
24 IEEE TRANSACTIONS ON COMPUTERS, VOL. '2-36, NO. 1 . JANUARY 1987

1'

i
Static Scheduling of Synchronous Data Flow

Programs for Digital Signal Processing
EDWARD ASHFORD LEE, MEMBER, IEEE, AND DAVID G. MESSERSCHMI'TT, FELLOW, IEEE

Abstract-hrge grain data flow (LGDF) programming is
natural and convenient for describing digital signal processing
(DSP) systems, but its runtime overhead is costly in real time or
cost-sensitive applications. In some situations, designers are not
willing to squander computing resources for the sake of program-
mer convenience. This is particularly true when the target
machine is a programmable DSP chip. However, the runtime
overhead inherent in most LGDF implementations is not required
for most signal processing systems because such systems are
mostly synchronous (in the DSP sense). Synchronous data flow
(SDF) differs from traditional data flow in that the amount of
data produced and consumed by a data flow node is specified a
priori for each input and output. This is equivalent to specifying
the relative sample rates in signal processing system. This means
that the scheduling of SDF nodes need not be done at runtime,
but can be done at compile time (statically), so the runtime
overhead evaporates. The sample rates can all be different, which
is not true of most current data-driven digital signal processing
programming methodologies. Synchronous data flow is closely
related to computation graphs, a special case of Petri nets.

This self-contained paper develops the theory necessary to
statically schedule SDF programs on single or multiple proces-
sors. A class of static (compile time) scheduling algorithms is
proven valid, and specific algorithms are given for scheduling
SDF systems onto single or multiple processors.

I

Index Terms-Block diagram, computation graphs, data flow
digital signal processing, hard real-time systems, multiprocessing,
Petri nets, static scheduling, synchronous data flow.

I. INTRODUCTION

0 achieve high performance in a processor specialized for T signal processing, the need to depart from the simplicity
of von Neumann computer architectures is axiomatic. Yet, in
the software realm, deviations from von Neumann program-
ming are often viewed with suspicion. For example, in the
design of most successful commercial signal processors today
[11-[5], compromises are made to preserve sequential pro-
gramming. Two notable exceptions are the Bell Labs DSP
family [6], [7] and the NEC data flow chip [8] , both of which
are programmed with concurrency in mind. For the majority,
however, preserving von Neumann programming style is
given priority.

This practice has a long and distinguished history. Often, a
new non-von Neumann architecture has elaborate hardware

Manuscript received August 15. 1985; revised March 17. 1986. This work
was supported in pan by the National Science Foundation under Grant ECS-
8211071, an IBM Fellowship. and a grant from the Shell Development
Corporation.

The authors are with the Department of Electrical Engineering and
Computer Science, University of California, Berkeley, CA 94720.

IEEE Log Number 861 1442.

and software techniques enabling a programmer to write
sequential code irrespective of the parallel nature of the
underlying hardware. For example, in machines with multiple
function units, such as the C D C W and Cray family, so
called "scoreboarding" hardware resolves conflicts to ensure
the integrity of sequential code. In deeply pipelined machines
such as the IBM 360 Model 91, interlocking mechanisms [9]
resolve pipeline conflicts. In the M.I.T. Lincoln Labs signal
processor [101 specialized associative memories are used to
ensure the integrity of data precedences.

The affinity for von Neumann programming is not all
surprising, stemming from familiarity and a proven track
record, but the cost is high in the design of specialized digital
signal processors. Comparing two pipelined chips that differ
radically only in programming methodology, the TI
TMS32010 [2] and the Bell Labs DSP20, a faster version of
the DSPl [6], we find that they achieve exactly the same
performance on the most basic benchmark, the FIR (finite
impulse response) filter. But the Bell Labs chip outperforms
the TI chip on the next most basic benchmark, the IIR (infinite
impulse response) filter. Surprisingly, close examination
reveals that the arithmetic hardware (multiplier and ALU) of
the Bell Labs chip is half as fast as in the TI chip. The
performance gain appears to follow from the departure from
conventional sequential programming.

However, programming the Bell Labs chip is not easy. The
code more closely resembles horizontal microcode than
assembly languages. Programmers invariably adhere to the
quaint custom of programming these processors in assembler-
level languages, for maximum use of hardware resources.
Satisfactory compilers have failed to appear.

In this paper, we propose programming signal processors
using a technique based on large grain data flow (LGDF)
languages [1 I]. which should ease the programming task by
enhancing the modularity of code and permitting algorithms to
be described more naturally. In addition, concurrency is
immediately evident in the program description, so parallel
hardware resources can be used more effectively. We begin by
reviewing the data flow paradigm and its relationship with
previous methods applied to signal processing. Synchronous
data flow (SDF) is introduced, with its suitability for
describing signal processing systems explained. The advan-
tage of SDF over conventional data flow is that more
efficient runtime code can be generated because the data flow
nodes can be scheduled at compile time, rather than at
runtime. A class of algorithms for constructing sequential
(single processor) schedules is proven valid, and a simple

001 8-9340/87/0100-0024$01 .OO 0 1987 IEEE

. .

I i:
i

t

i

LEE AND, MESSERSCHMITT. STATIC SCHEDUUNG OF SYNCHRONOUS DATA

heuristic for constructing parallel (multiprocessor) schedules
is described. Finally, the limitations of the model are
considered.

II. THE DATA FLOW PARADIGM
In data flow, a program is divided into pieces (nodes or

blocks) which can execute (fire) whenever input data are
available [121, [131. An algorithm is described as a dataflow
graph, a directed graph where the nodes represent functions
and the arcs represent data paths, as shown in Fig. 1. Signal
processing algorithms are usually described in the literature by
a combination of mathematical expressions and block dia-
grams. Block diagrams are large grain dataflow (LGDF)
graphs, [14]-1161, in which the nodes or blocks may be
atomic (from the Greek atornos, or indivisble), such as
adders or multipliers, or nonatomic (large grain), such as
digital filters, FFT units, modulators, or phase locked loops.
The arcs connecting blocks show the signal paths, where a
signal i s simply an infinite stream of data, and each data token
is called a sample. The complexity o f the functions (the
granularify) will determine the amount of parallelism availa-
ble because, while the blocks can sometimes be executed
concurrently, we make no attempt to exploit the concurrency
inside a block. The functions within the blocks can be
specified using conventional von Neumann programming
techniques. If the granularity is at the level of signal
processing subsystems (second-order sections, butterfly units,
etc.), then the specification of a system will be extremely
natural and enough concurrency will be evident to exploit at
least small-scale parallel processors. The blocks can themsel-
ves represent another data flow graph, so the specification can
be hierarchical. This is consistent with the general practice in
signal processing where, for example, an adaptive equalizer
may be treated as a block in a large system, and may be itself a
network of simpler blocks.
LGDF is ideally suited for signal processing, and has been

adopted in simulators in the past [17]. Other signal processing
systems use a data-driven paradigm to partition a task among
cooperating processors [181, and many so called “block
diagram languages” have been developed to permit program-
mers to describe signal processing systems more naturally.
Some examples are Blodi [19], Patsi [20], Blodib [21], Lotus
1221, Dare [23], Mitsyn [24], Circus 1251, and Topsirn [26].
But these simulators are based on the principle of “next state
simulation” [20], [27] and thus have difficulty with multiple
sample rates, not to mention asynchronous systems. (We use
the term “asynchronous” here in the DSP sense to refer to
systems with sample rates that are not related by a rational
multiplicative factor.) Although true asynchrony is rare in
signal processing, multiple sample rates are common, stem-
ming from the frequent use of decimation and interpolation.
The technique we propose here handles multiple sample rates
easily.

