
Dataflow Process Networks
~ _____ ~~~ ~ _ _ _ _

EDWARD A. LEE, FELLOW, IEEE, AND THOMAS M. PARKS

We review a model of computation used in industrial practice
in signal processing software environments and experimentally in
other contexts. We give this model the name “dataflow process
networks,” and study its formal properties as well as its utility as
a basis for programming language design. Variants of this model
are used in commercial visual programming systems such as SPW
from the Alta Group of Cadence (formerly Comdisco Systems),
COSSAP from Synopsys (formerly Cadis), the DSP Station from
Mentor Graphics, and Hypersignal from Hyperception. They are
also used in research sofhyare such as Khoros from the University
of New Mexico and Ptolemy from the University of California at
Berkeley, among many others.

Dataflow process networks are shown to be a special case of
Kahn process networks, a model of computation where a number
of concurrent processes communicate through unidirectional FIFO
channels, where writes to the channel are nonblocking, and reads
are blocking. In dataflow process networks, each process consists
of repeated “jirings” of a dataflow “actor.” An actor defines a
(often functional) quantum of computation. By dividing processes
into actor jirings, the considerable overhead of context switching
incurred in most implementations of Kahn process networks is
avoided.

We relate dataflow process networks to other dataflow models,
including those used in dataflow machines, such as static dataflow
and the tagged-token model. We also relate dataflow process
networks to functional languages such as Haskell, and show that
modem language concepts such as higher-order functions and
polymorphism can be used effectively in dataflow process net-
works. A number of programming examples using a visual syntax
are given.

I. MOTIVATION

This paper concerns programming methodologies com-
monly called “graphical dataflow programming” that are
used extensively for signal processing and experimentally
for other applications. In this paper, “graphical” means
simply that the program is explicitly specified by a directed

Manuscript received August 29, 1994; revised January 30, 1995. This
work is part of the Ptolemy project, which is supported by the Advanced
Research Projects Agency and the US Air Force under the RASSP
program contract number F33615-93-C-13 17, Semiconductor Research
Corp. project number 94-DC-008, National Science Foundation contract
number MIP-9201605, Office of Naval Technology (via Naval Research
Laboratories), the State of California, and the following companies: Bell
Northern Research, Dolby, Hitachi, Mentor Graphics, Mitsubishi, NEC,
Pacific Bell, Philips, Rockwell, Sony, and Synopsys.

The authors are with the Department of Electrical Engineering and
Computer Sciences, The University of Califomia, Berkeley, CA 94720
USA.

IEEE Log Number 9409997.

graph where the nodes represent computations and the
arcs represent streams of data. The graphs are typically
hierarchical, in that a node in a graph may represent
another directed graph. The nodes in the graph can be either
language primitives or subprograms specified in another
language, such as C or FORTRAN.

It is common in the signal processing community to use
a visual syntax to specify such graphs, in which case the
model is often called “visual dataflow programming.” But
it is by no means essential to use a visual syntax. A few
graphical programming environments allow an arbitrary
mixture of visual and textual specification, both based on
the same language. For example, the Signal [12], [68],
Lustre [46], and Silage [50] languages all have a visual
and a textual syntax, the latter available in the commercial
Mentor Graphics DSP Station as DFL. Other languages
with related semantics, such as Sisal [73], are used primarily
or exclusively with textual syntax. The language Lucid
[92], [96], while primarily used with textual syntax, has
experimental visual forms [101.

Hierarchy in graphical program structure can be viewed
as an alternative to the more usual abstraction of subpro-
grams via procedures, functions, or objects. It is better
suited than any of these to a visual syntax, and also better
suited to signal processing.

Some examples of graphical dataflow programming en-
vironments intended for signal processing (including image
processing) are Khoros, from the University of New Mexico
[84] (now distributed by Khoral Research, Inc.), Ptolemy,
from the University of California at Berkeley [25], the
signal processing worksystem (SPW), from the Alta Group
at Cadence (formerly Comdisco Systems), COSSAP, from
Synopsys (formerly Cadis), and the DSP Station, from
Mentor Graphics (formerly EDC). MATLAB from The
Mathworks, which is popular for signal processing and
other applications, has a visual interface called SIMULINK.
A survey of graphical dataflow languages for other applica-
tions is given by Hills [51]. These software environments all
claim variants of dataflow semantics, but a word of caution
is in order. The term “dataflow” is often used loosely for
semantics that bear little resemblance to those outlined
by Dennis in 1975 [38] or Davis in 1978 [35]. A major
motivation of this paper is to point out a rigorous formal

0018-9219/95$04.00 0 1995 IEEE

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

--
~

173

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

underpinning for dataflow graphical languages, to establish
precisely the relationship between such languages and func-
tional languages, and to show that such languages benefit
significantly from such modem programming concepts as
polymorphism, strong typing, and higher-order functions.
Although it has been rarely exploited in visual dataflow
programming, we also show that such languages can make
effective use of recursion.

Most graphical signal processing environments do not
define a language in any strict sense. In fact, some designers
of such environments advocate minimal semantics [76], ar-
guing that the graphical organization by itself is sufficient to
be useful. The semantics of a program in such environments
is determined by the contents of the graph nodes, either
subgraphs or subprograms. Subprograms are usually spec-
ified in a conventional programming language such as C.
Most such environments, however, including Khoros, SPW,
and COSSAP, take a middle ground, permitting the nodes
in a graph or subgraph to contain arbitrary subprograms,
but defining precise semantics for the interaction between
nodes. Following Halbwachs [47], we call the language
used to define the subprograms in nodes the host language.
Following Jagannathan, we call the language defining the
interaction between nodes the coordination language [56].

Many possibilities have been explored for precise se-
mantics of coordination languages, including for example
the computation graphs of Karp and Miller [61], the syn-
chronous dataflow graphs of Lee and Messerschmitt [66],
the cyclostatic dataflow of Lauwereins et al. [17], [63], the
processing graph method (PGM) of Kaplan et al. [60], gran-
ular lucid [56], and others [3], [28], [33], [56], [94]. Many
of these limit expressiveness in exchange for considerable
advantages such as compile-time predictability.

Graphical programs can be either interpreted or compiled.
It is common in signal processing environments to provide
both options. The output of compilation can be a standard
procedural language, such as C, assembly code for pro-
grammable DSP processors [80], or even specifications of
silicon implementations [37]. Often, considerable effort is
put into optimized compilation (see for example [15], [41],
[811, [881).

11. FORMAL UNDERPINNINGS

In most graphical programming environments, the nodes
of the graph can be viewed as processes that run con-
currently and exchange data over the arcs of the graph.
However, these processes and their interaction are usu-
ally much more constrained than those of CSP [52] or
SCCS [74]. A better (and fortunately much simpler) formal
underpinning is the Kahn process network [%I.

A, Kahn Process Networks
In a process network, concurrent processes communicate

only through one-way FIFO channels with unbounded
capacity. Each channel carries a possibly infinite sequence
(a stream) that we denote X = [xl, x2, . . .I, where each

114

x; is an atomic data object, or token drawn from some
set. Each token is written (produced) exactly once, and
read (consumed) exactly once. Writes to the channels are
nonblocking (they always succeed immediately), but reads
are blocking. This means that a process that attempts to
read from an empty input channel stalls until the buffer has
sufficient tokens to satisfy the read. Lest the reader protest,
we will show that this model of computation does not
actually require either multitasking or parallelism, although
it is certainly capable of exploiting both. It also usually does
not require infinite queues, and indeed can be much more
efficient in its use of memory than comparable methods in
functional languages, as we will see.

A process in the Kahn model is a mapping from one
or more input sequences to one or more output sequences.
The process is usually constrained to be continuous in a
rather technical sense. To develop this idea, we need a
little notation.

Consider a prejix ordering of sequences, where the se-
quence X precedes the sequence Y (written X C Y)
if X is a prefix of (or is equal to) Y. For example,
[x1,x2] 5 [z1,x2,x3]. If X & Y, it is common to say that
X approximates Y, since it provides partial information
about Y. The empty sequence is denoted I (bottom),
and is obviously a prefix of any other sequence. Consider
a (possibly infinite) increasing chain of sequences x =
{ XO, XI, . . .}, where XO L XI Such an increasing
chain of sequences has one or more upper bounds Y, where
Xi L Y for all X; E x. The least upper bound nx
is an upper bound such that for any other upper bound
Y , n x E Y. The least upper bound may be an infinite
sequence.

Let S denote the set of finite and infinite sequences.
This set is a complete partial order (cpo) with the prefix
order defining the ordering. The “complete” simply means
that every increasing chain has a least upper bound in
S. Let S P denote the set of p-tuples of sequences as
in X = {X1,X2, . . . ,Xp} E SP. The set LE S P is
understood to be the set of empty sequences.

Such sets of sequences can be ordered as well; we write
X C X’ if X; X,l for each i ,1 5 i 5 p. A set of
p-tuples of sequences x = { X o , X , , . . . } always has a
greatest lower bound U x (possibly I), but it may or may
not have a least upper bound n x . If it is an increasing
chain, x = { X o , XI,. . .}, where X o X1 L . . ., then it
has a least upper bound, so S P is a cpo for any integer p .

I) A Functional Process F: SP --t Sq maps a set of
input sequences into a set of output sequences. Given an
increasing chain of sets of sequences x, it will map this set
into another set of sequences 9 that may or may not be an
increasing chain. Let nx denote the least upper bound of
the increasing chain x . Then F is said to be continuous if
for all such chains x,nF(x) exists and

This is analogous to the notion of continuity for conven-

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

tional functions, if the least upper bound is interpreted as
a limit, as in

Kahn sketches a proof that networks of continuous pro-
cesses have a more intuitive property called monotonicity
[58]. A process F is monotonic if X g X’ + F (X) C
F (X ‘) . This can be thought of as a form of causality, but
one that does not invoke time. Moreover, in signal process-
ing, it provides a useful abstract analog to causality that
works for multirate discrete-time systems without requiring
the invocation of continuous time. Given an increasing
chain x , a monotonic process will map this set into another
increasing chain @.

For completeness, we now prove Kahn’s claim that a
continuous process is monotonic [58]. To do this, we
prove that if a process is not monotonic, then it cannot be
continuous. If the process F is not monotonic, then there
exist X and X’ where X 5 X’, but F (X) F (X ’) . Let
x = { X O C XI g . . .} be any increasing chain such that
XO = X and nx = X’. Then note that F (n x) = F(X’) .
But this cannot be equal to n F (x) because X E x and
F (X)

A key consequence of these properties is that a process
can be computed iteratively [70]. This means that given
a prefix of the final input sequences, it may be possible
to compute part of the output sequences. In other words,
a monotonic process is nonstrict (its inputs need not be
complete before it can begin computation). In addition, a
continuous process will not wait forever before producing
an output (i.e., it will not wait for completion of an infinite
input sequence).

A network of processes is, in essence, a set of simulta-
neous relations between sequences. If we let X denote all
the sequences in the network, including the outputs, and
I the set of input sequences, then a network of functional
processes can be represented by a mapping F where

F(X’) . This concludes the proof.

x = F (X , I) . (3)

Any X that forms a solution is called a fixed point. Kahn
argues in [58] that continuity of F implies that there will
be exactly one “minimal” fixed point (where minimal is in
the sense of prefix ordering) for any inputs I . Thus we can
get an execution of the network by first setting I =I and
finding the minimal fixed point. Other solutions can then
be found from this one by iterative computation, where the
inputs are gradually extended; this works because of the
monotonic property.

Note that continuity implies monotonicity, but not the
other way around. One process that is monotonic but not
continuous is F : S -+ S given by

(4)
if X is a finite sequence
otherwise. F (X) =

Only two outputs are possible, both finite sequences. To
show that this is monotonic, note that if the sequence X is
infinite and X _C X’, then X = X’, so

Y = F (X) L Y’ = F (X ’) . (5)

If X is finite, then Y = F (X) = [O], which is a prefix
of all possible outputs. To show that it is not continuous,
consider the increasing chain

where each X i has exactly i elements in it. Then nx is
infinite. so

Iterative computation of this function is clearly problematic.
A useful property is that a network of monotonic pro-

cesses itself defines a monotonic process. This property
is valid even for process networks with feedback loops,
as is formally proven using induction by Panagaden and
Shanbhogue [78]. It should not be surprising given the
results so far that one can formally show that networks
of monotonic processes are determinate.

B. Nondeterminism
A useful property in some modern languages is an ability

to express nondeterminism. This can be used to construct
programs that respond to unpredictable sequences of events,
or to build incomplete programs, deferring portions of the
specification until more complete information about the sys-
tem implementation is available. Although this capability
can be extremely valuable, it needs to be balanced against
the observation that for the vast majority of programming
tasks, programmers need determinism. Unfortunately, by al-
lowing too much freedom in the interaction between nodes,
some graphical programming environments can surprise
the user with nondeterminate behavior. Nondeterminate
operations can be a powerful programming tool, but they
should be used only when such a powerful programming
tool is necessary. The problems arise because, as shown
by Apt and Plotkin [4], nondeterminism leads to failures
of continuity.

Taking a Bayesian perspective, a system is random if
the information known about the system and its inputs is
not sufficient to determine its outputs. The semantics of
the programming language may determine what is known,
since some properties of the execution may be unspecified.
However, since most graphical programming environments
do not define complete languages, it is easy (and danger-
ous) to circumvent what semantics there are by using the
host language. In fact, the common principle of avoiding
over specifying programs leaves aspects of the execution
unspecified, and hence opens the door to nondeterminate
behavior. Any behavior that depends on these unspecified
aspects will be nondeterminate.

LEE AND PARKS: DATAFLOW PROCESS NETWORKS 115

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

Fig. 1. This process network does not specify the relative timing
of the Drocessing in nodes B and C. If D is a nondeterminate merge,
it does not specify in which order the results should appear at E.

Nondeterminism can be added to Kahn networks by any
of five methods: 1) allowing processes to test inputs for
emptiness, 2) allowing processes to be internally nonde-
terminate, 3) allowing more than one process to write to
a channel, 4) allowing more than one process to consume
data from a channel, and 5) allowing processes to share
variables. Boussinot argues that 3) can implement 1) and 2),
and gives the semantics of such extended process networks
[191. Shared variables, however, form a particular pitfall
in a coordination language, since they are so easy to
implement using the host language.

