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Abstract-hrge grain data flow (LGDF) programming is 
natural and convenient for describing digital signal processing 
(DSP) systems, but its runtime overhead is costly in real time or 
cost-sensitive applications. In some situations, designers are not 
willing to squander computing resources for the sake of program- 
mer convenience. This is particularly true when the target 
machine is a programmable DSP  chip. However, the runtime 
overhead inherent in most LGDF implementations is not required 
for most signal processing systems because such systems are 
mostly synchronous (in the DSP  sense). Synchronous data flow 
(SDF) differs from traditional data flow in that the amount of 
data produced and consumed by a data flow node is specified a 
priori for each input and output. This is equivalent to specifying 
the relative sample rates in signal processing system. This means 
that the scheduling of SDF nodes need not be done at runtime, 
but can be done at compile time (statically), so the runtime 
overhead evaporates. The sample rates can all be different, which 
is not true of most current data-driven digital signal processing 
programming methodologies. Synchronous data flow is closely 
related to computation graphs, a special case of Petri nets. 

This self-contained paper develops the theory necessary to 
statically schedule SDF programs on single or multiple proces- 
sors. A class of static (compile time) scheduling algorithms is 
proven valid, and specific algorithms are given for scheduling 
SDF systems onto single or multiple processors. 

I 

Index Terms-Block diagram, computation graphs, data flow 
digital signal processing, hard real-time systems, multiprocessing, 
Petri nets, static scheduling, synchronous data flow. 

I. INTRODUCTION 

0 achieve high performance in a processor specialized for T signal processing, the need to depart from the simplicity 
of von Neumann computer architectures is axiomatic. Yet, in 
the software realm, deviations from von Neumann program- 
ming are often viewed with suspicion. For example, in the 
design of most successful commercial signal processors today 
[ 11-[5], compromises are made to preserve sequential pro- 
gramming. Two notable exceptions are the Bell Labs DSP 
family [6], [7] and the NEC data flow chip [ 8 ] ,  both of which 
are programmed with concurrency in mind. For the majority, 
however, preserving von Neumann programming style is 
given priority. 

This practice has a long and distinguished history. Often, a 
new non-von Neumann architecture has elaborate hardware 
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and software techniques enabling a programmer to write 
sequential code irrespective of the parallel nature of the 
underlying hardware. For example, in machines with multiple 
function units, such as the C D C W  and Cray family, so 
called "scoreboarding" hardware resolves conflicts to ensure 
the integrity of sequential code. In deeply pipelined machines 
such as the IBM 360 Model 91, interlocking mechanisms [9] 
resolve pipeline conflicts. In the M.I.T. Lincoln Labs signal 
processor [ 101 specialized associative memories are used to 
ensure the integrity of data precedences. 

The affinity for von Neumann programming is not all 
surprising, stemming from familiarity and a proven track 
record, but the cost is high in the design of specialized digital 
signal processors. Comparing two pipelined chips that differ 
radically only in programming methodology, the TI 
TMS32010 [2] and the Bell Labs DSP20, a faster version of 
the DSPl [6], we find that they achieve exactly the same 
performance on the most basic benchmark, the FIR (finite 
impulse response) filter. But the Bell Labs chip outperforms 
the TI chip on the next most basic benchmark, the IIR (infinite 
impulse response) filter. Surprisingly, close examination 
reveals that the arithmetic hardware (multiplier and ALU) of 
the Bell Labs chip is half as fast as in the TI chip. The 
performance gain appears to follow from the departure from 
conventional sequential programming. 

However, programming the Bell Labs chip is not easy. The 
code more closely resembles horizontal microcode than 
assembly languages. Programmers invariably adhere to the 
quaint custom of programming these processors in assembler- 
level languages, for maximum use of hardware resources. 
Satisfactory compilers have failed to appear. 

In this paper, we propose programming signal processors 
using a technique based on large grain data flow (LGDF) 
languages [ 1 I]. which should ease the programming task by 
enhancing the modularity of code and permitting algorithms to 
be described more naturally. In addition, concurrency is 
immediately evident in the program description, so parallel 
hardware resources can be used more effectively. We begin by 
reviewing the data flow paradigm and its relationship with 
previous methods applied to signal processing. Synchronous 
data flow (SDF) is introduced, with its suitability for 
describing signal processing systems explained. The advan- 
tage of SDF over conventional data flow is that more 
efficient runtime code can be generated because the data flow 
nodes can be scheduled at compile time, rather than at 
runtime. A class of algorithms for constructing sequential 
(single processor) schedules is proven valid, and a simple 
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heuristic for constructing parallel (multiprocessor) schedules 
is described. Finally, the limitations of the model are 
considered. 

II. THE DATA FLOW PARADIGM 
In data flow, a program is divided into pieces (nodes or 

blocks) which can execute (fire) whenever input data are 
available [ 121, [ 131. An algorithm is described as a dataflow 
graph, a directed graph where the nodes represent functions 
and the arcs represent data paths, as shown in Fig. 1. Signal 
processing algorithms are usually described in the literature by 
a combination of mathematical expressions and block dia- 
grams. Block diagrams are large grain dataflow (LGDF) 
graphs, [14]-1161, in which the nodes or blocks may be 
atomic (from the Greek atornos, or indivisble), such as 
adders or multipliers, or nonatomic (large grain), such as 
digital filters, FFT units, modulators, or phase locked loops. 
The arcs connecting blocks show the signal paths, where a 
signal i s  simply an infinite stream of data, and each data token 
is called a sample. The complexity o f  the functions (the 
granularify) will determine the amount of parallelism availa- 
ble because, while the blocks can sometimes be executed 
concurrently, we make no attempt to exploit the concurrency 
inside a block. The functions within the blocks can be 
specified using conventional von Neumann programming 
techniques. If the granularity is at the level of signal 
processing subsystems (second-order sections, butterfly units, 
etc.), then the specification of a system will be extremely 
natural and enough concurrency will be evident to exploit at 
least small-scale parallel processors. The blocks can themsel- 
ves represent another data flow graph, so the specification can 
be hierarchical. This is consistent with the general practice in 
signal processing where, for example, an adaptive equalizer 
may be treated as a block in a large system, and may be itself a 
network of simpler blocks. 
LGDF is ideally suited for signal processing, and has been 

adopted in simulators in the past [17]. Other signal processing 
systems use a data-driven paradigm to partition a task among 
cooperating processors [181, and many so called “block 
diagram languages” have been developed to permit program- 
mers to describe signal processing systems more naturally. 
Some examples are Blodi [19], Patsi [20], Blodib [21], Lotus 
1221, Dare [23], Mitsyn [24], Circus 1251, and Topsirn [26]. 
But these simulators are based on the principle of “next state 
simulation” [20], [27] and thus have difficulty with multiple 
sample rates, not to mention asynchronous systems. (We use 
the term “asynchronous” here in the DSP sense to refer to 
systems with sample rates that are not related by a rational 
multiplicative factor.) Although true asynchrony is rare in 
signal processing, multiple sample rates are common, stem- 
ming from the frequent use of decimation and interpolation. 
The technique we propose here handles multiple sample rates 
easily. 