In addition to being natural for DSP, large grain data flow
has another significant advantage for signal processing. As
long as the integrity of the flow of data is preserved, any
implementation of a data flow description will produce the
same results. This means that the same software description of

FLOW PROGRAMS 25

Fig. 1. A three node data flow grsph with OIY input and two outputs. The
nodes represent functions of arbitrary complexity, and the arcs represent
paths on which sequences of data (fokens or surnpks) flow.

a signal processing system can be simulated on a single
processor or multiple processors, implemented in specialized
hardware, or even, ultimately, compiled into a VLSI chip

III. SYNCHRONOUS DATA FLOW GRAPHS

In this paper we concentrate on synchronous systems. At
the risk of being pedantic, we define this precisely. A block is
a function that is invoked when there is enough input available
to perform a computation (blocks lacking inputs can be
invoked at any time). When a block is invoked, it will
consume a fixed number of new input samples on each input
path. These samples may remain in the system for some time
to be used as old samples [17], but they will never again be
considered new samples. A block is said to be synchronous if
we can specify a priori the number of input samples consumed
on each input and the number of output samples produced on
each output each time the block is invoked. Thus, a synchro-
nous block is shown in Fig. 2(a) with a number associated with
each input or output specifying the number of inputs consumed
or the number of outputs produced. These numbers are part of
the block definition. For example, a digital filter block would
have one input and one output, and the number of input
samples consumed or output samples produced would be one.
A 2:l decimator block would also have one input and one
output, but would consume two samples for every sample
produced. A synchronous data flow (SDF) graph is a
network of synchronous blocks, as in Fig. 2@).
SDF graphs are closely related to computation graphs.

introduced in 1966 by Karp and Miller [29] and further
explored by Reiter [30]. Computation graphs are slightly more
elaborate than SDF graphs, in that each input to a block has
two numbers associated with it, a threshold and the number of
samples consumed. The threshold specifies the number of
samples required to invoke the block, and may be different
from the number of samples consumed by the block. It cannot,
of course, be smaller than the number of samples consumed.
The use of a distinct threshold in the model, however, does not
significantly change the results presented in this paper, so for
simplicity, we assume these two numbers are the same. Karp
and Miller [29] show that computations specified by a
computation graph are determinate, meaning that the same
computations are performed by any proper execution. This
type of theorem, of course. also underlies the validity of data
flow descriptions. They also give a test to determine whether a
computation terminates. which is potentially useful because in
signal processing we are mainly interested in computations
that do not terminate. We assume that signal processing

t281*

IEEE TRANSACTIONS ON COMPUTERS. VOL. C-36. NO. 1 . JANUARY 1987

(b)

Fig. 2. (a) A synchronous node. (a) A synchronous data flow graph.

systems repetitively apply an algorithm to an infinite sequence
of data. To make it easier to describe such applications, we
expand the model slightly to allow nodes with no inputs. These
can fire at any time. Other results presented in [29] are only
applicable to computations that terminate, and therefore are
not useful in our application.

Computation graphs have been shown to be a special case of
Petri nets [31]-[33] or vector addition system [N]. These
more general models can be used to describe asynchronous
systems. There has also been work with models that are
special cases of computation graphs. In 1971, Commoner and
Holt (351 described marked directed graphs, and reached
some conclusions similar to those presented in this paper.
However, marked directed graphs are much more restricted

samples produced or consumed on any arc to unity. This
extessively restricts the sample rates in the system, reducing
the utility of the model. In 1968, Reiter [36] simplified the
computation graph model in much the same way (with minor
variations), and tackled a scheduling problem. However, his
scheduling problem assumes that each node in the graph is a
processor, and the only unknown is the firing time for the
invocation of each associated function. In this paper we
preserve the generality of computation graphs and solve a
different scheduling problem, relevant to data flow program-
ming, iv which nodes represent functions that must be mapped
Onto processors.

Implementing the signal processing system described by a
SDF graph requires buffering the data samples passed
between blocks and scheduling 6locks so that they are
executed when data are available. This could be done
dynamically, in which case a runtime supervisor determines
wben blocks are ready for execution and schedules them onto
pcessors as they become free. This runtime supervisor may
be a software routine or specialized hardware, and is the same
as the control mechanisms generally associated with data flow.
It is a costly approach, however, in that the supervisory
overhead can become severe, particularly if relatively little
computation is done each time a block is invoked.

SDF graphs, however, can be scheduled statically (at
compile time), regardless of the number of processors, and the
overhead associated with dynamic control evaporates. Specifi-
cally, a large grain compiler determines the order in which
nodes can be executed and constructs sequential code for each

t
than SDF graphs because they constrain the number of

,

processor. Communication between nodes and between proc-
essors is set up by the compiler, so no runtime control is
required beyond the traditional sequential control in the
processors. The LGDF paradigm gives the programmer a
natural interface for easily constructing well structured signal
processing programs, with evident concurrency, and the large
grain compiler maps this concurrency onto parallel proces-
sors. This paper is dedicated mainly to demonstrating the
feasibility of such a large grain compiler.

IV. A SYNCHRONOUS LARGE GRAIN COMPILER
We need a methodology for translating from an SDF graph

to a set of sequential programs running on a number of
processors. Such a compiler has the two following basic tasks.

Allocation of shared memory for the passing of data
between blocks, if shared memory exists, or setting up
communication paths if not.

Scheduling blocks onto processors in such a way that data
is available for a block when that block is invoked.

The first task is not an unfamiliar one. A single processor
solution (which also handles asynchronous systems) is given
by the buffer management techniques in Blosim [171. Simplifi-
cations of these techniques that use the synchrony of the
system are easy to imagine, as are generalizations to multiple
processors, so this paper will concentrate on the second task.
that of scheduling blocks onto processors so that data are
available when a block is invoked.

Some assumptions are necessary.
The SDF graph is nonterminating (cf. [29], [30]) mean-

ing that it can run forever without deadlock. As mentioned
earlier, this assumption is natural for signal processing.

The SDF graph is connected. If not, the separate graphs
can be scheduled separately using subsets of the processors.

The SDF graph is nonterminating (cf. 1291. f301) meaning’
that it can run forever without deadlock. As mentioned earlier.
this assumption is natural for signal processing.

Specifically, our ultimate goal is a periodic admissible
parallel schedule, designated PAPS. The schedule should be
periodic because of the assumption that we are repetitively
applying the same program on an infinite stream of data. The
desired schedule is admissible, meaning that blocks will be
scheduled to run only when data are available, and that a finite
amount of memory is required. It is parallel in that more than
one processing resource can be used. A special case is a
periodic admissible sequential schedule, or PASS, which
implements an SDF graph on a single processor. The method
for constructing a PASS leads to a simple solution to the
problem of constructing a PAPS, so we begin with the
sequential schedule.