For example, in the process network shown in Fig. 1,
nothing in the graph specifies the relative timing of the
processing in nodes B and C. Suppose that nodes B
and C each modify a variable that they share. Then the
order in which they access this variable could certainly
affect the outcome of the program. The problem here
is that the process network semantics, which specify a
communication mechanism, have been circumvented using
a shared variable in the host language. While this may be
a powerful and useful capability, it should be used with
caution, and in particular, it should not surprise the unwary
programmer. Such a capability has been built into the PGM
specification [60] in the form of what are called “graph
variables.” A similar use of shared variables with “peek”
and “poke” nodes appears in [79].

If B and C share a variable as described above, then they
are potentially nonmonotonic. Knowing that F (X o) = YO,
F(X1) = Y1, and X O L XI is not enough to conclude that
YO Y1 because the extended inputs might somehow affect
the order in which the shared variable is accessed. However,
they could be monotonic if, for example, the discipline used
to access the shared variable is equivalent to implementing
a Kahn channel.

As a rather different example, suppose that actor D in
Fig. 1 is a nondeterminate merge (any of the three variants
discussed by Panagaden and Shanbhogue [78]). Its behavior
is that if a data value (a token) is available on either input,
it can immediately move that token to its output. Now, the
output depends on the order in which B and C produce
their outputs, and on the timing with which D examines
its inputs. It has been shown that a nondeterminate merge
must be either unfair or nonmonotonic, and hence not con-
tinuous [21]. Although rather involved technically, unfair
intuitively means that it favors one input or the other.

Arvind and Brock [6] argue that the nondeterminate
merge is practically useful for resource management prob-

116

lems. A resource manager accepts requests for a resource
(e.g., money in a bank balance), arbitrates between multiple
requests, and returns a grant or deny, or some related
data value. It is observed that such a resource manager
can be used to build a memory cell, precisely the type of
resource that functional programming is trying to get away
from. Abramsky [2] points out that the functionality of a
nondeterminate merge is widely used in practice in time-
dependent systems, despite unsatisfactory formal methods
for reasoning about it.

A network with a nondeterminate merge clearly might
be nondeterminate, but it might also be determinate. For
example, suppose that C in Fig. 1 never actually produces
any outputs. Then the nondeterminate merge in D will not
make the network nondeterminate.

The nondeterminate merge does not satisfy one of Kahn’s
conditions for a process network, that reads from channels
be blocking. This constraint makes it impossible for a
process to test an input for the presence of data. Thus if
D is a nondeterminate merge, then the graph in Fig. 1 is
not, strictly speaking, a Kahn process network.

We have been using the term “determinate” loosely.
If we now formally define determinism in the context
of process networks, then the main result of this section
follows immediately. Define the history of a channel to be
the sequence of tokens that have traversed the channel (i.e.,
have been both written and read). A Kahn process network
is said to be determinate if the histories of all the internal
and output channels depend only on the histories of the
input channels. A monotonic process is clearly determinate.
Since a network of monotonic processes is monotonic [78],
then a network of monotonic processes is also determinate.

C. Streams
The graphical programming environments that we are

concerned with are most often used to design or simu-
late real-time signal processing systems. Real-time signal
processing systems are reactive, in that they respond to
a continual stream of stimuli from an environment with
which they cannot synchronize [113. Skillcom [92] argues
that streams and functions on them are a natural way to
model reactive systems. Streams are such a good model for
signals that the signal processing community routinely uses
them even for nonreal-time systems.

Wendelbom and Garsden [97] observe that there are
different ideas in the literature of what a stream is. One
camp defines streams recursively, using cons-like list con-
structors, and usually treats them functionally using lazy
semantics. This view is apparently originally due to Landin
[62]. Lazy semantics ensure that the entire stream need
not be produced before its consumer operates on it. For
example, Burge [26] describes streams as the functional
analog of coroutines that “may be considered to be a
particular method of representing a list in which the creation
of each list element is delayed until it is actually needed.”
As another example, in Scheme, streams are typically
implemented as a two-element cell where one element has
the value of the head of the stream and the other has

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5, MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

the procedure that computes the rest of the stream [l].
Recursive operations on streams require use of a special
“delay” operator that defers the recursive call until access
to the “cdr” of the stream element is attempted. This ad hoc
mechanism makes recursive streams possible in a language
without lazy semantics. Another mechanism that avoids
laziness is the so-called I-structures used in some dataflow
languages [9].

Another camp sees streams as channels, just like the
channels in a Kahn process network. A channel is not func-
tional, because it is modified by appending new elements
to it. Kahn and MacQueen outline in [59] a demand-driven
multitasking mechanism for implementing such channels.
Ida and Tanaka argue for the channel model for streams,
observing that it algorithmically transforms programs from
a recursive to an iterative form [S I . Dennis, by contrast,
argues for the recursive-cons representation of streams in
Sisal 2 for program representation, but suggests translating
them into nonrecursive dataflow implementations using the
channel model [40]. Franco et al. also argue in [43] for
using the channel model, with a demand-driven execution
style, and propose an implementation in Scheme. The
channels are implemented using a “call with current contin-
uation” mechanism in Scheme. This mechanism essentially
supports process suspension and resumption, although the
authors admit that at the time of their writing, no Scheme
implementation supported this without the considerable
expense of a control-stack copy.

A unique approach implemented in the language Silage
[50] blends the benefits of a declarative style with the
simplicity of the channel model. In Silage, a symbol “x”
represents an infinite stream. The language has the notion
of a global cycle, and a simple reference to a symbol “5”

can be thought of as referring to the “current value” of
the stream x. An implicit infinite iteration surrounds every
program. This language is being used successfully for both
software and hardware synthesis in the Mentor Graphics
DSP Station, the Cathedral project at IMEC [37], and in the
Hyper project at University of California at Berkeley 1831.
The use of a global cycle in a process network context has
also been studied by Boussinot [20], who observes that
it permits suspension and interruption of processes in a
predictable way.

A more general approach is to associate with each stream
a “clock,” as done in Lustre [46] and Signal [12]. A clock
is a logical signal that defines the alignment of tokens in
different streams. For example, one could have a stream y
where only every second token in y aligns with a token in
another stream x. Although both streams may be infinite,
one can view x as having twice as many tokens as y.
A powerful algebraic methodology has been developed
to reason about relationships between clocks, particularly
for the Signal language [12], [68]. Caspi has described a
preliminary attempt to abstract the notion of clocks so that
it applies to process networks [29]. He has applied this
abstraction to the Lucid language to solve certain problems
like determining whether the program executes in bounded
memory [30]. A different solution to the same problem

is given by Buck [22], who uses the so-called balance
equations, described below in Section 11-E-3.

The difference between the two models for streams
need not be important in practice, except that the choice
of model may lead to unfortunate choices in language
design. We prefer the channel model for a number of
reasons. Stylistically, unlike the recursive-cons model, it
puts equal emphasis on destruction (consumption of data
from the stream) as construction (production of data onto
the stream). Moreover, it does not suggest costly lazy
evaluation. While a demand-driven style of control is
popular among theoreticians, no established signal process-
ing programming environment uses it, partly because of
the cost, and partly because the same benefits (avoiding
unnecessary computation) can usually be obtained more
efficiently through compile-time analysis [22], [66]. The
same objectives are addressed by path analysis, used to
reduce the cost of lazy evaluation in functional languages
through compile-time analysis [181.

In the channel model for streams, unlike the streams in
the synchronous languages Silage, Lustre, and Signal, there
is no concept of simultaneity of tokens (tokens in different
streams lining up). Instead, tokens are queued using a FIFO
discipline, as done in early dataflow schema [36].

It is especially important in signal processing applications
to recognize that streams can carry truly vast amounts
of data. A real-time digital audio stream, for instance,
might carry 44 100 samples per second per channel, and
might run for hours. Video sequences carry much more.
Viewing a stream as a conventional data structure, therefore,
gets troublesome quickly. It may require storing forever
all of the data that ever enters the stream. Any practical
implementation must instead store only a sliding window
into the stream, preferably a small window. But just by
providing a construct for random access of elements of a
stream, for example, the language designer can make it
difficult or impossible for a compiler to bound the size of
the window.

A useful stream model in this context must be as good
at losing data (and recycling its memory) as it is at storing
data. The prefix-ordered sequences carried by the channels
in the Kahn process networks are an excellent model for
streams because the blocking reads remove data from the
stream. However, special care is still required if the memory
requirements of the channels in a network are to remain
bounded. This problem will be elaborated below.

In [85]-[87], Reekie et al. consider the problem of
supporting streams in the functional programming language
Haskell [53]. They propose some interesting extensions
to the language, and motivate them with a convincing
discussion of the information needed by a compiler to
efficiently implement streams. To do this, they use the Kahn
process network model for Haskell programs, and classify
them into static and dynamic. In static networks, all streams
are infinite. In dynamic networks, streams can come and
go, and hence the structure of the network can change.
Mechanisms for dealing with these two types of networks
are different. Static networks are much more common in

LEE AND PARKS: DATAFLOW PROCESS NETWORKS I l l

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

signal processing, and fortunately much easier to implement
efficiently, although we will consider both types below.

For efficiency, Reekie et al. wish to evaluate the process
networks eagerly, rather than lazily as normally required
by Haskell [87]. They propose eager evaluation whenever
strictness analysis [54] reveals that a stream is “head strict,”
meaning that every element in the stream will be evaluated.
This is similar to the optimization embodied in the Eazyflow
execution model for dataflow graphs, which combines data-
driven and demand-driven evaluation of operator nets by
partitioning the net into subnets that can be evaluated
eagerly without causing any wasteful computation [57].
This, in effect, translates the recursive-cons view of streams
into a channel view.

Reekie et al. also point out that if analysis reveals that
a subgraph is synchronous (in the sense of “synchronous
dataflow” [66], [67]), then very efficient evaluation is
possible. While this latter observation has been known for
some time in signal processing circles, putting it into the
context of functional programming has been a valuable
contribution. To clarify this point, we can establish a clear
relationship between dataflow, functional languages, and
Kahn process networks.

Streams can be generalized to higher dimensionality, as
done in Lucid [92] and Ptolemy [31], [65]. This, however,
is beyond the scope of this paper.

D. Datajlow, Functional Languages, and Process Networks
A dataflow actor, when it fires, maps input tokens into

output tokens. Thus an actor, applied to one or more
streams, will fire repeatedly. A set of Bring rules specify
when an actor can fire. Specifically, these rules dictate
precisely what tokens must be available at the inputs for the
actor to fire. A firing consumes input tokens and produces
output tokens. A sequence of such firings is a particular
type of Kahn process that we call a dataflow process. A
network of such processes is called a dataflow process
network.

More specialized dataflow models, such as Dennis’ static
dataflow [39] or synchronous dataflow [66], [67] can be
described in terms of dataflow processes. The models used
by most signal processing environments mentioned above
can also be described in terms of dataflow processes. The
tagged token model of Arvind and Gostelow [7], [8] is
related, but not identical, as we will show. Signal [12]
and Lustre [46], which are called “synchronous dataflow
languages,” do not form dataflow processes at all because
they lack the FIFO queues of the communication channels.
They can, however, be implemented using dataflow process
networks, with certain benefits to parallel implementation
1691.

A sufficient condition for a dataflow process to be con-
tinuous, as defined in (l), is that each actor firing be
functional, and that the set of firing rules be sequential.
Here, “functional” means that an actor firing lacks side
effects and that the output tokens are purely a function of
the input tokens consumed in that firing. This condition
is stronger than the Kahn condition that a process be

778

functional, meaning that the output sequences are a function
of the input sequences [58] . With Kahn’s condition, actors
can have and manipulate state. We later relax this constraint
so that actors can have and manipulate state as well.
“Sequential” means that the firing rules can be tested
in a predefined order using only blocking reads. A little
notation will help make this rather technical definition
precise.

I) Firing Rules: An actor with p 2 1 input streams can
have N firing rules

The actor can fire if and only if one or more of the firing
rules is satisfied, where each firing rule constitutes a set of
pattems, one for each of p inputs,

A pattern Ri,j is a (finite) sequence. For firing rule i to
be satisfied, each pattern Ri,j must form a prefix of the
sequence of unconsumed tokens at input j. An actor with
p = 0 input streams is always enabled.

For some firing rules, some patterns might be empty
lists, Ri,j =I. This means that any available sequence at
input j is acceptable, because I_C X for any sequence
X. In particular, it does not mean that input j must be
empty.

To accommodate the usual dataflow firing rules, we need
a generalization of the prefix ordering algebra. The symbol
“*” will denote a token wildcard. Thus the sequence [*]
is a prefix of any sequence with at least one token. The
sequence [*, *] is a prefix of any sequence with at least
two tokens. The only sequence that is a prefix of [*I is I,
however. Notice therefore, that the statement [*I L X is
not saying that any one-token sequence is a prefix of X.
All it says is that X has at least one token.

Let Aj, for j = 1 ,. . . , p, denote the sequence of available
unconsumed tokens on the j th input. Then the firing rule
R, is enabled if

We can write condition (10) using the partial order on sets
of sequences

where A = {A1,A2,...,AP} .
For many actors, the firing rules are very simple. Con-

sider an adder with two inputs. It has only one firing
rule, R1 = {[*I, [*I}, meaning that each of the two inputs
must have at least one token. More generally, synchronous
dataflow actors [66], [67], always have a single firing rule,
and each pattern in the firing rule is of the form [*, *, . . . , *],
with some fixed number of wildcards. In other words, an

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

2 FALSE DATA

(a) (b)
Fig. 2. The select and nondeterminate merge actors each combine
two data streams into one, but the select actor uses a Boolean
control signal to determine how to accomplish the merge.

(a) (b)
Fig. 3. Illustration that the firing rules of the nondeterminate
merge are not sequential. A blocking read of either input will cause
one of these two networks to deadlock inappropriately.

SDF actor is enabled by a fixed number of tokens at each
input.’