In addition to being natural for DSP, large grain data flow 
has another significant advantage for signal processing. As 
long as the integrity of the flow of data is preserved, any 
implementation of a data flow description will produce the 
same results. This means that the same software description of 

FLOW PROGRAMS 25 

Fig. 1. A three node data flow grsph with OIY input and two outputs. The 
nodes represent functions of arbitrary complexity, and the arcs represent 
paths on which sequences of data (fokens or surnpks) flow. 

a signal processing system can be simulated on a single 
processor or multiple processors, implemented in specialized 
hardware, or even, ultimately, compiled into a VLSI chip 

III. SYNCHRONOUS DATA FLOW GRAPHS 

In this paper we concentrate on synchronous systems. At 
the risk of being pedantic, we define this precisely. A block is 
a function that is invoked when there is enough input available 
to perform a computation (blocks lacking inputs can be 
invoked at any time). When a block is invoked, it will 
consume a fixed number of new input samples on each input 
path. These samples may remain in the system for some time 
to be used as old samples [17], but they will never again be 
considered new samples. A block is said to be synchronous if 
we can specify a priori the number of input samples consumed 
on each input and the number of output samples produced on 
each output each time the block is invoked. Thus, a synchro- 
nous block is shown in Fig. 2(a) with a number associated with 
each input or output specifying the number of inputs consumed 
or the number of outputs produced. These numbers are part of 
the block definition. For example, a digital filter block would 
have one input and one output, and the number of input 
samples consumed or output samples produced would be one. 
A 2:l decimator block would also have one input and one 
output, but would consume two samples for every sample 
produced. A synchronous data flow (SDF) graph is a 
network of synchronous blocks, as in Fig. 2@). 
SDF graphs are closely related to computation graphs. 

introduced in 1966 by Karp and Miller [29] and further 
explored by Reiter [30]. Computation graphs are slightly more 
elaborate than SDF graphs, in that each input to a block has 
two numbers associated with it, a threshold and the number of 
samples consumed. The threshold specifies the number of 
samples required to invoke the block, and may be different 
from the number of samples consumed by the block. It cannot, 
of course, be smaller than the number of samples consumed. 
The use of a distinct threshold in the model, however, does not 
significantly change the results presented in this paper, so for 
simplicity, we assume these two numbers are the same. Karp 
and Miller [29] show that computations specified by a 
computation graph are determinate, meaning that the same 
computations are performed by any proper execution. This 
type of theorem, of course. also underlies the validity of data 
flow descriptions. They also give a test to determine whether a 
computation terminates. which is potentially useful because in 
signal processing we are mainly interested in computations 
that do not terminate. We assume that signal processing 
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Fig. 2.  (a) A synchronous node. (a) A synchronous data flow graph. 

systems repetitively apply an algorithm to an infinite sequence 
of data. To make it easier to describe such applications, we 
expand the model slightly to allow nodes with no inputs. These 
can fire at any time. Other results presented in [29] are only 
applicable to computations that terminate, and therefore are 
not useful in our application. 

Computation graphs have been shown to be a special case of 
Petri nets [31]-[33] or vector addition system [N]. These 
more general models can be used to describe asynchronous 
systems. There has also been work with models that are 
special cases of computation graphs. In 1971, Commoner and 
Holt (351 described marked directed graphs, and reached 
some conclusions similar to those presented in this paper. 
However, marked directed graphs are much more restricted 

samples produced or consumed on any arc to unity. This 
extessively restricts the sample rates in the system, reducing 
the utility of the model. In 1968, Reiter [36] simplified the 
computation graph model in much the same way (with minor 
variations), and tackled a scheduling problem. However, his 
scheduling problem assumes that each node in the graph is a 
processor, and the only unknown is the firing time for the 
invocation of each associated function. In this paper we 
preserve the generality of computation graphs and solve a 
different scheduling problem, relevant to data flow program- 
ming, iv which nodes represent functions that must be mapped 
Onto processors. 

Implementing the signal processing system described by a 
SDF graph requires buffering the data samples passed 
between blocks and scheduling 6locks so that they are 
executed when data are available. This could be done 
dynamically, in which case a runtime supervisor determines 
wben blocks are ready for execution and schedules them onto 
pcessors as they become free. This runtime supervisor may 
be a software routine or specialized hardware, and is the same 
as the control mechanisms generally associated with data flow. 
It is a costly approach, however, in that the supervisory 
overhead can become severe, particularly if relatively little 
computation is done each time a block is invoked. 

SDF graphs, however, can be scheduled statically (at 
compile time), regardless of the number of processors, and the 
overhead associated with dynamic control evaporates. Specifi- 
cally, a large grain compiler determines the order in which 
nodes can be executed and constructs sequential code for each 

t 
than SDF graphs because they constrain the number of 

, 

processor. Communication between nodes and between proc- 
essors is set up by the compiler, so no runtime control is 
required beyond the traditional sequential control in the 
processors. The LGDF paradigm gives the programmer a 
natural interface for easily constructing well structured signal 
processing programs, with evident concurrency, and the large 
grain compiler maps this concurrency onto parallel proces- 
sors. This paper is dedicated mainly to demonstrating the 
feasibility of such a large grain compiler. 

IV. A SYNCHRONOUS LARGE GRAIN COMPILER 
We need a methodology for translating from an SDF graph 

to a set of sequential programs running on a number of 
processors. Such a compiler has the two following basic tasks. 

