
FORCE-DIRECTED SCHEDULING IN
AUTOMATIC DATA PATH SYNTHESIS

P.G. PAULIN' - J.P. KNIGHT'

l Dept. 5L40, Bell-Northern Research
P.O.Box 3511, Stn C, Ottawa, ONT. KlY 4H7

' Carleton University, Colonel By Dr, Ottawa, ONT. KlS 5B6

ABSTRACT

The HAL system performs data path synthesis using a new
scheduling algorithm that 1s part Of an interdependent
scheduling and allocation scheme. This scheme uses an BStl-
mate of the hardware allocation to guide and optimiza the
scheduling subtask. The allocation information includes the
number. type. speed and cost of hardware modules as well as
the associated multiplexer and interconnect costs.

The iterative force-directed scheduling algorithm attempts
to balance the distribution of operations that make use Of
the same hardware resources:

. Every feasible control step assignment is evaluated at
each iteration, for a11 operations.

. The associated side-effects on all the predecessor and
successor operations are taken Into account.

. All the decisions are global.

. The algorithm has O(n*) complexity.

We review and compare existing scheduling techniques. Mod-
erate and difficult examples are used to illustrate the ef-
fectiveness of the approach.

1. INTRODUCTION

In the automatic design of application specific integrated
circuits. the alaorithmic deSCriDtiOn is common1 y

datapath and a-
synthe-

sized Into a control path. Scheduling
datapath operations into the best control steps is a task

whose importance has been recognized in many systems

It.2.3.4.51. According to Gajski [I], it is “perhaps the

single most important step during the architecture synthe-
SiS”, IroniCally, it is also the one that has received the

least attention in current literature. (Notable exceptions
are the papers presented by Alice Parker’s group at the Uni-
versity of Southern California [2.3) and by Emil GirczyC Of
the University of Alberta 141).

operation scheduling determines the serial/parallel nature
of the design and approximates cost-speed trade-offs t61.
If the design Is subjected to a speed constraint, the sched-
Ul ing algorithm will attempt to make sufficient operations
run In parallel to meet the constraint. Conversely, if
there is a limit on chip area. the scheduler can be asked to
Serial iae operations to give the maximum speed consistent
with the canstraint.

The scheduling task is an important one as it affects four

fundamental aspects of the subsequent synthesis process:

i This research was funded in part by grants from the Na-
tural Sciences and Engineering Research Council. Canada
(NSERCC) and from Bell-Northern Research. Ottawa.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

. The number and type of PrOCeSSOM allocated

. The timing constraints on these processors

. The storage requirements

. The data transfer requirements

The HAL system is composed of three main modules that were
described In 151. The InHAL module uses a novel force-
directed scheduling algorithm that attempts to balance the
distribution of operations that make use of the same hard-
war-e resources. This algorithm also allows specific allo-
catlon information. such as the propagation delay of a
specific standard Cell, to be used when optimizing the
scheduling process. The MidHAL module performs the hardware
allocation while the final interconnection and optimization
step is realized by the ExHAL module.

We will first review existing scheduling techniques and com-
pare them with the approach used in the HAL System. This
will be followed bv a

algorithm
descriDtion Of the force-directed

scheduling that is’the main emphasis of this pa-
per. We will then demonstrate how processor allocation in-
formation is integrated into the scheduling process.
Finally, we present experlmental results for moderate and
difficult problems taken from current literature.

2. LITERATURE SURVEY

The simplest way to perform scheduling is to relegate the
task to the user. This is the aDDrOaCh favored bv the SilC
system [7] under the assumption that the user should explic-
itly define the parallelism of the design.

Independent scheduling/allocation schemes:

The next simplest scheme is to schedule operations “as soon
as possible” (ASAP) as is done in the Emerald/Facet system
[Sl. This technique has proved useful in the Past for near-
optimal microcode compaction (91.

A refinement of this concept is ASAP scheduling with condi-
tional postponement of operations. the MIMOLA
(101, this occurs whenever the o$ration con~urre%~~?~
higher than the number of available processors. The recently
published Flame1 system (17) uses the same idea. The Scheme
used in Kung, Whltehouse and Kailath’s book on digital sig-
nal processing (11) is similar, except that an operation is
postponed when it blocks a later one with a lower “BE late
as possible” (ALAP) level.

Continuing along the scale of increasing complexity, we have
the algorithms that USQ list scheduling. as described in
[91. The behavioral synthesis of interfaces (BSI) system
developed by Nestor [12). the SLICER system developped by
Pangrle and Gajski t13) and the BUD-DAA system [I41 use this
type of approach.

In list scheduling. operations are sorted in topological or-
der (top to bottom) by “sing the precedence relations dic-
tated by data and control
operations

dependanGleS. The sorted
are then iteratively. scheduled into control

steps. The order in which they are placed into a control
step is determined by a heuristic priority function that is
appl led to all operations that can be placed in the control
step.

In the BSI system. the priority function reflects whet her
placing the operation in the current step will violate a
minimum time constraint (ASAP time) and whether placing an
operation in a later step will violate a maximum time con-
straint (ALAP time).

24th ACM/IEEE Design Automation Conference

Paper 12. I
0 1987ACM 0738-100X/87/0600-0195$00.75 195

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:16 from IEEE Xplore. Restrictions apply.

In the SLICER system. the priority function is based on op-
eration mobilities. The mobility of a” operation is defined
as the difference between it’s ASAP time and ALAP time. OP-
erations on the critical path are thus scheduled first.

The BUD-DAA system uses a similar priority function but
sorte the operations in depth-first order (bottom to top).

Strictly speaking, the scheduling IS not totally independent
of the allocation In these systems. Most derive estimates

Of the operation delays based on the most likely processor
assignments.