A. Construction of a PASS
A simple SDF graph is shown in Fig. 3, with each block and

each arc labeled with a number. (The connections to the
outside world are not considered, and for the remainder of this
paper, will not be shown. Thus, a block with one input from
the outside will be considered a block with no inputs, which
can therefore be scheduled at any time. The limitations of this
approximation are discussed in Section V.) An SDF graph can

~ ? 1 : .*%D MESSERSCHMITT: STATIC SCHEDULING OF SYNCHRONOUS DATA FLOW PROGRAMS 27

I 3

Fig. 3. SDF graph showing the numbering of the nodes and arcs. The input
and output arcs arc ignored for now.

be characterized by a matrix similar to the incidence matrix
associated with directed graphs in graph theory. It is con-
structed by first numbering each node and arc, as in Fig. 3,
and assigning a column to each node and a row to each arc.
The (i , j)th entry in the matrix is the amount of data produced
bj node j on arc i each time it is invoked. If node j consumes
data from arc i, the number is negative, and if it is not
connected to arc i, then the number is zero. For the graph in
Fig. 3 we get

This matrix can be called a topology matrix, and need not be
square, in general.

I f a node has a connection to itself (a serf-loop), then only
one entry in I? describes this link. This entry gives the net
difference between the amount of data produced on this link
and the amount consumed each time the block is invoked. This
difference should clearly be zero for a correctly constructed
graph, so the I? entry describing a self-loop should be zero.

We can replace each arc with a FIFO queue (buffer) to pass
data from one block to another. The size of the queue will vary
at different times in the execution. Define the vector b(n) to
contain the queue sizes of all the buffers at time n. In Blosim
[171 buffers are also used to store old samples (samples that
have been ?consumed?), making implementations of delay
lines panicularly easy. These past samples are not considered
part of the buffer size here.
For the sequential schedule, only one block can be invoked

at a time, and for the purposes of scheduling it does not matter
how long it runs. Thus, the index n can simply be incremented
each time a block finishes and a new block is begun. We
specify the block invoked at time n with a vector u (n) , which
has a one in the position corresponding to the number of the
block that is invoked at time n and zeros for each block that is
not invoked. For the system in Fig. 3, in a sequential schedule,
o(n) can take one of three values,

depending on which of the three blocks is invoked. Each time
a block is invoked, it will consume data from zero or more
input arcs and produce data on zero or more output arcs. The
change in the size of the buffer queues caused by invoking a
node is given by

b(n+ i)=b(n)+ru(n). (3)

Fig. 4. An example of M SDF graph with delays on the arcs.

The topology matrix I? characterizes the effect on the buffers
of running a node program.

The simple computation model is powerful. First we note
that the computation model handles delays. The term delay is
used in the signal processing sense, corresponding to a sample
offset between the input and the output. We define a unit
delay on an arc from node A to node B to mean that the nth
sample consumed by B will be the (n - 1)th sample produced
by A. This implies that the first sample the destination block
consumes is not produced by the source block at all, but is pan
of the initial state of the arc buffer. Indeed, a delay of d
samples on an arc is implemented in our model simply by
setting an initial condition for (3). Specifically, the initial
buffer state, b(O), should have a d in the position correspond-
ing to the arc with the delay of d units.

To make this idea firm, consider the example system in Fig.
4. The symbol ?0? on an arc means a single sample delay,
while ?20? means a two-sample delay. The initial condition
for the buffers is thus - -

(4)

Because of these initial conditions, block 2 can be invoked
once and block 3 twice before block 1 is invoked at all.
Delays, therefore, affect the way the system starts up.

Given this computation model we can

find necessary and sufficient conditions for the existence

find practical algorithms that provably find a PASS if one

find practical algorithms that construct a reasonable (but

We begin by showing that a necessary condition for the

of a PASS, and hence a PAPS;

exists;

not necessarily optimal) PAPS, if a PASS exists.

existence of a PASS is
rank (I?)=s-l (5)

where s is the number of blocks in the graph. We need a series
of lemmas before we can prove this. The word ?node? is used
below to refer to the blocks because it is traditional in graph
theory.

Lemma I: All topology matrices for a given SDF graph
have the same rank.

ProoJ Topology matrices are related by renumbering of
nodes and arcs, which translates into row and column
permutations in the topology matrix. Such operations preserve
the rank. Q.E.D.

Lemma 2: A topology matrix for a tree graph has rank
s - 1 where s is the number of nodes (a tree is a connected
graph without cycles, where we ignore the directions of the
arcs).

Proof: Proof is by induction. The lemma is clearly true
for a two-node tree. Assume that for an N node tree

IEEE TRANSACTIONS ON COMPUTERS. VOL. C-36. NO. I . JANUAR'I' 1987 28

I '

rank(rN) = N - 1. Adding one node and one link
connecting that node to our graph will yield an N + 1 node
tree. A topology matrix for the new graph can be written

r"I0
Fig. 5. Example of a defective SDF Bnph with sample rate inconsistencies.

rN+I= [73
The topology matrix is

where 0 is a column vector full of zeros, and p f is a row
vector corresponding to the arc we just added. The last entry in
the vector p is nonzero because'the node we just added
corresponds to the last column, and it must be connected to the
graph. Hence, the last row is linearly independent from the
other rows, so rank(rN,J = rank(rN) + I. Q.E.D.

Lemma 3: For a connected SDF graph with topology
matrix I'

[: - f -'] rank (I')=s=3. r = o
0 - I

rank (r) 2 s - 1

where s is the number of nodes in the graph.
Proof: Consider any spanning tree 7 of the connected

SDF graph (a spanning tree is a tree that includes every node
in the graph). Now define r, to be the topology matrix for this
subgraph. By Lemma 2 rank (T',) = s - 1. Adding arcs to
the subgraph simply adds rows to the topology matrix. Adding
rows to a matrix can increase the rank, if the rows are linearly
independent of existing rows, but cannot decrease it. Q.E.D.

Proof: r has only s columns, so its rank cannot exceed s.
Therefore, by Lemma 3, s and s - I are the only
possibilities. Q.E.D.

Definition I: An admissible sequential schedule + is a
nonempty ordered list of nodes such that if the nodes are
executed in the sequence given by 4, the amount of data in the
buffers (' 'buffer sizes") will remain nonnegative and
bounded. Each node must appear in (b at least once.

A periodic admissible sequential schedule (PASS) is a
periodic and infinite admissible sequential schedule. It is
specified by a list (b that is the list of nodes in one period.

For the example in Fig. 6, (b = { 1 , 2, 3, 3) is a PASS, but
4 = (2, 1, 3, 3) is not because node 2 cannot be run before
node 1. The list 4 = { 1 , 2, 3) is not a PASS because the
infinite schedule resulting from repetitions of this list will
result in an infinite accumulation of data samples on the arcs
leading into node 3.

Theorem I: For a connected SDFgraph with s nodes and
topology matrix r, rank (F) = s - 1 is a necessary condition
for a PASS to exist.

Proo$ We must prove that the existence of a PASS of
pcnodp implies rank (T') = s - 1. Observe from (3) that we
can write

Corollury: rank (r) is s - 1 or s.

where

n = O

Since the PASS is periodic, we can write

b(np) = b(0) + nrq.

