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ABSTRACT 

The HAL system performs data path synthesis using a new 
scheduling algorithm that 1s part Of an interdependent 
scheduling and allocation scheme. This scheme uses an BStl- 
mate of the hardware allocation to guide and optimiza the 
scheduling subtask. The allocation information includes the 
number. type. speed and cost of hardware modules as well as 
the associated multiplexer and interconnect costs. 

The iterative force-directed scheduling algorithm attempts 
to balance the distribution of operations that make use Of 
the same hardware resources: 

. Every feasible control step assignment is evaluated at 
each iteration, for a11 operations. 

. The associated side-effects on all the predecessor and 
successor operations are taken Into account. 

. All the decisions are global. 

. The algorithm has O(n*) complexity. 

We review and compare existing scheduling techniques. Mod- 
erate and difficult examples are used to illustrate the ef- 
fectiveness of the approach. 

1. INTRODUCTION 

In the automatic design of application specific integrated 
circuits. the alaorithmic deSCriDtiOn is common1 y 

datapath and a- 
synthe- 

sized Into a control path. Scheduling 
datapath operations into the best control steps is a task 

whose importance has been recognized in many systems 

It.2.3.4.51. According to Gajski [I], it is “perhaps the 

single most important step during the architecture synthe- 
SiS”, IroniCally, it is also the one that has received the 

least attention in current literature. (Notable exceptions 
are the papers presented by Alice Parker’s group at the Uni- 
versity of Southern California [2.3) and by Emil GirczyC Of 
the University of Alberta 141). 

operation scheduling determines the serial/parallel nature 
of the design and approximates cost-speed trade-offs t61. 
If the design Is subjected to a speed constraint, the sched- 
Ul ing algorithm will attempt to make sufficient operations 
run In parallel to meet the constraint. Conversely, if 
there is a limit on chip area. the scheduler can be asked to 
Serial iae operations to give the maximum speed consistent 
with the canstraint. 

The scheduling task is an important one as it affects four 

fundamental aspects of the subsequent synthesis process: 
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. The number and type of PrOCeSSOM allocated 

. The timing constraints on these processors 

. The storage requirements 

. The data transfer requirements 

The HAL system is composed of three main modules that were 
described In 151. The InHAL module uses a novel force- 
directed scheduling algorithm that attempts to balance the 
distribution of operations that make use of the same hard- 
war-e resources. This algorithm also allows specific allo- 
catlon information. such as the propagation delay of a 
specific standard Cell, to be used when optimizing the 
scheduling process. The MidHAL module performs the hardware 
allocation while the final interconnection and optimization 
step is realized by the ExHAL module. 

We will first review existing scheduling techniques and com- 
pare them with the approach used in the HAL System. This 
will be followed bv a 

algorithm 
descriDtion Of the force-directed 

scheduling that is’the main emphasis of this pa- 
per. We will then demonstrate how processor allocation in- 
formation is integrated into the scheduling process. 
Finally, we present experlmental results for moderate and 
difficult problems taken from current literature. 

2. LITERATURE SURVEY 

The simplest way to perform scheduling is to relegate the 
task to the user. This is the aDDrOaCh favored bv the SilC 
system [7] under the assumption that the user should explic- 
itly define the parallelism of the design. 

Independent scheduling/allocation schemes: 

The next simplest scheme is to schedule operations “as soon 
as possible” (ASAP) as is done in the Emerald/Facet system 
[Sl. This technique has proved useful in the Past for near- 
optimal microcode compaction (91. 

A refinement of this concept is ASAP scheduling with condi- 
tional postponement of operations. the MIMOLA 
(101, this occurs whenever the o$ration con~urre%~~?~ 
higher than the number of available processors. The recently 
published Flame1 system (17) uses the same idea. The Scheme 
used in Kung, Whltehouse and Kailath’s book on digital sig- 
nal processing (11) is similar, except that an operation is 
postponed when it blocks a later one with a lower “BE late 
as possible” (ALAP) level. 

Continuing along the scale of increasing complexity, we have 
the algorithms that USQ list scheduling. as described in 
[91. The behavioral synthesis of interfaces (BSI) system 
developed by Nestor [12). the SLICER system developped by 
Pangrle and Gajski t13) and the BUD-DAA system [I41 use this 
type of approach. 

In list scheduling. operations are sorted in topological or- 
der (top to bottom) by “sing the precedence relations dic- 
tated by data and control 
operations 

dependanGleS. The sorted 
are then iteratively. scheduled into control 

steps. The order in which they are placed into a control 
step is determined by a heuristic priority function that is 
appl led to all operations that can be placed in the control 
step. 

In the BSI system. the priority function reflects whet her 
placing the operation in the current step will violate a 
minimum time constraint (ASAP time) and whether placing an 
operation in a later step will violate a maximum time con- 
straint (ALAP time). 
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In the SLICER system. the priority function is based on op- 
eration mobilities. The mobility of a” operation is defined 
as the difference between it’s ASAP time and ALAP time. OP- 
erations on the critical path are thus scheduled first. 

The BUD-DAA system uses a similar priority function but 
sorte the operations in depth-first order (bottom to top). 

Strictly speaking, the scheduling IS not totally independent 
of the allocation In these systems. Most derive estimates 

Of the operation delays based on the most likely processor 
assignments. 

