delays ) residing on that edge.

One code-generation strategy followed in many block diagram programming environ-
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ments is called threading; in this method, the underlying model (in this case, SDF) is scheduled 

to generate a sequence of actor invocations (provided that the model can be scheduled at compile 

time of-course). A code generator then steps through this schedule, and for each actor encoun-

tered in the schedule, the code generator inserts a code block that implements the computation 

specified by the given actor. The individual code blocks, which can be specifications in assembly 

language or any high level language, are obtained from a predefined library of actor code blocks. 

Typically, in block diagram design tools for DSP, assembly language (feasible since the actors are 

usually small, modular components) or C is used to specify the functionality of individual code 

blocks. By “compiling an SDF graph”, we mean exactly the strategy described above for generat-

ing a software implementation from an SDF graph specification of the system in a block diagram 

environment.

We also assume that the code-generator generates inline code; this is because the alterna-

tive of using subroutine calls can have unacceptable overhead, especially if there are many small 

tasks. A key problem that arises with such an in-line code generation strategy is code-size explo-

sion. For example, if an actor appears 20 times in the schedule, then there will be 20 code blocks 

in the generated code. Clearly, such code duplication can consume enormous amounts of memory, 

especially if high actor invocation counts are involved.

Generally, the only mechanism to combat code size explosion while maintaining inline 

code is the use of loops in the target code. If an actor’s code block is encapsulated by a loop, then 

multiple invocations of that actor can be carried out without any code duplication. This paper is 

devoted to the construction of efficient loop structures from SDF graphs to allow the advantages 

of inline code generation under stringent memory constraints.

As mentioned earlier, a compiler for an imperative language cannot usually exploit the 

restrictions in the overall control flow of a DSP application system. However, the individual actor 

code blocks within an actor are usually much simpler, and may even correspond to basic blocks 

that compilers are adept at handling. Hence, for DSP design tools in which individual actors can 

be programmed using high level languages, compiling an SDF graph using the methods we 

describe in this paper does not preclude the use of or obviate the need for a good imperative lan-

guage compiler. On the contrary, we believe that the most promising approach is a strategy that 
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combines powerful SDF optimizations at a coarse-grain level, with aggressive imperative com-

piler technology applied to optimize the internals of individual actor code blocks. We expect that 

as compiler technology improves, such a hybrid approach will eventually produce code competi-

tive to hand-written code. However, in this paper, we only consider the code and buffer memory 

optimization possible at the SDF graph level. Issues relating to the interaction between compila-

tion at the SDF graph level, and the lower-level compilation of individual actor code blocks form 

an important direction for further study.

2.  Synchronous dataflow

Fig. 1(a) shows a simple SDF graph. Each edge is annotated with the number of tokens 

produced (consumed) by its source (sink) actor, and the “D” on the edge from actor  to actor  

specifies a unit delay. Each unit of delay is implemented as an initial token on the edge. Given an 

SDF edge , we denote the source actor, sink actor, and delay of  by , , and . 

Also,  and  denote the number of tokens produced onto  by  and consumed 

from  by .

A schedule is a sequence of actor firings. We compile an SDF graph by first constructing 

a valid schedule — a finite schedule that fires each actor at least once, does not deadlock, and 

produces no net change in the number of tokens queued on each edge. Corresponding to each 

actor in the schedule, we instantiate a code block that is obtained from a library of predefined 

actors. The resulting sequence of code blocks is encapsulated within an infinite loop to generate a 

software implementation of the SDF graph.

SDF graphs for which valid schedules exist are called consistent SDF  graphs. In [17], 

efficient algorithms are presented to determine whether or not a given SDF graph is consistent, 

and to determine the minimum number of times that each actor must be fired in a valid schedule. 

We represent these minimum numbers of firings by a vector , indexed by the actors in  (we 

Figure 1. Examples of SDF graphs.
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often suppress the subscript if  is understood). These minimum numbers of firings can be 

derived by finding the minimum positive integer solution to the balance equations for , which 

specify that  must satisfy

, for every edge  in . (1)

The vector , when it exists, is called the repetitions vector of .

3.  Constructing memory-efficient loop structures

This section informally outlines the interaction between the construction of valid sched-

ules for SDF graphs and the memory requirements of the compiled code.

To understand the problem of scheduling SDF graphs to minimize memory requirements, 

it is useful to examine closely the mechanism by which iteration is specified in SDF. In an SDF 

graph, iteration of actors in a valid schedule arises whenever the production and consumption 

parameters along an edge in the graph differ. For example, consider the SDF graph in Figure 2(a), 

which contains three actors, labeled ,  and . The -to-  mismatch on the left edge implies 

that within a valid schedule,  must be invoked twice for every invocation of . Similarly, the 

mismatch on the right edge implies that we must invoke  twice for every invocation of .

Figure 2(b) shows four possible valid schedules that we could use to implement Figure 

2(a). For example, the first schedule specifies that first we are to invoke , followed by , fol-

lowed by , followed by  again, followed by three consecutive invocations of . The paren-

thesized terms in schedules ,  and  are used to highlight repetitive invocation patterns in 

these schedules. For example, the term  in schedule  represents a loop whose iteration 

count is  and whose body is the invocation sequence ; thus,  represents the firing 

sequence . Similarly, the term  represents the invocation sequence . 