Allocation of shared memory for the passing of data 
between blocks, if shared memory exists, or setting up 
communication paths if not. 

Scheduling blocks onto processors in such a way that data 
is available for a block when that block is invoked. 

The first task is not an unfamiliar one. A single processor 
solution (which also handles asynchronous systems) is given 
by the buffer management techniques in Blosim [ 171. Simplifi- 
cations of these techniques that use the synchrony of the 
system are easy to imagine, as are generalizations to multiple 
processors, so this paper will concentrate on the second task. 
that of scheduling blocks onto processors so that data are 
available when a block is invoked. 

Some assumptions are necessary. 
The SDF graph is nonterminating (cf. [29], [30]) mean- 

ing that it can run forever without deadlock. As mentioned 
earlier, this assumption is natural for signal processing. 

The SDF graph is connected. If not, the separate graphs 
can be scheduled separately using subsets of the processors. 

The SDF graph is nonterminating (cf. 1291. f301) meaning’ 
that it can run forever without deadlock. As mentioned earlier. 
this assumption is natural for signal processing. 

Specifically, our ultimate goal is a periodic admissible 
parallel schedule, designated PAPS. The schedule should be 
periodic because of the assumption that we are repetitively 
applying the same program on an infinite stream of data. The 
desired schedule is admissible, meaning that blocks will be 
scheduled to run only when data are available, and that a finite 
amount of memory is required. It is parallel in that more than 
one processing resource can be used. A special case is a 
periodic admissible sequential schedule, or PASS, which 
implements an SDF graph on a single processor. The method 
for constructing a PASS leads to a simple solution to the 
problem of constructing a PAPS, so we begin with the 
sequential schedule. 

A. Construction of a PASS 
A simple SDF graph is shown in Fig. 3, with each block and 

each arc labeled with a number. (The connections to the 
outside world are not considered, and for the remainder of this 
paper, will not be shown. Thus, a block with one input from 
the outside will be considered a block with no inputs, which 
can therefore be scheduled at any time. The limitations of this 
approximation are discussed in Section V.) An SDF graph can 
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Fig. 3. SDF graph showing the numbering of the nodes and arcs. The input 
and output arcs arc ignored for now. 

be characterized by a matrix similar to the incidence matrix 
associated with directed graphs in graph theory. It is con- 
structed by first numbering each node and arc, as in Fig. 3, 
and assigning a column to each node and a row to each arc. 
The ( i ,  j)th entry in the matrix is the amount of data produced 
bj node j on arc i each time it is invoked. If node j consumes 
data from arc i, the number is negative, and if it is not 
connected to arc i, then the number is zero. For the graph in 
Fig. 3 we get 

This matrix can be called a topology matrix, and need not be 
square, in general. 

I f  a node has a connection to itself (a serf-loop), then only 
one entry in I? describes this link. This entry gives the net 
difference between the amount of data produced on this link 
and the amount consumed each time the block is invoked. This 
difference should clearly be zero for a correctly constructed 
graph, so the I? entry describing a self-loop should be zero. 

We can replace each arc with a FIFO queue (buffer) to pass 
data from one block to another. The size of the queue will vary 
at different times in the execution. Define the vector b(n) to 
contain the queue sizes of all the buffers at time n. In Blosim 
[ 171 buffers are also used to store old samples (samples that 
have been ?consumed?), making implementations of delay 
lines panicularly easy. These past samples are not considered 
part of the buffer size here. 
For the sequential schedule, only one block can be invoked 

at a time, and for the purposes of scheduling it does not matter 
how long it runs. Thus, the index n can simply be incremented 
each time a block finishes and a new block is begun. We 
specify the block invoked at time n with a vector u (n ) ,  which 
has a one in the position corresponding to the number of the 
block that is invoked at time n and zeros for each block that is 
not invoked. For the system in Fig. 3, in a sequential schedule, 
o(n) can take one of three values, 

depending on which of the three blocks is invoked. Each time 
a block is invoked, it will consume data from zero or more 
input arcs and produce data on zero or more output arcs. The 
change in the size of the buffer queues caused by invoking a 
node is given by 

b(n+ i)=b(n)+ru(n). (3) 

Fig. 4. An example of M SDF graph with delays on the arcs. 

The topology matrix I? characterizes the effect on the buffers 
of running a node program. 

The simple computation model is powerful. First we note 
that the computation model handles delays. The term delay is 
used in the signal processing sense, corresponding to a sample 
offset between the input and the output. We  define a unit 
delay on an arc from node A to node B to mean that the nth 
sample consumed by B will be the (n - 1)th sample produced 
by A. This implies that the first sample the destination block 
consumes is not produced by the source block at all, but is pan 
of the initial state of the arc buffer. Indeed, a delay of d 
samples on an arc is implemented in our model simply by 
setting an initial condition for (3). Specifically, the initial 
buffer state, b(O), should have a d in the position correspond- 
ing to the arc with the delay of d units. 

To  make this idea firm, consider the example system in Fig. 
4. The symbol ?0? on an arc means a single sample delay, 
while ?20? means a two-sample delay. The initial condition 
for the buffers is thus - -  

(4) 

Because of these initial conditions, block 2 can be invoked 
once and block 3 twice before block 1 is invoked at all. 
Delays, therefore, affect the way the system starts up. 

Given this computation model we can 

find necessary and sufficient conditions for the existence 

find practical algorithms that provably find a PASS if one 

find practical algorithms that construct a reasonable (but 

We  begin by showing that a necessary condition for the 

of a PASS, and hence a PAPS; 

exists; 

not necessarily optimal) PAPS, if a PASS exists. 

existence of a PASS is 
rank (I?)=s-l (5) 

where s is the number of blocks in the graph. We need a series 
of lemmas before we can prove this. The word ?node? is used 
below to refer to the blocks because it is traditional in graph 
theory. 

Lemma I: All topology matrices for a given SDF graph 
have the same rank. 

ProoJ Topology matrices are related by renumbering of 
nodes and arcs, which translates into row and column 
permutations in the topology matrix. Such operations preserve 
the rank. Q.E.D. 

Lemma 2: A topology matrix for a tree graph has rank 
s - 1 where s is the number of nodes (a tree is a connected 
graph without cycles, where we ignore the directions of the 
arcs). 