Interdependent scheduling/allocation schemes: 

In these systems, the operation scheduling is done concur- 
rent 1 y with the processor allocation (except for the Silt 
system, where the user has final say). Elf uses a VariatiOr7 

of the list scheduling algorithm where the priority function 
is based on operation weights and urgencies. operation 

weights are calculated by taking the minimum number of Cy- 
cles to execute the operation plus the maximum weight of its 
successors. Operation urgencies are determined by taking a 
ratio Of the operation’s weight and the number of cycles 
left until its time constraint. When an operation IS de- 
1 eyed its urgency increases which raises it’s priority for 
assignment in the next control step. 

The elaborate scheme used in USC’s MAHA system [Z) relies on 
critical path determination and the concept of operation 
freedom to guide scheduling. The freedom of an operation is 
ident ical to the mobility calculated In the SLICER system 
described earlier. 

The MAHA system first invokes the Clocking Scheme Synthesis 
Package (CSSP) written by Park [3]. Here the critical path 
is determined and divided optimally into n steps, one Per 
clock cycle. The clock cycle is also automatically detar- 
mined here. In the HAL system, the clock cycle must be de- 

fined by the “ser. 

MAHA then allocates processors for the critical path in a 
first-come first-served fashion. The notion of freedom is 
used to guide the scheduling of the off-critical-path nodes. 
The node with the smallest freedom is chosen for allocation. 
The critical path assignment is completed in linear time. 

The assignment of Off-critical-path nodes is done in O(n’) 
time in the worst case. 

We can thus summarize the approaches: 

distribution graphs (DG). These DGs represent the current 
concurrency of each class of operation at each control step 
(c-step from now on). Unscheduled operations also contrib- 
ute to the determination of the operation concurrency except 
that their contribution 1s probabilistic rather than 
deterministic. 

Finally. every feasible assignment of each operation to =nY 
of its possible c-steps is considered at each iteration. 

While this global approach would seem to imply large compu- 
tation costs, the algorithm is O(n*). where n is the number 
of operations. This relatively low order of complexity is 
due to an efficient method of propagating predecessor and 
s”ccessor forces. We shall give a brief description of this 
method in section “4.3 ORDER OF COMPLEXITY”. 

Independent vs interdependent scheduling/allocation: 

In the Facet. MIMOLA. BSI, SLICER and BUD-DAA systems the 
scheduling is performed more or less independently of the 
processor allocation. The Elf and MAHA systems do both 
tasks concurrently. 

The HAL system, on the other hand. does both tasks sepa - 
rately but not independently. The operation scheduling and 
processor allocation are determined bv stepwlse refinement 
as depicted In Figure 8 of section “5: SCHEblJLING/ALLOCATION 
BY STEPWISE REFINEMENT”. 

Topological vs middle-out scheduling: 

The f ina difference relates to the order of selection of 
operations during the scheduling process. In all the sys- 
tems mentioned above (with the exception of MAHA) , the op- 
erations are scheduled iteratively by using their 
topological order (depth-first order in BUD). The MAHA sys- 
tem first schedules the operations on the critical path and 
then schedules the remaining ones in order of increasing 
freedom. 

In the HAL system, the Order i ng 1s based on the lowest 
force. As we shall see in the next section, this value is 
independent of the precedence ordering. It may be consid- 
ered a ‘middle-out’ approach. 

4. FORCE-DIRECTED SCHEDULING ALGORITHM 

. Independent scheduling/allocation 
The selection of the operation to be scheduled, and of the 
c-step to which it will be assigned, is based on an evalu- 

- ASAP scheduling approaches: 
atlon of the move which causes the nlost balanced distrlb- 
ution of operations in each c-step. This algorithm is an 

- Direct (Facet-Emarald) 
iterative one in which one operation is scheduled at each 
iteration. 

Conditional deferment (MIMOLA, Flamel. [Ii]) 
The intent is to reduce the number of processors 

- 
required by reducina the Concurrenw of the operations as- 
signed to them, 

List scheduling approaches: 
but without lengthening the total execution - time. 

- Priority function: time constraints (BSI) 
- Priority function: mobility (SLICER) 4.1 BASIC SCHEDULING ALGORITHM 
- Priority function: critical path, 

use of depth-first ordering (BUD-BAA) 
Determination of time frames: 

. Interdependent schedulina/allocation 

- User-defined schedule (Silt) 
- List scheduling using urgency (ELF) 
- Freedom and critical path scheduling (MAHA) 
- Force-directed scheduling (HAL) 

3. SYSTEM COMPARISON 

The HAL system’s approach to scheduling is fundamentally 
different from all of the approaches discussed above. We 
describe here three of the most important differences. 

Local va global evaluations: 

This is. in our view. the most important novel contribution 
of the HAL system to the scheduling/allocation task. Virtu- 
ally all the systems discussed rely on a local evaluation of 
the effect of the control step assignment of the current op- 
eration considered. 

The first step involves the determination of both an ASAP 
(as soon as possible) scheduling and an ALAP (as late as 
possible) scheduling. Combining results for both schedules 
will determine the possible time frames for each operation. 
TO illustrate this. we will use the example given in [5]. 
The DFG derived from this example is oiven In Fiaure 1. 
The raw DFG would not have oberatioL3 scheduled in time 
(control steps). Here. ASAP scheduling is shown. For sim- 
p1 icity. it will be temporarily assumed that all operations 
requ i re one clock cycle and that succeeding operations can- 
not be scheduled in the same cycle. 

The ASAP and ALAP operation scheduling are shown (in slmpll- 
fied form) in Figure 2. 

