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We review a model of computation used in industrial practice 
in signal processing software environments and experimentally in 
other contexts. We give this model the name “dataflow process 
networks,” and study its formal properties as well as its utility as 
a basis for programming language design. Variants of this model 
are used in commercial visual programming systems such as SPW 
from the Alta Group of Cadence (formerly Comdisco Systems), 
COSSAP from Synopsys (formerly Cadis), the DSP Station from 
Mentor Graphics, and Hypersignal from Hyperception. They are 
also used in research sofhyare such as Khoros from the University 
of New Mexico and Ptolemy from the University of California at 
Berkeley, among many others. 

Dataflow process networks are shown to be a special case of 
Kahn process networks, a model of computation where a number 
of concurrent processes communicate through unidirectional FIFO 
channels, where writes to the channel are nonblocking, and reads 
are blocking. In dataflow process networks, each process consists 
of repeated “jirings” of a dataflow “actor.” An actor defines a 
(often functional) quantum of computation. By dividing processes 
into actor jirings, the considerable overhead of context switching 
incurred in most implementations of Kahn process networks is 
avoided. 

We relate dataflow process networks to other dataflow models, 
including those used in dataflow machines, such as static dataflow 
and the tagged-token model. We also relate dataflow process 
networks to functional languages such as Haskell, and show that 
modem language concepts such as higher-order functions and 
polymorphism can be used effectively in dataflow process net- 
works. A number of programming examples using a visual syntax 
are given. 

I. MOTIVATION 

This paper concerns programming methodologies com- 
monly called “graphical dataflow programming” that are 
used extensively for signal processing and experimentally 
for other applications. In this paper, “graphical” means 
simply that the program is explicitly specified by a directed 
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graph where the nodes represent computations and the 
arcs represent streams of data. The graphs are typically 
hierarchical, in that a node in a graph may represent 
another directed graph. The nodes in the graph can be either 
language primitives or subprograms specified in another 
language, such as C or FORTRAN. 

It is common in the signal processing community to use 
a visual syntax to specify such graphs, in which case the 
model is often called “visual dataflow programming.” But 
it is by no means essential to use a visual syntax. A few 
graphical programming environments allow an arbitrary 
mixture of visual and textual specification, both based on 
the same language. For example, the Signal [12], [68], 
Lustre [46], and Silage [50] languages all have a visual 
and a textual syntax, the latter available in the commercial 
Mentor Graphics DSP Station as DFL. Other languages 
with related semantics, such as Sisal [73], are used primarily 
or exclusively with textual syntax. The language Lucid 
[92], [96], while primarily used with textual syntax, has 
experimental visual forms [ 101. 

Hierarchy in graphical program structure can be viewed 
as an alternative to the more usual abstraction of subpro- 
grams via procedures, functions, or objects. It is better 
suited than any of these to a visual syntax, and also better 
suited to signal processing. 

Some examples of graphical dataflow programming en- 
vironments intended for signal processing (including image 
processing) are Khoros, from the University of New Mexico 
[84] (now distributed by Khoral Research, Inc.), Ptolemy, 
from the University of California at Berkeley [25], the 
signal processing worksystem (SPW), from the Alta Group 
at Cadence (formerly Comdisco Systems), COSSAP, from 
Synopsys (formerly Cadis), and the DSP Station, from 
Mentor Graphics (formerly EDC). MATLAB from The 
Mathworks, which is popular for signal processing and 
other applications, has a visual interface called SIMULINK. 
A survey of graphical dataflow languages for other applica- 
tions is given by Hills [51]. These software environments all 
claim variants of dataflow semantics, but a word of caution 
is in order. The term “dataflow” is often used loosely for 
semantics that bear little resemblance to those outlined 
by Dennis in 1975 [38] or Davis in 1978 [35]. A major 
motivation of this paper is to point out a rigorous formal 
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underpinning for dataflow graphical languages, to establish 
precisely the relationship between such languages and func- 
tional languages, and to show that such languages benefit 
significantly from such modem programming concepts as 
polymorphism, strong typing, and higher-order functions. 
Although it has been rarely exploited in visual dataflow 
programming, we also show that such languages can make 
effective use of recursion. 