Clearly, in addition to providing a convenient shorthand, these parenthesized loop terms, called 

schedule loops, present the code generator with opportunities to organize loops in the target pro-

gram, and we see that schedule  corresponds to a nested loop, while schedules  and  corre-

spond to cascades of loops. For example, if each schedule loop is implemented as a loop in the 

target program, the code generated from schedule  would have the structure shown in Figure 
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2(c).

We see that if each schedule loop is converted to a loop in the target code, then each 

appearance of an actor in the schedule corresponds to a code block in the target program. Thus, 

since actor  appears twice in schedule  of Figure 2(b), we must duplicate the code block for  

in the target program. Similarly, we see that the implementation of schedule , which corresponds 

to the same invocation sequence as schedule  with no looping applied, requires seven code 

blocks. In contrast, in schedules  and , each actor appears only once, and thus no code duplica-

tion is required across multiple invocations of the same actor. We refer to such schedules as single 

appearance schedules, and we see that neglecting the code size overhead associated with the loop 

control, any single appearance schedule yields an optimally compact inline implementation of an 

SDF graph with regard to code size. Typically the loop control overhead is small, particularly in 

Figure 2. An example used to illustrate the interaction between scheduling
SDF graphs and the memory requirements of the generated code.
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programmable digital signal processors, which usually have provisions to manage loop indices 

and perform the loop test in hardware, without explicit software control. 

Scheduling can also have a significant impact on the amount of memory required to 

implement the buffers on the edges in an SDF graph. For example, in Figure 2(b), the buffering 

requirements for the four schedules, assuming that one separate buffer is implemented for each 

edge, are 50, 40, 60, and 50 respectively.

Note that this model of buffering — maintaining a separate memory buffer for each data 

flow edge — is convenient and natural for code generation, and it is the model used, for example, 

in the SDF-based code generation environments described in [6], [14], [24]. More technical 

advantages of this buffering model are elaborated on in [22].

4.  Relative prioritization of code and data minimization objectives

There are two natural angles for approaching the problem of joint minimization of code 

size and buffer memory requirements. The first approach is to study the problem of constructing a 

minimum buffer memory schedule, and then incorporate techniques for minimizing the code size 

into the approach that is developed for minimizing buffer memory. Here, the objective is to con-

struct a minimum buffer memory implementation that has minimum code size over all minimum 

buffer memory implementations. Conversely, first priority could be given to minimizing code 

size. This would yield the goal of computing a minimum buffer memory schedule over all imple-

mentations that require minimum code size. Once such a priority-based algorithm is established, 

post-processing techniques can be developed to balance the solutions computed by the priority-

based algorithm according to the code size and buffer memory capacities of the target implemen-

tation.

This paper focuses on the latter angle of attack — assigning first priority to code size min-

imization, and second priority to minimizing the buffer memory requirement. This approach is 

preferable because for practical synchronous dataflow graphs, giving first priority to code size 

minimization typically yields a significantly more favorable code size/buffer memory trade-off 

than giving first priority to buffer memory minimization. 

An example of this phenomenon is shown in Figure 3. The top part of this Figure depicts 
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an SDF representation of a sample rate conversion system for interfacing a compact disk player 

(44.1 kHz) to a digital audio tape player (48 kHz). The sample rate conversion is performed in 

four stages: 2:1, 4:3, 4:7, and 5:7. Explicit up samplers and down samplers are omitted, and it is 

assumed that the FIR filters are general polyphase filters [26]. 

The bottom part of Figure 3 shows the code size and buffer memory costs for various 

schedules when the implementation target is a single Motorola 56000 programmable data signal 

processor. The first entry in this table corresponds to a minimum buffer implementation that does 

not incorporate any use of loops to reduce the code size. This is the worst minimum buffer mem-

ory implementation. The second entry corresponds to a minimum buffer memory implementation 

in which looping is optimally employed to reduce code size. This gives the memory costs for a 

minimum buffer memory schedule that has minimum code size over all minimum data schedules. 

The third entry shows the memory costs for a minimum code size schedule that has maximum 

buffer memory costs over all minimum code size schedules. Finally, the fourth entry shows the 

Figure 3. A comparison of the program and buffer memory requirements of various sched-
ules for a sample rate conversion application.
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memory cost for a minimum code size schedule that has minimum buffer memory cost over all 

minimum code size schedules. Comparing the second and fourth entries of the table in Figure 3, 

we see that in most implementation contexts, the optimal solution that results when we give first 

priority to code size minimization is clearly preferable to the optimal solution that results when 

we give first priority to buffer memory minimization: the “best minimum code size schedule” has 

a code size cost that is 55 times less than that of the “best minimum buffer schedule,” while the 

buffer memory cost of the best minimum code size schedule is only 8 times larger; furthermore, 

the best minimum code size schedule can be accommodated within the on-chip memories of most 

programmable digital signal processors, while the 9400-word code size cost of the best minimum 

buffer schedule is too large for many processors. 