Interdependent scheduling/allocation schemes:

In these systems, the operation scheduling is done concur-
rent 1 y with the processor allocation (except for the Silt
system, where the user has final say). Elf uses a VariatiOr7

of the list scheduling algorithm where the priority function
is based on operation weights and urgencies. operation

weights are calculated by taking the minimum number of Cy-
cles to execute the operation plus the maximum weight of its
successors. Operation urgencies are determined by taking a
ratio Of the operation’s weight and the number of cycles
left until its time constraint. When an operation IS de-
1 eyed its urgency increases which raises it’s priority for
assignment in the next control step.

The elaborate scheme used in USC’s MAHA system [Z) relies on
critical path determination and the concept of operation
freedom to guide scheduling. The freedom of an operation is
ident ical to the mobility calculated In the SLICER system
described earlier.

The MAHA system first invokes the Clocking Scheme Synthesis
Package (CSSP) written by Park [3]. Here the critical path
is determined and divided optimally into n steps, one Per
clock cycle. The clock cycle is also automatically detar-
mined here. In the HAL system, the clock cycle must be de-

fined by the “ser.

MAHA then allocates processors for the critical path in a
first-come first-served fashion. The notion of freedom is
used to guide the scheduling of the off-critical-path nodes.
The node with the smallest freedom is chosen for allocation.
The critical path assignment is completed in linear time.

The assignment of Off-critical-path nodes is done in O(n’)
time in the worst case.

We can thus summarize the approaches:

distribution graphs (DG). These DGs represent the current
concurrency of each class of operation at each control step
(c-step from now on). Unscheduled operations also contrib-
ute to the determination of the operation concurrency except
that their contribution 1s probabilistic rather than
deterministic.

Finally. every feasible assignment of each operation to =nY
of its possible c-steps is considered at each iteration.

While this global approach would seem to imply large compu-
tation costs, the algorithm is O(n*). where n is the number
of operations. This relatively low order of complexity is
due to an efficient method of propagating predecessor and
s”ccessor forces. We shall give a brief description of this
method in section “4.3 ORDER OF COMPLEXITY”.

Independent vs interdependent scheduling/allocation:

In the Facet. MIMOLA. BSI, SLICER and BUD-DAA systems the
scheduling is performed more or less independently of the
processor allocation. The Elf and MAHA systems do both
tasks concurrently.

The HAL system, on the other hand. does both tasks sepa -
rately but not independently. The operation scheduling and
processor allocation are determined bv stepwlse refinement
as depicted In Figure 8 of section “5: SCHEblJLING/ALLOCATION
BY STEPWISE REFINEMENT”.

Topological vs middle-out scheduling:

The f ina difference relates to the order of selection of
operations during the scheduling process. In all the sys-
tems mentioned above (with the exception of MAHA) , the op-
erations are scheduled iteratively by using their
topological order (depth-first order in BUD). The MAHA sys-
tem first schedules the operations on the critical path and
then schedules the remaining ones in order of increasing
freedom.

In the HAL system, the Order i ng 1s based on the lowest
force. As we shall see in the next section, this value is
independent of the precedence ordering. It may be consid-
ered a ‘middle-out’ approach.

4. FORCE-DIRECTED SCHEDULING ALGORITHM

. Independent scheduling/allocation
The selection of the operation to be scheduled, and of the
c-step to which it will be assigned, is based on an evalu-

- ASAP scheduling approaches:
atlon of the move which causes the nlost balanced distrlb-
ution of operations in each c-step. This algorithm is an

- Direct (Facet-Emarald)
iterative one in which one operation is scheduled at each
iteration.

Conditional deferment (MIMOLA, Flamel. [Ii])
The intent is to reduce the number of processors

-
required by reducina the Concurrenw of the operations as-
signed to them,

List scheduling approaches:
but without lengthening the total execution - time.

- Priority function: time constraints (BSI)
- Priority function: mobility (SLICER) 4.1 BASIC SCHEDULING ALGORITHM
- Priority function: critical path,

use of depth-first ordering (BUD-BAA)
Determination of time frames:

. Interdependent schedulina/allocation

- User-defined schedule (Silt)
- List scheduling using urgency (ELF)
- Freedom and critical path scheduling (MAHA)
- Force-directed scheduling (HAL)

3. SYSTEM COMPARISON

The HAL system’s approach to scheduling is fundamentally
different from all of the approaches discussed above. We
describe here three of the most important differences.

Local va global evaluations:

This is. in our view. the most important novel contribution
of the HAL system to the scheduling/allocation task. Virtu-
ally all the systems discussed rely on a local evaluation of
the effect of the control step assignment of the current op-
eration considered.

The first step involves the determination of both an ASAP
(as soon as possible) scheduling and an ALAP (as late as
possible) scheduling. Combining results for both schedules
will determine the possible time frames for each operation.
TO illustrate this. we will use the example given in [5].
The DFG derived from this example is oiven In Fiaure 1.
The raw DFG would not have oberatioL3 scheduled in time
(control steps). Here. ASAP scheduling is shown. For sim-
p1 icity. it will be temporarily assumed that all operations
requ i re one clock cycle and that succeeding operations can-
not be scheduled in the same cycle.

The ASAP and ALAP operation scheduling are shown (in slmpll-
fied form) in Figure 2.

The HAL system considers the related effects of a control
step assiqnment on all the predecessor and successor oper-

ions. at Moreover, the assignment’s impact on the overall
conc”rre”cy Of operations is evaluated through the use of

Paper 12.1

196

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:16 from IEEE Xplore. Restrictions apply.

be scheduled into the same c-step Without increasing the
processor allocation. The same processor is simply shared

by those operations as they will never be executed concur-
rently.