A more interesting actor is the select actor in Fig. 2(a),
which has the firing rules { R I , Rz}, where

where T and F match true and false-valued Booleans,
respectively. The behavior of this actor is to read a Boolean
control input, then read a token from the specified data
input and copy that token to the output. The firing rules
are sequential, in that a blocking read of the control input,
followed by a blocking read of the appropriate data input,
will invoke the appropriate firing rule.

The nondeterminate merge with two inputs, also shown
in Fig. 2(b), also has two firing rules

These rules are not sequential. A blocking read of either
input fails to produce the desired behavior, as illustrated
in Fig. 3. In Fig. 3(a), a blocking read of the top input
will never unblock. In Fig. 3(b), a blocking read of the
bottom input will never unblock. In both cases, the behavior
is incorrect. Note that with any correct implementation
of the nondeterminate merge, both networks in Fig. 3 are
nondeterminate. It is unspecified how many times a given
token will circulate around the feedback loop between
arrivals of tokens from the left.

‘An SDF actor also produces a fixed number of tokens when it fires,
but this is not captured in the firing rules. An interesting variant, called
cyclo-static dataflow [17], permits the number of tokens produced and
consumed to vary cyclically. Modeling this with firing rules requires a
straightforward generalization. We will give this generalization below in
Section 111-B-2.

2) Identifying Sequential Firing Rules: In general, a set
of firing rules is sequential if the following procedure does
not fail:2

1) Find an input j such that [*I Ri,j for all i =
1, . . . , N . That is, find an input such that all the firing
rules require at least one token from that input. If no
such input exists, fail.

2) For the choice of input j, divide the firing rules into
subsets, one for each specific token value mentioned
in the first position of Ri,j for any i = 1, . . . , N . If
Ri,j = [*,.. .I, then the firing rule Ri should appear
in all such subsets.

3) Remove the first element of Ri,j for all i = 1, . . . , N .
4) If all subsets have empty firing rules, then succeed.

Otherwise, repeat these four steps for any subset with
any nonempty firing rules.

The first step identifies an input where a token is required
by all firing rules. The idea of the second step is that reading
a token from that particular input will often at least partially
determine which firing rules apply. Observing its value,
therefore, will often reduce the size of the set of applicable
firing rules.

Consider the select actor in Fig. 2. The above steps
become:

1) j = 3.
2) The firing rules divide into two sets, { R I } and {Rz} ,

each with only one rule.
3) The new firing rules become RI = {[*],I, I} in

the first subset and R2 = {I, [*I, I} in the second
subset.

4) The procedure repeats trivially for each subset, and
in step 3, the modified firing rules become empty.

For the nondeterminate merge, the procedure fails immedi-
ately, in the first application of step 1.

3) Relationship to Higher-Order Functions: Constraining
the actors to be functional makes a dataflow process roughly
equivalent to the function “maps” used by Burge [26] and
Reekie [S I . It is similar to the “map” function in Haskell
and the “mapcar” function in Lisp, except that it introduces
the notion of consuming the tokens that match the firing
rule, and hence easily deals with infinite streams.

All of these variants of “map” are higher-orderfunctions,
in that they take functions as arguments and return functions
[71]. We define F = m a p (f) , where f: SP + Sq is a
function, to return a function F : SP --f Sq that applies f to
each element of a stream when one of a set of firing rules

’In (8). we imply that the number of firing rules is finite. J. Reekie has
pointed out in a personal communication that if we relax this constraint,
then for some sequential firing rules corresponding to determinate actors,
this procedure will not fail, but will also never terminate. Thus as a
practical matter, we may need the additional restruction that the procedure
terminate. His example is an actor with two inputs, one of which is an
integer specifying the number of tokens to consume from the other. The
firing rules take the form { { [O] , I}, {[I], [*I}, { [2], [*, *I}, . . .}.

LEE AND PARKS: DATAFLOW PROCESS NETWORKS 119

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

is enabled. More precisely, F = m a p (f) , where

F (R . X) = f (R) : F (X) (16)

and R is any firing rule of f . The colon “:” indicates
concatenation of sequences. That is, if X and Y are
each in SP, then X : Y is a new set of sequences formed
by appending each sequence in Y to the end of the
corresponding sequence in X. Following the notation in
Haskell, (16) defines the sequences returned by F when
the input sequences have R as a prefix.

Notice that definition (16) is recursive. The recursion
terminates when the argument to F no longer has any firing
rule as a prefix.

The function f will typically require only some finite
number of tokens on each input, while the function returned
by m u p (f) can take infinite stream arguments. Thus F =
m a p (f) is a dataflow process, where each firing consists
of one application of the dataflow actor function f.

4) A Nondeteninate Example: An example that com-
bines many of the points made so far can be constructed
using the nondeterminate operator introduced by McCarthy
[721 and used by Hudak [531:

f l (2 ,L) = x
fl(LY) = Y
fl (z, y) = z or y chosen randomly

These three declarations define the output of the f l function
under three firing rules: R1 = {[*I, I} ,Rz = {I, [*I} and
R3 = {[*I, [*I}. A dataflow process could be constructed
by repeatedly firing this function on stream inputs.

McCarthy points out that the expression fl(1, 2)+fl (1,
2) could take on the value 3, and uses this to argue that
nondeterminism implies a loss of referential transparency .3

However, when used to create a dataflow process, this
example actually mixes two distinct causes for nonde-
terminism. Random behavior in an actor acting alone is
sufficient to lose determinacy and referential transparency.
The simpler definition:

fz(x, y) = z or y chosen randomly

is sufficient for fz(1, 2)+fz(1, 2) to take on the value 3. If
the choice of random number is made using a random num-
ber generator, then normally the random number generator
has state, initialized by a seed. Perhaps the seed should be
shown explicitly as an argument to the function:

f3(z, y, s) = x or y chosen by generating
a random number from seed s.

3 A basic notion used in the X calculus [32], referential transparency
means that any two identical expressions have identical values. If
f1(1,2)+f1(1,2)= 3, then clearly the two instances of fi(1.2) cannot
have taken on the same value.

Suddenly, we regain referential transparency and determi-
nacy. It would not be possible for fd1 , 2, 3)+f3(1, 2,
3) to equal 3, for example. Without giving the seed as an
argument, f3 is not functional.

Consider the simplified definition:

This definition has no random numbers in it, but in a
dataflow process network, it is still possible for f4(l, 2)
+f4(1, 2) to equal 3. The firing rules are not sequential.
The output depends on how the choice between firing rules
is made, something not specified by the language semantics.

We can show directly that an attempt to construct a
dataflow process from the function f4 yields a process
that is not monotonic, and hence is not continuous. Let
F4 = map(f4) represent the dataflow process made with
actor function f4. It is easy to show that the process is not
monotonic. In fact, it is not even a function, since for some
inputs, it can take on more than one possible output value.
Consider F4 (XI, Yl) and F4 (Xa , YZ) where

X1 = [l],Xz = [l, 11, and Y1 =I ,Yz = [2] (17)

where Y1 is the empty sequence. Clearly, XI C XZ and
Y1 C Yz. However,

We get F4(XlrY1) = [l], while F4(xZ,YZ) can take on
any of the following possible values: [2, 11, [l , 21, [l , 2, 11,
[l , 1, 21, or [2, 1, 13. This is clearly nondeterminate (and
nonfunctional). Only three of the five possible outcomes
satisfy the monotonicity constraint. And these choose rather
arbitrarily from among the firing rules. If we were to make
a policy of these choices, it would be easy to construct
other example inputs that would violate monotonicity.

One might argue for a different interpretation of the firing
rules, in which a I in a firing rule pattern matches only an
empty input (no tokens available). Under this interpretation,
we get F4(Xl,Yl) = [l] and F4(Xz,Yz) = [2,1]. While
not monotonic, this might appear to be determinate (recall
that we’ve only argued that continuity is sufficient for de-
terminacy, not that it is necessary). But further examination
reveals that we have made some implicit assumptions about
synchronization between the input streams. To see this,
consider the prefix ordered sequences

X1 = [I], X2 = [I], X3 = [l, 11, and
Y1 = I ,Yz = [2],Y3 = [2]. (19)

It would seem reasonable to argue that these are in fact
exactly the same sequences as in (17). We are just looking
at the value of the sequences more often. However, under

780 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

sequential =)continuous monotonic

monotonic X E Y F 0 E F CY).

Fig. 4. A variant of McCarthy’s ambiguous function embedded
in a dataflow process network.

the same implicit synchronization assumptions, the output
is different:

These outputs are not prefix ordered, as they would be for
a monotonic process.

This issue becomes much clearer if one considers a more
complete dataflow process network, as shown in Fig. 4. The
dataflow processes A and B have no inputs, so their firing
rule is simple; they are always enabled. They produce at
their outputs the streams X and Y. The problems addressed
above, in this context, refer to the relative timing of token
production at A and B compared to the timing of the firings
of the F4 = map(f4) process. In dataflow process network
semantics, this timing is not specified.

5) Firing Rules and Template Matching: Some functional
languages use template matching in function definitions the
way we have been using firing rules. Consider the following
Haskell example (with slightly simplified syntax):

fac 0 = 1
fac n = n x fac(n - 1).

This defines a factorial function. If the argument is 0, the
result is 1. If the argument is n, the result is n x fac(n - 1).
These are not ambiguous because the semantics of Haskell
gives priority to the first template, removing any ambiguity.
The second template is really a shorthand for “any n except
0.” These two templates, therefore, viewed as firing rules,
are naturally sequential, since each rule consumes one token
and implicitly states: “use me if no previously declared
firing rule applies and the inputs match my pattern.” Of
course, this does not remove ambiguities due to function
arguments where no data is needed. (Haskell has lazy
semantics, defemng the evaluation of function arguments
until the data is needed, so a function may be invoked that
will decide it does not need data from one its arguments).

Embedding this example, the factorial function, in a
dataflow process network introduces new and interesting
problems. Consider F (X) , where F = map (fac) and X is
a stream. Each firing of the actor can trigger the creation of
new streams, so this process network is not static. We will

Fig. 5.
ships for the function F: SP -+ Sq.

Summary of function class definitions and their relation-

consider more interesting recursive examples than this in
considerable detail below, so we defer further discussion.

6) Sequential Processes: Vuillemin [95] has given a
mathematical definition of sequential functions that is
entirely consistent with the notion given here of sequential
firing rules. Both our actor functions and the processes
made from them are sequential in his sense. The definition
and its relationship to continuity and monotonicity is
summarized in Fig. 5.

A process F : SP -+ SQ is sequential if it is continuous
and if for any X = {XI , X2, . . . , X P } , there exists an
i , 1 5 i 5 p , such that for any X’ where X 5 X’
and Xi = X;, F (X) = F (X ’) . This is intuitively easy
to understand in the context of process networks if one
considers X’ to be simply a more evolved state of the
input streams than X. In other words, X’ extends the
streams in X, except the one stream Xi , which is not
extended. The process is sequential because it needs for the
stream X ; to be extended before it can extend any output
stream. Moreover, for any X, there is an i such that the
process needs Xi to be extended before it can extend the
output. Notice that this definition of sequentiality can be
applied just as easily to an actor function f as to a process
F = m u p (f) . Given this, the following theorem is obvious.

Theorem: If an actor function f has sequential firing
rules, then the process F = m a p (f) is sequential.

The question naturally arises whether there are nonse-
quential functions that are continuous (and thus guarantee
determinacy). In fact, a rather trivial example of such a
function is the identity function with two inputs,

It is easy to see that it is not sequential (extending either
input extends the output). It is also straightforward to prove
that it is continuous. In order to define F = m a p (f) , we
need a set of firing rules. A reasonable set of firing rules for
the identity function is R1 = { [*I, I} and Rz = {I, [*I}.
Even though these are the same firing rules used earlier for
the nondeterminate merge, the identity function is clearly
determinate. In this case f is continuous and F = map(f)
is also continuous.

The question naturally arises whether the above theorem
extends to continuous functions. That is, given that f
is continuous, can we conclude that F = m a p (f) is
continuous? The answer is no, as demonstrated by the

LEE AND PARKS: DATAFLOW PROCESS NETWORKS 781

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

following counter example. Let Y be some nonempty finite
sequence. Define

f (X , , X ,) = { Y : X 1 , Y : X2} .

The colon “:” again means concatenation of two sequences.
This function is similar to the identity function, with the
simple difference that it prepends a prefix to each of two
input sequences. It is easy to show that this is continuous.
However, F = map(f) is not continuous if we use the
firing rules we defined for the identity function. In fact,
it is not monotonic, nor even functional. That is, for any
input sequences X I and X Z , there is more than one possible
output. This is because the function f produces a copy
of the prefix on both outputs when it fires. On the output
streams there can be any number of copies of the sequence
Y inserted between tokens from the corresponding input
stream.

Berry [14] has defined a class of functions called stable
functions that may not be sequential but are always contin-
uous. This class is not as broad as the class of continuous
functions, but in certain circumstances, is easier to work
with. But this is beyond the scope of this paper.

7) The Relationship to Kahn Process Networks: Dataflow
process networks with sequential firing rules and functional
actors are a special case of Kahn process networks. They
construct a process F as a sequence m a p (f) of atomic
actor invocations f . Instead of suspending a process on a
blocking read or nonblocking write, processes can be freely
interleaved by a scheduler, which determines the sequence
of actor firings. Since the actors are functional, no state
needs to be stored when one actor terminates and another
fires. The biggest advantage, therefore, is that the context
switch overhead of process suspension and resumption is
entirely avoided.

There is still the cost of scheduling. However, for most
programs, this cost can be entirely shifted to the compiler
[66], [22]. While it is impossible to always shift all costs to
the compiler [22], large clusters within a process network
can be scheduled at compile time, greatly reducing the
number of dataflow processes that must be dynamically
scheduled. As a consequence of this efficiency, much finer
granularity is practical, with processes often being as simple
as to just add two streams. We will now consider execution
models in more detail.

E. Execution Models
Given a dataflow process network, a surprising variety

of execution models can be associated with it. This variety
is due, in no small part, to the fact that a dataflow process
network does not over specify an algorithm the way non-
declarative semantics do. Execution models have different
strengths and weaknesses, and there is, to date, no clear
winner.