5.  Buffer memory metrics

Given an edge  in , we define the total number of samples exchanged on , denoted 

, or simply  if  is understood, by

. (2)

Thus,  is the number of tokens produced onto  in one period of a valid schedule.

For example, in Figure 1(a), , and thus,

.

Given an SDF graph , a valid schedule , and an edge  in , 

 denotes the maximum number of tokens that are queued on  during an execu-

tion of . For Figure 1(a), if 

 and ,

then  and . 

We define the buffer memory requirement of a schedule  by

. (3)
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A valid single appearance schedule that minimizes the buffer memory requirement over 

all valid single appearance schedules is called a buffer memory optimal schedule.

If  is a subset of actors in a connected, consistent SDF graph ,

,1 (4)

and we refer to this quantity as the repetition count of .

6.  Subindependence

Since valid single appearance schedules implement the full repetition inherent in an SDF 

graph without requiring subroutines or code duplication, it is useful to examine the topological 

conditions required for such schedules to exist. First, suppose that  is a connected, consistent 

acyclic SDF graph containing  actors. Then we can take some root actor  of  and fire all 

 invocations of  in succession. After all invocations of  have fired, we can remove 

 from , pick a root actor  of the new acyclic SDF graph, and schedule its  repeti-

tions in succession. Clearly, we can repeat this process until no actors are left, to obtain the single 

appearance schedule  for . Thus, we see that any con-

sistent acyclic SDF graph has at least one valid single appearance schedule.

The following result has been established concerning the existence of single appearance 

schedules for general SDF graph topologies (SDF graphs that are not necessarily acyclic) [4].

Theorem 1: • An SDF graph has a single appearance schedule if and only if each strongly con-

nected component has a single appearance schedule.

• A strongly connected SDF graph has a single appearance schedule only if we can 

partition the actors into two subsets  and  such that  is precedence-independent of  

throughout a single schedule period. That is, for each edge α directed from a member of  to a 

member of , . 

This form of precedence-independence is referred to as subindependence. Thus a strongly 

connected SDF graph has a single appearance schedule only if its actors can be partitioned into 

1. The greatest common divisor is denoted by gcd.
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subsets  and such that  is subindependent of . If such a partition exists, the strongly 

connected SDF graph is loosely interdependent, otherwise it is tightly interdependent. The fol-

lowing theorem relates the concept of loose interdependence the existence of to single appearance 

schedules [3]:

Theorem 2: A strongly connected, consistent SDF graph  has a single appearance schedule if 

and only if every strongly connected subgraph of  is loosely interdependent.

Partitioning loosely interdependent SDF graphs based on subindependence relationships 

defines a decomposition process for hierarchically scheduling SDF graphs. This decomposition 

process leads to single appearances schedules whenever they exist [3].

However, this method of decomposition is useful even when single appearance schedules 

do not exist. This is due to two key properties of tightly interdependent SDF graphs:

• Tight interdependence is “additive”: If  and  are two subsets of actors in an SDF graph 

such that  is non-empty, and the subgraphs associated with  and  are both tightly 

interdependent, then the subgraph associated with  is tightly interdependent. Thus each 

SDF graph  has a unique set of non-overlapping “maximal” tightly interdependent subgraphs, 

which are called the tightly interdependent components of .

• Partitioning a loosely interdependent SDF graph  based on subindependence cannot decom-

pose a tightly interdependent subgraph of . Thus, if ,  partition the actors of  such that 

 is subindependent of , and if  is a subset of actors whose corresponding subgraph is 

tightly interdependent, then  or .

Thus, if a loosely interdependent SDF graph is recursively decomposed based on subinde-

pendence, the decomposition process will always terminate on the same subgraphs — the tightly 

interdependent components. 

7.  Loose Interdependence Algorithms

This property of tightly interdependent subgraphs has been applied to develop a flexible 

scheduling framework for optimized compilation of SDF graphs. The scheduling framework is 

based on a class of uniprocessor scheduling algorithms that we call loose interdependence algo-

rithms. A loose interdependence algorithm consists of three component algorithms, which we call 

P1 P2 P1 P2

G
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the acyclic scheduling algorithm, the subindependence partitioning algorithm, and the tight 

scheduling algorithm. The acyclic scheduling algorithm is any algorithm for constructing single 

appearance schedules for acyclic SDF graphs; the subindependence partitioning algorithm is any 

algorithm that determines whether a strongly connected SDF graph is loosely interdependent and 

if so, finds a subindependent partition; and the tight scheduling algorithm is any algorithm that 

generates a valid schedule for a tightly interdependent SDF graph. The precise manner in which 

the three component sub-algorithms interact to define a loose interdependence algorithm is speci-

fied in [3].

The following useful properties of loose interdependence algorithms are established in [3].

• Any loose interdependence algorithm constructs a single appearance schedule when one exists.

• If N is an actor in the input SDF graph and N is not contained in a tightly interdependent compo-

nent of G, then any loose interdependence algorithm schedules G in such a way that N appears 

only once.

• If N is an actor within a tightly interdependent component of the input SDF graph, then the 

number of times that N appears in the schedule generated by a loose interdependence algorithm is 

determined entirely by the tight scheduling algorithm.