The HAL system considers the related effects of a control 
step assiqnment on all the predecessor and successor oper- 

ions. at Moreover, the assignment’s impact on the overall 
conc”rre”cy Of operations is evaluated through the use of 
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be scheduled into the same c-step Without increasing the 
processor allocation. The same processor is simply shared 

by those operations as they will never be executed concur- 
rently. 

We use the following stratagem to take advantage of this ob- 
servation: for each c-step in which the time frames Of the 
mutually exclusive operations intersect, the probability of 
only one of these 1s added to the corresponding DG. The op- 
eration selected 1s the one with the highest probability. 
This is illustrated for the simple DFG of Figure 4. The fork 
and join operations correspond to an if-then-else Statement. 

W1 thout special treatment of the mutually exclusive addi- 
tions. the total distribution would be 1.5 in both c-steps. 
The unscheduled addition would then have an equal probabil- 
ity of being assigned to either c-step. It is obviously 
preferable to schedule It in the first c-step, as in this 
case only one adder will be required. This is exactly what 
Will happen using the stratagem just described due to the 
reduced distribution in the first c-step. 

f C I 
step 

1 

step 
2 

step 
3 

1 I Yl 
L 

Contro 

step 
4 

DG&* t , i 1 1 

l-l 1m 
2m 

a)= a)= b) lieu Frenm b) lieu Frenm a DG a DG 

Figure 4. Figure 4. Distribution evaluation for DFG with condi- Distribution evaluation for DFG with condi- 
ttonal statement. ttonal statement. 

Figure 1. Data flow graph for first example 

The distribution graphs derived from Figure 3 are given be- 
low in Figure 5. , Figure 2. Simplified data flow graphs with 1 oops not 

shown. They are used to illustrate ASAP and 
ALAP sched”llnQ. 

By noting that the actual scheduling Of a particular opera- 
tion m=Y be anywhere between it’s ASAP cycle and It’s ALAP 
cycle. one can draw a time frame diagram ( Figure 3). Here 
the width of the box containing a particular operation re- 
presents the probability that the operation will be eventu- 
a1 1y placed in a given time slot. A useful heuristic is to 
assume uniform probability of placing an operation in any 
feasible control step. The area of each operation is always 
one * but it is ‘stretched’ along its time frame Figure 5. Distribution graphs (initial state). 

The first graph iVpresentS the distribution of the multiply 
operations, and the next one combines the distributions of 
the add. subtract and compare operations. The latter three 
operations are actually assigned to separate DGs but are 
grouped here for conciseness. Each horizontal bar of the 
DGs corresponds to a distinct c-step. 

Calculation of ‘self’ forces: 

Each operation of the DFG will have a fOrCR associated with 
each cycle of it’s time frame. This is a quantity which re- 
flects the effect of an attempted control step assignment on 
the overall operation concurrency. It is positive If the 
assignment causes an increase of operation concurrency and 
negative for a decrease. 

The force is much like that exerted by a series of ‘springs’ 
that obey Hooke’s law: F = Kx. K represents the spring’s 
constant (rigidity). x the displacement and F the force 
caused by the displacement. 

Each distribution graph will have associated springs (one 
for each c-step) that will exert forces on all operations. 
The constant of the spring K is represented by the value of 
DG(1) where i is the c-step number for which the force is 
calculated. The displacement of the spring x is given by 
the increase (or decrease) of the probability of the opera- 
tlon In the c-step due to a rescheduling of the operation. 

We will illustrate this by using the partial time frame dia- 
gram of Figure 6. The constant of each of the three springs 
corresponds to the value of the multiplication DG given in 
Figure 5 for the first three c-steps. 

We Will attempt to schedule the circled multiply operation 
In c-step 1 as depicted In Figure 6 b). The probability of 
the Operatton will change from i/2 to 1 In c-step 1 and from 

+ 
I 
< 

Step 
1 

step 
2 

step 
3 

step 
4 

Fiaure 3. Time frames of operatfons (initial state). 

Creation of distrlbutfon graphs (DGs): 

The next step is to take the sumtiation of the probabilities 
of each type of operation for each control step of the DFG. 
The resulting distribution graphs (one for each type Of Op- 
eration) indicates where concurrency of similar operations 
is high and Will direct the scheduling algorithm accord- 
ingly. 

Conditional statements: 

The presence of conditional statements (e.g. If-then-else 
and Case statements) causes some operations to be mutually 
SlXClUSlV.3. When these operations can be executed on the 
same processor type (i.e. assigned to the same DG). they can 
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l/2 to 0 in c-step 2. These probability shifts correspond 
to the displacement x of each of the ‘tprlngs’. The result- 
ing force associated with the move to c-step 1 Is the sum Of 
forces In both c-steps and is given by: 

Force(l) = Kx(l) + Kx(2) 
-DG(l) *x(l) + DG(2) * x(2) 

Using the valuee from Figure 5 and Figure 6 we obtain: 

Force(l) = (2.8333+0.5) - (2.3333*0.5) 
= + 0.25 

The force Is po.sltlve ae expected because the cQ”c”rre”cy in 
c-step 1 is higher than in c-step 2. Scheduling the multi- 
pl ication In that c-step will have an adverse effect on the 
overall distribution. 

C-*top 
1 

- 

Gs1*p 
2 

C-sl*p 
3 

X(0 

8) lnitbl 
Tims Fnmw 

b) yGd$,O 

Figure 6. Time frame modifications for force ca1cu- 
latlons. 