We use the following stratagem to take advantage of this ob-
servation: for each c-step in which the time frames Of the
mutually exclusive operations intersect, the probability of
only one of these 1s added to the corresponding DG. The op-
eration selected 1s the one with the highest probability.
This is illustrated for the simple DFG of Figure 4. The fork
and join operations correspond to an if-then-else Statement.

W1 thout special treatment of the mutually exclusive addi-
tions. the total distribution would be 1.5 in both c-steps.
The unscheduled addition would then have an equal probabil-
ity of being assigned to either c-step. It is obviously
preferable to schedule It in the first c-step, as in this
case only one adder will be required. This is exactly what
Will happen using the stratagem just described due to the
reduced distribution in the first c-step.

f C I
step

1

step
2

step
3

1 I Yl
L

Contro

step
4

DG&* t , i 1 1

l-l 1m
2m

a)= a)= b) lieu Frenm b) lieu Frenm a DG a DG

Figure 4. Figure 4. Distribution evaluation for DFG with condi- Distribution evaluation for DFG with condi-
ttonal statement. ttonal statement.

Figure 1. Data flow graph for first example

The distribution graphs derived from Figure 3 are given be-
low in Figure 5. , Figure 2. Simplified data flow graphs with 1 oops not

shown. They are used to illustrate ASAP and
ALAP sched”llnQ.

By noting that the actual scheduling Of a particular opera-
tion m=Y be anywhere between it’s ASAP cycle and It’s ALAP
cycle. one can draw a time frame diagram (Figure 3). Here
the width of the box containing a particular operation re-
presents the probability that the operation will be eventu-
a1 1y placed in a given time slot. A useful heuristic is to
assume uniform probability of placing an operation in any
feasible control step. The area of each operation is always
one * but it is ‘stretched’ along its time frame Figure 5. Distribution graphs (initial state).

The first graph iVpresentS the distribution of the multiply
operations, and the next one combines the distributions of
the add. subtract and compare operations. The latter three
operations are actually assigned to separate DGs but are
grouped here for conciseness. Each horizontal bar of the
DGs corresponds to a distinct c-step.

Calculation of ‘self’ forces:

Each operation of the DFG will have a fOrCR associated with
each cycle of it’s time frame. This is a quantity which re-
flects the effect of an attempted control step assignment on
the overall operation concurrency. It is positive If the
assignment causes an increase of operation concurrency and
negative for a decrease.

The force is much like that exerted by a series of ‘springs’
that obey Hooke’s law: F = Kx. K represents the spring’s
constant (rigidity). x the displacement and F the force
caused by the displacement.

Each distribution graph will have associated springs (one
for each c-step) that will exert forces on all operations.
The constant of the spring K is represented by the value of
DG(1) where i is the c-step number for which the force is
calculated. The displacement of the spring x is given by
the increase (or decrease) of the probability of the opera-
tlon In the c-step due to a rescheduling of the operation.

We will illustrate this by using the partial time frame dia-
gram of Figure 6. The constant of each of the three springs
corresponds to the value of the multiplication DG given in
Figure 5 for the first three c-steps.

We Will attempt to schedule the circled multiply operation
In c-step 1 as depicted In Figure 6 b). The probability of
the Operatton will change from i/2 to 1 In c-step 1 and from

+
I
<

Step
1

step
2

step
3

step
4

Fiaure 3. Time frames of operatfons (initial state).

Creation of distrlbutfon graphs (DGs):

The next step is to take the sumtiation of the probabilities
of each type of operation for each control step of the DFG.
The resulting distribution graphs (one for each type Of Op-
eration) indicates where concurrency of similar operations
is high and Will direct the scheduling algorithm accord-
ingly.

Conditional statements:

The presence of conditional statements (e.g. If-then-else
and Case statements) causes some operations to be mutually
SlXClUSlV.3. When these operations can be executed on the
same processor type (i.e. assigned to the same DG). they can

Paper 12.1

197

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:16 from IEEE Xplore. Restrictions apply.

l/2 to 0 in c-step 2. These probability shifts correspond
to the displacement x of each of the ‘tprlngs’. The result-
ing force associated with the move to c-step 1 Is the sum Of
forces In both c-steps and is given by:

Force(l) = Kx(l) + Kx(2)
-DG(l) *x(l) + DG(2) * x(2)

Using the valuee from Figure 5 and Figure 6 we obtain:

Force(l) = (2.8333+0.5) - (2.3333*0.5)
= + 0.25

The force Is po.sltlve ae expected because the cQ”c”rre”cy in
c-step 1 is higher than in c-step 2. Scheduling the multi-
pl ication In that c-step will have an adverse effect on the
overall distribution.

C-*top
1

-

Gs1*p
2

C-sl*p
3

X(0

8) lnitbl
Tims Fnmw

b) yGd$,O

Figure 6. Time frame modifications for force ca1cu-
latlons.

Calculation of predecsssor and successor forces:

Assigning an operation to a specific c-step will often af-
fect the time frames of linked operations in the DFG. I”
turn. this will create additional forces that can reduce or
even counter the original intended improvement so it is im-
perative that they be accounted for.

This Is -achieved by calculating the extra forces due to the
implicit rescheduling of linked operations. They shall then
be added to the ‘self’ force. There will be two extra force
contributions: the predecessor forces and the successor
forces _

FOP example, if the circled multiply operation In Figure 6
a) was tentatively assigned to c-step two. as In Figure 6
Cl. the succeeding multiply operation would !mplIcitly be
assigned to c-step three. The time frames of the other QP-
et-at ions wouldn’t be affected. The resulting force associ-
ated with that assignment would then be the sum of the two
individual forces. The force of the first multiply is given
by:

Force’(Z) = (DE(l) * x(l)) + (DG(2) * ~(2))
= -(2.8333+0.5) + (2.3333*0.5)
= - 0.25

The successor force of the second multlplicat~on is given
by:

Force”(P) = (DG(2) * x(2)) + (DG(3) * x(3))
= -(2.3333*0.5) + (0.8333*0.5)
= - 0.75

And the resulting force of the c-step assignment is:

Force(Z) = Force’(P) + Force”(P)
I -,

This c-step assignment Is much more advantageous than the
0tle attempted earlier, and this is reflected clearly by the
force calculations.