Proof: Proof is by induction. The lemma is clearly true 
for a two-node tree. Assume that for an N node tree 
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rank(rN) = N - 1. Adding one node and one link 
connecting that node to our graph will yield an N + 1 node 
tree. A topology matrix for the new graph can be written 

r"I0 
Fig. 5. Example of a defective SDF Bnph with sample rate inconsistencies. 

rN+I= [ 73 
The topology matrix is 

where 0 is a column vector full of zeros, and p f  is a row 
vector corresponding to the arc we just added. The last entry in 
the vector p is nonzero because'the node we just added 
corresponds to the last column, and it must be connected to the 
graph. Hence, the last row is linearly independent from the 
other rows, so rank(rN,J = rank(rN) + I. Q.E.D. 

Lemma 3: For a connected SDF graph with topology 
matrix I' 

[: - f  -'] rank (I')=s=3. r =  o 
0 - I  

rank (r) 2 s - 1  

where s is the number of nodes in the graph. 
Proof: Consider any spanning tree 7 of the connected 

SDF graph (a spanning tree is a tree that includes every node 
in the graph). Now define r, to be the topology matrix for this 
subgraph. By Lemma 2 rank (T',) = s - 1. Adding arcs to 
the subgraph simply adds rows to the topology matrix. Adding 
rows to a matrix can increase the rank, if the rows are linearly 
independent of existing rows, but cannot decrease it. Q.E.D. 

Proof: r has only s columns, so its rank cannot exceed s. 
Therefore, by Lemma 3, s and s - I are the only 
possibilities. Q.E.D. 

Definition I: An admissible sequential schedule + is a 
nonempty ordered list of nodes such that if the nodes are 
executed in the sequence given by 4, the amount of  data in the 
buffers (' 'buffer sizes") will remain nonnegative and 
bounded. Each node must appear in (b at least once. 

A periodic admissible sequential schedule (PASS) is a 
periodic and infinite admissible sequential schedule. It is 
specified by a list (b that is the list of nodes in one period. 

For the example in Fig. 6, (b = { 1 , 2, 3, 3) is a PASS, but 
4 = (2, 1, 3, 3) is not because node 2 cannot be run before 
node 1. The list 4 = { 1 , 2, 3) is not a PASS because the 
infinite schedule resulting from repetitions of this list will 
result in an infinite accumulation of data samples on the arcs 
leading into node 3. 

Theorem I: For a connected SDFgraph with s nodes and 
topology matrix r, rank (F) = s - 1 is a necessary condition 
for a PASS to exist. 

Proo$ We must prove that the existence of a PASS of 
pcnodp implies rank (T') = s - 1. Observe from (3) that we 
can write 

Corollury: rank (r) is s - 1 or s. 

where 

n = O  

Since the PASS is periodic, we can write 

b(np) = b(0) + nrq. 

Fig. 6. An SDF graph with consistent sample rates has a positive integer 
vector q in the nullspace of the topology matrix r. 

r =  [ o -: 0 - 1  -'I .=[:I cv(r) 

Since the PASS is admissible, the buffers must remain 
bounded, by Definition 1. The buffers remain bounded if and 
only if 

rq=o 
where 0 is a vector full of zeros. For q # 0, this implies that 
rank(r) < s where s is the dimension of q .  From the corollary 
of  Lemma 3, runk(r) is either s or s - 1, and so it must be 
s - I. Q.E.D. 

This theorem tells us that if we have a SDF graph with a 
topology matrix of rank s, that the graph is somehow 
defective, because no PASS can be found for it. Fig. 5 
illustrates such a graph and its topology matrix. Any schedule 
for this graph will result either in deadlock or unbounded 
buffer sizes, as the reader can easily verify. The rank of the 
topology matrix indicates a sample rate inconsistency in the 
graph. In Fig. 6, by contrast. a graph without this defect is 
shown. The topology matrix h a s  rank s - 1 = 2. so we can 
find a vector q such that rq = 0. Furthermore, the following 
theorem shows that we can find a positive integer vector q in 
the nullspace of r. This vector tells us how many times we 
should invoke each node in one period of a PASS. Refemng 
again to Fig. 6,  the reader can easily verify that if we invoke 
node 1 once, node 2 once, followed by node 3 twice, that the 
buffers will end up once again in their initial state. A5 before. 
we prove some lemmas before getting to the theorem. 

Lemma 4: Assume a connected SDF graph with topology 
matrix r. Let q be any vector such that rq = 0. Denote a 
connected path through the graph by the set B = { b,, * * . , bL } 
where each entry designates a node, and node b l  is 
connected to node bz. node bz to node b3, up to bL .  Then all 
q,, i E B are zero, or all are strictly positive, or all are strictly 
negative. Furthermore, i f  any q, is rational then all q, are 
rational. 



Proof: By induction. First consider a connected path of 
two nodes, B2 = (bl, b2}. If  the arc connecting these two ! nodes is thejth arc. then 

where 
i -  I 

29 

(by definition of the topology matrix, thejth row has only two 
entries). Also by definition. r,,, and rj, are nonzero integers 
of opposite sign. The lemma thus follows im ediately for B2, 

E,,, I is trivial, using the same reasoning as in the proof for E2, 
and considering the connection between nodes b,, and bn+ I. 

Corollary: Given an SDF graph as in Lemma 4, either all q, 

Now assuming the lemma is true for B,, , p T oving it true for 

I are zero, or all are strictly positive, or all are strictly negative. 
Furthermore, if any one qr is rational, then all are. 

Proof: In a connected SDF graph, a path exists from any 
node to any other. Thus, the corollary follows immediately 
from the lemma. 

Theorem 2: For a connected SDF graph with s nodes and 
topology matrix r, and with rank(r) = s - 1, we can find a 
positive integer vector q f 0 such that r4 = 0 where 0 is 
the zero vector. 

Proof: Since rank(r) = s - I, a vector u # 0 can be 
found such that r u  = 0. Furthermore, for any scalar CY, 

r(au) = 0. Let CY = l /ul  and u '  = au. Then u ;  = 1 ,  and 
by the corollary to lemma 4, all other elements in u '  are 
positive rational numbers. Let tl be a common multiple of all 
the denominators of the elements of u ' and let 4 = qu ' . Then 
q is a positive integer vector such that rq = 0. Q.E.D. 