Fig. 6. An SDF graph with consistent sample rates has a positive integer
vector q in the nullspace of the topology matrix r.

r = [o -: 0 - 1 -'I .=[:I cv(r)

Since the PASS is admissible, the buffers must remain
bounded, by Definition 1. The buffers remain bounded if and
only if

rq=o
where 0 is a vector full of zeros. For q # 0, this implies that
rank(r) < s where s is the dimension of q . From the corollary
of Lemma 3, runk(r) is either s or s - 1, and so it must be
s - I. Q.E.D.

This theorem tells us that if we have a SDF graph with a
topology matrix of rank s, that the graph is somehow
defective, because no PASS can be found for it. Fig. 5
illustrates such a graph and its topology matrix. Any schedule
for this graph will result either in deadlock or unbounded
buffer sizes, as the reader can easily verify. The rank of the
topology matrix indicates a sample rate inconsistency in the
graph. In Fig. 6, by contrast. a graph without this defect is
shown. The topology matrix h a s rank s - 1 = 2. so we can
find a vector q such that rq = 0. Furthermore, the following
theorem shows that we can find a positive integer vector q in
the nullspace of r. This vector tells us how many times we
should invoke each node in one period of a PASS. Refemng
again to Fig. 6, the reader can easily verify that if we invoke
node 1 once, node 2 once, followed by node 3 twice, that the
buffers will end up once again in their initial state. A5 before.
we prove some lemmas before getting to the theorem.

Lemma 4: Assume a connected SDF graph with topology
matrix r. Let q be any vector such that rq = 0. Denote a
connected path through the graph by the set B = { b,, * * . , bL }
where each entry designates a node, and node b l is
connected to node bz. node bz to node b3, up to bL . Then all
q,, i E B are zero, or all are strictly positive, or all are strictly
negative. Furthermore, i f any q, is rational then all q, are
rational.

Proof: By induction. First consider a connected path of
two nodes, B2 = (bl, b2}. If the arc connecting these two ! nodes is thejth arc. then

where
i - I

29

(by definition of the topology matrix, thejth row has only two
entries). Also by definition. r,,, and rj, are nonzero integers
of opposite sign. The lemma thus follows im ediately for B2,

E,,, I is trivial, using the same reasoning as in the proof for E2,
and considering the connection between nodes b,, and bn+ I.

Corollary: Given an SDF graph as in Lemma 4, either all q,

Now assuming the lemma is true for B,, , p T oving it true for

I are zero, or all are strictly positive, or all are strictly negative.
Furthermore, if any one qr is rational, then all are.

Proof: In a connected SDF graph, a path exists from any
node to any other. Thus, the corollary follows immediately
from the lemma.

Theorem 2: For a connected SDF graph with s nodes and
topology matrix r, and with rank(r) = s - 1, we can find a
positive integer vector q f 0 such that r4 = 0 where 0 is
the zero vector.

Proof: Since rank(r) = s - I, a vector u # 0 can be
found such that r u = 0. Furthermore, for any scalar CY,

r(au) = 0. Let CY = l /ul and u ' = au. Then u ; = 1 , and
by the corollary to lemma 4, all other elements in u ' are
positive rational numbers. Let tl be a common multiple of all
the denominators of the elements of u ' and let 4 = qu ' . Then
q is a positive integer vector such that rq = 0. Q.E.D.

It may be desirable to solve for the smallest positive integer
vector in the nullspace, in the sense of the sum of the elements.
To do this, reduce each rational entry in u' so that its
numerator and denominator are relatively prime. Euclid's
algorithm (see for example [37]) will work for this. Now find
the least common multiple 'I of all the denominators, again
using Euclid's algorithm. Now v u ' is the smallest positive
integer vector in the nullspace of I'.

We now have a necessary condition for the existence of a
PASS, that the rank of r be s - 1. A sufficient condition and
an algorithm for finding a PASS would be useful. We now
characterize a class of algorithms that will find a PASS if such
exists, and will fail clearly if not. Thus, successful completion
of such an algorithm is a sufficient condition for the existence
of the PASS.

Definition 2: A predecessor to a nodcx is a node feeding
data to x .

Lemma 5: To determine whether a node x in a SDF graph
can be scheduled at time i , it is sufficient to know how many
times x and its predecessors have been scheduled, and to know
b(O), the initial state of the buffers. That is, we need not know
in what order the predecessors were scheduled nor what other
nodes have been scheduled in between.

Proof: To schedule node 'I, each input buffer must have
sufficient data. The size of each input bufferj at time i is given
by [b(i)] , , the jth entry in the vector b(i). From (3) we can
write

i

n - 0

The vector q(i) only contains information about how many
times each node has been invoked before iteration i. The
buffer sizes [b(i)] , clearly depend only on [b(O)], and
[rq(i)],. Thejth row of I' has only two entries. correspond-
ing to the two nodes connected to the j t h buffer, so only the
two corresponding entries of the 4(i) vector can affect the
buffer size. These entries specify the number of times x and its
predecessors have been invoked. so this information and the
initial buffer sizes [b(O)], is all that is needed. Q.E.D.

Definition 3: (Class S algorithms) Given a positive integer
vector 4 s.t. l'4 = 0 and an initial state for the buffers b(O),
the ith node is runnable at a given time if it has not been run ql
times and running it will not cause a buffer size to go negative.
A cluss S algorithm is any algorithm that schedules a node if it
is runnable, updates B(n) and stops (rerminates) only when no
more nodes are runnable. If a class S algorithms terminates
before it has scheduled each node the number of times
specified in the 4 vector, then it is said to be deadlocked.

Class S algorithms ("S" for Sequential) construct static
schedules by simulating the effects on the buffers of an actual
run. That is, the node programs are not actually run. But they
could be run, and the algorithm would not change in any
significant way. Therefore, any dynamic (runtime) scheduling
algorithm becomes a class S algorithm simply by specifying a
stopping condition, which depends on the vector 4. It is
necessary to prove that the stopping condition is sufficient to
construct a PASS for any valid graph.

Theorem 3: Given a SDF graph with topology matrix I' and
given a positive integer vector 4 s.t. rq = 0, if a PASS of
period p = 1 fq exists, where 1 is a row vector full of ones,
any class S algorithm will find such a PASS.

Proof: It is sufficient to prove that if a PASS 4 of any
period p exists, a class S algorithm will not deadlock before
the termination condition is satisfied.

exists, and define +(n) to be its first
n entries, for any n such that 1 < n < p. Assume a given
class S algorithm iteratively constructs a schedule, and define
x(n) to be the list of the first n nodes scheduled by iteration n.

We need to show that as n increases, the algorithm will
build x(n) and not deadlock before n = p. when the
termination condition is satisfied. That is, we need to show
that for all n E (1, , p) , there is a node that is runnable for
any x (n) that the algorithm may have constructed.

If x(n) is any permutation of W), then the (n + 1)th entry
in @ is runnable by Lemma 5 because all necessary predeces-
sors must be in @(n) , and thus in ~(n). Otherwise, the first
node a in @(n) and not in x(n) is runnable, also by Lemma 5.
This is true for all n f (1, - * - , p) , so the algorithm will not
deadlock before n = p.

At n = p, each node i has been scheduled qr times because
no node can be scheduled more that q, times (by Definition 3).
and p = 1 rq, Therefore, the termination condition is
satisfied, and ~ (p) is a PASS. Q.E.D.