Selection of best move:

The self, predecessor and successor forces are calculated
far each possible c-step of all the operations. The Qpera-
tiOn and c-step pair selected is the one with the most nega-
tive force (or the lowest positive force). The operation’s
time frame Is the” reduced to the selected c-step and the
Iinked operations’ time frames are modified accordingly.

We can thus summarize the entire process:

1. Determination of time frames
2. Update of DGs (with conditionals taken into account)
3. Calculation of ‘self’ forces
4. CalCUlatfQn Qf predecessor and/or SUCCeSsOr fOrCes
5. Scheduling of best operation and c-step Pair

These steps are repeated until the time frame Of each Opera-
tion is reduced to one. The distribution graphs are updated
at each iteration to reflect the current Qpsr8tlOn distrib-
utions. The forces on the remaining unscheduled operations
will vary accordingly.

Sample schedulltw:

Figure 7 depicts the time frames and the final dlstributlons
for the example of Figure 1.

0
B

El C

. .
El +

Figure 7. Final time frame5 and DGs

4.2 REFINED SCHEDULING ALGORITHM

Multiple operation 00s:

In many cases we have to deal with multi-function processors
(e.g. Alus). To deal with th15, the concept of distribution
graphs (DG) was extended so that the distribution of one or
more operation types can be stored In a stngle DG.

For example, if the allocator assigns additions and sub-
tractions to an Alu. then a two class DG will be created In
lieu of the two single class ones. These two types of oper-
ations will then tend to be Scheduled In different clock cy-
cles to make best use of the Alu.

Multiple operations per cycle and multi-cycle operations:

The possibility of scheduling multiple dependent operations
in a single cycle has also been incorporated to the system.
This feature is implemented in a straightforward fashion by
extending the time frames of fast comblnatorlal operations
fnto the prevfous and/or next cycles (when the total delay
in those cycles is less than the cycle time). Multi-cycle

operations are also supported and ape implemented with a
simple extension of the single-cycle methodology.

Incorporation of proceaeor coats: .

Different processor cells have different realization costs.
Operation types associated with high-cost processor cells
should be given higher priority in the scheduling process.
A” easy way to do this is to multiply the constant of the
‘spring’ associated with the DG by a COSt faOtOr that is a
function of the processor area and the associated mux and
interconnect costs. This. function will be given in section
“5.3 USE DF ALLOCATION INFORMATION FOR SCHEDULING”.

Not- on storage requirements:

The miI?lmUm number of registers required for the implementa-
tion of a given DFG fs given by the largest number of data
arcs traversing a control step boundary.

Most of these data arcs are initiated by operation nodes.
AS the force-directed scheduling algorithm attempts to dls-
tribute these operations evenly across the DFG. the number
of S.PCS traversing a given control step Is also balanced.
In turn. this reduces the minimum number of registers re-
quired.

Paper 12. I
198

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:16 from IEEE Xplore. Restrictions apply.

For the ASAP scheduling shown In Figure 1 at least seven
registers are required (there are seven values to be stored
at the end of cycle one). For the optimized scheduling
shown below, thls number is reduced to five (although in the
final synthesized data path. six registers were used to save
on Interconnect).

Although these observations are encouraging. a more explICit
treatment of register allocation will still be required in
the future. For more information on the HAL system’s pres-
ent approach to register allocation, refer to IS].

4.3 ORDER OF COMPLEXITY

It can easily be seen that the algorithm described above is
O(n’) when imolemented in a straiohtforward fashion (” Is
i;e number of operations). Fortunalely, we have found an
al ternate method Of including the forces Of
predecessor/successor operations that can be applied without
any loss Of generality. In this method, the self, predeces-
sor and successor forces are calculated in three separate
passes.

Ill the first pass the force applied directly to each opera-
tlo” (Its Self force) iS calculated for every c-Step in its
time frame. This calculation is done I” linear time. These
values are then stored in a vector associated with the oper-
at ion.

In the second pass. the DFG is traversed In depth-first or-
der. The total force for each operation is give” by the Sum
of Its self force and the stored total force of its direct
successors only. I” this way we will effectively be per-
forming a running sum of all the successor forces in 1 i near
time. I” the third pass the prooess is repeated for the
predecessor forces by taking the operations in topological
order.

Using this method, the order of complexity of the algorithm
is now o(n’). This IS accomplished at the expense of a
slight increase in computer memory utilization.

5. SCHEDULING/ALLOCATION BY STEPWISE REFINEMENT

The scheduling/allocation Iterative 1 oop used In the HAL
system attempts to reconcile two confllctlng goals:

. The optimal scheduling of operations “i thout explicit
foreknowledge of t”e processor allocation.

. The optimal allocation of processors without exact in-
formation on the concurrency of operations or their
propagation delays.

This IS accompl?shed by stepwlse refinement of the operation
scheduling and processor allocation as depicted in Figure 8.

5.1 SCHEDULING/ALLCtCATION PHASES

Phaae 1 Default Allocation: Allocation Of default Single-
function processors to perform each type of apera-
tion. The fastest processors are temporarily
assumed.

Phase 2 Preliminary Schedule: Balancing of the distrlb-
ution Of similar operations. Default processor
speed and area costs are used.