It may be desirable to solve for the smallest positive integer 
vector in the nullspace, in the sense of the sum of the elements. 
To do this, reduce each rational entry in u'  so that its 
numerator and denominator are relatively prime. Euclid's 
algorithm (see for example [37] )  will work for this. Now find 
the least common multiple 'I of all the denominators, again 
using Euclid's algorithm. Now v u '  is the smallest positive 
integer vector in the nullspace of I'. 

We now have a necessary condition for the existence of a 
PASS, that the rank of r be s - 1. A sufficient condition and 
an algorithm for finding a PASS would be useful. We now 
characterize a class of algorithms that will find a PASS if such 
exists, and will fail clearly if not. Thus, successful completion 
of such an algorithm is a sufficient condition for the existence 
of the PASS.  

Definition 2: A predecessor to a nodcx is a node feeding 
data to x .  

Lemma 5: To determine whether a node x in a SDF graph 
can be scheduled at time i ,  it is sufficient to know how many 
times x and its predecessors have been scheduled, and to know 
b(O), the initial state of the buffers. That is, we need not know 
in what order the predecessors were scheduled nor what other 
nodes have been scheduled in between. 

Proof: To schedule node 'I, each input buffer must have 
sufficient data. The size of each input bufferj at time i is given 
by [b( i ) ] , ,  the jth entry in the vector b(i). From (3) we can 
write 

i 

n - 0  

The vector q( i )  only contains information about how many 
times each node has been invoked before iteration i. The 
buffer sizes [b(i)] ,  clearly depend only on [b(O)], and 
[rq(i)],. Thejth row of I' has only two entries. correspond- 
ing to the two nodes connected to the j t h  buffer, so only the 
two corresponding entries of the 4( i )  vector can affect the 
buffer size. These entries specify the number of times x and its 
predecessors have been invoked. so this information and the 
initial buffer sizes [b(O)], is all that is needed. Q.E.D. 

Definition 3: (Class S algorithms) Given a positive integer 
vector 4 s.t. l'4 = 0 and an initial state for the buffers b(O), 
the ith node is runnable at a given time if it has not been run ql 
times and running it will not cause a buffer size to go negative. 
A cluss S algorithm is any algorithm that schedules a node if it 
is runnable, updates B(n) and stops (rerminates) only when no 
more nodes are runnable. If a class S algorithms terminates 
before it has scheduled each node the number of times 
specified in the 4 vector, then it is said to be deadlocked. 

Class S algorithms ("S" for Sequential) construct static 
schedules by simulating the effects on the buffers of an actual 
run. That is, the node programs are not actually run. But they 
could be run, and the algorithm would not change in any 
significant way. Therefore, any dynamic (runtime) scheduling 
algorithm becomes a class S algorithm simply by specifying a 
stopping condition, which depends on the vector 4. It is 
necessary to prove that the stopping condition is sufficient to 
construct a PASS for any valid graph. 

Theorem 3: Given a SDF graph with topology matrix I' and 
given a positive integer vector 4 s.t. rq = 0, if a PASS of 
period p = 1 fq exists, where 1 is a row vector full of ones, 
any class S algorithm will find such a PASS. 

Proof: It is sufficient to prove that if a PASS 4 of any 
period p exists, a class S algorithm will not deadlock before 
the termination condition is satisfied. 

exists, and define +(n) to be its first 
n entries, for any n such that 1 < n < p. Assume a given 
class S algorithm iteratively constructs a schedule, and define 
x(n) to be the list of the first n nodes scheduled by iteration n. 

We need to show that as n increases, the algorithm will 
build x(n)  and not deadlock before n = p. when the 
termination condition is satisfied. That is, we need to show 
that for all n E (1,  , p) ,  there is a node that is runnable for 
any x ( n )  that the algorithm may have constructed. 

If x(n) is any permutation of W), then the (n + 1)th entry 
in @ is runnable by Lemma 5 because all necessary predeces- 
sors must be in @(n ) ,  and thus in ~(n). Otherwise, the first 
node a in @(n) and not in x(n)  is runnable, also by Lemma 5. 
This is true for all n f (1, - * - , p ) ,  so the algorithm will not 
deadlock before n = p. 

At n = p, each node i has been scheduled qr times because 
no node can be scheduled more that q, times (by Definition 3). 
and p = 1 rq, Therefore, the termination condition is 
satisfied, and ~ ( p )  is a PASS. Q.E.D. 

Assume that a PASS 
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Fig. 7. Two SDF graphs with consistent sample rates but no admissible 

schedule. 

Theorem 3 tells us that if we are given a positive integer 
vector 9 in the nullspace of the topology matrix, that class S 
algorithms will find a PASS with its period equal to the sum of 
the elements in the vector, if such a PASS exists. 1t is possible, 
even if rank (r) = s - 1 for no PASS to exist. Two such 
graphs are shown in Fig. 7 .  Networks with insufficient delays 
in directed loops are not computable. 

One problem remains. There are an infinite number of 
vectors in the nullspace of the topology matrix. How do we 
select one to use in the class S algorithm? We now set out to 
prove that given any positive integer vector in the nullspace of 
the topology matrix, if a class S algorithm fails to find a PASS 
then no PASS of  any period exists. 

Lemma 6: Connecting one more node to a graph increases 
the rank of the topology matrix by at least one. 

The proof of this lemma follows the same kinds of 
arguments as the proof of Lemma 2. Rows are added to the 
topology matrix to describe the added connections to the new 
node, and these rows must be linearly independent of rows 
already in the topology matrix. 

Lemma 7: For any connected SDF graph with s nodes and 
topology matrix r, a connected subgraph L with m nodes has a 
topology matrix rr for which 

rank(r) = s - 1 

;.e.. all subgraphs have the right rank. 

rank(rL) = M - I 

Proo$- By contraposition. We prove that 
c 

rank(rL)+rn- 1 rank(r)+s- 1. 

From the corollary to Lemma 3 ,  if rank(FL) # rn - 1 then 
runk(rL) = m. Then runk(r) 2 m + (s - m) = s, by 
repeated applications of Lemma 6 ,  so rank(r) = s. Q.E.D. 

The next lemma shows that given a nullspace vector q ,  in 
order to run any node the number of times specified by this 
vector, it is not necessary to run any other node more than the 
number of times specified by the vector. 