The last property states that the effect of the tight scheduling algorithm is independent of 

the subindependence partitioning algorithm, and vice-versa. Any subindependence partitioning 

algorithm guarantees that there is only one appearance for each actor outside the tightly interde-

pendent components, and the tight scheduling algorithm completely determines the number of 

appearances for actors inside the tightly interdependent components. For example, if we develop 

a new subindependence partitioning algorithm that is more efficient in some way (e.g. it is faster, 

or reduces buffering cost more), we can substitute it for any existing subindependence partition-

ing algorithm without changing the compactness of the resulting looped schedules. Similarly, if 

we develop a new tight scheduling algorithm that schedules any tightly interdependent graph 

more compactly than the existing tight scheduling algorithm, we are guaranteed that using the 

new algorithm instead of the old one will lead to more compact schedules overall.



13

8.  Modem example

Figure 4(a) shows an SDF implementation of a modem taken from [17]. The repetitions 

vector is given by

.

There is one strongly connected component, corresponding to actors

. 

This strongly connected component is clustered to give an acyclic graph as depicted in Figure 

4(b). A possible single appearance schedule for this clustered graph is

. (5)

Now the strongly connected component has a subindependent partition given by  

and . Since the subgraphs corresponding to these two subsets of actors 
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Figure 4. a) A block diagram of a modem application. b) Acyclic graph after clustering the
strongly connected components in a).
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are both acyclic, the recursive application of a loose interdependence algorithm terminates by 

applying the acyclic scheduling algorithm to each of the partitions, yielding the single appearance 

schedule  for this strongly connected component. This schedule is then sub-

stituted into the top-level schedule (5) to give a single appearance schedule for the entire graph:

.

9.  Minimizing buffer memory

In the scheduling framework above, the acyclic scheduling algorithm can be designed 

such that the total buffer-memory requirement is minimized to a certain extent (which we will 

elaborate on later). In this section, we assume that the SDF graph is acyclic; the non-acyclic case 

will be dealt with later.

It is shown in [22] that the buffer-memory minimization problem is NP-complete, even for 

arbitrary, acyclic homogenous1 SDF graphs. Two heuristics, along with a post-processing algo-

rithm have been developed; these two algorithms are complementary in the sense that one per-

forms well on graphs having a more regular topology and regular rate changes, while the other 

performs well on graphs having irregular topologies and irregular rate changes.

Essentially, for an acyclic graph, the problem of constructing a buffer-memory optimal 

single appearance schedule boils down to generating an appropriate topological ordering of the 

vertices in the graph, and then generating an optimal loop hierarchy. The number of topological 

sorts in an acyclic graph can be exponential in the size of the graph; for example, a complete 

bipartite graph with  actors has  possible topological sorts. Each topological sort gives a 

valid flat single appearance schedule (i.e, a single appearance schedule with no nested loops). The 

post-processing step then computes a buffer-memory optimal loop hierarchy. For example, the 

graph in Figure 5 shows a bipartite graph with 4 actors. The repetitions vector for the graph is 

given by , and there are 4 possible topological sorts for the graph. The flat sched-

ule corresponding to the topological sort  is given by . This can 

be nested as , and this schedule has a buffer memory requirement of 

208. The flat schedule corresponding to the topological sort , when nested optimally, gives 

1. A homogenous SDF graph has  for all edges .
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the schedule , with a buffer memory requirement of 120.

The post-processing step of computing a loop hierarchy for a given actor ordering can be 

accomplished optimally for delayless graphs by using a dynamic programming algorithm [22], 

called the dynamic programming post-optimization (DPPO) algorithm. An extension of this algo-

rithm, called generalized DPPO (GDPPO), has been developed to optimally handle actor order-

ings for SDF graphs that have delays and that may contain cycles [5]. Given any consistent SDF 

graph , and an ordering  of the actors in , GDPPO computes a single appearance schedule 

that minimizes the buffer memory requirement over all single appearance schedules that have the 

given actor ordering (assuming that at least one valid single appearance schedule exists that has 

the given actor ordering). Here, by the actor ordering of a single appearance schedule, we mean 

the lexical order in which the actors appear — for example, the actor ordering associated with the 

schedule  is . The running time of GDPPO algorithm on 

sparse SDF graphs is , where  is the set of vertices.

10.  The Buffer Memory Lower Bound

In [2] the following lower bound on  is derived, given a consistent SDF 

graph , an edge  in , and a valid single appearance schedule .

Definition 1: The buffer memory lower bound (BMLB) of an SDF edge , denoted 

, is given by

, (6)

A

B D

C3 4

4
4
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94

Figure 5. A bipartite SDF graph to illustrate
the different buffer memory requirements pos-
sible with different topological sorts.
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where .

If  is an SDF graph, then 

. (7)

is called the BMLB of , and a valid single appearance schedule  for  that satisfies 

 for all  is called a BMLB schedule for .

Not all consistent SDF graphs have valid BMLB schedules. For example the SDF graph of 

Figure 1(a) does not have a BMLB schedule. In contrast, for the SDF graph in Figure 1(b), it can 

easily be verified that the schedule , which has a buffer memory requirement of 

, is a BMLB schedule. 