Phase 3 Refined Allocation: Al location of single and
multi-function orocessors wlth relaxed COnStralntS
on processor speed

This can be done as it now has a better estimate of:

. The timing constraints on ihe Individual oper-
ations (they may have been relaxed on some op-
erations).

. The overall concurrency of operations of dlf-
ferent classes.

As depicted I” Figure 8. the mux and interconnect area costs
are also evaluated here.

Phase 4 Final Schedule: Ealancing of the dlstributlon of
operations requiring similar processor types. The
number, type I speed and area of the allocated
processors are used here to guide the scheduling.

Figure 8. Schedullng/AlloCation by StapWiaa reflna”M”t
J

Before going on to describe how scheduling and a1 location

are 1 Inked. we will give a short description of the module
(named MidHAL) that performs the allocation task. A InOPe

elaborate one 1s given In (51.

5.2 THE MIDHAL ALLOCATER

This module Is implemented as a rule-based expert System.
It accepts as input the DFG. a global tinis constraint. the

lOCal time constraints on each operation and a library of
available orocessors and their associated speed and cost.

It then uses heuristic rules to select a set of locally op-
timum processors to execute the operations described in the

DFG. given the time constraints on these operations.

The following information IS returned:

. The type of processors allocated

. The number of processors of each type

. Their propagation delay

. Their area cost (including mux and Interconnect area)

The m”x and interconnect area cost is evaluated by partl-
tloning the DFG and doing a prellmlnary assignment Of oper-

ations to processors. The data transfer requirements can
the” be evaluated. The minimum number of multiplexers and
interconnections required to perform these data transfers Is
then estimated.

The function and intent of this module Is quite similar to
that of the BUD module in the recent BUD-DAA system [151.
However. as preliminary floorplannlng is not performed in
the HAL system, the interconnect area estimation will not be
as precise.

Moreover. the HAL system allows the allocation task to be
performed completely or partially by the user. The system
will verifv that the allocated hardware Is sufficient ml-4 . -..-
WI 11 add processors as necessary. In this way the user can
invoke the scheduling/allocation loop repeatedly with dif-
f erent processor selections and explore the design-space
semi-automatically.

5.3 USE OF ALLOCATION INFORMATION FOR SCHEDULING

We shall show here how the four types of information re-
turned by the MidHAL module can be used to guide the sched-
uling process.

Types of processors allocated:

For each type of procesor allocated. one single distribution
graph (DG) is created. Multi-function processors such as
Alus will be assigned to the multiple operation OGs de-
scribed in section “4.2 REFINED SCHEDULING ALGORITHM

Number of processors allocated:

I" most cases. the MldHAL module allocates the mi”imum num-
ber of D~O~~SSO~S for everv type of operation. Th, s ,,,,mbe~ ..- ..- -.
1s equal’ to the maximum “umber-of concurrent operations they
perform. But there are also cases whars a larger number of
processors are allocated. This may happen when the cost
saving due to processor sharing is offset by associated
multiplexer and interconnection costs. We must Include this
Information so that the forces applied by the assigned DG
are reduced. as more than enough processors are likely to be
available.

Paper 12.1

199

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:16 from IEEE Xplore. Restrictions apply.

More specifically, for each processor type (i.e. for each
DGl and each c-step “e calculate the unused processor capac-
ity. This is given as the difference between the number of
allocated processors and the current number of operations
scheduled in c-step 1.

Unused Capacity(i) = No Processors - No Opns(i) (1)

The new biased DG value (i.e. the new spring constant) is
then given by the old value less the unused processor capac-
ity.

Biased OG(i) = OG(i) - Unused Capacity(i) (2)

When the number of scheduled operations in c-step 1 reaches
the number of orocessors allocated. DG(i1 will take on its
original value.

Processor speed:

This information is integrated in a Straightforward fashion
by assigning the propagation delay of each processor to the
operations It performs. The determination of time frames
and subsequent scheduling “ill th”s be directly affected by
these new values.

Processor. multllplexer and interconnect casts:

As we mentioned in section “4.2 REFINE0 SCHEDULING ALGO-
RITHM” each DG element is multiplied by a cost factor, For
the initial SChedUlinQ in phase 2, this cost factor is sim-
ply the processor area:

Cost Factor = Processor Area (31

For the final scheduling in phase 4, we can use the estimate
Of the mux and interconnect area derived in phase 3 to cal-
culated a weighed cost factor:

Cost Factor = Processor Area * Interconnect Factor (41

The interconnect factor represents the relative importance
Of the processor area with respect to the combined
processor, mux and interconnect area:

Interconnect Factor = Processor Area
Total Area

where (5)

Total Area = (Processor + MUX + Interconnect) Area (6)

For high-cost processors such as multipliers the intercon-
nect factor tends towards one. Alternately. for Simple
processors (0.9. logic gates) the mux and interCOnneCt area
can be much larger than the processor area in which case
the interconnect factor tends towards zero.

In general, this will result In an increased number of IO”
cost processors, but the associated area increase will be
offset by reduced multiplexer and interconnect costs. On the
other hand. Sharing Of high-cost processors “ill still be
enCOUraQed.

5.4 SCHEDULING UNDER FIXED HARDWARE CONSTRAINTS

The scheduling and allocation approaches presented above
support the synthesis of near-minimal cost datapaths under
fixed timing constraints. A simple extension of this meth-
OdOlOQy also allows the determination of a schedule with a
near-minimal number of c-steps given fixed hardware con-
straints.