Assume that a PASS

LEE AND MESSERSCHMI'TT STATIC SCHEDULING OF SYNCHRONOUS DATA FLOW PROGRAMS I

-.". -

i

30

0
Fig. 7. Two SDF graphs with consistent sample rates but no admissible

schedule.

Theorem 3 tells us that if we are given a positive integer
vector 9 in the nullspace of the topology matrix, that class S
algorithms will find a PASS with its period equal to the sum of
the elements in the vector, if such a PASS exists. 1t is possible,
even if rank (r) = s - 1 for no PASS to exist. Two such
graphs are shown in Fig. 7 . Networks with insufficient delays
in directed loops are not computable.

One problem remains. There are an infinite number of
vectors in the nullspace of the topology matrix. How do we
select one to use in the class S algorithm? We now set out to
prove that given any positive integer vector in the nullspace of
the topology matrix, if a class S algorithm fails to find a PASS
then no PASS of any period exists.

Lemma 6: Connecting one more node to a graph increases
the rank of the topology matrix by at least one.

The proof of this lemma follows the same kinds of
arguments as the proof of Lemma 2. Rows are added to the
topology matrix to describe the added connections to the new
node, and these rows must be linearly independent of rows
already in the topology matrix.

Lemma 7: For any connected SDF graph with s nodes and
topology matrix r, a connected subgraph L with m nodes has a
topology matrix rr for which

rank(r) = s - 1

;.e.. all subgraphs have the right rank.

rank(rL) = M - I

Proo$- By contraposition. We prove that
c

rank(rL)+rn- 1 rank(r)+s- 1.

From the corollary to Lemma 3 , if rank(FL) # rn - 1 then
runk(rL) = m. Then runk(r) 2 m + (s - m) = s, by
repeated applications of Lemma 6 , so rank(r) = s. Q.E.D.

The next lemma shows that given a nullspace vector q , in
order to run any node the number of times specified by this
vector, it is not necessary to run any other node more than the
number of times specified by the vector.

Lemma 8: Consider the subgraph of a SDF graph formed
by any node CY and all its immediate predecessors (nodes that
feed it data, which may include CY itself). Construct a topology
matrix r for this subgraph. If the original graph has a PASS,
then by Theorem 1 and Lemma 7 , rank (I’) = m - 1 where
m is the number of nodes in the subgraph. Find any positive

IEEE TRANSACTlONS ON COMPUTERS. VOL C-36. NO I. JANUARY 1987

integer vector q s.t. rq = 0. Such a vector exists because of
Theorem 2 . Then it is never necessary to run any predecessor
P more than qs times in order to run CY x times, for any x <

Proof: The node CY will not consume any data produced
by the yth run of 8 for any y > 44. From the definition of I’
and 9 we know that aq, = bqa where a and b are the amount
of data consumed and produced on the link from ,d to a.
Therefore, running 6 only 48 times generates enough data on
the link to run cr 4a times. More runs will not help. Q.E.D.

Theorem 4: Given a SDF graph with topology matrix r and
a positive integer vector q s.t. I’q = 0, a PASS of period
p = 1 ‘q exists if and only if a PASS of period Np exists for
any integer N.

9 a .

Proof:
Parr I: It is trivial to prove that the existence of a

PASS of period p implies the existence of a PASS of period
Np because the first PASS can be composed N times to
produce the second PASS.

Part 2: We now prove that the existence of a PASS 4
of period N p implies the existence of a PASS of period p.
Consider the subset 8 of b, containing the first qa runs of each
node CY. If 8 is the first p elements of 6 then it is a schedule of
period p and we are done. It it is not, then there must be some
node fl that is executed more than qs times before all nodes
have been executed 9 times. But by Lemma 8, these “more
than q” executions of 6 cannot be necessary for the later “less
than or equal to q” executions of other nodes. Therefore. the
“less than or equal to 4” executions can be moved up in the
list b, so that they precede all “more than 4” executions of 13.
yielding a new PASS 4 ’ of period Np. If this process is
repeated until all “less than q” executions precede all “more
than q” executions, then the first p elements of the resulting
schedule will constitute a schedule of period p. Q.E.D.

CoroNary: Given any positive integer vector 4 E q(I”). the
null space of r, a PASS of period p = 1 ‘9 exists if and only if
a PASS exists of period r = 1 for any other positive integer
vector u f q(r).

Proof: For any PASS at all to exist, it is necessary that
rank(r) = s - 1, by Theorem 1. So the nullspace of r has
dimension one, and we can find a scalar c such that

i

I

1
I

I

9 = cu.

Furthermore. if both of these vectors are integer vectors, then
c is rational and we can write

n
d

c = -

where n and dare both integers. Therefore,

dq =nu.

By Theorem 4, a PASS of period p = 1 ‘q exists if and only if
a PASS of period dp = 1 T(d9) exists. By Theorem 4 again, a
PASS of period dp exists if and only if a PASS of period r =
1 Tu exists. Q.E.D.

Discussion: The four theorems and their corollaries have
great practical importance. We have specified a very broad

class of algorithms, designated class S algorithms, which,
given a positive integer vector q in the nullspace of the
,apology matrix, find a PASS with period qual to the sum of
the elements in q, Theorem 3 guarantees that these algorithms
will find a PASS if one exists. Theorems 1 and 2 guarantee
that such a vector q exists if a PASS exists. The corollary to
Theorem 4 tells us that it does not matter what positive integer
vector we use from the nullspace of the topology matrix, so we
an simplify our system by using the smallest such vector, thus
obtaining a PASS with minimum period.

G1vi.n these theorems, we now give a simple sequential
xheduling algorithm that is of class S, and therefore will find
a PASS if one exists.

1) Solve for the smallest positive integer vector q E q(I‘).
2) Form an arbitrarily ordered list L of all nodes in the

3, For each (Y E L, schedule (Y i f it is runnable, trying each

4) If each node (Y has been scheduled qa times. STOP.
51 I f no node in L can be scheduled, indicate a deadlock (an

6) Else. go to 3 and repeat.

Thcnrern 3 tells us that this algorithms will not deadlock if a
PAS4 exists. Two SDF graphs which cause deadlock and have
no P.4SS are shown in Fig. 7 .

Sirice the runtime is the same for any PASS (the one
machine available is always busy), no algorithm will produce a
betrcr runtime than this one. However. class S algorithms exist
w h i ~ h construct schedules minimizing the memory required to
buiicr data between nodes. Using dynamic programming or
integer programming, such algorithms are easily constructed.

A large grain data flow programming methodology offers
conc rete advantages for single processor implementations.
Thc ability to interconnect modular blocks of code in a natural
wa! could considerably ease the task of programming high-
performance signal processors, even if the blocks of code
thcniselves are programmed in Assembly language. The gain
is >ornewhat analogous to that experienced in VLSI design
through the use of standard cells. For synchronous systems,
thc penalty in runtime overhead is minimal. But a single
prl wessor implementation cannot take advantage of the
concurrency in a LGDF description. The remainder of this
paper is dedicated to explaining how thexoncurrency in the
de\cription can be used to improve the throughput of a
multiprocessor implementation.

B. Constructing a PAPS

Clearly, i f a workable schedule for a single processor can be
Eenerated, then a workable schedule for a multiprocessor
s!stem can also be generated. Trivially, all the computation
could be scheduled onto only one of the processors. However,
ln general, the runtime can be reduced substantially by
distributing the load more evenly. We show in this section how
the multiprocessor scheduling problem can be reduced to a
fdmiliar problem in operations research for which good
heuristic methods are available.