Most graphical signal processing environments do not 
define a language in any strict sense. In fact, some designers 
of such environments advocate minimal semantics [76], ar- 
guing that the graphical organization by itself is sufficient to 
be useful. The semantics of a program in such environments 
is determined by the contents of the graph nodes, either 
subgraphs or subprograms. Subprograms are usually spec- 
ified in a conventional programming language such as C. 
Most such environments, however, including Khoros, SPW, 
and COSSAP, take a middle ground, permitting the nodes 
in a graph or subgraph to contain arbitrary subprograms, 
but defining precise semantics for the interaction between 
nodes. Following Halbwachs [47], we call the language 
used to define the subprograms in nodes the host language. 
Following Jagannathan, we call the language defining the 
interaction between nodes the coordination language [56]. 

Many possibilities have been explored for precise se- 
mantics of coordination languages, including for example 
the computation graphs of Karp and Miller [61], the syn- 
chronous dataflow graphs of Lee and Messerschmitt [66], 
the cyclostatic dataflow of Lauwereins et al. [17], [63], the 
processing graph method (PGM) of Kaplan et al. [60], gran- 
ular lucid [56], and others [3], [28], [33], [56], [94]. Many 
of these limit expressiveness in exchange for considerable 
advantages such as compile-time predictability. 

Graphical programs can be either interpreted or compiled. 
It is common in signal processing environments to provide 
both options. The output of compilation can be a standard 
procedural language, such as C, assembly code for pro- 
grammable DSP processors [80], or even specifications of 
silicon implementations [37]. Often, considerable effort is 
put into optimized compilation (see for example [15], [41], 
[811, [881). 

11. FORMAL UNDERPINNINGS 

In most graphical programming environments, the nodes 
of the graph can be viewed as processes that run con- 
currently and exchange data over the arcs of the graph. 
However, these processes and their interaction are usu- 
ally much more constrained than those of CSP [52] or 
SCCS [74]. A better (and fortunately much simpler) formal 
underpinning is the Kahn process network [%I. 

A, Kahn Process Networks 
In a process network, concurrent processes communicate 

only through one-way FIFO channels with unbounded 
capacity. Each channel carries a possibly infinite sequence 
(a stream) that we denote X = [xl, x2, . . .I, where each 
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x; is an atomic data object, or token drawn from some 
set. Each token is written (produced) exactly once, and 
read (consumed) exactly once. Writes to the channels are 
nonblocking (they always succeed immediately), but reads 
are blocking. This means that a process that attempts to 
read from an empty input channel stalls until the buffer has 
sufficient tokens to satisfy the read. Lest the reader protest, 
we will show that this model of computation does not 
actually require either multitasking or parallelism, although 
it is certainly capable of exploiting both. It also usually does 
not require infinite queues, and indeed can be much more 
efficient in its use of memory than comparable methods in 
functional languages, as we will see. 

A process in the Kahn model is a mapping from one 
or more input sequences to one or more output sequences. 
The process is usually constrained to be continuous in a 
rather technical sense. To develop this idea, we need a 
little notation. 

Consider a prejix ordering of sequences, where the se- 
quence X precedes the sequence Y (written X C Y) 
if X is a prefix of (or is equal to) Y. For example, 
[x1,x2] 5 [z1,x2,x3]. If X & Y, it is common to say that 
X approximates Y, since it provides partial information 
about Y. The empty sequence is denoted I (bottom), 
and is obviously a prefix of any other sequence. Consider 
a (possibly infinite) increasing chain of sequences x = 
{ XO, XI, . . .}, where XO L XI . . . . Such an increasing 
chain of sequences has one or more upper bounds Y, where 
Xi L Y for all X; E x.  The least upper bound nx 
is an upper bound such that for any other upper bound 
Y , n x  E Y. The least upper bound may be an infinite 
sequence. 