The basic idea consists of performing regular force-directed
SchedUlinQ with a tight timlnQ constraint. During the
schedulinQ. hardware resource costs are estimated at every
iteration. Whenever a hardware constraint Is exceeded (this
can be a constraint on the number of processors Of any type,
or a constraint on the total hardware cost). then an extra
c-step IS added to the graph. Thus the time frames of
scheduled and unscheduled operations are extended by one c-
step.

This 1 “CPeBSeS the time required to arrive at a solution.
but not the order of complexity of the algorithm. This is
because the partial scheduling is maintained. i.e. the time
frames of operations are extended, not recalculated.

This extra capability will be illustrated In the example of
section “6.3 TEMPERATURE CONTROLLER FROM ELF”.

5.5 SAMPLE SCHEDULING AND ALLOCATIONS

The processor allOCatiOnS for the example given in SeCtiOn
“4. FORCE-DIRECTED SCHEOULING ALGORITHM” are tabulated in
Figure 9 for different time constraints. The refinements
Of the SChedUllnQ elQOrithm described above were applied
here. (Note: The multiplications are given a more realistic
DroDaaatlo” delav of two cycles. The critical oath Is no”
kix‘ c;c1es long. 1. The CPU execution times given are for
XEROX 1106 Lisp machine.

COMPONENT

No Cycles
. _ _ _ _ _ _ _ _ _ _ _ .

multiplier
(*)

ZllU
(a)

_ - _ _ _ - - - - - - - .

CPU (set)

I* cost > alu cost1 (alu cost > * cost) 2
a

Figure 9. Processor allocatio” for a11 time
constraints: Example Of Figure 1.

The results in the first four columns illustrate the realis-
tic case where the cost of the multiplier is hiaher than the
Cost of the Alu. The results in the’next four columns rep-
resent an illustrative example where the cost factor of the
Alu is set artificially higher than the cost of the multl-
plier. The change in forces resulted in the decrease of the
concurrency of the Alu operations at the expense Of the ““l-
tip11cation operations. This is exactly the trade-off that
we are hoping for.

The results obtained in column 6”and 7’ are identical to
the ones that would be obtained if the MidHAL module (the
processor allocater) had allocated four and three multlpll-
ers respectively. This Is due to the associated reduction
Of the mUltipliCation forces dictated by equation (2) of
section “5.3 USE OF ALLOCATION INFORMATION FOR SCHEDULING”.
Such that the concurrency of the AIu operations is reduced
to one. Dnce again, this trade-off is the one that sho”ld
follow logically.

6. EXPERIMENTAL RESULTS/COMPARISONS

The four examples presented in this section are taken from
some of the systems described in section “2. LITERATURE SUR-
VEY”. They where chosen to illustrate the flexibility of
the HAL system with respect to considerably different con-
straints and also to allow comparison with the results ob-
tained from these systems.

ExperImental Procedure:

For each of the examples presented, the SChedUlinQ “as per -
formed using the same aSSUmptiOnS as the original reference.
They are listed at the beginning Of each subsection. The
results were obtained without any fine tuning of the algo-
rithm to the examples. The CPU execution times given are
for a XEROX 1106 Lisp machine. This is a single-user work-
station in the
standards).

medium-low performance range (by today’s

6.1 EXAMPLE FROM HAHA

This example “es presented in [2] and makes uses or the CSSP
program [31 for the initial stage partitioning. Two results
are given in the paper, the fastest allocation and the
cheapest one. For the fastest allocation, the graph is par-
titioned into four stages (clock cycles). For the cheapest
allocation. the graph is partitioned into eight stages.

Assumptions:

. All similar OperationS have equal propagation delays.

. For the fastest allOCation: the clock cycle is such that.
a maximum of three ooerations can be combined in a Sin-
gle cycle.

. FOP the cheapest allocation: only one operation can be
performed per cycle.

Paper 12.1

200

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:16 from IEEE Xplore. Restrictions apply.

. There 1s no sharing of processors executing mUtually ex-
clusive operations (i.e. operations that are on either
side Of a” if-then-else Statement).

. MAHA execution times are for a VAX 11/150.

The table below gives the allocation for different timing
constraints. These constraints are the number of cyc 1 es
(stages) and the maximum “umber of operations per cycle. The
resu1 ts given in the 1SSt of the three sets Of COlUmnS are
for the HAL system when mutually exclbsive operations (due
to conditionals) are take” into account. This IS using the
method described earlier in section “4.1 BASIC SCHEDULING
ALGORITHM”.

HAL
COMPONENT MAHA HAL (w. mutual

exclusion)

Figure 10. Example from MAHAl21.

For the cheapest allocation (8 cycles. 1 Opn/cycle). the HAL
system arrives at the same number of processors as the MAHA
System. This was expected (hoped for) as all prOCsSSOrS
have iOO% utilization.

For MAHA’s fastest allocation (4 cycles, 3 Opns/cycle). the
HAL system allocates one Subtractor less. but with a tighter
constraint on the clock cycle (2 op”s/CyCle). I” this case
the reductlo” in area (wlth respect to MAHA) is close to 20%
with a 25-30% reduction of the Clock cycle time (the actual
ValUe Will depend on the latch propagation delays).
Processor utilizations are 100%.

The fastest realization in the HAL system runs in three cy-
cles (3 opns/cycle) and uses three adders and three subtrac-
tops. This solution requires “early 20% more area than

MAHA’s fastest realization but the number of required Cycles

1s reduced by 33%.

Taking mutual exclusion into account yields the most impres-
sive results by far (give” in the third Set Of COlUmnS).
This example certainly illustrates the potential importance
of doing so.

6.2 PIPELINED FIR FILTER FROM SEHWA
,

The resu1 ts presented here are for the pipelined 16-point
digital FIR filter example borrowed from [151. The SEHWA
system described in this paper does scheduling and allo-
cation of pipelined data paths.