Calculation of predecsssor and successor forces: 

Assigning an operation to a specific c-step will often af- 
fect the time frames of linked operations in the DFG. I” 
turn. this will create additional forces that can reduce or 
even counter the original intended improvement so it is im- 
perative that they be accounted for. 

This Is -achieved by calculating the extra forces due to the 
implicit rescheduling of linked operations. They shall then 
be added to the ‘self’ force. There will be two extra force 
contributions: the predecessor forces and the successor 
forces _ 

FOP example, if the circled multiply operation In Figure 6 
a) was tentatively assigned to c-step two. as In Figure 6 
Cl. the succeeding multiply operation would !mplIcitly be 
assigned to c-step three. The time frames of the other QP- 
et-at ions wouldn’t be affected. The resulting force associ- 
ated with that assignment would then be the sum of the two 
individual forces. The force of the first multiply is given 
by: 

Force’(Z) = ( DE(l) * x(l) ) + ( DG(2) * ~(2) ) 
= -(2.8333+0.5) + (2.3333*0.5) 
= - 0.25 

The successor force of the second multlplicat~on is given 
by: 

Force”(P) = ( DG(2) * x(2) ) + ( DG(3) * x(3) ) 
= -(2.3333*0.5) + (0.8333*0.5) 
= - 0.75 

And the resulting force of the c-step assignment is: 

Force(Z) = Force’(P) + Force”(P) 
I -, 

This c-step assignment Is much more advantageous than the 
0tle attempted earlier, and this is reflected clearly by the 
force calculations. 

Selection of best move: 

The self, predecessor and successor forces are calculated 
far each possible c-step of all the operations. The Qpera- 
tiOn and c-step pair selected is the one with the most nega- 
tive force (or the lowest positive force). The operation’s 
time frame Is the” reduced to the selected c-step and the 
Iinked operations’ time frames are modified accordingly. 

We can thus summarize the entire process: 

1. Determination of time frames 
2. Update of DGs (with conditionals taken into account) 
3. Calculation of ‘self’ forces 
4. CalCUlatfQn Qf predecessor and/or SUCCeSsOr fOrCes 
5. Scheduling of best operation and c-step Pair 

These steps are repeated until the time frame Of each Opera- 
tion is reduced to one. The distribution graphs are updated 
at each iteration to reflect the current Qpsr8tlOn distrib- 
utions. The forces on the remaining unscheduled operations 
will vary accordingly. 

Sample schedulltw: 

Figure 7 depicts the time frames and the final dlstributlons 
for the example of Figure 1. 

0 
B 

El C 

. . 
El + 

Figure 7. Final time frame5 and DGs 

4.2 REFINED SCHEDULING ALGORITHM 

Multiple operation 00s: 

In many cases we have to deal with multi-function processors 
(e.g. Alus). To deal with th15, the concept of distribution 
graphs (DG) was extended so that the distribution of one or 
more operation types can be stored In a stngle DG. 

For example, if the allocator assigns additions and sub- 
tractions to an Alu. then a two class DG will be created In 
lieu of the two single class ones. These two types of oper- 
ations will then tend to be Scheduled In different clock cy- 
cles to make best use of the Alu. 

Multiple operations per cycle and multi-cycle operations: 

The possibility of scheduling multiple dependent operations 
in a single cycle has also been incorporated to the system. 
This feature is implemented in a straightforward fashion by 
extending the time frames of fast comblnatorlal operations 
fnto the prevfous and/or next cycles (when the total delay 
in those cycles is less than the cycle time). Multi-cycle 

operations are also supported and ape implemented with a 
simple extension of the single-cycle methodology. 

Incorporation of proceaeor coats: . 

Different processor cells have different realization costs. 
Operation types associated with high-cost processor cells 
should be given higher priority in the scheduling process. 
A” easy way to do this is to multiply the constant of the 
‘spring’ associated with the DG by a COSt faOtOr that is a 
function of the processor area and the associated mux and 
interconnect costs. This. function will be given in section 
“5.3 USE DF ALLOCATION INFORMATION FOR SCHEDULING”. 

Not- on storage requirements: 

The miI?lmUm number of registers required for the implementa- 
tion of a given DFG fs given by the largest number of data 
arcs traversing a control step boundary. 

Most of these data arcs are initiated by operation nodes. 
AS the force-directed scheduling algorithm attempts to dls- 
tribute these operations evenly across the DFG. the number 
of S.PCS traversing a given control step Is also balanced. 
In turn. this reduces the minimum number of registers re- 
quired. 
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For the ASAP scheduling shown In Figure 1 at least seven 
registers are required (there are seven values to be stored 
at the end of cycle one). For the optimized scheduling 
shown below, thls number is reduced to five (although in the 
final synthesized data path. six registers were used to save 
on Interconnect). 

Although these observations are encouraging. a more explICit 
treatment of register allocation will still be required in 
the future. For more information on the HAL system’s pres- 
ent approach to register allocation, refer to IS]. 

4.3 ORDER OF COMPLEXITY 

It can easily be seen that the algorithm described above is 
O(n’) when imolemented in a straiohtforward fashion (” Is 
i;e number of operations). Fortunalely, we have found an 
al ternate method Of including the forces Of 
predecessor/successor operations that can be applied without 
any loss Of generality. In this method, the self, predeces- 
sor and successor forces are calculated in three separate 
passes. 