Although BMLB schedules do not exist for all SDF graphs, empirical observations sug-

gest that many practical graphs have BMLB schedules [5].

11.  Pairwise Grouping of Adjacent Nodes

The first of the two heuristics that we discuss for generating topological orderings of acy-

clic SDF graphs with the objective of buffer memory minimization is a bottom-up procedure 

called Acyclic Pairwise Grouping of Adjacent Nodes (APGAN). In this technique, a cluster 

hierarchy is constructed by clustering exactly two adjacent vertices at each step. At each cluster-

ization step, a pair of adjacent actors is chosen that maximizes  over all adjacent pairs that are 

clusterable, which means that they do not introduce cycles in the graph when clustered.

Figure 6 illustrates the operation of APGAN. Figure 6(a) shows the input SDF graph. Here 

, and for ,  represents the th hierarchical 

actor instantiated by APGAN. The repetition counts of the adjacent pairs are given by

, and (8)

. (9)

Thus, APGAN will select one of the three adjacent pairs , , or  for its first 

clusterization step. The adjacent pair  introduces a cycle when clustered, while the other 

η e( ) e( )p e( )c
e( )p e( )c,{ }( )gcd

----------------------------------------------=

G V E,( )=

e( )BMLB
e E∈
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two adjacent pairs do not introduce cycles. Thus, APGAN chooses arbitrarily between  

and  as the first adjacent pair to cluster.

Fig. 6(b) shows the graph that results from clustering  into the hierarchical actor 

. In this graph, , and it is easily verified that  uniquely 

maximizes  over all adjacent pairs. Since  does not introduce a cycle, APGAN selects 

this adjacent pair for its second clusterization step. Fig. 6(c) shows the resulting graph.

Figs. 6(d&e) show the results of the remaining two clusterizations in our illustration of 

APGAN. We define the subgraph corresponding to  to be the subgraph that is clustered in 

the th clusterization step. A valid single appearance schedule for Fig. 6(a) can easily be con-

structed by recursively traversing the hierarchy induced by the subgraphs corresponding to the 

s. We start by constructing a schedule for the top-level subgraph, the subgraph corresponding 

to . This yields the “top-level” schedule  (we suppress loops that have an iteration 

count of one) for the subgraph corresponding to . We continue in this manner to yield the valid 

single appearance schedule  for Fig. 6(a).

From  and Fig. 6(a) it easily verified that  and , 

where  is the set of edges in Fig. 6(a), are identically equal to , and thus in the execution of 

APGAN illustrated in Fig. 6, a BMLB schedule is returned.
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Figure 6. An illustration of APGAN.
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The APGAN approach, as we have defined it here, does not uniquely specify the sequence 

of clusterizations that will be performed. The APGAN technique together with an unambiguous 

protocol for deciding between adjacent pairs that are tied for the highest repetition count form an 

APGAN instance, which generates a unique schedule for a given graph. We say that an adjacent 

pair is an APGAN candidate if it does not introduce a cycle, and its repetition count is greater 

than or equal to that of all other adjacent pairs that do not introduce cycles. Thus, an APGAN 

instance is any algorithm that takes a consistent, acyclic SDF graph, repeatedly clusters APGAN 

candidates, and then outputs the schedule corresponding to a recursive traversal of the resulting 

cluster hierarchy.

It is shown in [2] that APGAN is optimal for a class of acyclic SDF graphs in the follow-

ing sense:

Theorem 3: If  is a connected, acyclic SDF graph that has a BMLB schedule, 

 for all , and  is an APGAN instance, then the schedule obtained by applying 

 to  is a BMLB schedule for .

Hence, whenever the achievable lower bound on the buffer memory (that is, the buffer 

memory requirement of the single appearance schedule having the lowest possible buffer memory 

requirement) coincides with the BMLB, and inequality in the statement of Theorem 3 holds, 

APGAN will always find a BMLB schedule. If the achievable lower bound is greater than the 

BMLB, then the schedule returned by APGAN could have a buffer memory requirement greater 

than the achievable lower bound.

Many practical systems, such as QMF filter banks, fall into the category of SDF graphs 

that satisfy the conditions of Theorem 3 [2].

12.  Recursive Partitioning by Minimum Cuts

APGAN constructs a single appearance schedule in a bottom-up fashion by starting with 

the innermost loops and working outward. An alternative approach, called Recursive Partition-

ing by Minimum Cuts (RPMC), computes a schedule by recursively partitioning the SDF graph 

in such a way that outer loops are constructed before the inner loops. Each partition is constructed 

by finding the cut (partition of the set of actors) across which the minimum amount of data is 

G V E,( )=

e( )d η e( )< e E∈ P

P G G
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transferred. The cut that is produced must have the property that all edges that cross the cut have 

the same direction. This is to ensure that all actors on the left side of the partition can be scheduled 

before any on the right side are scheduled. A constraint that the partition be fairly evenly sized is 

also imposed. This is to increase the possibility of having gcd’s that are greater than unity for the 

repetitions of the actors in the subsets produced by the partition, thus reducing the buffer memory 

requirement [22].