Lemma 8: Consider the subgraph of a SDF graph formed 
by any node CY and all its immediate predecessors (nodes that 
feed it data, which may include CY itself). Construct a topology 
matrix r for this subgraph. If the original graph has a PASS, 
then by Theorem 1 and Lemma 7 ,  rank (I’) = m - 1 where 
m is the number of nodes in the subgraph. Find any positive 
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integer vector q s.t. rq = 0. Such a vector exists because of 
Theorem 2 .  Then it is never necessary to run any predecessor 
P more than qs times in order to run CY x times, for any x < 

Proof: The node CY will not consume any data produced 
by the yth run of 8 for any y > 44. From the definition of I’ 
and 9 we know that aq, = bqa where a and b are the amount 
of data consumed and produced on the link from ,d to a. 
Therefore, running 6 only 48 times generates enough data on 
the link to run cr 4a times. More runs will not help. Q.E.D. 

Theorem 4: Given a SDF graph with topology matrix r and 
a positive integer vector q s.t. I’q = 0, a PASS of period 
p = 1 ‘q exists if and only if a PASS of period Np exists for 
any integer N. 

9 a .  

Proof: 
Parr I: It is trivial to prove that the existence of a 

PASS of period p implies the existence of a PASS of period 
Np because the first PASS can be composed N times to 
produce the second PASS. 

Part 2: We now prove that the existence of a PASS 4 
of period N p  implies the existence of a PASS of period p. 
Consider the subset 8 of b, containing the first qa runs of each 
node CY. If 8 is the first p elements of 6 then it is a schedule of 
period p and we are done. It it is not, then there must be some 
node fl that is executed more than qs times before all nodes 
have been executed 9 times. But by Lemma 8, these “more 
than q” executions of 6 cannot be necessary for the later “less 
than or equal to q” executions of other nodes. Therefore. the 
“less than or equal to 4” executions can be moved up in the 
list b, so that they precede all “more than 4” executions of 13. 
yielding a new PASS 4 ’  of period Np. If this process is 
repeated until all “less than q” executions precede all “more 
than q” executions, then the first p elements of the resulting 
schedule will constitute a schedule of period p. Q.E.D. 

CoroNary: Given any positive integer vector 4 E q(I”). the 
null space of r, a PASS of period p = 1 ‘9 exists if and only if 
a PASS exists of period r = 1 for any other positive integer 
vector u f q(r). 

Proof: For any PASS at all to exist, it is necessary that 
rank(r) = s - 1, by Theorem 1. So the nullspace of r has 
dimension one, and we can find a scalar c such that 

i 

I 

1 
I 

I 

9 = cu. 

Furthermore. if both of these vectors are integer vectors, then 
c is rational and we can write 

n 
d 

c = -  

where n and dare both integers. Therefore, 

dq =nu. 

By Theorem 4, a PASS of period p = 1 ‘q exists if and only if 
a PASS of period dp = 1 T(d9) exists. By Theorem 4 again, a 
PASS of period dp exists if and only if a PASS of period r = 
1 Tu exists. Q.E.D. 

Discussion: The four theorems and their corollaries have 
great practical importance. We have specified a very broad 



class of algorithms, designated class S algorithms, which, 
given a positive integer vector q in the nullspace of the 
,apology matrix, find a PASS with period qual  to the sum of 
the elements in q, Theorem 3 guarantees that these algorithms 
will find a PASS if one exists. Theorems 1 and 2 guarantee 
that such a vector q exists if  a PASS exists. The corollary to 
Theorem 4 tells us that it does not matter what positive integer 
vector we use from the nullspace of the topology matrix, so we 
an simplify our system by using the smallest such vector, thus 
obtaining a PASS with minimum period. 

G1vi.n these theorems, we now give a simple sequential 
xheduling algorithm that is of class S, and therefore will find 
a PASS if one exists. 

1 ) Solve for the smallest positive integer vector q E q(I‘). 
2)  Form an arbitrarily ordered list L of all nodes in the 

3, For each (Y E L, schedule (Y i f  it is runnable, trying each 

4)  If each node (Y has been scheduled qa times. STOP. 
51 I f  no node in L can be scheduled, indicate a deadlock (an 

6) Else. go to 3 and repeat. 

Thcnrern 3 tells us that this algorithms will not deadlock if a 
PAS4 exists. Two SDF graphs which cause deadlock and have 
no P.4SS are shown in Fig. 7 .  

Sirice the runtime is the same for any PASS (the one 
machine available is always busy), no algorithm will produce a 
betrcr runtime than this one. However. class S algorithms exist 
w h i ~  h construct schedules minimizing the memory required to 
buiicr data between nodes. Using dynamic programming or 
integer programming, such algorithms are easily constructed. 

A large grain data flow programming methodology offers 
conc rete advantages for single processor implementations. 
Thc ability to interconnect modular blocks of code in a natural 
wa! could considerably ease the task of programming high- 
performance signal processors, even if the blocks of code 
thcniselves are programmed in Assembly language. The gain 
is >ornewhat analogous to that experienced in VLSI design 
through the use of standard cells. For synchronous systems, 
thc penalty in runtime overhead is minimal. But a single 
prl wessor implementation cannot take advantage of the 
concurrency in a LGDF description. The remainder of this 
paper is dedicated to explaining how thexoncurrency in the 
de\cription can be used to improve the throughput of a 
multiprocessor implementation. 

B. Constructing a PAPS 

Clearly, i f  a workable schedule for a single processor can be 
Eenerated, then a workable schedule for a multiprocessor 
s!stem can also be generated. Trivially, all the computation 
could be scheduled onto only one of the processors. However, 
ln general, the runtime can be reduced substantially by 
distributing the load more evenly. We show in this section how 
the multiprocessor scheduling problem can be reduced to a 
fdmiliar problem in operations research for which good 
heuristic methods are available. 

We assume a tightly coupled parallel architecture. so that 

system. 

node once. 

error in the graph). 

communication costs are not the overriding concern. Further- 
more, we assume homogeneity; all processors are the same, so 
they process a node in a SDF graph in the same amount of 
time. It is not necessary that the processors be synchronous, 
although the implementation will be simpler if they are. 