Ill the first pass the force applied directly to each opera- 
tlo” (Its Self force) iS calculated for every c-Step in its 
time frame. This calculation is done I” linear time. These 
values are then stored in a vector associated with the oper- 
at ion. 

In the second pass. the DFG is traversed In depth-first or- 
der. The total force for each operation is give” by the Sum 
of Its self force and the stored total force of its direct 
successors only. I” this way we will effectively be per- 
forming a running sum of all the successor forces in 1 i near 
time. I” the third pass the prooess is repeated for the 
predecessor forces by taking the operations in topological 
order. 

Using this method, the order of complexity of the algorithm 
is now o(n’). This IS accomplished at the expense of a 
slight increase in computer memory utilization. 

5. SCHEDULING/ALLOCATION BY STEPWISE REFINEMENT 

The scheduling/allocation Iterative 1 oop used In the HAL 
system attempts to reconcile two confllctlng goals: 

. The optimal scheduling of operations “i thout explicit 
foreknowledge of t”e processor allocation. 

. The optimal allocation of processors without exact in- 
formation on the concurrency of operations or their 
propagation delays. 

This IS accompl?shed by stepwlse refinement of the operation 
scheduling and processor allocation as depicted in Figure 8. 

5.1 SCHEDULING/ALLCtCATION PHASES 

Phaae 1 Default Allocation: Allocation Of default Single- 
function processors to perform each type of apera- 
tion. The fastest processors are temporarily 
assumed. 

Phase 2 Preliminary Schedule: Balancing of the distrlb- 
ution Of similar operations. Default processor 
speed and area costs are used. 

Phase 3 Refined Allocation: Al location of single and 
multi-function orocessors wlth relaxed COnStralntS 
on processor speed 

This can be done as it now has a better estimate of: 

. The timing constraints on ihe Individual oper- 
ations (they may have been relaxed on some op- 
erations). 

. The overall concurrency of operations of dlf- 
ferent classes. 

As depicted I” Figure 8. the mux and interconnect area costs 
are also evaluated here. 

Phase 4 Final Schedule: Ealancing of the dlstributlon of 
operations requiring similar processor types. The 
number, type I speed and area of the allocated 
processors are used here to guide the scheduling. 

Figure 8. Schedullng/AlloCation by StapWiaa reflna”M”t 
J 

Before going on to describe how scheduling and a1 location 

are 1 Inked. we will give a short description of the module 
(named MidHAL) that performs the allocation task. A InOPe 

elaborate one 1s given In (51. 

5.2 THE MIDHAL ALLOCATER 

This module Is implemented as a rule-based expert System. 
It accepts as input the DFG. a global tinis constraint. the 

lOCal time constraints on each operation and a library of 
available orocessors and their associated speed and cost. 

It then uses heuristic rules to select a set of locally op- 
timum processors to execute the operations described in the 

DFG. given the time constraints on these operations. 

The following information IS returned: 

. The type of processors allocated 

. The number of processors of each type 

. Their propagation delay 

. Their area cost (including mux and Interconnect area) 

The m”x and interconnect area cost is evaluated by partl- 
tloning the DFG and doing a prellmlnary assignment Of oper- 

ations to processors. The data transfer requirements can 
the” be evaluated. The minimum number of multiplexers and 
interconnections required to perform these data transfers Is 
then estimated. 

The function and intent of this module Is quite similar to 
that of the BUD module in the recent BUD-DAA system [151. 
However. as preliminary floorplannlng is not performed in 
the HAL system, the interconnect area estimation will not be 
as precise. 

Moreover. the HAL system allows the allocation task to be 
performed completely or partially by the user. The system 
will verifv that the allocated hardware Is sufficient ml-4 . -..- 
WI 11 add processors as necessary. In this way the user can 
invoke the scheduling/allocation loop repeatedly with dif- 
f erent processor selections and explore the design-space 
semi-automatically. 

5.3 USE OF ALLOCATION INFORMATION FOR SCHEDULING 

We shall show here how the four types of information re- 
turned by the MidHAL module can be used to guide the sched- 
uling process. 

Types of processors allocated: 

For each type of procesor allocated. one single distribution 
graph (DG) is created. Multi-function processors such as 
Alus will be assigned to the multiple operation OGs de- 
scribed in section “4.2 REFINED SCHEDULING ALGORITHM 

Number of processors allocated: 

I" most cases. the MldHAL module allocates the mi”imum num- 
ber of D~O~~SSO~S for everv type of operation. Th, s ,,,,mbe~ ..- ..- -. 
1s equal’ to the maximum “umber-of concurrent operations they 
perform. But there are also cases whars a larger number of 
processors are allocated. This may happen when the cost 
saving due to processor sharing is offset by associated 
multiplexer and interconnection costs. We must Include this 
Information so that the forces applied by the assigned DG 
are reduced. as more than enough processors are likely to be 
available. 
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More specifically, for each processor type (i.e. for each 
DGl and each c-step “e calculate the unused processor capac- 
ity. This is given as the difference between the number of 
allocated processors and the current number of operations 
scheduled in c-step 1. 

Unused Capacity(i) = No Processors - No Opns(i) (1) 

The new biased DG value (i.e. the new spring constant) is 
then given by the old value less the unused processor capac- 
ity. 

Biased OG(i) = OG(i) - Unused Capacity(i) (2) 

When the number of scheduled operations in c-step 1 reaches 
the number of orocessors allocated. DG(i1 will take on its 
original value. 