We assume a tightly coupled parallel architecture. so that

system.

node once.

error in the graph).

communication costs are not the overriding concern. Further-
more, we assume homogeneity; all processors are the same, so
they process a node in a SDF graph in the same amount of
time. It is not necessary that the processors be synchronous,
although the implementation will be simpler if they are.

A periodic admissible parallel schedule (PAPS) is a set of
lists { $ i ; i = 1, - . e , M} where M is the number of
processors. and $, specifies a periodic schedule for processor
i . If r$ is the corresponding PASS with the smallest possible
period P,, then it follows that the total number Pp of block
invocations in the PAPS should be some integer multiple J of
P,, We could, of course, choose J = 1, but as we will show
below, schedules that run faster might result if a larger J is
used. If the “best” integer J is known, then construction of a
good PAPS is not too hard.

For a sequential schedule, precedences are enforced by the
schedule. For a multiprocessor schedule, the situation is not so
simple. We will assume that some method enforces the
integrity of the parallel schedules. That is, if a schedule on a
given processor dictates that a node should be invoked, but
there is no input data for that node, then the processor halts
until these input data are available. The task of the scheduler is
thus to construct a PAPS that minimizes the runtime for one
period of the PAPS divided by J, and avoids deadlocks. The
mechanism to enforce the integrity of the communication
between blocks on different processors could use semaphores
in shared memory or simple “instruction-count” synchroniza-
tion, where no-ops are executed as necessary to maintain
synchronicity among processors, depending on the multipro-
cessor architecture.

The first step is to construct an acyclic precedence graph for
J periods of the PASS 4. A precise (class S) algorithm will be
given for this procedure below, but we start by illustrating it
with the example in Fig. 8. The SDF graph in Fig. 8 is neither
an acyclic nor a precedence graph. Examination of the number
of inputs consumed and outputs produced for each block
reveals that block 1 should be invoked twice as often as the
other two blocks. Further, given the delays on two of the arcs,
we note that there are several possible minimum period
PASS’s,e.g.,r#JI = {1,3, 1 ,2} ,& = (3, 1, 1, 2 } , o r d l =
{ 1, 1, 3, 21, each with period P, = 4. A schedule that is not a
PASS is Cbl = (2 , 1, 3, 1) because node 2 is not immediately
runnable. Fig. 9(a) shows the precedences involved in all three
schedules. Fig. 9(b) shows the precedences involved in two
repetitions of these schedules (J = 2).

If we have two processors available, a PAPS for J = 1 (Fig.
9(a)) is

$1 = (31

$ 2 = { 1 , I, 2).

When this system starts up, bldcks 3 and 1 will run
concurrently. The precise timing of the run depends on the
runtime of the blocks. If we assume that the runtime of block 1
is a single time unit, the run time of block 2 is 2 time units, and
the runtime of block 3 is 3 time units, then the timing is shown
in Fig. 10(a). We assume for now that the entire system is
resynchronized after each execution of one period of the
PAPS.

32 IEEE lXANSACTJONS ON COMPUTERS. VOL. C-36. NO. I. JANUARY 1987

Fig. 8. An example.

I

(a)

J- 1

0)
Fig. 9. Acyclic precedence graphs for (a) a minimum period (J = 1). and

(b) a double period (J = 2) schedule.

PROC 1 1 7 1

PROC 1 3 I l l 3 1

P R O C ~ r 1 ~ 1 1 2 1 1 1 2 1
(b)

Fig. 9.
Fig. 10. Two schedules generated from the acyclic precedence graphs of

*

A PAPS constructed for J = 2, using the precedence graph
of Fig. 9@), will however, perform better. Such a PAPS is
given by

+ 2 = { l r 1, 2, 1, 2)

and its timing is shown in Fig. lo@). Since both processors
are kept always busy, this schedule is better than the J = 1
schedule, and no better schedule exists.

The problem of constructing a parallel schedule given an
acyclic precedence graph is a familiar one. It is identical with
assembly line problems in operations research, and can be
solved for the optimal schedule, but the solution is combinato-

6

6 >@ 1

5- 3 1

(b)

indicated.
Fig. 1 1 . The two acyclic precedence graphs of Fig. 9 with the levels

rial in complexity. This may not be a problem for small SDF
graphs, and for large one we can use well-studied heuristic
methods, the best being members of a family of “critical
path” methods [38] . An early example, known as the Hu-level
scheduling algorithm [39], closely approximates an optimal
solution for most graphs [40], [38], and is simple. To
implement this method, a level is determined for each node in
the acyclic precedence graph, where the level of a given node
is the worst case of the total of the runtimes of nodes on a path
from the given node to the terminal node of the graph. The
terminal node is a node with no successors. I f there is no
unique terminal node, one can be created with zero runtime.
This node is then considered a successor to all nodes that
otherwise have no successors. Fig. 1 l(a) shows the levels for
the J = 1 precedence graph and Fig. 1 l(b) shows them for the
J = 2 precedence graph, for the example of Fig. 8. Finally,
the Hu-level scheduling algorithm simply schedules available
nodes with the highest level first. When there are more
available nodes with the same highest level than there are
processors, a reasonable heuristic is to schedule the ones with
the longest runtime first. Such an algorithm produces the
schedules shown in Fig. 10, the optimal schedules for the
given precedence graphs.

W e now give a class S algorithm that systematically
constructs an acyclic precedence graph. First we need to
understand how we can determine when the execution of a
particular node is necessary for the invocation of another
node.

Consider a SDF graph with a single arc Q connecting node ‘1
to node a. Assume this arc is part of a SDF graph with
topology matrix r. The number of samples required to run CY j
times is -jr,@ where rOa is the entry in the topology matrix
corresponding to the connection between arc o and the node CY.

Of these samples, 6, are provided as Initial conditions. If
6, 2 -jr,@ then there is no dependence of thejth run of CY on
t). Otherwise, the number of samples required of 11 is -jrO,,
- 6,. Each run of q produces rCm samples, Therefore, thejth

33 LEE ANDMESSERSCXMITT: STATIC SCHEDULING OF SYNCHRONOUS DATA FLOW PROGRAMS

t

f

i

!

run o f a depends on the first d runs of where

(7)

and where the notation r - - - 1 indicates the ceiling function.
Now we give a precise algorithm. We assume that we are

given the smallest integer vector u in the nullspace of T‘ and the
“W’ multiple J, so that we wish to construct an acyclic
prccedeDct graph with the number of repetitions of each node
given by Ju. We will discuss later how we get J. Each time we
add a node to the graph we will increment a counter i , update
the buffer state b(i) , and update the vector q(i) defined in (6).
This latter vector indicates how many instances of each node
have been put into the precedence graph. We let L designate
an arbitrarily ordered list of all nodes in the graph.