I) Concurrent Processes: Kahn and MacQueen propose
an implementation of Kahn process networks using multi-
tasking with a primarily demand-driven style [59]. A single

“driver” process (one with no outputs) demands inputs.
When it suspends due to an input being unavailable, the
input channel is marked “hungry” and the source process
is activated. It may in tum suspend, if its inputs are not
available. Any process that issues a “put” command to
a hungry channel will be suspended and the destination
process restarted where it left off, thus injecting also a
data-driven phase to the computation. If a “get” operation
suspends a process, and the source process is already
suspended waiting for an input, then deadlock has been
detected.

In the Kahn and MacQueen schema, configuration of the
network on the fly is allowed. This allows for recursive
definition of processes. Recursive definition of streams
(data) is also permitted in the form of directed loops in
the process graph.

The repeated task suspension and resumption in this
style of execution is relatively expensive, since it requires
a context switch. It suggests that the granularity of the
processes should be relatively large. For dataflow process
networks, the cost can be much lower than in the general
case, and hence the granularity can be smaller.

2) Dynamic Scheduling of Dataflow Process Networks:
Dataflow process networks have other natural execution
models due to the breakdown of a process into a sequence
of actor firings. A firing of an actor provides a different
quantum of execution than a process that suspends on
blocking reads. Using this quantum avoids the complexities
of task management (context switching and scheduling) that
are implied by Kahn and MacQueen [59] and explicitly
described by Franco et al. [43]. Instead of context
switching, dataflow process networks are executed by
scheduling the actor firings. This scheduling can be done
at compile time or at run time, and in the latter case, can
be done by hardware or by software.

The most widely known execution models for dataflow
process networks have emerged from research into com-
puter architectures for executing dataflow graphs [5], [93].
This association may be unfortunate, since the performance
of such architectures has yet to prove competitive [49]. In
such architectures, actors are fine-grained, and scheduling is
done by hardware. Although there have been some attempts
to apply these architectures to signal processing [77], the
widely used dataflow programming environments for signal
processing have nothing to do with dataflow architectures.

Some signal processing environments, for example COS-
SAP from Cadis (now Synopsys) and the dynamic dataflow
domain in Ptolemy, use a run-time scheduler implemented
in software. This performs essentially the same function
performed in hardware by dataflow machines, but is usually
used with actors that have larger granularity. The scheduler
tracks the availability of tokens on the inputs to the actors,
and fires actors that are enabled.

3) Static Scheduling of Dataflow Process Networks: For
many signal processing applications, the firing sequence
can be determined statically (at compile-time). The class
of dataflow process networks for which this is always
possible is called synchronous dataflow [61], [66], [67].

782 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

In synchronous dataflow, the solution to a set of balance
equations relating the production and consumption of to-
kens gives the relative firing rates of the actors. These
relative firing rates combined with simple precedence anal-
ysis allows for the static construction of periodic schedules.
Synchronous dataflow is used in COSSAP (for code gener-
ation, not for simulation), in the multirate version of SPW
from the Alta Group of Cadence (formerly Comdisco), and
in several domains in Ptolemy.

Balance equation methods have recently been extended
to cover most dynamic dataflow graphs [22], [64] and have
been implement in the Boolean dataflow and CGC (code
generation in C) domains in Ptolemy. However, Buck has
shown that the addition of only the select actor of Fig. 2
and a switch actor (which routes input data tokens to one
of two outputs under the control of a Boolean input) to
the synchronous dataflow model is sufficient to make it
Turing complete [22]. This means that one can implement
a universal Turing machine using this programming model.
It also means that many critical questions become unde-
cidable. For this reason, Buck’s methods cannot statically
schedule all dynamic dataflow graphs. For Turing complete
dataflow models, it is still necessary for some programs to
have some responsibilities deferred to a run-time scheduler.

4) Compilation of Datajlow Graphs: The static schedules
that emerge from Buck’s Boolean dataflow scheduler are
finite sequential representations of an infinite execution of
a dataflow graph. Given such a schedule, the dataflow graph
can be translated into a lean sequential program, a process
we normally call compilation. (Parallel implementations are
briefly discussed below in Section 111-1).

In addition to scheduling, efficient compilation requires
that memory allocation be done statically, if possible.
Despite the Kahn process network model of infinite FIFO
channels, it is usually possible to construct bounded
memory implementations with statically allocated memory
for the channels [22] . Unfortunately, since the Boolean
dataflow model is Turing complete, it is undecidable
whether an arbitrary dataflow graph can be executed in
bounded memory, so static memory allocation for the
channels is not always possible. But for most programs,
it is, so the cost of dynamically allocated memory for the
channels only needs to be incurred when the static analysis
techniques break down.

To address the same problems, Benveniste et al., argue
in [131 for the so-called synchronous approach to dataflow,
where clocks are associated with tokens carried by the
channels. A major part of the motivation is to guarantee
bounded memory. There are other compelling advantages
to this approach as well. The clocks impose a total order
on tokens in the system, compared to the partial order
specified in a process network. This makes it easy to
implement, for example, a determinate merge operation.
Viewed another way, actors can test their inputs for ab-
sence of data, something that would cause nondeterminism
in process networks. However, the synchronous approach
alone does not make the critical questions decidable. So
further restrictions on a language are required if all pro-

grams are to be “executable” [13]. Moreover, one could
argue that the total ordering in a synchronous specification
is in fact an overspecification, reducing the implementation
options. However, this can be at least partially ameliorated
by desynchronizing the implementation, as explored by
Mafe’is and Le Guemic [69].

5) The Tagged-Token Model: An execution model devel-
oped by Arvind and Gostelow [7], [SI generalizes the
dataflow process network model. In this model, each token
has a tag associated with it, and firing of actors is enabled
when inputs with matching tags are available. Outputs to a
given stream are produced with distinct tags. An immediate
consequence is that there is no need for a FIFO discipline
in the channels. The tags keep track of the ordering. More
importantly, there is no need for the tokens to be produced
or consumed in order. The possibility for out-of-order
execution allows us to construct dataflow graphs that would
deadlock under the FIFO scheme but not under the tagged-
token scheme. We will consider a detailed example below,
after developing a usable language.

111. EXPERIMENTING WITH LANGUAGE DESIGN

The dataflow process network model, as defined so
far, provides a framework within which we can define a
language. To define a complete language, we would need
to specify a set of primitive actors. Instead, we will outline a
coordination language, leaving the design of the primitives
somewhat arbitrary. There are often compelling reasons to
leave the primitives unspecified. Many graphical dataflow
environments rely on a host language for specification of
these primitives, and allow arbitrary granularity and user
extensibility. Depending on the design of these primitives,
the language may or may not be functional, may or may
not be able to express nondeterminism, and may or may
not be as expressive other languages.

Granular Lucid, for example, is a coordination language
with the semantics of Lucid [56]. Coordination languages
with dataflow semantics are described by Suhler et al. [94],
Gifford and Lucassen [44], Onanian [77], Printz [82], and
Rasure and Williams [84]. Contrast these to the approach
of Reekie [85] and the DSP Station from Mentor Graphics
[41], where new actors are defined in a language with
semantics identical to those of the visual language. There
are compelling advantages to that approach, in that all
compiler optimizations are available down to the level of
the host language primitives. But the hybrid approach, in
which the host language has imperative semantics, gives
the user more flexibility. Since our purpose is to explore
the dataflow process network model fully, this flexibility is
essential.

A. The Ptolemy System
To make the discussion concrete, we will use the Ptolemy

software environment [25] to illustrate some of the trade-
offs. It is well suited for several reasons:

LEE AND PARKS: DATAFLOW PROCESS NETWORKS 783

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

It has both a visual (“block diagram”) and a textual
interface; the visual interface is similar in principle to
many of those used in other signal processing software
environments.
It does not have any model of computation built
into the kernel, and hence can be used to experiment
with different models of computation, and interactions
between the models.
Three dataflow process network “domains” have al-
ready been built in Ptolemy, precisely to carry out
such experiments.
The set of primitive actors is easily extended (using
C++ as the host language). This gives us more than
enough freedom to test the limits of the dataflow
process network model of computation.

A domain in Ptolemy is a user-defined subsystem imple-
menting a particular model of computation. Three Ptolemy
domains have been constructed with dataflow semantics,
and one with more general process network semantics. The
synchronous datajow domain (SDF) [661, [67] is partic-
ularly well suited to signal processing [24], where low-
overhead execution is imperative. The SDF domain makes
all scheduling decisions at compile time. The dynamic
dataflow domain (DDF) makes all scheduling decisions
at run-time, and is therefore much more flexible. The
Boolean dataflow domain (BDF) attempts to make sched-
uling decisions for dynamic dataflow graphs at compile
time, using the so-called token-flow formalism [22], [MI.
It resorts to run-time scheduling only when its analysis
techniques break down. The process network domain (PN)
uses a multitasking kernel to manage process suspension
and resumption. It permits nonblocking reads, and hence
allows nondeterminism.

Ptolemy supports two distinct execution models, inter-
preted and compiled. Compilation can be implemented
using a simple code generation mechanism, allowing for
quick experimentation, or it can be implemented using more
sophisticated transformation and optimization techniques.
Such optimization may require more knowledge about the
primitives than the simple code generation mechanism,
which simply stitches together code fragments defining each
actor [go].

B. Visual Hierarchy-The Analog to
Procedural Abstraction

In keeping with the majority of signal processing pro-
gramming environments, we will use a visual syntax for the
interconnection of dataflow processes. In fact, in Ptolemy,
a program is not entirely visual, since the actors and data
structures are defined textually, using C++. Only the gross
program structure is described visually. The visual equiva-
lent of an expression, of course, is a subgraph. Subgraphs
can be encapsulated into a single node, thus forming a
larger dataflow process by composing smaller ones. This is
analogous to procedural abstraction in imperative languages
and functional abstraction in functional languages.

Fig. 6. Referential transparency implies that these two dataflow
process networks are equivalent.

1) Determinacy and Referential Transparency: To make
the dataflow process network determinate, as discussed
above, it is sufficient for the actors to have two properties:
Their mappings from input tokens to output tokens should
be functional (free from side effects), and the firing rules
for each actor should be sequential, in the technical sense
given in Section 11-D. If our actors have these properties,
then our language has referential transparency, meaning
that syntactically identical expressions have the same value
regardless of their lexical position in the program.

With referential transparency, the two subgraphs shown
in Fig. 6 are equivalent. The two inputs to the identical
dataflow processes A are identical streams, so the outputs
will be identical. If the primitive actors are functional, then
hierarchical actors may be functional as well, but there are
some complications due to scheduling, directed loops in
the graph, and delays.

2) Functional Behavior and Hierarchy: In modern lan-
guages, it is often considered important that abstractions
be semantically little different from language primitives.
Thus, if the primitive actors are functional, the hierarchical
nodes should be functional. If the primitive actors have
firing rules, then the hierarchical nodes should have firing
rules. We will find this goal problematic.

A hierarchical node in a dataflow process network has
a subnetwork and inputloutput ports, as shown in the
examples in Fig. 7. To reach the above ideal, we should
be able to describe the behavior of a hierarchical node by
F = m u p (f) , where f constitutes a single, functional firing
of the hierarchical node. This is not always possible. Two
problems arise: f may not be well defined, and when it
is, it may not be functional. Note that no problem arises
in defining the hierarchical node to be a mapping F from
input sequences to output sequences. F will be functional
if the actors in the hierarchial node have functional firings
and sequential firing rules.

a) Firing subgraphs-the balance equations: Examples
that have more than one actor, such as in Fig. 7(a) and (c),
raise the question of how to determine how many firings
of the constituent actors make up a “reasonable” firing
of a hierarchical node. One approach would be to solve
the balance equations of [MI, [66], [67] to determine how
many firings of each actor are needed to retum a subsystem
to its original state. By “original state” we mean that the
number of unconsumed tokens on each intemal channel
(arc) should be the same before and after the firing.

Consider the example in Fig. 7(a). Following Lee and
Messerschmitt [66], the “1” symbol next to the output of
AI means that it produces one token when it fires. The “1”
next to the input of A2 means that it consumes one token

7 84 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

I

(C)

Fig. 7. Hierarchical nodes in a dataflow process network may not
be functional even if the primitives they contain are functional.
The large arrowheads indicate input and output for the hierarchical
node.

when it fires. A “reasonable” firing of the hierarchical node
would therefore consist of one firing of AI and one of Aa.
The single balance equation for this example is

where T A , is the number of firings of Ai. This equation
simply says that TA, should be such that the number
of tokens produced on the arc should equal the number
consumed, thus keeping it “in balance.” Any “firing” of
the hierarchical node that invokes the ith actor TA, times
(for all i) will therefore retum the subsystem to its original
state. For dynamic dataflow graphs, these balance equations
are a bit more complicated, but often lead to definitive
conclusions about the relative number of firings of the
actors that are required to maintain balance.

A nonempty set of firings that retums a subsystem to
its original state is called a complete cycle [64]. Unfor-
tunately, three problems arise. First, some useful systems
have balance equations with no solution [22], 1231. Such
systems are said to be inconsistent, or unbalanced, and have
no complete cycle, and usually have unbounded memory
requirements. A simplified (and probably not useful) ex-
ample is shown in Fig. 7(c). The balance equations for this
subsystem are (one for each arc)

These equations have no solution. Indeed, any set of firings
of these actors will leave the subsystem in a new state.

To hint that unbalanced systems are sometimes useful,
consider an algorithm that computes an ordered sequence
of integers of the form 2a3b5c for all a,b,c 2 0. This
problem has been considered by Dijkstra [421 and Kahn
and MacQueen [59]. A dataflow implementation equivalent
to the first of two by Kahn and MacQueen is shown in
Fig. 8(a). The “merge” block is an ordered merge [W];
given a nondecreasing sequence of input values on two

i
EUOE

reclull t
(a) (b)

Fig. 8. Two inconsistent dataflow graphs that compute an ordered
sequence of integers of the form 2a3b5c. The triangular icons
multiply their inputs by the indicated constant. The delay icon
(a diamond) represents an initial token with value 1, 3, or 5, as
annotated.

streams, it merges them into a single stream of nonde-
creasing values, and removes duplicates. A more efficient
implementation that does not generate such duplications
(and hence does not need to eliminate them) is given in
Fig. 8(b). It is also inconsistent. Neither of these can be
implemented with bounded memory.