Processor speed: 

This information is integrated in a Straightforward fashion 
by assigning the propagation delay of each processor to the 
operations It performs. The determination of time frames 
and subsequent scheduling “ill th”s be directly affected by 
these new values. 

Processor. multllplexer and interconnect casts: 

As we mentioned in section “4.2 REFINE0 SCHEDULING ALGO- 
RITHM” each DG element is multiplied by a cost factor, For 
the initial SChedUlinQ in phase 2, this cost factor is sim- 
ply the processor area: 

Cost Factor = Processor Area (31 

For the final scheduling in phase 4, we can use the estimate 
Of the mux and interconnect area derived in phase 3 to cal- 
culated a weighed cost factor: 

Cost Factor = Processor Area * Interconnect Factor (41 

The interconnect factor represents the relative importance 
Of the processor area with respect to the combined 
processor, mux and interconnect area: 

Interconnect Factor = Processor Area 
Total Area 

where (5) 

Total Area = (Processor + MUX + Interconnect) Area (6) 

For high-cost processors such as multipliers the intercon- 
nect factor tends towards one. Alternately. for Simple 
processors (0.9. logic gates) the mux and interCOnneCt area 
can be much larger than the processor area in which case 
the interconnect factor tends towards zero. 

In general, this will result In an increased number of IO” 
cost processors, but the associated area increase will be 
offset by reduced multiplexer and interconnect costs. On the 
other hand. Sharing Of high-cost processors “ill still be 
enCOUraQed. 

5.4 SCHEDULING UNDER FIXED HARDWARE CONSTRAINTS 

The scheduling and allocation approaches presented above 
support the synthesis of near-minimal cost datapaths under 
fixed timing constraints. A simple extension of this meth- 
OdOlOQy also allows the determination of a schedule with a 
near-minimal number of c-steps given fixed hardware con- 
straints. 

The basic idea consists of performing regular force-directed 
SchedUlinQ with a tight timlnQ constraint. During the 
schedulinQ. hardware resource costs are estimated at every 
iteration. Whenever a hardware constraint Is exceeded (this 
can be a constraint on the number of processors Of any type, 
or a constraint on the total hardware cost). then an extra 
c-step IS added to the graph. Thus the time frames of 
scheduled and unscheduled operations are extended by one c- 
step. 

This 1 “CPeBSeS the time required to arrive at a solution. 
but not the order of complexity of the algorithm. This is 
because the partial scheduling is maintained. i.e. the time 
frames of operations are extended, not recalculated. 

This extra capability will be illustrated In the example of 
section “6.3 TEMPERATURE CONTROLLER FROM ELF”. 

5.5 SAMPLE SCHEDULING AND ALLOCATIONS 

The processor allOCatiOnS for the example given in SeCtiOn 
“4. FORCE-DIRECTED SCHEOULING ALGORITHM” are tabulated in 
Figure 9 for different time constraints. The refinements 
Of the SChedUllnQ elQOrithm described above were applied 
here. (Note: The multiplications are given a more realistic 
DroDaaatlo” delav of two cycles. The critical oath Is no” 
kix‘ c;c1es long. 1. The CPU execution times given are for 
XEROX 1106 Lisp machine. 

COMPONENT 

No Cycles 
. _ _ _ _ _ _ _ _ _ _ _ . 

multiplier 
(*) 

ZllU 
(a) 

_ - _ _ _ - - - - - - - . 

CPU (set) 

I* cost > alu cost1 (alu cost > * cost) 2 
a 

Figure 9. Processor allocatio” for a11 time 
constraints: Example Of Figure 1. 

The results in the first four columns illustrate the realis- 
tic case where the cost of the multiplier is hiaher than the 
Cost of the Alu. The results in the’next four columns rep- 
resent an illustrative example where the cost factor of the 
Alu is set artificially higher than the cost of the multl- 
plier. The change in forces resulted in the decrease of the 
concurrency of the Alu operations at the expense Of the ““l- 
tip11cation operations. This is exactly the trade-off that 
we are hoping for. 

The results obtained in column 6”and 7’ are identical to 
the ones that would be obtained if the MidHAL module (the 
processor allocater) had allocated four and three multlpll- 
ers respectively. This Is due to the associated reduction 
Of the mUltipliCation forces dictated by equation (2) of 
section “5.3 USE OF ALLOCATION INFORMATION FOR SCHEDULING”. 
Such that the concurrency of the AIu operations is reduced 
to one. Dnce again, this trade-off is the one that sho”ld 
follow logically. 

6. EXPERIMENTAL RESULTS/COMPARISONS 

The four examples presented in this section are taken from 
some of the systems described in section “2. LITERATURE SUR- 
VEY”. They where chosen to illustrate the flexibility of 
the HAL system with respect to considerably different con- 
straints and also to allow comparison with the results ob- 
tained from these systems. 

ExperImental Procedure: 

For each of the examples presented, the SChedUlinQ “as per - 
formed using the same aSSUmptiOnS as the original reference. 
They are listed at the beginning Of each subsection. The 
results were obtained without any fine tuning of the algo- 
rithm to the examples. The CPU execution times given are 
for a XEROX 1106 Lisp machine. This is a single-user work- 
station in the 
standards). 

medium-low performance range (by today’s 

6.1 EXAMPLE FROM HAHA 

This example “es presented in [2] and makes uses or the CSSP 
program [31 for the initial stage partitioning. Two results 
are given in the paper, the fastest allocation and the 
cheapest one. For the fastest allocation, the graph is par- 
titioned into four stages (clock cycles). For the cheapest 
allocation. the graph is partitioned into eight stages. 