INITIALIZATION:
i = O ;

The Mnia Body:
while nodes are runnable {

if (Y is runnable then {

-irm - b,,

rs 1

4(0) = 0;

for each cr E L {

create the (q,(i) + 1)th instance of the node a;
for each input arc u on (Y {

kt 9 be the pidecessor node for arc u;
compute d using (7) ;
if d<O then let d=O;
establish precedence links with the first d instances of v ;

,

1
let u (i) be a vector with zeros except a 1 in position CY;

let b(i + 1) = b (i) + r u (i) ;
let i=i+ 1;

1
1

1
We now turn our attention to obtaining J. In the example in

Figs. 8 through 11, increasing J may improve the schedule.
There are also graphs where no finite J yields an optimal
schedule. However, as J increases, the cost of implementing
the periodic schedule increases because of the memory cost of
storing the schedule. One possible technique is to increase J
until each increase results in negligible improvement in the
schedule. This is an issue deserving further study.

V. LIMITATIONS OF THE M O ~ E L
We rely on experience to claim that most signal processing

systems are adequately described by SDF graphs. However,
the model does not describe all systems of interest. In this
section, we explore some specific limitations.

A. Conditionals
The SDF model permits conditional control flow within a

node, but not on a greater scale. While large-scale conditional
control flow is a mainstay in general-purpose computing, it is
rare in signal processing. Occasionally, however, it is re-
quired, and therefore must be supported by any practical
programming system. Two types on conditional control may
be required, data dependent or state dependent. An example

of a system with data dependent control flow contains a node
that passes its input sample to its first output i f the sample is
less than some threshold, and to its second output otherwise.
Such a node is an asynchronous node because it is not
possible to specify a priori how many samples will be
produced on each output when the node is invoked. Systems
with asynchronous nodes are dealt with in the next subsection.

State dependent control flow refers to such control
strucpres as iteration where the number of iterations does not
depend on data coming into the system from outside. Such
iteration is easily handled by the SDF model. On a small scale,
of course, it may be handled entirely within a node. On a
larger scale, it may be handled by replicating a node as many
times as required. The iteration is then managed by the
scheduler.

B. Asynchronous Graphs
Although rare in signal processing, asynchronous graphs do

exist, That is, we can conceive of nodes where the amount of
data consumed or produced on the input or output paths is data
dependent, so no fixed number can be specified statically. The
simplest solution is to divide a graph into synchronous
subgraphs connected only by asynchronous links. Then these
subgraphs can be scheduled on different processors with an
asynchronous communication protocol enforced in interpro-
cessor communication. Such a protocol is generally readily
available in multiprocessor systems. The asynchronous links
are then handled by the scheduler as i f they were connections
to the outside world (discussed in the next subsection).

Another solution that is not so simple but may sometimes
yield better performance in exceptional circumstances, is to
implement a runtime supervisor, as done in 1171. The runtime
supervisor would only handle the scheduling of entire synchro-
nous subsystems, a much smaller task than scheduling all the
nodes.

C. Connections to the Outside World
The SDF mode1 does not adequately address the possible

real-time nature of connections to the outside world. Arcs into
a SDF graph from the outside world, like those shown in Figs.
1 and 2 , are ignored by the scheduler. It may be desirable to
schedule a node that collects inputs as regularly as possible, to
minimize the amount of buffering required on the inputs. As it
stands now, the model cannot reflect this, so buffering of input
data is likely to be required.

D. Data Dependent Runtimes
In the construction of a PAPS, we assume the runtime of

each node is known a priori. The runtime, however, may be
data dependent. However, in hard d - t i m e applications, it
must also be bounded, independent of the data. The schedule
must perform even with worst case date that causes maximum
runtimes for all nodes. In this situation, there is no disadvan-
tage to scheduling using the worst case runtimes.

VI. CONCLUSION
This paper describes the theory necessary to develop a

signal processing programming methodology that offers pro-

-

34

grammer convenience without squandering computation re-

connections between blocks indicate the flow of data samples,
and the function of each block can be specified using a
conventional programming language. Blocks are executed
whenever input data samples are available. Such a description
is called large grain data flow (LGDF). The advantages of
such a description are numerous. First, it is a natural way to
describe signal processing systems where the blocks are
second order recursive digital filters, FFT butterfly operators,
adaptive filters, and so on. Second, such a description exhibits
much of the available concurrency in a signal processing
algorithm, making multiple processor implementations easier
to achieve. Third, program blocks are modular, and may be
reused in new system designs. Program blocks are viewed as
black boxes with input and output data streams, so reusing a
program block simply means reconnecting it in a new system.
Fourth, multiple sample rates are easily described under the
programming paradigm.

We describe highefficiency techniques for converting a
large grain data flow description of a signal processing system
into a set of ordinary sequential programs that run on parallel
machines (or, as a special case, a single machine). This
conversion is accomplished by a large grain compiler so
called because it does not translate a high-level language into a
low-level language, but rather assembles pieces of code
(written in any language) for sequential or parallel execution.
Most DSP systems are synchronous, meaning that the sample
rate of any given data path, relative to other data paths, is
known at compile time. Large grain data flow graphs with
such sample rate information are called synchronous data flow
graphs. Given sample rate information, techniques are given
(and proven valid) for constructing sequential or parallel
schedules that will execute deterministically, without the
runtime overhead generally associated with data flow. For the
multiprocessor case, the problem of constructing a schedule
that executes with maximum throughput is shown to be
equivalent to a standard operations research problem with well
studied heuristic solutions that closely approximate the opti-
mum. Given these techniques, the benefits of large grain data
flow programming can be extended to those signal processing
applications where performance demands are so severe that
little inefficiency for the sake of programher convenience can
be tolerated.

ACKNOWLEDGMENT
The authors gratefully acknowledge helpful suggestions

from tbc anonymous reviewers, R. Rathbone, and R. Righter.

/ sources. Programs are described as block diagrams where

REFERENCES

111 Signal Processing Peripherol, data sheet for the S28211, AMI, Inc.
[21 TMsfZOfO User's Guide, Texas Instruments, Inc., Dallas, TX, 1983.
[31 T. Tsuda, et ul., "A high-prfonnnnce LSI digital signal processor for

communication," in Proc. ZEEE Zni. ConJ Commun.. June 19,

[41 Digital Signa! Processor, data sheet for the uPD7720 signal processor
interface (SPl), NEC Electronics U.S.A. Inc.

151 S. Magar, D. Essig, E. Caudel, S. Marshall, and R. Peters, "An
NMOS digital signal processor with multiprocessing capability,"
ISSCC 85 Dig. Tech. Popers, Feb. 13, 1985.
R. C. Chapman, Ed., "Digital signal processor," Bell Syst. Tech. J. ,

! 1983.