The second, more fundamental problem is that the ex-
istence of complete cycles for dynamic dataflow graphs is
undecidable [22]. Thus no algorithm will be able to identify
a complete cycle for all graphs that have one.

A third problem is that the actors in a hierarchical node
may not form a connected graph without considering as
well the graph within which the hierarchical node sits. In
this case, the balance equations for the hierarchical node
alone will have more than one solution. There is no way
to select among these solutions.

When a hierarchical node has a complete cycle that can
be identified, then we may be able to define f to be the
mapping performed by this complete cycle. In this case,
F = map(f) captures the behavior of the hierarchical node.
Unfortunately, there are still difficulties.

b) Side effects and state: Even when a hierarchical
node has a complete cycle, a second problem arises in our
attempt to define its mapping in terms of F = m a p (f) .
Even if all actors within the node are functional, the
hierarchical node may not be.

Consider the example in Fig. 7(b). A single firing of actor
B obviously defines a complete cycle. The feedback loop
is used to implement a recurrence, so the feedback channel
will store tokens from one firing of the hierarchical node
for use in the next firing. With this usage, the hierarchical
node has state, and is therefore not functional even if f~
is. In this case, the feedback loop must be initialized with
tokens in order to avoid deadlock.

The shaded diamond is called a delay, which is typically
implemented as an initial token in the channel. It cannot

LEE AND PARKS: DATAFLOW PROCESS NETWORKS 785

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

be described by F = m a p (f) , where f is functional, but
its behavior is easily defined by F (X) = i : X , where X
is the input sequence, i is the initial token, and “:” is the
concatenation operator. The initial token enables the first
firing of actor B if it requires a token on the top input.
It is called a “delay” because for any channel with a unit
delay, the nth token read from the channel is the (n - 1)th
written to it. A feedback loop with delay effectively stores
state, making any single firing of the hierarchical node
nonfunctional.

The delay shown in Fig. 7(b) is typically implemented
using the “cons” operator to initialize streams when streams
are based on the recursive-cons model [62]. It is roughly
equivalent to the “D” operator in the tagged-token model
181. It is the visual equivalent of “fby” (followed by) in
Lucid [92] and the “pre” operator in Lustre [47]. In the
single assignment language Silage, developed for signal
processing [50], a delay is written “x@ 1.” This expression
refers to the stream “x” delayed by one token, with the
initial token value defined by a declaration like “x@ @ 1 =
value.” For example,

x = 1 + x@l;
x@@1 = o

defines a stream consisting of all nonnegative integers, in
order.

In functional languages, instead of using a recurrent
construct like a delay, state is usually carried in the pro-
gram using recursion. Consider, for example, the following
Haskell program:

integrate 2s = scanl (+) 0 zs

where scanl is a higher order function with three arguments,
a function, a number, and a list. It is defined as follows
(taking certain liberties with Haskell syntax):

scanl f q I= [q]
scanl j q (2 : ~ s) = q:scanl f f (q , z)zs ‘

These two definitions use template matching; the first is
invoked if the third argument is an empty stream. The q first
gives the initial value for the sum, equivalent to the value
of the initial token in a delay, and later carries the running
summation. The syntax (z:zs) divides a list into the first
element (z) and the rest (zs). The syntax q:ezpr represents
a list where q is the head and ezpr defines the rest, just as
we have done above for sequences. For example,

scanl (+) 0 [l, 2,3,4]

produces [0, 1, 3, 6, lo].
The program above uses recursion to carry state, via

the higher-order function s c a d It has been observed that
for efficiency this recursion must be translated into an

iterative implementation [40], [43], [S I . For streams this
is mandatory, since otherwise the depth of the recursion
could become extremely large.

Delays in a hierarchical node can make a single firing of
the node nonfunctional even if it is not in a feedback loop.
Consider the example in Fig. 7(a). The balance equations
tell us that a complete cycle consists of one firing of AI
and one of Az. But under this policy, state will have
to be preserved between firings on the arc connecting
the two actors, making a firing of the hierarchical node
nonfunctional.

Some of the problems with state could be solved by
requiring all delays to appear only at the top level of the
hierarchy, as was done for example in the BOSS system
[89]. This is awkward, however, and anyway provides only
a partial solution. A better solution is simply to reconcile the
desire for functional behavior with the desire to maintain
state. This can be done simultaneously for hierarchical
nodes and primitives, greatly increasing the flexibility and
convenience of the language, while still maintaining the
desirable properties of functional behavior.

The basic observation is that internal state in a primitive
or a hierarchical node is syntactic sugar (a convenient
syntactic shorthand) for delays on feedback loops at the
top level of the graph. In other words, there is no reason
to actually put all such feedback loops at the top level
if semantics can be maintained with a more convenient
syntax. With this observation, we can now allow actors
with state. These become more like objects than functions,
since they represent both data and methods for operating on
the data. The (implicit) feedback loop around any actor or
hierarchical node with state also establishes a precedence
relationship between successive firings of the actor. This
precedence serializes the actor firings, thus ensuring proper
state updates.

Once we allow actors with state, it is a simple extension
to allow actors with other side effects, such as those han-
dling VO. The inherently sequential nature of an actor that
outputs a stream to a file, for example, is simply represented
by a feedback loop that does not carry any meaningful data,
but establishes precedences between successive firings of
the actor.

If actors have state, the notation F = m a p (f) is no
longer directly valid. With a little adaptation, however, we
can still use it. If we wish to model an actor with p inputs
and q outputs, plus state, we can define F : FP+’ + Sq+l

based on an actor function f : Sp+’ --f SQ+l, where the
extra argument carries the state from one firing to the next.

With this device, notice that the firing rules can now de-
pend on the state. For example, in the cyclo-static dataflow
model of Lauwereins et al. [63], an actor can consume
a cyclically varying number of tokens on an input. For
instance, a dataflow process with one input and one output
might consume one token on its odd-numbered firings
and two tokens on even-numbered firings. In this case, a
binary-valued state variable will have value zero on even-
numbered firings and one on odd-numbered firings. Thus

786 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

the firing rules become

where the first argument is the state. Any cyclo-static actor
can be modeled in this way. In fact, firing rules that change
over the course of several firings can be modeled in the
same way even if they do not vary cyclically, as long as
the firing rules for the nth firing can be determined during
the (n-1)th firing.

C. Function Arguments-Parameters and Input Streams
In Ptolemy, as in many software environments of this

genre, there are three phases to the execution of a program.
The setup phase makes a pass over the hierarchical pro-
gram graph initializing delays, initializing state variables,
evaluating parameters, evaluating whatever portion of the
schedule is precomputed, and performing whatever other
setup functions the program modules require. The run phase
involves executing either the precomputed schedule or a
dynamic schedule that is computed on-the-fly. If the run is
finite (it often is not), there is a wrapup phase, in which
allocated memory is freed, final results are presented to the
user, and any other required cleanup code is executed.

The parameters that are evaluated during the setup phase
are often related to one another via an expression language.
Thus parameters represent the part of the computation that
does not operate on streams, in which values that might be
used during stream processing are computed. Some simple
examples are the gain values associated with the triangular
icons in Fig. 8 or the initial values of the delays in the
same figure. In principle, these values may be specified as
arbitrarily complex expressions.

The gain blocks in Fig. 8 may be viewed as functions
with two arguments, the multiplying constant and the input
stream. But unlike functional languages, a clear syntac-
tic distinction is made between parameter arguments and
stream arguments. In functional languages, if the distinction
is made at all, it is made through the type system. The
syntax in Ptolemy is to use a textual expression language
to specify the value of the parameters, using a parameter
screen like that in Fig. 9. This expression language has
some of the trappings of standard programming languages,
including types and scoping rules. It could be entirely
replaced by a standard programming language, although
preferably one with declarative semantics.

Parameters are still formally viewed as arguments to
the function represented by the actor. But the syntactic
distinction between parameters and stream arguments is
especially convenient in visual programming. It avoids
cluttering a diagrammatic program representation with a
great many arcs representing streams that never change
in value. Moreover, it can make the job of a compiler
or interpreter simpler, obviating the optimization step of
identifying such static streams. In Ptolemy, when compiled
mode is used for implementation, code generation occurs

afrer the parameters have been evaluated, thus allowing
highly optimized, application-specific code to be generated.
For example, instead of a single telephone channel simu-
lator subroutine capable of simulating any combination of
impairments, optimized code that takes advantage of the
fact that the third harmonic distortion is set to zero (see
Fig. 9) can be synthesized. This becomes particularly im-
portant when the implementation is via hardware synthesis,
as is becoming increasingly common in signal processing
systems.

Sometimes, all of the arguments to a function are param-
eters, in which case we call the actor a source, since it has
no dynamic inputs (see, for example, the A and B actors
in Fig. 4). Referential transparency for source actors is also
preserved, as long as the parameters are considered. Thus
the transformation shown in Fig. 6 is now possible only if
the actors or subgraphs being consolidated have identical
parameters. Thus with these syntactic devices (actors with
state, the notation F = m u p (f) , delays, and actors with
parameters as well as inputs), referential transparency is
still possible. We call such actors generalized functional
actors.

D. Firing Rules and Strictness
A function is strict if it requires that all its arguments

be present before it can begin computation. A dataflow
process, viewed as a function applied to a stream, clearly
should not be strict, in that the stream should not have to be
complete for the process to begin computation. The process
is in fact defined as a sequence of firings that consume
partial input data and produce partial output data. But in
our context, this is a rather trivial form of nonstrictness.

A dataflow process is composed of a sequence of ac-
tor firings. The actor firings themselves might be strict
or nonstrict. This is determined by the firing rules. For
example, an actor formed from the McCarthy f l function
in Section 11-D4 is clearly nonstrict, since it can fire with
only one of the two arguments available. A process made
with this actor, however, is not continuous, and the process
is nondeterminate.

It is possible to have a determinate process made of
nonstrict actors. Recall the select actor from Fig. 2(a).

select(z, I, T) = z

select(1, y, F) = y

The firing rules implied by this definition are sequential,
since a token is always required for the third argument,
and the value of that argument determines which firing
rule applies. Moreover, select is functional, so a process
made up of repeated firings of this actor is determinate.
The Ptolemy icon for this process is shown in Fig. 10. This
function, however, is clearly not strict, since the function
does not require that all three arguments be present. More-
over, we will see that this nonstrictness is essential for the
most general form of recursion. The fact that nonstrictness
is essential for recursion in functional languages has been

LEE AND PARKS: DATAFLOW PROCESS NETWORKS 787

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

Fig. 9. Top: A typical parameter screen in Ptolemy for a hierarchical node that models a telephone
channel. The first parameter is given as a reference to a file. The icon for the node is shown to the
right. The next level down in the hierarchy is shown in the lower right window. At the lower left,
the parameter screen shows that the parameter for the Gain actor inherits its value from the “noise”
parameter above it in the hierarchy. Parameter values can also be expressions.

I- -1
Fig. 10. Switch and Select actors in the dynamic dataflow do-
mains of Ptolemy. These are determinate actors that merge or split
streams under the control of a Boolean stream.

observed before, of course [53] (at least the if-then-else
must be nonstrict in the consequent and the alternative).

The next natural question is whether hierarchical nodes
should be strict. In particular, for those hierarchical nodes
for which there exists a well defined firing, should that
firing be strict? The example shown in Fig. 11 suggests a
definitive “no” for the answer. A hierarchical node A is
composed of subprocesses B and C as shown in the figure.
A firing of the expanded definition in Fig. ll(b) might
consist of a firing of B followed by C. However, when
connected as shown in Fig. ll(a), the network deadlocks,

Fig. 11. A hierarchical node A in a simple subnetwork (a) and
its expanded definition (b). If the actor A is strict, the subnetwork
in (a) deadlocks.

quite unnecessarily, if we insist that the hierarchical node
have both inputs available before firing.

788 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

All three dataflow domains in Ptolemy have nonstrict
hierarchical nodes. To implement this, most schedulers used
in these domains take a simple approach: They flatten the
hierarchy before constructing a schedule. This approach
may be expensive for large programs with repeated use
of the same hierarchical nodes, particularly if in-line code
is generated. It also precludes incremental compilation of
hierarchical nodes. But it appears to be necessary to support
graphs like that in Fig. 11. At least one more sophisticated
scheduler [161 constructs strict hierarchical nodes (when
this is safe) through a clustering process, in order to
build more compact schedules. It ignores the user-specified
hierarchy in doing this.

E. Recurrences and Recursion
Functional languages such as Haskell commonly use

recursion to carry state. The comparable mechanism for
dataflow process networks is feedback loops, usually with
initial tokens, as shown in Fig. 7(a) and (b). These feed-
back loops specify recurrence relations, but are not self-
referential in the usual sense of recursion. Ida and Tanaka
[55] and Abramsky [2] have also noted the advantages of
this representation. A consequence of this is that recursion
plays a considerably reduced role in dataflow process
networks compared to functional languages. But this does
not mean that recursion is not useful.

Consider the “sieve of Eratosthenes,” an algorithm con-
sidered by Kahn and MacQueen [59], among others. It
computes prime numbers by constructing a chain of “fil-
ters,” one for each prime number it has found so far. Each
filter removes from the stream any multiple of its prime
number. The algorithm starts by creating a single filter for
the prime number 2 in the chain and runs each successively
larger integer through the chain of filters. Each time a
number gets through to the end of the chain, it must be
prime, so a new filter is created and added to the chain.
A recursive implementation of this algorithm is concise,
convenient, and elegant, although of course we can express
any recursive algorithm iteratively [53].

A recursive implementation in the dynamic dataflow
domain of Ptolemy is shown in Fig. 12. The icon with
the concentric squares is actually a higher-order function
(explained further below) that invokes a named hierarchical
node (s@) when it fires. In this case, the named hierarchical
node is a recursive reference to the very hierarchical node in
which the icon appears. More direct expression of recursion
is not yet supported by the Ptolemy graphical interface,
although it is supported in the underlying kernel. Ptolemy
implements this in a simple, and rather expensive way; it
dynamically expands the graph when the recursive block is
invoked. More efficient implementations are easy to image,
however.