Assumptions: 

. All similar OperationS have equal propagation delays. 

. For the fastest allOCation: the clock cycle is such that. 
a maximum of three ooerations can be combined in a Sin- 
gle cycle. 

. FOP the cheapest allocation: only one operation can be 
performed per cycle. 
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. There 1s no sharing of processors executing mUtually ex- 
clusive operations (i.e. operations that are on either 
side Of a” if-then-else Statement). 

. MAHA execution times are for a VAX 11/150. 

The table below gives the allocation for different timing 
constraints. These constraints are the number of cyc 1 es 
(stages) and the maximum “umber of operations per cycle. The 
resu1 ts given in the 1SSt of the three sets Of COlUmnS are 
for the HAL system when mutually exclbsive operations (due 
to conditionals) are take” into account. This IS using the 
method described earlier in section “4.1 BASIC SCHEDULING 
ALGORITHM”. 

HAL 
COMPONENT MAHA HAL (w. mutual 

exclusion) 

Figure 10. Example from MAHAl21. 

For the cheapest allocation (8 cycles. 1 Opn/cycle). the HAL 
system arrives at the same number of processors as the MAHA 
System. This was expected (hoped for) as all prOCsSSOrS 
have iOO% utilization. 

For MAHA’s fastest allocation (4 cycles, 3 Opns/cycle). the 
HAL system allocates one Subtractor less. but with a tighter 
constraint on the clock cycle (2 op”s/CyCle). I” this case 
the reductlo” in area (wlth respect to MAHA) is close to 20% 
with a 25-30% reduction of the Clock cycle time (the actual 
ValUe Will depend on the latch propagation delays). 
Processor utilizations are 100%. 

The fastest realization in the HAL system runs in three cy- 
cles (3 opns/cycle) and uses three adders and three subtrac- 
tops. This solution requires “early 20% more area than 

MAHA’s fastest realization but the number of required Cycles 

1s reduced by 33%. 

Taking mutual exclusion into account yields the most impres- 
sive results by far (give” in the third Set Of COlUmnS). 
This example certainly illustrates the potential importance 
of doing so. 

6.2 PIPELINED FIR FILTER FROM SEHWA 
, 

The resu1 ts presented here are for the pipelined 16-point 
digital FIR filter example borrowed from [151. The SEHWA 
system described in this paper does scheduling and allo- 
cation of pipelined data paths. 

Pipeline scheduling is achieved in the HAL system by folding 
the DGs across the boundaries determined by the latency 
value (in cycles). This “ill cause the force-directed 
schedulino alaorithm to balance the distribution of concur- 
rent pip;1ine stages. For lack of Space, we must defer the 
detailed explanations to a forthcoming paper [16). 

Assumptions: 

. The maximum stage time limit is 100 “5. 

. The latency is equal to 300 “s. 

. Additions are performed by adders with a delay time of 
40 ns. 

. Multiplications are performed by multiplierS in 80 “sec. 

. The latch delays are 20 “5. 

. Multiple succeeding operations in a single cycle are al- 
lowed. 

Ill Figure 11 we present the results for three scheduling 
methods: 

1. SEHWA: Backward feasible Scheduling. 
2. SEHWA: Exhaustive feasible scheduling. 
3. HAL: Force-directed pipeline scheduling. 

These include the order of complexity of the algorithm. the 
number of cycles required, the number and type of processors 
al located. and the CPU time. Only a” approximate run time 
(on a VAX,‘750) “as given in [151. 

SYSfEM 

Algorithm 

Complexity 

Number of 
cycles 

Number of 
Adders 

Number of 
Multipliers 

CPU time 

SEHWA HAL 

Feasible Exhaustive Force-Directed 

D(n’logn) O(rf+‘) 0(n1) 

7 6 6 

6 5 5 

3 3 3 

n/a < 1 hour 30 se0 

Figure 11. FIR filter results for SEHWA Example 

We see that the force-directed pipeline scheduling technique 
yields a result similar to that obtained by the exhaustive 
scheduling (i.e. a” optimal result). 

Futhermore. the result obtained with the backward feasible 
scheduling Is more expensive (six Vs five adders) and slower 
(seven Vs six clock cycles) although it’s complexity is ac- 
tually higher than that of the force-directed algorithm. 

6.3 TEMPERATURE CONTROLLER FROM ELF - 

In this paper. the system was used to find the mi”iiIiUm “um- 
ber of clock cycles required given specif led t imtng and 
hardware constraints. Two examples where given. 

Assumptions for the first example: 

. The operations of the DFG where divided into two groups 
with two different timing constraints. 

. A” t”,t,al processor library is given. It contains 
adders, subtractors, a comparator. a shifter (for divi- 
sion) and a” Alu. 

. The solution must not require more than one processor of 
each type. 

. All operations (except divisions) have a one cycle prop- 
agation delay. 

. Division operations require a two cycle delay. 

. Succeeding (data dependent) operations cannot be per- 
formed in the same clock cycle. 

. The inputs are made available sequentially (i.e. one in- 
put is made available in each of the first five Cycles). 

The Elf system generated a solution that required a total of 
20 clock cycles. 12 cycles for the first group of operations 
and 6 for the second. In this version of the Elf SyStsm. 
operations in the second group cannot over 1 ap with -oper- 
ations in the first. The current (unpublished) version does 
not have this constraint. 