Suppose that  is a connected, consistent SDF graph. A cut of  is a partition 

of the actor set  into two disjoint sets  and . The cut is legal if for all edges  crossing the 

cut (that is, all edges that have one incident actor in  and the other in ), we have 

 and . Given a bounding constant , the cut results in bounded 

sets if it satisfies

, . (10)

The weight of edge  is defined as .

The weight of the cut is the total weight of all the edges crossing the cut. The problem then 

is to find the minimum weight legal cut into bounded sets for the graph. This problem is believed 

to be NP-complete, although a proof has not been discovered [22]. Kernighan and Lin [11] 

devised a heuristic procedure for computing cuts into bounded sets but they considered only undi-

rected graphs. Methods based on network flows [8] do not work because the minimum cut given 

by the max-flow-min-cut theorem may not be legal and may not be bounded [22]. Hence, a heu-

ristic solution is needed for finding legal minimum cuts into bounded sets.

One technique is to use the max-flow-min-cut theorem [8] to generate a minimum cut. 

Legality can be ensured by adding reverse edges  for each edge . The capacities of the 

reverse edges are set to infinity, ensuring that any edge that crosses the cut in the reverse direction 

is an edge of infinite capacity [19]. However, this cut may not be bounded. One way to make this 

cut bounded would be to simply examine actors on the side with the larger number of actors, and 

move those over to the other side that increase the cost the least, until the bound is satisfied.

Another technique for constructing legal minimum cuts into bounded sets is to examine 

the set of cuts produced by taking an actor and all of its descendants as the actor set  and the 
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set of cuts produced by taking an actor and all of its ancestors as the set . For each such cut, an 

optimization step is applied that attempts to improve the cost of the cut. Consider a cut produced 

by setting

(11)

for some actor , and let  be the set of independent, boundary actors of  in . A bound-

ary actor in  is an actor that is not the predecessor of any other actor in . Following Ker-

nighan and Lin [11], for each of these actors, we can compute the cost difference that results if the 

actor is moved into . This cost difference for an actor  in  is defined to be the differ-

ence between the total weight of all input edges of  and the total weight of output edges of . 

We then move those actors across that reduce the cost. We apply this optimization step for all cuts 

of the form  and  for each actor  in the graph and take the 

best one as the minimum cut. Since there are  actors in the graph,  cuts are examined. 

Moreover, the cut produced will have bounded sets since cuts that produce unbounded sets are 

discarded.

RPMC now proceeds by partitioning the graph by computing the legal minimum cut and 

forming the schedule , where  are schedules for  and  

respectively that are obtained recursively by partitioning  and . It can be shown that the 

running time of RPMC for sparse SDF graphs, including post-optimization by GDPPO, is 

 [22].

13.  Application to general SDF topologies

The APGAN and RPMC algorithms work on acyclic SDF graphs, and thus are suitable for 

use as the acyclic scheduling algorithm in the scheduling framework described in Section 7. In 

this manner, we can obtain single appearance schedules for cyclic graphs that minimize buffer 

memory costs to a limited extent. In particular, if buffer-memory considerations are not taken into 

account in either the subindependence partitioning algorithm or the tight scheduling algorithm, 

there is no guarantee that the resulting schedule will be optimal or even near-optimal with respect 

to the buffer memory requirement. Combining buffer-memory considerations into the latter two 

VL
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components of the scheduling framework is an important topic for future work.

14.  Experimental observations

APGAN and RPMC (with the second of the two legal bounded cut heuristics mentioned) 

have been tested on many practical examples, as well as randomly generated graphs. Many practi-

cal systems, such as QMF filter banks fall into the category of SDF graphs having BMLB sched-

ules; hence, on these APGAN performs optimally. It is interesting to note that on non-uniform 

filter bank structures, the BMLB cannot be achieved, and on such structures, RPMC gives signif-

icantly better schedules than APGAN. Also, RPMC outperforms APGAN by almost 2 to 1 on ran-

dom SDF graphs. Details of these experiments can be found in [2, 21]. It would be interesting to 

see the impact of using the first heuristic (based on the network flow formulation) for generating 

legal minimum cuts into bounded sets on RPMC performance; we have not done these experi-

ments yet. 

15.  Application to multidimensional SDF graphs

The synchronous dataflow model suffers from the limitation that its streams are one-

dimensional. For multidimensional signal processing algorithms, it is necessary to have a model 

in which this restriction is not present, so that effective use can be made of the inherent data-par-

allelism that exists in such systems. As for one-dimensional systems, the specification model for 

multidimensional systems should expose to the compiler or hardware synthesis tool as much 

static information as possible so that run-time decision making is avoided as much as possible, 

and so that effective use can be made of both functional and data parallelism. Most multidimen-

sional signal processing systems also have a predictable flow of control, like one-dimensional 

systems, and for this reason, an extension of SDF, called multidimensional synchronous dataflow 

was proposed in [18].

Although a multidimensional stream can be embedded within a one dimensional stream, it 

may be awkward to do so [7]. In particular, compile-time information about the flow of control 

may not be immediately evident. The multidimensional SDF (MDSDF) model is a straightfor-

ward extension of one-dimensional SDF. Figure 7 shows a trivially simple two-dimensional SDF 
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graph. The numbers of tokens produced and consumed are now given as -tuples. Instead of one 

balance equation for each edge, there are now . The balance equations for Figure 7 are

, (12)

These equations should be solved for the smallest integers , which then give the num-

ber of repetitions of each actor  in each dimension .