Note that recursion in Fig. 12 expresses a “mutable
graph,” in that the structure of the graph changes as
the program executes. Such dynamics are also permit-
ted by Kahn and MacQueen [59] and in TLDF [94].
Mutability, however, considerably complicates compile-
time analysis of the graph. The compile-time scheduling

methods in [22] and E661 have yet to be extended to
recursive graphs. This raises the interesting question of
whether recursion precludes compile-time scheduling. We
find, perhaps somewhat surprisingly, that often it does
not. To illustrate this point, we will derive a recursive
implementation of the fast Fourier transform (FIT) in the
synchronous dataflow domain in Ptolemy, and show that it
can be completely scheduled at compile time. It can even
be statically parallelized, with the recursive description
imposing no impediment. The classic derivation of the
FFT leads directly to a natural and intuitive recursive
representation. For completeness, we repeat this simple
derivation here.

The Nth order discrete Fourier transform (DFT) of a
sequence x(n) is given by

for 0 5 k < N . To get the values for other k, simply
periodically repeat the values given above, with period N .
Define

and note the following properties:

W$ = w N , ~ and w,N+‘ = wk N .

Using this we can write

n=O n=O
n even

N-1

n=l
n odd

By change of variables on the summations, this becomes

(”-1

XI, = s(2n)W$

This is the key step in the derivation of the so-called
“decimation-in-time FFT”; the first summation is the (N / 2)
order DFT of the even samples, while the second is the
(N / 2) order DFT of odd samples. Thus, in general, we can
write

LEE AND PARKS: DATAFLOW PROCESS NETWORKS 789

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

/ / \

sift

\

Fig. 12. A recursive implementation of the sieve of Eratosthenes in the dynamic dataflow domain
in Ptolemy. The top-level system (with just three actors) produces all the integers greater than 1,
filters them for primes, and displays the results. Other icons are explained once each.

Recall that D F 2 ’ ~ (z (n)) is periodic with period N , so
DFTN,2(x(2n)) is periodic with period N/2.

From this, we arrive at the recursive specification shown
in Fig. 13. The first actor is a distributor, which collects
two samples each time it fires, routing the first one to
the top output and the second one to the lower output.
The recursive invocation of this block accomplishes the
decimation in time. The outputs of the distributor are
connected to two IjThenElse blocks, represent one of two
possible replacement subsystems. When the order param-
eter is larger than some threshold, the IjThenElse block
replaces itself with a recursive reference to the galaxy
within which it sits, implementing an FFT of half the order.
When the order parameter gets below some threshold,
then the I’henElse block replaces itself with some direct
implementation of a small order FFT. The IjThenElse block
is another example of a higher-order function, and will be
discussed in more detail below. The repeat block takes

into account the periodicity of the DFT’s of order N/2
without duplicating the computation. The expgen block
at the bottom simply generates the W i sequence. The
sequence might be precomputed, or computed on the fly.

A more traditional visual representation of an FFT is
shown in Fig. 14. This representation is extremely in-
convenient for programming, however, since it cannot
represent FFTs of the size typically used (128-1024 points).
Moreover, any such visual representation has the order
of the FFT and the granularity of the specification hard-
wired into the specification. It is better to have both
parameterized, as in Fig. 13. Moreover, we argue that the
visual representation in Fig. 13 is more intuitive, since it is
a more direct representation of the underlying idea.

An interesting generalization of the conditional used
in the recursion in Fig. 13 would use templates on the
parameter values to select from among the possible im-
plementations for the node. This would make the recursion

790 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

Fig. 13. A recursive specification of an FFT implemented in the SDF domain in Ptolemy. The
recursion is unfolded during the setup phase of the execution, so that the graph can be completely
scheduled at compile time.

-1
2
+

aMF--, -

Fig. 14. A fourti-order decimation-in-time FFT shown graph-
ically. The order of the FFT, however, is hard-wired into the
representation.

1- - - 2 +
1 - 1

3

stylistically identical to that found in functional languages
like Haskell, albeit with a visual syntax. This can be
illustrated with another practical example of an application
of recursion.

Consider the system shown in Fig. 15. It shows a mul-
tirate signal processing application: an analysidsynthesis
filter bank with harmonically spaced subbands. The stream
coming in at the left is split by matching highpass and
lowpass filters (labeled “QMF” for “quadrature mirror
filter”). These are decimating polyphase finite impulse
response (FIR) filters, so for every two tokens consumed
on the input, one token is produced on each of two outputs.
The left-most QMF only is labeled with the number of
tokens consumed and produced, but the others behave the
same way. The output of the lowpass side is further split
by a second QMF, and the lowpass output of that by a
third QMF. The boxes labeled “F” represent some function
performed on the decimated stream (such as quantization).
The QMF boxes to the right of these reconstruct the signal
using matching polyphase interpolating FIR filters.

There are four distinct sample rates in Fig. 15 with a ratio
of 8:l between the largest and the smallest. This type of
application typically needs to be implemented in real time
at low cost, so compile-time scheduling is essential.

The graphical representation in Fig. 15 is useful for
developing intuition, and exposes exploitable parallelism,
but it is not so useful for programming. The depth of the
filter bank is hard-wired into the visual representation, so
it cannot be conveniently made into a parameter of a filter-
bank module. The representation in Fig. 16 is better. A
hierarchical node called “FB,” for “filterbank” is defined,
and given a parameter D for “depth.” For D > 0 the
definition of the block is at the center. It contains a
self-reference, with the parameter of the inside reference
changed to D- 1. When D = 0, the definition at the
bottom is used. The system at the top, consisting of just
one block, labeled “FB(D = 3),” is exactly equivalent
to the representation in Fig. 15, except that the visual
representation does not now depend on the depth. The
visual recursion in Fig. 16 can be unfolded completely
at compile time, exposing all exploitable parallelism, and
incurring no unnecessary run-time overhead.

F. Higher-Order Functions
In dataflow process networks, all arcs connecting actors

represent streams. The icons represent both actors and
the processes made up of repeated firings of the actor.
Functional languages often represent such processes using

LEE AND PARKS: DATAFLOW PROCESS NETWORKS

.

79 1

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

FB(D > 0)

Fig. 16.
This representation uses template matching.

A recursive representation of the filter bank application.

Fig. 17.
lent of the Haskell “scanl f a xs” higher-order function.

Visual syntax for the dataflow process network equiva-

higher order functions. For example, in Haskell,

map f xs

applies the function f to the list xs. Every single-input
process in a dataflow process network constitutes an invo-
cation of such a higher order function, applied to a stream
rather than a list. In a visual syntax, the function itself is
specified simply by the choice of icon. Moreover, Haskell
has the variant

zipwith f xs ys

where the function f takes two arguments. This corresponds
simply to a dataflow process with two inputs. Similarly, the
Haskell function

scanl f a x s

takes a scalar a and a list xs. The function f is applied
first to a and the head of xs. The function is then applied
to the first returned value and the second element of 5s. A
corresponding visual syntax for a dataflow process network
is given in Fig. 17.

Recall our proposed syntactic sugar for representing
feedback loops such as that in Fig. 17 using actors with
state. Typically the initial value of the state (U) will be a

192

bbdo”: RaisedCosine
where_delined:
penumrter-map: exmssBW = 1 .o/instance_numbe~
input-map: -In
arqut_map: sig-

Fig. 18.
different raised cosine pulses.

An example of the use of the Map actor to plot three

Panel 1. Icon for the Map higher-order function in Ptolemy.

parameter of the node. In fact, dataflow processes with state
cover many of the commonly used higher-order functions
in Haskell.

The most basic use of icons in our visual syntax may
therefore be viewed as implementing a small set of built-in
higher-order functions. More elaborate higher-order func-
tions will be more immediately recognizable as such, and
will prove extremely useful. Pioneering work in the use
of higher-order functions in visual languages was done by
Hills [51], Najork and Golin [75], and Reekie [U]. We
will draw on this work here.

We created an actor in Ptolemy called Map that general-
izes the Haskell map. Its icon is shown in Panel 1.

It has the following parameters:

blockname
wheredejned

parametermap

inputmap
outputmap

Our implementation of Map is simple but effective. It
creates one or more instances of a the specified actor (which
may itself be a hierarchical node) and splices those instance
into its own position in the graph. Thus we call the specified
actor the replacement actor, since it takes the place of the
Map actor. The Map actor then self-destructs. This is done
in- the setup phase of execution so that no overhead is
incurred for the higher order function during the run phase
of execution, which for signal processing applications is the
most critical. This replacement can be viewed as a form of
partial evaluation of the program [34].

Consider the example shown in Fig. 18. The replacement
actor is specified to be RaisedCosine, a built-in actor in

The name of the replacement actor.
The location of the definition of the
actor.
How to set the parameters of the
replacement actor.
How to connect the inputs.
How to connect the outputs.

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

1 .00

0.80

0.60

0.40

0.20

0.00

-0.20
0.00 20.00

Fig. 19. The plot that results from running the program in Fig. 18.

n n

Fig. 20.
higher-order functions.

A program equivalent to that in Fig. 18, but without

the signal processing environment in Ptolemy. Since this is
built-in, there is no need to specify where it is defined, so
the wheredejned parameter is blank. The RaisedCosine
actor has a single input named signalln and a single
output named signalout, so these names are given as
the values of the inputmap and outputmap parameters.
The parametermp parameter specifies the values of the
excessB W parameter for each instance of the replacement
block to be created. This parameter specifies the excess
bandwidth of the raised cosine pulse generated by this actor.
The value of the excessBW parameter will be 1.0 for the
first instance of the RaisedCosine actor, 0.5 for the second,
and 0.33 for the third.

The diagonal slash through the last connection on the
right in Fig. 18 is a Bus. Its single parameter specifies
the number of logical connections that the single visual
connection represents. Here, the bus width is three. This
must be so because there are three inputs to the Map
actor, so three instances of the RaisedCosine actor will
be created. The three outputs from these three instances
need somewhere to go. The result of running this system
is shown in Fig. 19.

The program in Fig. 18 is equivalent to that in Fig. 20.
Indeed, after the setup phase of execution, the topology of

40.00 60.00

the process network will be exactly as in Fig. 20. The Map
actor itself will not appear in the topology.

In both Figs. 18 and 20, the number of instances of the
RaisedCosine actor is specified graphically. In Fig. 18, it is
specified by implication, through the number of instances
of the Impulse actor. In Fig. 20 it is specified directly.
Neither of these really takes advantage of higher-order
functions. The program in Fig. 21 is equivalent to both
Figs. 18 and 20, but can be more easily modified to include
more or fewer instances of the RaisedCosine actor. It is
only necessary to modify the parameters of the bus icons,
not the visual representation.

The left-most actor in Fig. 21 is a variant of the Map
actor called Src. It has no inputs. In this case, the number
of instances of the replacement actor that are created must
match the number of output streams.

In the visual programming languages ESTL [75] and
DataVis [5 I], higher-order functions use a "function slots"
concept, visually representing the replacement function
as a box inside the icon for the higher-order function.
We have implemented in Ptolemy a conceptually similar
visual representation. Variants of the Map and Src actors,
called MupGr and SrcGr, have the following icons (see
Panel 2).

It is important to realize that the above graphic con-
tains only two icons, each representing a single actor.
The complicated shape of the icon is intended to be
suggestive of its function when it is found in a block
diagram. The MapGr and SrcGr actors work just like the
Map and Src actors, except that the programmer specifies
the replacement block visually rather than textually. For
example, the system in Fig. 21 can be specified as shown
in Fig. 22. Notice that replacement actors Impulse and
RaisedCosine each have one instance shown visually. The
MapGr and SrcGr actors have only a single parameter,
called parametermap. The other parameters of Map and
Src are now represented visually (the replacement block
and input/output mapping).

Note that the same effect could be accomplished by tricks
in the graphical user interface, as done for instance in

LEE AND PARKS: DATAFLOW PROCESS NETWORKS 793

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

blodarame: Impulse bbckname: RaisedCosine
where-defined: where-defined:
parameter-map:
outputmap: output input-map: signalin

parameter-map: excessBW = 1 .Mnstance-number

outputmap: signelout

Fig. 21. A program equivalent to that in Figs. 18 and 20, except that the number of instances of
the RuisedCosine and Impulse actors can be specified by a parameter.

SrcGr

parameter-map: parameter-map: excessBW = 1 .O/instance-number

I etc. ty
Fig. 22. A program equivalent to that in Fig. 21 except that the replacement actors for the two
higher-order actors are specified visually rather than textually.

GRAPE I1 [63]. However, this then requires modifying the
GUI to support new capabilities.

A number of additional variations are possible. First,
the replacement actor may have more than one input, in
which case the input streams are grouped in appropriately
sized groups to provide the arguments for each instance of
the specified actor. For example, if the replacement actor
has two inputs, and there are 12 input streams, then six
instances of the actor will be created. The first instance
will process the first two streams, the second the next two
streams, etc.

Since the Map actor always creates at least one instance
of the replacement actor, it cannot be used directly for
recursion. Such a recursion would never terminate. A
variant of the Map actor can be defined that instantiates the
replacement actor@) only at run time. This is (essentially)
what we used in Fig. 12 to implement recursion. Using dy-
namic dataflow, the dynamic Map actor fires conditionally.
When it fires, it creates an instance of its replacement actor
(which may be a hierarchical node recursively referenced),
and self-destructs.

The dynamic Map was the first higher-order function
implemented in Rolemy (it was implemented under a
different name by Soonhoi Ha). Its run-time operation is
quite expensive, however, requiring dynamic creation of a
dataflow graph. So there is still considerable motivation for
recursion that can be statically unrolled, as done in Fig. 13.