Given the same constraints, the HAL system arrived at a sol- 
ution that req” i red a total of 19 cycles (it clock cycles 
for the first group and 8 for the second). Moreover, if 
operations in both groups are allowed to overlap, but with- 
out violating the separate constraints, the system art- 1 ves 
at a SOlUtiOn requiring a total of 15 cycles. It can be 
shown that these results are optimal, given the assumptions 
listed above. 

Assumptions for the second example: 

The assumptions here are the same as above except that a 
User-defined Alu (performing add. subtract and shift oper - 
ations) is to be used. Once again. the solution must not 
require more than one processor of each type. 

The number of cycles required by the Elf system was not 
specified. The HAL system scheduled the operatfons of the 
ftrst and second groups into 13 and 6 CYClW respectively. 
These are also optimal results. Moreover, with overlap. the 
total time required Is still 15 cycles, with all constraints 
respected. TheSs results are mostly due to the optimal use 
of the Alu through the use of the multiple operation DGs de- 
scribed in “4.2 REFINED SCHEDULING ALGORITHM”. 
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7. CONCLUSION The table of Figure 12 below gives the number of cycles re- 
quired by both systems for the examples described. The sec- 
ond total number of cycles given (in the HAL column only) 
corresponds to the case where operations of both groups are 
allowed to overlap. 

Mitl no 
Of Cycles 

Group 1 

Group 2 

Flgura 12. Minimum number of clock cyc 1 es req” i red 
fordifferent hardware constraints : Elf 
temperature controller example. 

No Initialisation 
_--__________________ 

Elf 
I 

HAL 
I 

12 11 

6 8 

20 19/15 
----_----- --_------- 

n/a 100 
I I 

Al” Specified 
_____________________ 

Elf 
I 

HAL 

n/a I 13 

n/a 8 

n/a 21/15 
------_--- ---------- 

n/a 60 

6.4 FIFTH-ORDER DIGITAL ‘WAVE’ FILTER 

The DFG used in this example is borrowed from [ii] and im- 
plements a fifth-order wave digital elliptic filter. This 
is a much more substantial example that contains 43 oper- 
ations (additions and multiplications) submitted to over 60 
precedence constraints. It is assumed that additions re- 
quire five clock cycles and multiplications ten. They were 
respectively assigned one and two c-steps. The critical 
path is thus 17 c-steps long (85 cycles). 

The table shown in Figure 13 summarizes the allocation of 
processors for the example. In the last row the CPU exe- 
cution time is given in minutes (again for a XEROX 1108 Lisp 
machine). The 17 c-step result (3 multipliers and 3 adders) 
is to be compared with that given in [ill (4 multipliers and 
4 adders). Moreover, the flexibility of the system a1 lows 
to explore alternate speed-cost trade-offs. 

The 21 c-step result (1 multiplier and 2 adders) is a good 
example of a substantial area saving (over 50%) against a 
small loss in speed (less than 20%) as compared to the 17 
c-step result. This area saving is even greater when com- 
pared to the I7 c-step result given in [Ill. 

COMPONENT 

No Cycles 
------------- 

adder 
(+) 

multiplier 
(*I 

------------- 

CPU (mini 

I 

T 

Figure 13. Processor allocation for 
strait-Its: Digital wave f i 1 

[Ill HAL 

- 
20 
__- 

I:; 

- 

I:; 
--_ 

10 

a1 
et- 

21 _-- 

I:; 
- 

(*I --- 
13 

- 

time con- 
xample. 

This example is eloquent proof that the system can SOlVS 

relatively difficult scheduling problems 
.~ 

rn a PeasonaDle 
time. A close examination of processor Utilizations shows 
that all but one of the solutions found are guaranteed opti- 
ma1 Exhaustive scheduling would be needed to determine if 
this is also the case for the remaining one. 

Our experience is that it is nearly Imposslble to solve this 
problem manually and obtain results of the same quality. 
This is mostly due to the large number of interactions be- 
tween operations (i.e. 43 operations submitted to over 60 
precedence constraints). This problem is compounded by the 
fact that the number of possible schedules grows exponen- 
tially with the number of cycles allowed. 

On the other hand, the processing time grows linearly with 
the number of cycles; the complexity of the algorithm is 
O(C) for a given n. where c is the average “umber of cycles 
of all time frames. 

The methodology presented features a novel force-dlrected 
scheduling algorithm that is invoked in a four phase 
scheduling/al~ocation scheme. We have shown how this ap- 
preach makes it feasible to incorporate explicit allocation 
information to optlmlze the scheduling process. The infor- 
mat ion transfer 1s made possible by stepwise refinement of 
the scheduling and allocation tasks. 

The force-directed scheduling algorithm at the heart of this 
process was shown to run in nz time. In spite of this rela- 
tively low complexity, the algorithm explores the search 
space in a global fashion and produced optimal results for 
nearly all of the examples presented. 

Results obtained where shown to be as good or better as the 
O”eS previously published. Furthermore, the flexibility of 
the system was highlighted by the variety of constraints and 
requirements it had to deal with. These include: 

. 

. 

. 

. 

. 

. 

. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Multi-cycle operations. 
Multiple operations per cycle. 
Mutually exclusive operations. 
Pipelined data flow graphs. 
Optimized use of single and multi-function processors 
(Alus) 
Optimization of required hardware for a specified time 
constraint. 
Optimization of system speed for specified hardware re- 
sources. 
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