As a simple application of MDSDF, consider a portion of an image coding system that 

takes a  pixel image and divides it into  blocks on which it computes a DCT. At the 

top level of the hierarchy, the dataflow graph is shown in Figure 8. The solution to the balance 

equations is given by

, , . (13)

A segment of the index space for the stream on the edge connecting actor A to the DCT is 

shown in the Figure. The segment corresponds to one firing of actor A. The space is divided into 

regions of tokens that are consumed on each of the five vertical firings of each of the 6 horizontal 
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Figure 7. A simple MD-SDF graph. 
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firings. The precedence graph constructed automatically from this shows that the 30 firings of the 

DCT are independent of one another, and hence can proceed in parallel. Distribution of data to 

these independent firings can be automated.

A delay in MD-SDF is associated with a tuple as shown in Figure 7. It can be interpreted 

as specifying boundary conditions on the index space. Thus, for 2D-SDF, as shown in the Figure, 

it specifies the number of initial rows and columns. It can also be interpreted as specifying the 

direction in the index space of a dependence between two single assignment variables, much as 

done in reduced dependence graphs [12].

All of the scheduling techniques discussed in the earlier sections of this paper extend to 

the MDSDF model. The extension of RPMC and GDPPO can be handled in a straightforward 

manner by simply changing the buffer cost formulation appropriately [21]. In the remainder of 

this section, we define an extension of the buffer memory lower bound to multidimensional sys-

tems, and we present a multidimensional version of the APGAN algorithm along with its associ-

ated optimality result (i.e. the MDSDF version of Theorem 3). In this discussion, we assume 2 

dimensions for notational simplicity, unless otherwise stated. We use the notation  to mean 

the th invocation of actor  in a complete valid schedule. In an MDSDF schedule, a single 

appearance schedule such as  corresponds to a loop structure of the form:

for x = 0 to 3
for y = 0 to 1

fire 

end fory, forx

for x = 0 to 5
for y = 0 to 3

fire 

end fory, forx.

15.1 The Buffer Memory Lower Bound (BMLB) for MDSDF graphs

The BMLB of an MDSDF graph can be computed in a manner similar to the SDF BMLB 

computation. First, we define

, (14)

A i j,[ ]

i j,( ) A

4 2,( ) A 6 4,( )B( )

A x y,[ ]

B x y,[ ]

x AB( )
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for an edge  with  delays. Then, the BMLB for the edge  can be expressed 

as [21]

. (15)

15.2 APGAN for MDSDF graphs

APGAN can be applied to acyclic MDSDF graphs in the following manner [21]. First, define the 

following two quantities:

 and . (16)

The clustering function is a tuple and is then given by

. (17)

At each step in the algorithm, we cluster the adjacent pair  that maximizes  

component-wise. This means that for any other adjacent clusterable pair , with 

 we should have . If such a pair 

does not exist, we pick the adjacent clusterable pair  that maximizes 

. 

The following result extends the “APGAN optimality property” of Theorem 3 to the 

MDSDF version of APGAN defined above.

Theorem 4: When applied to a consistent MDSDF graph, APGAN will return a BMLB sched-

ule whenever one exists, provided that the delay  on each edge  satisfies:

where

.
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15.3 MDSDF APGAN example

Consider the example graph shown in Figure 9. The repetitions vector is given by 

. The clusterable pairs are , , and 

. The clustering function values are , , and 

. Hence,  is the pair chosen for clustering since its clustering function 

has maximum component-wise value over the three clusterable pairs. Similarly, at the next step, 

there are two clusterable pairs,  and , and the clustering function values are 

 and . So  is clustered next, and the final 

schedule is . It can be verified that this is 

indeed a BMLB schedule.

The graph in Figure 10 shows an example where there is no adjacent pair whose clustering 

function has the maximum-componentwise value. Hence, the graph does not have a BMLB 

schedule either, as is verified by looking at the two possible nested single appearance schedules. 

The repetitions vector is given by . The clustering function values for the 

two clusterable pairs are  and . The two possible nested 

single appearance schedules are

A

B

C D

(3,1)
(1,2)

(2,1)
(1,4)

(2,1)

(3,2)

(1,3) (4,2)

Figure 9. An MDSDF graph that has a BMLB schedule.

W1

C D(2,2)
(1,4)

(3,2)

(1,3) (4,2)

(6,1)

W2 D
(2,3) (4,2)

r A B C D, , ,( ) 2 8,( ) 6 4,( ) 4 2,( ) 1 3,( ), , ,{ }= A B,{ } B C,{ }

C D,{ } ρ A B,{ }( ) 2 4,( )= ρ B C,{ }( ) 2 2,( )=

ρ C D,{ }( ) 1 1,( )= A B,{ }

W1 C,{ } C D,{ }

ρ W1 C,{ }( ) 2 2,( )= ρ C D,{ }( ) 1 1,( )= W1 C,{ }

2 2,( )   1 2,( )   1 2,( )A 3 1,( )B   ( )    2 1,( )C   ( )    1 3,( ) D

A B
(3,3) (2,1)

C
(3,1) (2,5)

Figure 10. An example of a graph that does not have a BMLB schedule.
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 and .