Pipeline scheduling is achieved in the HAL system by folding
the DGs across the boundaries determined by the latency
value (in cycles). This “ill cause the force-directed
schedulino alaorithm to balance the distribution of concur-
rent pip;1ine stages. For lack of Space, we must defer the
detailed explanations to a forthcoming paper [16).

Assumptions:

. The maximum stage time limit is 100 “5.

. The latency is equal to 300 “s.

. Additions are performed by adders with a delay time of
40 ns.

. Multiplications are performed by multiplierS in 80 “sec.

. The latch delays are 20 “5.

. Multiple succeeding operations in a single cycle are al-
lowed.

Ill Figure 11 we present the results for three scheduling
methods:

1. SEHWA: Backward feasible Scheduling.
2. SEHWA: Exhaustive feasible scheduling.
3. HAL: Force-directed pipeline scheduling.

These include the order of complexity of the algorithm. the
number of cycles required, the number and type of processors
al located. and the CPU time. Only a” approximate run time
(on a VAX,‘750) “as given in [151.

SYSfEM

Algorithm

Complexity

Number of
cycles

Number of
Adders

Number of
Multipliers

CPU time

SEHWA HAL

Feasible Exhaustive Force-Directed

D(n’logn) O(rf+‘) 0(n1)

7 6 6

6 5 5

3 3 3

n/a < 1 hour 30 se0

Figure 11. FIR filter results for SEHWA Example

We see that the force-directed pipeline scheduling technique
yields a result similar to that obtained by the exhaustive
scheduling (i.e. a” optimal result).

Futhermore. the result obtained with the backward feasible
scheduling Is more expensive (six Vs five adders) and slower
(seven Vs six clock cycles) although it’s complexity is ac-
tually higher than that of the force-directed algorithm.

6.3 TEMPERATURE CONTROLLER FROM ELF -

In this paper. the system was used to find the mi”iiIiUm “um-
ber of clock cycles required given specif led t imtng and
hardware constraints. Two examples where given.

Assumptions for the first example:

. The operations of the DFG where divided into two groups
with two different timing constraints.

. A” t”,t,al processor library is given. It contains
adders, subtractors, a comparator. a shifter (for divi-
sion) and a” Alu.

. The solution must not require more than one processor of
each type.

. All operations (except divisions) have a one cycle prop-
agation delay.

. Division operations require a two cycle delay.

. Succeeding (data dependent) operations cannot be per-
formed in the same clock cycle.

. The inputs are made available sequentially (i.e. one in-
put is made available in each of the first five Cycles).

The Elf system generated a solution that required a total of
20 clock cycles. 12 cycles for the first group of operations
and 6 for the second. In this version of the Elf SyStsm.
operations in the second group cannot over 1 ap with -oper-
ations in the first. The current (unpublished) version does
not have this constraint.

Given the same constraints, the HAL system arrived at a sol-
ution that req” i red a total of 19 cycles (it clock cycles
for the first group and 8 for the second). Moreover, if
operations in both groups are allowed to overlap, but with-
out violating the separate constraints, the system art- 1 ves
at a SOlUtiOn requiring a total of 15 cycles. It can be
shown that these results are optimal, given the assumptions
listed above.

Assumptions for the second example:

The assumptions here are the same as above except that a
User-defined Alu (performing add. subtract and shift oper -
ations) is to be used. Once again. the solution must not
require more than one processor of each type.

The number of cycles required by the Elf system was not
specified. The HAL system scheduled the operatfons of the
ftrst and second groups into 13 and 6 CYClW respectively.
These are also optimal results. Moreover, with overlap. the
total time required Is still 15 cycles, with all constraints
respected. TheSs results are mostly due to the optimal use
of the Alu through the use of the multiple operation DGs de-
scribed in “4.2 REFINED SCHEDULING ALGORITHM”.

Paper 12.1

201

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:16 from IEEE Xplore. Restrictions apply.

7. CONCLUSION The table of Figure 12 below gives the number of cycles re-
quired by both systems for the examples described. The sec-
ond total number of cycles given (in the HAL column only)
corresponds to the case where operations of both groups are
allowed to overlap.

Mitl no
Of Cycles

Group 1

Group 2

Flgura 12. Minimum number of clock cyc 1 es req” i red
fordifferent hardware constraints : Elf
temperature controller example.

No Initialisation
_--__________________

Elf
I

HAL
I

12 11

6 8

20 19/15
----_----- --_-------

n/a 100
I I

Al” Specified

Elf
I

HAL

n/a I 13

n/a 8

n/a 21/15
------_--- ----------

n/a 60

6.4 FIFTH-ORDER DIGITAL ‘WAVE’ FILTER

The DFG used in this example is borrowed from [ii] and im-
plements a fifth-order wave digital elliptic filter. This
is a much more substantial example that contains 43 oper-
ations (additions and multiplications) submitted to over 60
precedence constraints. It is assumed that additions re-
quire five clock cycles and multiplications ten. They were
respectively assigned one and two c-steps. The critical
path is thus 17 c-steps long (85 cycles).

The table shown in Figure 13 summarizes the allocation of
processors for the example. In the last row the CPU exe-
cution time is given in minutes (again for a XEROX 1108 Lisp
machine). The 17 c-step result (3 multipliers and 3 adders)
is to be compared with that given in [ill (4 multipliers and
4 adders). Moreover, the flexibility of the system a1 lows
to explore alternate speed-cost trade-offs.

The 21 c-step result (1 multiplier and 2 adders) is a good
example of a substantial area saving (over 50%) against a
small loss in speed (less than 20%) as compared to the 17
c-step result. This area saving is even greater when com-
pared to the I7 c-step result given in [Ill.