A periodic admissible parallel schedule (PAPS) is a set of 
lists { $ i ;  i = 1, - . e ,  M} where M is the number of 
processors. and $, specifies a periodic schedule for processor 
i .  If r$ is the corresponding PASS with the smallest possible 
period P,, then it follows that the total number Pp of block 
invocations in the PAPS should be some integer multiple J of 
P,, We could, of course, choose J = 1, but as we will show 
below, schedules that run faster might result if a larger J is 
used. If the “best” integer J is known, then construction of a 
good PAPS is not too hard. 

For a sequential schedule, precedences are enforced by the 
schedule. For a multiprocessor schedule, the situation is not so 
simple. We  will assume that some method enforces the 
integrity of the parallel schedules. That is, if a schedule on a 
given processor dictates that a node should be invoked, but 
there is no input data for that node, then the processor halts 
until these input data are available. The task of the scheduler is 
thus to construct a PAPS that minimizes the runtime for one 
period of the PAPS divided by J, and avoids deadlocks. The 
mechanism to enforce the integrity of the communication 
between blocks on different processors could use semaphores 
in shared memory or simple “instruction-count” synchroniza- 
tion, where no-ops are executed as necessary to maintain 
synchronicity among processors, depending on the multipro- 
cessor architecture. 

The first step is to construct an acyclic precedence graph for 
J periods of the PASS 4. A precise (class S) algorithm will be 
given for this procedure below, but we start by illustrating it 
with the example in Fig. 8. The SDF graph in Fig. 8 is neither 
an acyclic nor a precedence graph. Examination of the number 
of inputs consumed and outputs produced for each block 
reveals that block 1 should be invoked twice as often as the 
other two blocks. Further, given the delays on two of the arcs, 
we note that there are several possible minimum period 
PASS’s,e.g.,r#JI = {1,3, 1 ,2} ,&  = (3, 1, 1, 2 } , o r d l  = 
{ 1, 1, 3, 21, each with period P, = 4. A schedule that is not a 
PASS is Cbl = ( 2 ,  1, 3, 1) because node 2 is not immediately 
runnable. Fig. 9(a) shows the precedences involved in all three 
schedules. Fig. 9(b) shows the precedences involved in two 
repetitions of these schedules (J = 2). 

If we have two processors available, a PAPS for J = 1 (Fig. 
9(a)) is 

$1 = (31 

$ 2 = { 1 ,  I, 2). 

When this system starts up, bldcks 3 and 1 will run 
concurrently. The precise timing of the run depends on the 
runtime of the blocks. If we assume that the runtime of block 1 
is a single time unit, the run time of block 2 is 2 time units, and 
the runtime of block 3 is 3 time units, then the timing is shown 
in Fig. 10(a). We assume for now that the entire system is 
resynchronized after each execution of one period of the 
PAPS. 
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Fig. 8. An example. 

I 

(a) 

J- 1 

0) 
Fig. 9. Acyclic precedence graphs for (a) a minimum period (J = 1). and 

(b) a double period (J = 2) schedule. 

PROC 1 1 7 1  

PROC 1 3 I l l  3 1 

P R O C ~  r 1 ~ 1 1  2 1 1 1  2 1 
(b) 

Fig. 9. 
Fig. 10. Two schedules generated from the acyclic precedence graphs of 

* 

A PAPS constructed for J = 2, using the precedence graph 
of Fig. 9@), will however, perform better. Such a PAPS is 
given by 

+ 2 = { l r  1, 2, 1, 2) 

and its timing is shown in Fig. lo@). Since both processors 
are kept always busy, this schedule is better than the J = 1 
schedule, and no better schedule exists. 

The problem of constructing a parallel schedule given an 
acyclic precedence graph is a familiar one. It is identical with 
assembly line problems in operations research, and can be 
solved for the optimal schedule, but the solution is combinato- 

6 

6 >@ 1 

5- 3 1 

(b) 

indicated. 
Fig. 1 1 .  The two acyclic precedence graphs of Fig. 9 with the levels 

rial in complexity. This may not be a problem for small SDF 
graphs, and for large one we can use well-studied heuristic 
methods, the best being members of a family of “critical 
path” methods [38] .  An early example, known as the Hu-level 
scheduling algorithm [39], closely approximates an optimal 
solution for most graphs [40], [38], and is simple. To 
implement this method, a level is determined for each node in 
the acyclic precedence graph, where the level of a given node 
is the worst case of the total of the runtimes of nodes on a path 
from the given node to the terminal node of the graph. The 
terminal node is a node with no successors. I f  there is no 
unique terminal node, one can be created with zero runtime. 
This node is then considered a successor to all nodes that 
otherwise have no successors. Fig. 1 l(a) shows the levels for 
the J = 1 precedence graph and Fig. 1 l(b) shows them for the 
J = 2 precedence graph, for the example of Fig. 8. Finally, 
the Hu-level scheduling algorithm simply schedules available 
nodes with the highest level first. When there are more 
available nodes with the same highest level than there are 
processors, a reasonable heuristic is to schedule the ones with 
the longest runtime first. Such an algorithm produces the 
schedules shown in Fig. 10, the optimal schedules for the 
given precedence graphs. 

W e  now give a class S algorithm that systematically 
constructs an acyclic precedence graph. First we need to 
understand how we can determine when the execution of a 
particular node is necessary for the invocation of another 
node. 

Consider a SDF graph with a single arc Q connecting node ‘1 
to node a. Assume this arc is part of a SDF graph with 
topology matrix r. The number of samples required to run CY j 
times is -jr,@ where rOa is the entry in the topology matrix 
corresponding to the connection between arc o and the node CY. 

Of these samples, 6, are provided as Initial conditions. If 
6, 2 -jr,@ then there is no dependence of thejth run of CY on 
t). Otherwise, the number of samples required of 11 is -jrO,, 
- 6,. Each run of q produces rCm samples, Therefore, thejth 
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run o f  a depends on the first d runs of where 

( 7 )  

and where the notation r - - - 1 indicates the ceiling function. 
Now we give a precise algorithm. We assume that we are 

given the smallest integer vector u in the nullspace of T‘ and the 
“W’ multiple J, so that we wish to construct an acyclic 
prccedeDct graph with the number of repetitions of each node 
given by Ju. We will discuss later how we get J. Each time we 
add a node to the graph we will increment a counter i ,  update 
the buffer state b(i) ,  and update the vector q(i) defined in (6). 
This latter vector indicates how many instances of each node 
have been put into the precedence graph. We  let L designate 
an arbitrarily ordered list of all nodes in the graph. 