194

In fact, that system is implemented using another higher-
order function, IjThenElse, which is derived from Map. The
IjThenElse actor takes two replacement actors as parameters
plus a .predicate. The predicate specifies which of the two
replacement actors should be used. That actor is expanded
into a graph instance and spliced into the position of the
IjThenElse actor. The IjThenElse actor, like the Map actor,
then self-destructs. Since the unused replacement actor
argument is not evaluated, the semantics are nonstrict, and
the IjThenElse actor can be used to implement recursion.
The recursion is completely evaluated during the setup
phase of execution (or at compile time), so the recursion
imposes no run-time overhead during the run phase. This is
analogous to the unrolling style of partial evaluation [34],
and could be called manifest recursion.

The higher order functions above have a key restriction:
the replacement actor is specified by a parameter, not by
an input stream. Thus, we avoid embedding unevaluated
closures in streams. In Rolemy, since tokens that pass
through the channels are C++ objects, it would not be hard
to implement the more general form. It warrants further
investigation.

G. The Tagged-Token Execution Model
Recall that the tagged-token execution model developed

by h i n d and Gostelow [7], [8] allows out-of-order execu-
tion. This allows some dataflow graphs to produce output

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

N-2
... ...

T

T

Fig. 23. This factorial program deadlocks without out-of-order execution, as provided for example
by the tagged token model.

4 f w etc.

C
NI

(N-l)!
(N-2)!

-
...
2
1

1

D
(N-l)!
(N-2)1
(N-3) I

-
...
1

1

Panel 2.
in Ptolemy.

Icons for the MapCr and SrcGr higher-order functions

that would deadlock under the FIFO channel model. An
example is shown in Fig. 23. This graph computes N! if
out-of-order execution is allowed, but deadlocks without
producing an output under the FIFO model. The sequence
of values on the labeled arcs is given in the table in the
figure.

The loop at the left counts down from N to 0, since the
delay is initialized to N and the value circulating in the loop
is decremented by 1 each time around. The test (diamond
shape) compares the value at A to 1. When A < 1, it outputs
a true. Until that time, the select is not enabled, because
there are no tokens on the false input. But notice that at
that time, the queue at the control input (B) of the select
has N false tokens followed by one true token. The false
tokens still cannot be consumed. If out-of-order execution
is not allowed, then the select will never be able to fire.
However, since the select has no state, there is no reason
to prohibit out-of-order execution.

Out-of-order execution requires bookkeeping like that
provided by the tagged-token model. The consumption of
the true token is by the (N+l)th firing (logically) of the
select. Thus the 1 produced at its output is (logically) the
(N+l)th output produced by the select. Hence, at C , we
show the 1 output as the last entry in the table, even though
it is the first one produced temporally. The logical ordering
must be preserved.

Fig. 24.
the first token that arrives on the input stream.

One way to implement a negative delay, which discards

Recall that a delay is an initial token on a channel. The
delay at the left is an ordinary delay, where the initial token
is initialized to value N . The delay on the right, however,
is something new, a negative delay. Instead of an initial
token, this delay discards the first token that enters the
channel. It can be implemented in a variety of ways, one
of which is shown in Fig. 24. The effect of the negative
delay is shown in column D: the first token (logically,
not temporally) produced by the select is discarded by the
negative delay. Thus the 1 produced by the (N+l)th firing
(logically) of the select must be consumed by the Nth firing
of the multiply at the upper right. The other input of the
multiply has a value “1” as its Nth input (A), so the Nth
output (logically) or first output (temporally) of the multiply
is 1 x 1 = 1. This makes available the Nth token (logically)
of the select false input, which can now be consumed by
the Nth firing (logically) of the select. The “1” produced
here will be multiplied by 2, enabling the (N-2)th firing
of the select. We continue until the first firing (logically)
of the select produces N!. At this point, there are N + 1
tokens at the downsampler input (the icon at the bottom
with the downward arrow), enabling it. It consumes these
tokens and outputs the first one (logically). Thus the output
of the downsampler is N!.

Note that although this might appear to be an unduly
complicated way to compute a factorial, it nonetheless
demonstrates that enabling out-of-order execution does
increase the expressiveness in the language. Of course, this

LEE AND PARKS: DATAFLOW PROCESS NETWORKS 795

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

has limited value if its only use is to represent obscure and
unnecessarily complicated algorithms.

H. Data Types and Polymorphism
A key observation about our dataflow process networks

so far is that the only data type represented visually is the
stream. The tokens on a stream can have arbitrary type, so
this approach is more flexible than it sounds like at first.
For instance, we can embed arrays into streams directly by
sequencing the elements of the array, or by encapsulating
each array into a single token, or by generalizing to
multidimensional streams [65], [92]. In Ptolemy, tokens can
contain arbitrary C++ objects, so the actors can operate on
these tokens in rather sophisticated ways, making effective
use of data abstraction.

Ptolemy networks are strongly typed. Each actor port
(input or output) has a type, and type consistency is
statically checked. Polymorphism, in which a single actor
can operate on any of a variety of data types, is supported
in a natural way.

Hudak distinguishes two types of polymorphism, para-
metric and ad hoc (or overloading) [53]. In the former,
a function behaves the same way regardless of the data
type of its arguments. In the latter, the behavior can be
different, depending on the type. Although in principle
both are supported in Ptolemy, we have made more use
of parametric polymorphism in the visual programming
syntax. The way that parametric polymorphism is handled
is that actors declare their inputs or outputs to be of
type “anytype.” The actors then operate on the tokens via
abstracted type handles.

Polymorphic blocks in Ptolemy include all those that
perform control functions on streams, like the distributor
in Fig. 13. The Map actor is also polymorphic, although in
a somewhat more complicated way.

I. Parallelism
For functional languages, the dominant view appears

to be that parallelism must be explicitly defined by the
programmer by annotating the program with the proces-
sor allocation [53]. Moreover, as indicated by Harrison
[48], the ubiquity of recursion in functional programs
sequentializes what would otherwise be parallel algorithms.
Harrison proposes using higher-order functions to express
parallel algorithms in a functional language, in place of
recursion. The parallel implementation is accomplished
by mechanized program transformations from the higher-
order function description. This is called “transformational
parallel programming,” and has also been explored by
Reekie and Potter [87] in the context of process networks.
The transformations could also be interactive, supported
by “meta-programming.” One transformation methodology
is the unfoldfold method of Burstall and Darlington [27],
which is based on partial (symbolic) evaluation and substi-
tution of equal expressions.

In the dataflow community, by contrast, parallelism has
always been implicit. This is, in part, due to the scarce use
of recursion. A dataflow graph typically reveals a great

deal of parallelism that can be exploited either by run-
time hardware [5] or, if the firing sequence is sufficiently
predictable, a compiler [451, [82], [901, [911.

Dataflow process networks can combine the best of these.
Parallelism can be implicit, and higher-order functions can
be used to simplify the syntax of the graphical specification.
The phased execution, in which the static higher-order
functions are evaluated during a setup phase, is analogous to
the foldunfold method of Burstall and Darlington [27], but
there is no need for a specialized transformation tool that
“understands” the semantics of the higher-order functions.
Thus parallelism is exploited equally well with user-defined
higher-order functions as with those that are built into the
language.

Moreover, in a surprising twist, the use of statically
evaluated higher-order functions enables the use of recur-
sion without compromising parallelism. The recursion is
evaluated during the setup phase, before the parallelizing
scheduler is invoked. Thus the scheduler sees only the fully
expanded graph, not the recursion. It can fully exploit at
compile time the parallelism in this graph. Thus we regain
much of the elegance that the use of recursion lends to
functional languages. An example (a recursive specification
of an FFT) is given above in Fig. 13. In situations where
the recursion cannot be evaluated during the setup phase,
as in the sieve of Eratosthenes in Fig. 12, it is much more
difficult to exploit the parallelism at compile time.

IV. CONCLUSIONS

Signal processing software environments are domain-
specific. Some of the techniques they use, including (and
maybe especially) their visual syntax has only been proven
in this domain-specific context. Nonetheless, they have (or
can have) the best features of the best modem languages,
including natural and efficient recursion, higher-order func-
tions, data abstraction, and polymorphism.

This paper presents a theory of design that has been (at
least partially) put into practice by the signal processing
community. In the words of Milner [74], such a theory
“does not stand or fall by experiment in the conventional
scientific sense.” It is the “pertinence” of a theory that is
judged by experiment rather than its “truth.”

ACKNOWLEDGMENT
The authors would like to thank the entire Ptolemy

team, but especially Joe Buck, Soonhoi Ha, Alan Kamas,
and Dave Messerschmitt, for conceiving and building a
magnificent infrastructure for the kinds of experiments
described here. The authors also gratefully acknowledge
helpful comments and suggestions from Albert Benveniste,
Gerard Berry, Shuvra Bhattacharyya, John Reekie, Vason
Srini, Juergen Teich, and the anonymous reviewers. The
inspiration for this paper came originally from Jack Dennis,
who pointed out the need to relate the work with dataflow
in signal processing with the broader computer science
community.

196 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

REFERENCES Speech, and Signal Processing, Toronto, Canada, Apr. 1991.
[25] -, “Ptolemy: A framework for simulating and prototyp-

ing heterogeneous svstems.” Int. J. Comuuter Simulation, Apr. H. Abelson and G. J. Sussman, Structure and Interpretation of
Computer Programs.
S. Abramsky, “Reasoning about concurrent systems,” in Dis-
tributed Computing, F. B. Chambers, D. A. Duce, and G. P.
Jones, Eds. London: Academic, 1984.
W. B. Ackerman, “Data flow languages,” Computer, vol. 15,
no. 2, Feb. 1982.
K. R. Apt and G. D. Plotkin, “Countable nondeterminism and
random assignment,” J. ACM, vol. 33, no. 4, pp. 724-767, 1986.
Arvind, L. Bic, and T. Ungerer, “Evolution of data-flow com-
puters,” in Advanced Topics in Data-Flow Computing, J.-L.
Gaudiot and L. Bic, Eds. Englewood Cliffs, NJ: Prentice-Hall,
1991.
Arvind and J. D. Brock, “Resource managers in functional
programming,” J. Parallel and Distrib. Computing, vol. 1, no.

Arvind and K. P. Gostelow, “Some relationships between
asynchronous interpreters of a dataflow language,” in Formal
Description of Programming Languages, IFIP Working Group
2.2, 1977.
-, “The U-interpreter,’’ Computer, vol. 15, no. 2, Feb. 1982.
Arvind, R. S. Nikhil, and K. K. Pingali, “1-structures: Data
structures for parallel computing,” ACM Trans. Programming
Lang. and Syst., vol. 11, no. 4, pp. 598-633, Oct. 1989.
E. A. Ashcroft and R. Jagannathan, “Operator nets,” in Proc.
IFIP TC-IO Working Con5 on Fiph-Generation Computer Ar-
chitectures, North-Holland: The Netherlands, 1985.
A. Benveniste and G. Berry, “The synchronous approach to
reactive and real-time systems,” Proc. IEEE, vol. 79, pp.
1270-1282, Sept. 1991.
A. Benveniste and P. Le Guemic, “Hybrid dynamical systems
theory and the SIGNAL language,” IEEE Trans. Autom. Contr.,
vol. 35, pp. 525-546, May 1990.
A. Benveniste, P. Caspi, P. Le Guemic, and N. Halbwachs,
“Data-flow synchronous languages,” in J. W. de Bakker W.-P.
de Roever, and G. Rozenberg, Eds., A Decade of Concur-
rency-Reflections and Perspectives, Lecture Notes in Computer
Science no. 803.
G. Berry, “Bottom-up computation of recursive programs,”
Revue Frangaise d’Automatique, Informatique et Recherche
Opirationnelle, vol. 10, no. 3, pp. 47-82, Mar. 1976.
S. Bhattachaxyya and E. A. Lee, “Memory management for
synchronous dataflow programs,” to appear in IEEE Trans.
Signal Process., May 1995.
__, “Looped schedules for dataflow descriptions of multirate
signal processing algorithms,” to appear in Formal Methods in
System Design (updated from UCBERL Tech. Rep., May 21,
1993).
G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete,
“Static scheduling of multi-rate and cyclo-static DSP applica-
tions,” in Proc. 1994 Workshop on V U 1 Signal Process., IEEE
Press, 1994.
A. Bloss and P. Hudak, “Path semantics,” in Proc. 3rd Work-
shop on the Mathematical Foundations of Programming Lan-
guage Semantics, Lecture Notes in Computer Science. Berlin:
Springer-Verlag, no. 298, pp. 479489, 1987.
F. Boussinot, “Reseaux de processus avec melange equitable:
Une approche du temps reel,” Ph.D. dissertation, Universit6 P.
et M. Curie, and Universitk Paris, France, June 1981.
-, “Reseaux de processus reactifs,” Rapport de Recherche
no. 12/91, INRIA, Sophia-Antipolis, France, Nov. 1991 (in
French).
J. D. Brock and W. B. Ackerman, “Scenarios, a model of non-
determinate computation,” in Proc. Conf: on F o m l Definition
of Programming Concepts, LNCS 107. Berlin: Springer-Verlag,

J. T. Buck, Scheduling Dynamic Dataflow Graphs with Bounded
Memory Using the Token Flow Model, Tech. Rep. UCBERL
93/69, Ph.D. Dissertation, Dept. EECS, Univ. Calif., Berkeley,
CA, 1993.
J. Buck and E. A. Lee, “The token flow model,” presented
at Data Flow Workshop, Hamilton Island, Australia, May,
1992. Also in Advanced Topics in Dataflow Computing and
Multithreading, L. Bic, G. Gao, and J.-L. Gaudiot, Eds. New
York IEEE Computer Soc. Press, 1994.
J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multirate
signal processing in Ptolemy,” in Proc. Int. Con$ on Acoust.,

Cambridge, MA: MIT Press, 1985.

5-21, 1984.

Berlin: Springer-Verlag, 1994.

1981, pp. 252-259.