COMPONENT

No Cycles

adder
(+)

multiplier
(*I

CPU (mini

I

T

Figure 13. Processor allocation for
strait-Its: Digital wave f i 1

[Ill HAL

-
20
__-

I:;

-

I:;
--_

10

a1
et-

21 _--

I:;
-

(*I ---
13

-

time con-
xample.

This example is eloquent proof that the system can SOlVS

relatively difficult scheduling problems
.~

rn a PeasonaDle
time. A close examination of processor Utilizations shows
that all but one of the solutions found are guaranteed opti-
ma1 Exhaustive scheduling would be needed to determine if
this is also the case for the remaining one.

Our experience is that it is nearly Imposslble to solve this
problem manually and obtain results of the same quality.
This is mostly due to the large number of interactions be-
tween operations (i.e. 43 operations submitted to over 60
precedence constraints). This problem is compounded by the
fact that the number of possible schedules grows exponen-
tially with the number of cycles allowed.

On the other hand, the processing time grows linearly with
the number of cycles; the complexity of the algorithm is
O(C) for a given n. where c is the average “umber of cycles
of all time frames.

The methodology presented features a novel force-dlrected
scheduling algorithm that is invoked in a four phase
scheduling/al~ocation scheme. We have shown how this ap-
preach makes it feasible to incorporate explicit allocation
information to optlmlze the scheduling process. The infor-
mat ion transfer 1s made possible by stepwise refinement of
the scheduling and allocation tasks.

The force-directed scheduling algorithm at the heart of this
process was shown to run in nz time. In spite of this rela-
tively low complexity, the algorithm explores the search
space in a global fashion and produced optimal results for
nearly all of the examples presented.

Results obtained where shown to be as good or better as the
O”eS previously published. Furthermore, the flexibility of
the system was highlighted by the variety of constraints and
requirements it had to deal with. These include:

.

.

.

.

.

.

.

1.

2.

3.

4.

5.

6.

7.

8.

9.

Multi-cycle operations.
Multiple operations per cycle.
Mutually exclusive operations.
Pipelined data flow graphs.
Optimized use of single and multi-function processors
(Alus)
Optimization of required hardware for a specified time
constraint.
Optimization of system speed for specified hardware re-
sources.

6. REFERENCES

O.D. Gajski. N.D. Dutt and B.M. Pangrle, “Silicon Compl-
lation (Tutorial)“. Proceedings of the IEEE 1966 Custom
Integrated Circuits Conference, Rochester NY. May 1986.
pp. 102-110.
A.C. Parker et al, “MAHA: A Program for Datapath Synthe-
515”. Proceedings of the 23rd DAC (Design Automation
Conference). Las Vegas. July 1986. pp. 461-466.

N. Park and A.C. Parker, “Synthesis of Optimal Clocking
Schemes”. Proceedings of the 22nd DAC. July 1985. pp.
489-495.
E.F. Girczyc and J.P. Knight. ‘An ADA to Standard Cell
Hardware Compiler Based on Graph Grammars and Schedul-
irIg”, Proc. of the IEEE International Conference on COm-
puter Design (ICCD). October 1984. pp. 726-731.
P.G. Paulin. J.P. Knight, E.F. GlrCzyC. “HAL: A Multi-
Paradigm Approach to Automatic Data Path Synthesis”,
Proceedinqs of the 23rd DAC. Julv 1986. ~0.263-270.
P.G. Paulin. J.P. Knight, “Extended Design-Space Explo-
ration in Automatic Oats Path Synthesis”, Proceedings of
the 1986 Canadian Conference on VLSI. October 1986. pp.
221-226.
T. Blackman et al, “The Silt Silicon Compiler: Language
and Features ‘, Proceedings of the IEEE 22nd DAC. June
1985, pp. 232-237.
C. Tseng. D.P. Siewiorek. “Automated Synthesis of Data
Paths in Digltal Systems”, IEEE Transactions on CAD,
July 1966, pp. 379-395.
S. Davidson et al. “Some Experiments in Local Microcode
Compaction for Horizontal Machines’. IEEE Transactions
on Computers, July 1961. pp. 460-477.

10. P. Marwedel. “A New Synthesis Algorithm for the MIMOLA
Software System”. Proceedings of the 23rd DAC. Las
Vegas. July 1986. pp. 271-277.

11. S.Y. Kung, H.J. Whitehouse. T. Kallath, “VLSI and Modern
Signal Processing”. Prentice Hall, 1965. pp.258-264.

12. J. Nestor. D.E. Thomas, “Behavioral Synthesis with
Interfaces”. Proceedings of the IEEE ICCAD-86 (Interna-
tional conference on CAD), November 1986. pp. 112-115.

13. E.M. Pangrle. D.D. Galski, “State Svnthesfs and
ConnectivTty Binding for-Microarchitecture.Compilation”.
Proceedinas of
210-213. -

the IEEE ICCAD-86. November 1986. oo.

14. M.C. McFarland, “BUD: Bottom-Up Design of Digital sys-
terns”. Proceedings of the 23rd DAC. Las Vegas. July
1986. pp. 474-479.

15. N. Park, A.C. Parker, “SEHWA: A Program for Synthesis of
Pipelines”. Proceedings of the 23rd DAC, Las Vegas, July
1986, pp. 454-460.

16. P.G. Paulin. J.P. Knight, “Scheduling and Allocation for
Pipelined ASICs”. Submitted to the IEEE I”ternatianal
Conference on Computer Design (ICCD ‘871.
Awaltln~ acceptance.

17. H.Trlckey. “Flame1 : A High-Level Hardware Compiler”,
IEEE Transactions on CAD, March 1987. pp.259-269.

Paper 12.1
202

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:16 from IEEE Xplore. Restrictions apply.