INITIALIZATION: 
i = O ;  

The Mnia Body: 
while nodes are runnable { 

if (Y is runnable then { 

-irm - b,, 

rs 1 

4(0) = 0; 

for each cr E L { 

create the (q,(i) + 1)th instance of the node a; 
for each input arc u on (Y { 

kt 9 be the pidecessor node for arc u; 
compute d using (7) ;  
if d<O then let d=O; 
establish precedence links with the first d instances of v ;  

, 

1 
let u ( i )  be a vector with zeros except a 1 in position CY; 

let b(i + 1) = b ( i )  + r u ( i ) ;  
let i=i+ 1; 

1 
1 

1 
We now turn our attention to obtaining J. In the example in 

Figs. 8 through 11, increasing J may improve the schedule. 
There are also graphs where no finite J yields an optimal 
schedule. However, as J increases, the cost of implementing 
the periodic schedule increases because of the memory cost of 
storing the schedule. One possible technique is to increase J 
until each increase results in negligible improvement in the 
schedule. This is an issue deserving further study. 

V. LIMITATIONS OF THE M O ~ E L  
We rely on experience to claim that most signal processing 

systems are adequately described by SDF graphs. However, 
the model does not describe all systems of interest. In this 
section, we explore some specific limitations. 

A.  Conditionals 
The SDF model permits conditional control flow within a 

node, but not on a greater scale. While large-scale conditional 
control flow is a mainstay in general-purpose computing, it is 
rare in signal processing. Occasionally, however, it is re- 
quired, and therefore must be supported by any practical 
programming system. Two types on conditional control may 
be required, data dependent or state dependent. An example 

of a system with data dependent control flow contains a node 
that passes its input sample to its first output i f  the sample is 
less than some threshold, and to its second output otherwise. 
Such a node is an asynchronous node because it is not 
possible to specify a priori how many samples will be 
produced on each output when the node is invoked. Systems 
with asynchronous nodes are dealt with in the next subsection. 

State dependent control flow refers to such control 
strucpres as iteration where the number of iterations does not 
depend on data coming into the system from outside. Such 
iteration is easily handled by the SDF model. On a small scale, 
of course, it may be handled entirely within a node. On a 
larger scale, it may be handled by replicating a node as many 
times as required. The iteration is then managed by the 
scheduler. 

B. Asynchronous Graphs 
Although rare in signal processing, asynchronous graphs do 

exist, That is, we can conceive of nodes where the amount of 
data consumed or produced on the input or output paths is data 
dependent, so no fixed number can be specified statically. The 
simplest solution is to divide a graph into synchronous 
subgraphs connected only by asynchronous links. Then these 
subgraphs can be scheduled on different processors with an 
asynchronous communication protocol enforced in interpro- 
cessor communication. Such a protocol is generally readily 
available in multiprocessor systems. The asynchronous links 
are then handled by the scheduler as i f  they were connections 
to the outside world (discussed in the next subsection). 

Another solution that is not so simple but may sometimes 
yield better performance in exceptional circumstances, is to 
implement a runtime supervisor, as done in 1171. The runtime 
supervisor would only handle the scheduling of entire synchro- 
nous subsystems, a much smaller task than scheduling all the 
nodes. 

C. Connections to the Outside World 
The SDF mode1 does not adequately address the possible 

real-time nature of connections to the outside world. Arcs into 
a SDF graph from the outside world, like those shown in Figs. 
1 and 2 ,  are ignored by the scheduler. It may be desirable to 
schedule a node that collects inputs as regularly as possible, to 
minimize the amount of buffering required on the inputs. As it 
stands now, the model cannot reflect this, so buffering of input 
data is likely to be required. 

D. Data Dependent Runtimes 
In the construction of a PAPS, we assume the runtime of 

each node is known a priori. The runtime, however, may be 
data dependent. However, in hard d - t i m e  applications, it 
must also be bounded, independent of the data. The schedule 
must perform even with worst case date that causes maximum 
runtimes for all nodes. In this situation, there is no disadvan- 
tage to scheduling using the worst case runtimes. 

VI. CONCLUSION 
This paper describes the theory necessary to develop a 

signal processing programming methodology that offers pro- 

- 



34 

grammer convenience without squandering computation re- 

connections between blocks indicate the flow of data samples, 
and the function of each block can be specified using a 
conventional programming language. Blocks are executed 
whenever input data samples are available. Such a description 
is called large grain data flow (LGDF). The advantages of 
such a description are numerous. First, it is a natural way to 
describe signal processing systems where the blocks are 
second order recursive digital filters, FFT butterfly operators, 
adaptive filters, and so on. Second, such a description exhibits 
much of the available concurrency in a signal processing 
algorithm, making multiple processor implementations easier 
to achieve. Third, program blocks are modular, and may be 
reused in new system designs. Program blocks are viewed as 
black boxes with input and output data streams, so reusing a 
program block simply means reconnecting it in a new system. 
Fourth, multiple sample rates are easily described under the 
programming paradigm. 

We describe highefficiency techniques for converting a 
large grain data flow description of a signal processing system 
into a set of ordinary sequential programs that run on parallel 
machines (or, as a special case, a single machine). This 
conversion is accomplished by a large grain compiler so 
called because it does not translate a high-level language into a 
low-level language, but rather assembles pieces of code 
(written in any language) for sequential or parallel execution. 
Most DSP systems are synchronous, meaning that the sample 
rate of any given data path, relative to other data paths, is 
known at compile time. Large grain data flow graphs with 
such sample rate information are called synchronous data flow 
graphs. Given sample rate information, techniques are given 
(and proven valid) for constructing sequential or parallel 
schedules that will execute deterministically, without the 
runtime overhead generally associated with data flow. For the 
multiprocessor case, the problem of constructing a schedule 
that executes with maximum throughput is shown to be 
equivalent to a standard operations research problem with well 
studied heuristic solutions that closely approximate the opti- 
mum. Given these techniques, the benefits of  large grain data 
flow programming can be extended to those signal processing 
applications where performance demands are so severe that 
little inefficiency for the sake of  programher convenience can 
be tolerated. 
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