1!%4. ”
[26] W. H. Burge, ”Stream processing functions,” IBMJ. R & D,

vol. 19, no. 1, Jan. 1975.
[27] R. M. Burstall and J. Darlington, “A transformation system for

developing recursive programs,” J. ACM, vol. 24, no. 1, 1977.
[28] N. Carrier0 and D. Gelemter, “Linda in context,” Comm. ACM,

vol. 32, no. 4, pp. 444-458, Apr. 1989;,
[29] P. Caspi, “Clocks in dataflow languages, Theoretical Computer

Sci., vol. 94, no. 1, Mar. 1992.
[30] -, “Lucid synchrone,” in Proc. OPOPAC, HERMES, Paris,

[3 11 M. J. Chen, “Developing a multidimensional synchronous
dataflow domain in Ptolemy,” MS Rep., ERL Tech. Rep.
UCBERL no. 94/16, Univ. Calif., Berkeley, CA, May 1994.

[32] A. Church, The Calculi of Lambda-Conversion. Princeton, NJ:
Princeton Univ. Press, 1941.

[33] F. Commoner and A. W. Holt, “Marked directed graphs,” J.
Computer and Syst. Sci., vol. 5 , pp. 511-523, 1971.

[34] C. Consel and 0. Danvy, “Tutorial notes on partial evaluation,”
20th ACM Symp. on Principles of Programming Languages, Jan.

[35] A. L. Davis, “Data driven nets: A maximally concurrent, pro-
cedural, parallel process representation for distributed control
systems,” Tech. Rep., Dept. Computer Sci., Univ. Utah, Salt
Lake City, Utah, July 1978.

[36] A. L. Davis and R. M. Keller, “Data flow program graphs,”
Computer, vol. 15, no. 2, Feb. 1982.

[37] H. De Man, F. Catthoor, G. Goossens, J. Vanhoof, J. Van Meer-
bergen, S. Note, and J. Huisken, “Architecture-driven synthesis
techniques for mapping digital signal processing algorithms into
silicon,” Proc. IEEE, vol. 78, pp. 319-335, Feb. 1990.

[38] J. B. Dennis, “First version data flow procedure language,”
Tech. Rep. MAC TM61, May 1975, MIT Lab. Computer Sci.

[39] -, “Data flow supercomputers,” IEEE Compu., vol.

[40] -, “Stream data types for signal processing,” unpublished
memo, Sept 1992.

[41] D. Desmet and D. Genin, “ASSYNT: Efficient assembly code
generation for DSP’s starting from a data flowgraph,” Trans.
ICASSP ‘93, Minneapolis, MN, Apr. 1993.

[42] E. W. Dijkstra, A Discipline of Programming. Englewood
Cliffs, NJ: Prentice Hall, 1976.

[43] J. Franco, D. P. Friedman, and S . D. Johnson, “Multi-way
streams in scheme,” Comput. Lang., vol. 15, no. 2, pp. 109-125,
1990.

[44] D. K. Gifford and J. M. Lucassen, “Integrating functional and
imperative programming,” in Proc. 1986 ACM Con$ on Lisp
and Functional Programming, 1986, pp. 28-38.

[45] S. Ha, “Compile-time scheduling of dataflow program graphs
with dynamic constructs,” Ph.D. dissertation, EECS Dept.,
Univ. Calif., Berkeley, CA, Apr. 1992.

[46] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
synchronous data flow programming language LUSTRE,” Proc.
IEEE, vol. 79, pp. 1305-1319, Sept. 1991.

[47] N. Halbwachs, Synchronous Programming of Reactive Systems.
Dordrecht: Kluwer, 1993.

[48] P. G. Harrison, “A higher-order approach to parallel algo-
rithms,” The Computer J. , vol. 35, no. 6, 1992.

[49] J. Hicks, D. Chiou, B. S. Ang, and Arvind, “Performance
studies of id on the monsoon dataflow system,” J. Parallel and
Distributed Computing, vol. 18, no. 3, pp. 273-300, July, 1993.

[50] P. Hilfinger, “A high-level language and silicon compiler for
digital signal processing,” in Proc. Custom Integ. Circuits Con5
Los Alamitos, CA: IEEE Computer Soc., 1985, pp. 213-216.

[51] D. D. Hills, ‘‘Visual languages and computing survey: Data flow
visual programming languages,” J. visual Lang. and Computing,

[52] C. A. R. Hoare, “Communicating sequential processes,” Com-
mun. ACM, vol. 21, no. 8, Aug. 1978.

[53] P. Hudak, “Introduction to Haskell and functional program-
ming,” ACM Compu. Surveys, Sept. 1989.

[54] J. Hughes, “Compile-time analysis of functional programs,”
in Research Topics in Functional Programming, Tumer, Ed.
Reading, MA: Addison-Wesley, 1990.

[55] T. Ida and J. Tanaka, “Functional programming with streams,”
in Information Processing ‘83.

1993, pp. 79-93.

1993, pp. 493-501.

COM-13, NOV. 1980.

vol. 3, pp. 69-101.

Amsterdam: Elsevier, 1993.

LEE AND PARKS: DATAFLOW PROCESS NETWORKS 191

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

[56] R. Jagannathan, “Parallel execution of GLU programs,” pre-
sented at 2nd Int. Workshop on Datafow Computing, Hamilton
Island, Queensland, Australia, May 1992.

[57] R. Jagannathan and E. A. Ashcroft, “Eazyflow: A hybrid model
for parallel processing,” in Proc. Int. Con$ on Parallel Process.,
IEEE, Aug. 1984, pp. 514-523.

[58] G. Kahn, “The semantics of a simple language for parallel
programming,” in Proc. IFIP Cong. ’74, Amsterdam: North-
Holland, 1974.

[59] G. Kahn and D. B. MacQueen, “Coroutines and networks of
parallel processes,” Informution Processing ’77, B. Gilchrist,
Ed. Amsterdam: North-Holland, 1977.

[60] D. J. Kaplan et al., “Processing graph method specification
version 1 .O,” unpublished memo, Naval Res. Lab., Washington,
DC, Dec. 1987.

[61] R. M. Karp and R. E. Miller, “Properties of a model for parallel
computations: Determinacy, termination, queueing,” SIAM J.,
vol. 14, pp. 1390-1411, Nov. 1966.

[62] P. J. Landin, “A correspondence between Algol 60 and Church’s
lambda notation,” Commun. ACM, vol. 8, 1965.

[63] R. Lauwereins, P. Wauters, M. Adi, and J. A. Peperstraete,
“Geometric parallelism and cyclo-static dataflow in GRAPE-
11,” in Proc. 5th Int. Workshop on Rapid System Prototyping,
Grenoble, France, June 1994.

[64] E. A. Lee, “Consistency in dataflow graphs,” IEEE Trans.
Parallel and Distib. Syst., vol. 2, Apr. 1991.

[65] -, “Representing and exploiting data parallelism using
multidimensional dataflow diagrams,” in Proc. ICASSP ‘93,
Minneapolis, MN, Apr. 1993.

[661 E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous data flow programs for digital signal processing,”
IEEE Trans. Computers, Jan. 1987.

[671 -, “Synchronous data flow,” Proc. IEEE, Sept. 1987.
[68] P. Le Guemic, T. Gauthier, M. Le Borgne, and C. Le Maire,

“Programming real-time applications with SIGNAL,” Proc.
IEEE, vol. 79, Sept. 1991.

[69] 0. Maffefs and P. Le Guemic, “From signal to fine-grain
parallel implementations,” in Int. Con$ Parallel Architectures
and Compilation Techn., IFIF’ A-50, North-Holland, Aug. 1994,

[70] D. McAllester, P. Panagaden, and V. Shanbhogue, “Nonex-
pressibility of fairness and signaling,” to appear in JCSS,
1993.

[71] J. McCarthy, “Recursive functions of symbolic expressions and
the computation by machine, Part I,” Comm. ACM, vol. 3, no.
4, Apr. 1960.

[72] -, “A basis for a mathematical theory of computation,”
in Computer Programming and Formal Systems. Amsterdam:

[73] J. McGraw, “Sisal: Streams and iteration in a single assignment
language,” Language Re$ Manual, Lawrence Livermore Nat.
Lab., Livermore, CA.

[74] R. Milner, Communication and Concurrency. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

[75] M. A. Najork and E. Colin, “Enhancing show-and-tell with a
polymorphic type system and higher-order functions,” in Proc.
IEEE Workshop on Visual Languages, Skokie, IL, Oct. 1990,

[76] T. J. Olson, N. G. Klop, M. R. Hyett, and S . M. Camell,
“MAVIS: A visual environment for active computer vision,” in
Proc. IEEE Workshop on Visual Languages, Seattle, WA, Sept.
1992, IEEE Comput. Soc., 1992, p. 170-176.

[77] J. S . Onanian, “A signal processing language for coarse grain
dataflow multiprocessors,” Tech Rep. MITLCSKR-449, Cam-
bridge, MA, June 1989.

[78] P. Panagaden and V. Shanbhogue, “The expressive power of
indeterminate dataflow primitives,” Int and Computation, vol.
98, no. 1, May 1992.

[79] J. L. Pino, T. M. Parks, and E. A. Lee, “Mapping multiple
independent synchronous dataflow graphs onto heterogeneous
multiprocessors,” in Proc. IEEE Asilomar Con6 on Signals,
Syst., and Computers, Nov. 1994.

[80] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software synthesis
for DSP using Ptolemy,” J. VLSI Signal Process., vol. 9, no. 1,

[81] D. G. Powell, E. A. Lee, and W. C. Newman, “Direct synthesis
of optimized DSP assembly code from signal flow block
diagrams,” in Proc. ICASSP, San Francisco, Mar. 1992.

pp. 237-246.

North-Holland, 1978, pp. 33-70.

pp. 215-220.

pp. 7-21, Jan. 1995.

[82] H. Printz, “Automatic mapping of large signal processing
systems to a parallel machine,” Ph.D. dissertation, Memo.
CMU-CS-91-10], School of Computer Sci., Camegie Mellon
Univ., May 1991.

[83] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast prototyp-
ing of datapath-intensive architectures,” IEEE Design and Test
of Computers, pp. 4&51, June 1991.

[84] J. Rasure and C. S. Williams, “An integrated visual language
and software development environment,” J. Visual Lung. and
Computing, vol. 2, pp. 217-246, 1991.

[85] H. J. Reekie, “Toward effective programming for parallel dig-
ital signal processing,” Res. Rep. 92.1, Univ. of Technology,
Sydney, NSW, Australia, May 1992.

[86] - , “Integrating block-diagram and textual programming for
parallel DSP,” in Proc. 3d Int. Symp. on Signal Processing and
its Applications, QLD, Australia, Aug. 1992.

[87] H. J. Reekie and J. Potter, “Transforming process networks,”
presented at the Massey Functional Programming Workshop,
Massey Univ., Parmerston North, New Zealand, Aug. 1992.

[88] -, “Generating efficient loop code for programmable DSPs,”
in Proc. ICASSP ‘94, Adelaide, Australia, Apr. 1994.

[89] K. S. Shanmugan, G. J. Minden, E. Komp, T. C. Manning,
and E. R. Wiswell, “Block-oriented system simulator (BOSS),”
Telecommun. Lab., Univ. Kansas, Internal Memo, 1987.

[90] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor archi-
tectures,” IEEE Trans. Parallel and Distrib. Syst., vol. 4, Feb.
1993.

[91] - , “Declustering: A new multiprocessor scheduling tech-
nique,” IEEE Trans. Parallel and Distrib. Syst., June 1993.

[92] D. B. Skillcom, “Stream languages and data-flow,” in Advanced
Topics in Data-Flow Computing, J.-L. Gaudiot and L. Bic, Eds.
Englewood Cliffs, NJ: Prentice-Hall, 1991.

[93] V. Srini, “An architectural comparison of dataflow systems,”
Computer, vol. 19, no. 3, Mar. 1986.

[94] P. A. Suhler, J. Biswas, K. M. Komer, and J. C. Browne,
“TDFL: A task-level dataflow language,” J. Parallel and Dis-
trib. Syst., vol. 9, no. 2, June 1990.

[95] J. Vuillemin, “Proof techniques for recursive programs,” Ph.D.
dissertation, Compu. Sci. Dept., Stanford Univ., 1973.

[96] W. W. Wadge and E. A. Ashcroft, Lucid, the Dataflow Pro-
gramming Language. London: Academic, 1985.

[97] A. L. Wendelbom and H. Garsden, “Exploring the stream data
type in SISAL and other languages,” in Advanced Topics in
Dataflow Computing and Multithreading, L. Bic, G . Gao, and
J.-L. Gaudiot, Eds. New York: IEEE Compu. Soc., 1994.

Edward A. Lee (Fellow, IEEE) received the
B.S. degree from Yale University in 1979, the
S.M. degree from MIT in 1981, and the Ph.D.
degree from the University of California at
Berkeley in 1986.

He is presently a Professor in the Department
of Electrical Engineering and Computer
Sciences at the University of California at
Berkeley. He is Director of the Ptolemy project
there, and the former Director of the Gabriel
project. From 1979 to 1982 he was a member

of the technical staff in the Advanced Data Communications Laboratory
at AT&T Bell Laboratories in Holmdel, NJ. He is a founder of Berkeley
Design Technology Inc., and has also consulted for a number of other
companies. His research interests include real-time software, discrete-
event, systems, parallel computation, architecture and software techniques
for signal processing, and design methodology for heterogeneous systems.
He is a coauthor of Digital Communication (Kluwer, 1988 and 1994)
and Digital Signal Processing Experiments (Prentice Hall, 1989), and the
author of numerous technical papers and two patents.

Dr. Lee received the NSF Presidential Young Investigator award.

198 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5, MAY 1995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

Thomas M. Parks received the B.S.E. degree
in electrical engineering and computer science
from Princeton University in 1987. He is now a
Ph.D. candidate in the Department of Electrical
Engineering and Computer Sciences at the Uni-
versity of California at Berkeley.

He is presently working on real-time dataflow
computing as part of the Ptdemy project. From
1987 to 1989 he was an Assistant Staff Member
in the Speech Systems Technology Group at
MIT Lincoln Laboratory, where he designed and

implemented multiprocessor architectures for real-time signal processing.
He also contributed to research projects in low-rate speech coding and
continuous speech recognition. His research interests include computer
music, computer architecture, digital signal processing, real-time systems,
and dataflow computing.

LEE AND PARKS: DATAFLOW PROCESS NETWORKS

__--

799

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore. Restrictions apply.