I61

? - . . . , * - .. - . a

IEEE TRANSACTlONS ON COMPUTERS. VOL. C-36. NO. I . JANUARY 1987

vol. 60. Scpt. 1981.
R. N. Kershaw, et d., "A programmable digital signal processor with
32b floating point arithmetic." ISSCC 85 Dig. Tech. Papers, Feb. 13,
1985.
M. Chase, "A pipelined data flow lrchiteaure for signal processing:
The NEC uPD7261," in VLS! signa/ PrOcesing. New York: IEEE
Press, 1984.
P. M. Kogge. The Architectun of Pipelined Computers. New
York: McGraw-Hill, 1981.
D. 9. Paul, J . A. Feldman, and V. J. Sfemno. "A design study for an
w i l y programmable, high-speed processor with a general-purpose
architecture," Lincoln Lab, Massachusetts Inst. Tcchnol.. Cambridge,
MA, Tech. Note 1980-50, 1980.
W. B. Ackennan, "Data flow languages." Computer, vol. 15. Feh.
1982.
J . 9. Dennis. "Data flow supercomputers." computer. vol. 13. Nov.
1980.
1. Watson and J . Gurd, "A practical data flow computer," Computer.
vol. 15, Feb. 1982.
A. L. Davis, "The architecture and system method of DDMI: A
recursively structured data driven machine," in Proc. Fifrh Ann.
Symp. Comput. Architect.. Apr. 1978. pp. 210-215.
J. Rumbaugh, "A data flow multiprocessor." IEEE Trans. Cornput..
vol. C-26, p. 138. Feb. 1977.
R. G. Babb, "Parallel processing with large grain data flow tech-
niques,'. Computer. vol. 17, July, 1984.
D. G . Messerschmitt, "A tool for structured functional simulation,"
IEEE J. Select. Areas Commun.. vol. SAC-2, Jan. 1984.
L. Snyder, "Parallel programming and the poker programming
environment.'' Computer, vol. 17, July 1984.
Kelly, Lochbaum, and Vyssotsky. "A block diagram compiler." Bell
Syst. Tech. J.. vol. 40, May 1%1.
B. Gold and C. Rader. Digital Processing of Signals. New York:
McGraw-Hill, 1969.
B. Karafin, "The new block diagram compiler for simulation of
sampleddata systems,'' in AFfPS Conf. Proc.. vol. 27, 1%5, pp.

M. Dertmzous. M. Kaliske. and K. Polzen. "On-line simulation of
block-diagram systems." fEEE Trans. Comput.. vol. C-18, Apr.
1%9.
G . Korn, "High-speed block-diagram languages for microprocessors
and minicomputers in instrumentation, control. and simulation."
Cornput. Elec. Eng.. vol. 4. pp. 143-159. 1977.
W. Henke, "MITSYN-An interactive dialogue language for time
signal processing." Res. Lab. Electronics Massachusetts Inst. Tech-
nol., Cambridge, MA. RLE-TM-I, Feb. 1975.
T. Crystal and L. Kulsmd, "Circus," Inst. Defense Anal.. Princeton.
NJ, CRD working paper, Dec. 1974.
TOPSIM Iff-Simulation Package for Communication Sysmns.
user's manual; Rep. Elec. Ens., Politencia di Torino. Italy.
G . Kopec, "The representation of discrete-time signals and systems in
program," B . D . dissertation, Massachusetts Inst. Technol.. Cam-
bridge, MA. May 1980.
C. S. Jhon, G . E. Sobelman. and D. E. Krekelberg. "Silicon
compilation bascd on a data-flow paradigm." IEEE Circ. Devices,
voi. 1. May 1985.
R. M. Karp and R. E. Miller, "Properties of a model for parallel
computations: llcterminacy. termination. queueing." HAM J.. vol.

R. Reiter. "A study of a model for parallel computations." Ph.D.
dissenetion. Univ. Michigan. Ann Arbor. 1967.
J . L. Peterson. "Petri nets," Cornput. Sum.. vol. 9. Sept. 1977.
- , Perri Net Theory ond the Modcling of Systems. Englewood
Cliffs, NJ: Prcntice-Hall. 1981.
T. Agerwala, "Putting Pcm nets to work.'' Computer. p. 85, Dec..
1979.
R. M. Karp and R. E. Miller. "Parallel program schemata." J.
Comput. S-vst. Sci.. vol. 3. no. 2. pp. 147-195. 1969.
F. Commoner and A. W. Holt, "Marked directed graphs." J.
Comput. Sysr. Sci.. vol. 5 , pp. 511-523. 1971.
R. Reiter. "Scheduling parallel computations." J. Ass. Cornput.
Mach., vol. 14. pp. 590-599. 1968.
R. E. Blahut, Fmt Algorithms for Digital Signal Processing.
Reading, MA: Addison-Wesley. 1985.
T. L. Adam. K. M. Chandy, and 1 . R. Dickson. "A comparison of list
schedules for parallel processing systems." Commun. ASS. Cornput.
Mach.. vol. 17. pp. 685-690. Dec.. 1974.

,

!
1

55-61.

14, pp. 1390-1411, NOV. 1966.

i

LEE AND MESSERSCHMITT: STATIC SCHEDULING OF SYNCHRONOUS DATA FLOW PROGRAMS 35

[39] T. C. Hu, “Parallel sequencing and assembly line problems,” Operaf.

I401 W. H. Kohler, “A preliminary evaluation of the critical path method
for scheduling tasks on multiprocessor systems,” IEEE Trans.

Rs., VOI. 9, pp. 841-848. 1%1.

COmpUI.. VOI. C-25, pp. 1235-1238. DcC. 1975.

Edward Asbford Le (S’80-M’M) received the
B.S. degree from Yole University. New Haven,
CT, in 1979, the S.M. degree from the Massachu-
setts Institute of Technology. Cambridge, in 1981,
and the Ph.D. degrce from the University of
California, Berkeley. in 1986.

From 1980 to 1982 he was with Bell Laborato-
ries. as a member of the Technical Staff of the Data
Communications Laboratory, where he did cxplor-
atory work in voiceband data modem techniques
and simultaneous voice and data transmission. Since

July 1986 he has been an Assistant Professor in the Department of Electrical
Engineering and Computer Science. University of California, Berkeley. His
research interests include architectures and software techniques for program-
mable digital signal processors, parallel processing. real-time software,
computer-aided engineering for signal processing and communications, digital
communications, and quantization. He has taught a shon course at the
University of California, Santa Barbara, on telecommunications applications
of progammable digital signal processors, has consulted in industry, and holds
one patent.

Dr. Lee was the recipient of IBM and GE Fellowships and the Samuel
Silver Memorial Scholarship Award. He is a member of Tau Beta Pi.

DSVM C. McsKrschnltt (S’65-M’68-SM’78-
F‘83) received the B.S. degree from the University
of Colorado. Boulder, In 1967. and the M.S and
Ph.D. degrees from the University of Michigan,
Ann Arbor, in 1968 and 1971. respectively.

He is a Professor of Electrical Engineenng and
Computer Sciences at the University of California.
Berkeley. From 1968 to 1977 he was a Member of
the Technical Staff pnd later Supervisor at Bell
Laboratories. Holmdel, NJ, where he did systems
engineering, development, and research on digital

transmission and digital signal processing (panicularly relating to speech
processing). His cumnt research interests include analog and digital signal
processing, adaptive filtering. digital communications (on the subscriber loop
and fiber optics), architecture and software approaches to programmable
digital signal processing, communication network design and protocols. and
computer-aided design of communications and signal processing systems He
has published over 70 papers and has 10 patcnu issued or pending in these
fields. Since 1977 he has also served as a consultant to a number of
companies He has organized and participated in a number of short courses
and seminars devoted to continuing engineering education.

Dr. Messcrschmin is a member of Eta Kappa Nu. Tau Beta Pi. and Sigma
Xi, and has several best papcr awards. He is currently a Senior Editor of IEEE
Communications Magazine, and is past Editor for Transmission Systems of
the IEEE TRANSACTIONS ON COMMUNICATIONS and past member of the
Board of Governors of the IEEE Communications Society.

c