Neither of these is a BMLB schedule. The APGAN algorithm in this case will choose to cluster 

 first because ; this results in the first of the two schedules given above. The 

first schedule has higher buffering requirements than the second; hence, APGAN is not optimal 

when the graph does not have a BMLB schedule.

16.  Alternative approaches for scheduling SDF graphs

The techniques in this paper focus on compiling SDF graphs to minimize the code size 

and data memory size. At the Aachen University of Technology, as part of the COSSAP software 

synthesis environment for DSP, Ritz et al. have investigated the minimization of code size in con-

junction with a different secondary optimization criterion: minimization of the context-switch 

overhead, or the average rate at which actor activations occur [25]. An actor activation occurs 

whenever two distinct actors are invoked in succession; for example, the schedule  

results in five activations per schedule period.

In multiprocessor computers, different iterations of a loop can be executed in parallel on 

different processors. To achieve this, the code for the loop is replicated across the processors. This 

is in contrast to our problem, which involves a uniprocessor implementation target, and in which 

there are no explicitly specified loops (within the schedule period). We would like to detect the 

opportunity to construct multiple invocations of the same firing sequence, and we wish to group 

these invocations successively in time so that they form successive iterations of a single loop.

Loop distribution and loop fusion [29] can be used to improve data locality for looped 

schedules of SDF graphs. Also, the use of iteration space tiling, as discussed in [28, 29], can be 

used to improve locality for code synthesized for a looped schedule of an SDF graph. However, 

each loop transformation and schedule rearrangement applies to a localized section of the target 

code. The scheduling techniques described in this paper use dataflow properties to guide a sched-

uler to more efficient solutions; loop transformations can then be applied to refine the resulting 

schedules. We believe that this will be more efficient than constructing naive schedules, and rely-

ing solely on loop transformations to achieve adequate data locality.

Ade, Lauwereins, and Peperstraete develop upper bounds on the minimum buffer memory 
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requirement for certain classes of SDF graphs [1]. Since these bounds attempt to minimize over 

all valid schedules, and since single appearance schedules generally have much larger buffer 

memory requirements than schedules that are optimized for minimum buffer memory only, these 

bounds cannot consistently give close estimates of the minimum buffer memory requirement for 

single appearance schedules.

Lauwereins, Wauters, Ade, and Peperstraete present a generalization of SDF called cyclo-

static dataflow [13]. A major advantage of cyclo-static dataflow is that it can eliminate large 

amounts of token traffic arising from the need to generate dummy tokens in corresponding (pure) 

SDF representations. Although cyclostatic dataflow can reduce the amount of buffering for 

graphs having certain multirate actors like explicit downsamplers, it is not clear whether this 

model can in general be used to derive schedules that are as compact as single appearance sched-

ules for pure SDF graphs but have lower buffering requirements than those arising from the tech-

niques discussed in this paper.

A linear programming framework for minimizing the memory requirement of a synchro-

nous dataflow graph in a parallel processing context is explored by Govindarajan and Gao in [10]. 

Here the goal is to minimize the buffer cost without sacrificing throughput — just as one of the 

goals in this paper is to minimize buffering cost without sacrificing code compactness.

17.  Summary

This paper has reviewed a set of techniques for mapping SDF programs for embedded dig-

ital signal processing applications into efficient implementations on programmable processors. 

The techniques have focused on the minimization of code size, and the minimization of the mem-

ory required for the buffers that implement the edges in the input dataflow graph. Even though 

some of the associated problems have been shown to be NP-complete, we have described algo-

rithms that solve subsets of these problems optimally, and have described a framework in which 

these algorithms can be combined with heuristics to give a comprehensive solution.

There are two central themes that underlie the techniques discussed in this paper. These 

themes are based on the concept of single appearance schedules, which is a class of code-size-

minimizing schedules for SDF programs. The first theme is a uniprocessor scheduling framework 
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that operates by decomposing the input SDF graph into a hierarchy of acyclic subgraphs. The 

scheduling framework constructs single appearance schedules whenever they exist, and when sin-

gle appearance schedules do not exist, the framework guarantees optimal code size for all actors 

that are not contained in a certain type of subgraph called tightly independent subgraphs. The sec-

ond theme involves a pair of complementary algorithms that construct single appearance sched-

ules for acyclic SDF graphs that minimize the buffer memory requirement. These complementary 

algorithms can easily be incorporated into the scheduling framework to handle the acyclic graphs 

that result from the decomposition process. 

These techniques have all been implemented in the Ptolemy software environment [6]. 

Additionally, APGAN, DPPO, and the scheduling framework based on loose interdependence 

algorithms have been implemented by the Alta Group of Cadence in the Signal Processing Work-

system, a widely-used design environment for DSP applications. A detailed, comprehensive treat-

ment of the techniques discussed in this paper, including complete pseudocode specifications of 

the algorithms, can be found in [5].
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