Let S denote the set of finite and infinite sequences. 
This set is a complete partial order (cpo) with the prefix 
order defining the ordering. The “complete” simply means 
that every increasing chain has a least upper bound in 
S. Let S P  denote the set of p-tuples of sequences as 
in X = {X1,X2, . . . ,Xp} E SP. The set LE S P  is 
understood to be the set of empty sequences. 

Such sets of sequences can be ordered as well; we write 
X C X’ if X; X,l for each i ,1  5 i 5 p. A set of 
p-tuples of sequences x = { X o , X , , . . . }  always has a 
greatest lower bound U x  (possibly I), but it may or may 
not have a least upper bound n x .  If it is an increasing 
chain, x = { X o ,  XI,. . .}, where X o  X1 L . . ., then it 
has a least upper bound, so S P  is a cpo for any integer p .  

I )  A Functional Process F: SP --t Sq maps a set of 
input sequences into a set of output sequences. Given an 
increasing chain of sets of sequences x, it will map this set 
into another set of sequences 9 that may or may not be an 
increasing chain. Let nx denote the least upper bound of 
the increasing chain x .  Then F is said to be continuous if 
for all such chains x,nF(x) exists and 

This is analogous to the notion of continuity for conven- 
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tional functions, if the least upper bound is interpreted as 
a limit, as in 

Kahn sketches a proof that networks of continuous pro- 
cesses have a more intuitive property called monotonicity 
[58]. A process F is monotonic if X g X’ + F ( X )  C 
F ( X ‘ ) .  This can be thought of as a form of causality, but 
one that does not invoke time. Moreover, in signal process- 
ing, it provides a useful abstract analog to causality that 
works for multirate discrete-time systems without requiring 
the invocation of continuous time. Given an increasing 
chain x ,  a monotonic process will map this set into another 
increasing chain @. 

For completeness, we now prove Kahn’s claim that a 
continuous process is monotonic [58].  To do this, we 
prove that if a process is not monotonic, then it cannot be 
continuous. If the process F is not monotonic, then there 
exist X and X’ where X 5 X’, but F ( X )  F ( X ’ ) .  Let 
x = { X O  C XI g . . .} be any increasing chain such that 
XO = X and nx = X’. Then note that F ( n x )  = F(X’ ) .  
But this cannot be equal to n F ( x )  because X E x and 
F ( X )  

A key consequence of these properties is that a process 
can be computed iteratively [70]. This means that given 
a prefix of the final input sequences, it may be possible 
to compute part of the output sequences. In other words, 
a monotonic process is nonstrict (its inputs need not be 
complete before it can begin computation). In addition, a 
continuous process will not wait forever before producing 
an output (i.e., it will not wait for completion of an infinite 
input sequence). 

A network of processes is, in essence, a set of simulta- 
neous relations between sequences. If we let X denote all 
the sequences in the network, including the outputs, and 
I the set of input sequences, then a network of functional 
processes can be represented by a mapping F where 

F(X’ ) .  This concludes the proof. 

x = F ( X , I ) .  (3) 

Any X that forms a solution is called a fixed point. Kahn 
argues in [58] that continuity of F implies that there will 
be exactly one “minimal” fixed point (where minimal is in 
the sense of prefix ordering) for any inputs I .  Thus we can 
get an execution of the network by first setting I =I and 
finding the minimal fixed point. Other solutions can then 
be found from this one by iterative computation, where the 
inputs are gradually extended; this works because of the 
monotonic property. 

Note that continuity implies monotonicity, but not the 
other way around. One process that is monotonic but not 
continuous is F :  S -+ S given by 

(4) 
if X is a finite sequence 
otherwise. F ( X )  = 

Only two outputs are possible, both finite sequences. To 
show that this is monotonic, note that if the sequence X is 
infinite and X _C X’,  then X = X’,  so 

Y = F ( X )  L Y’ = F ( X ’ ) .  (5)  

If X is finite, then Y = F ( X )  = [O], which is a prefix 
of all possible outputs. To show that it is not continuous, 
consider the increasing chain 

where each X i  has exactly i elements in it. Then nx is 
infinite. so 

Iterative computation of this function is clearly problematic. 
A useful property is that a network of monotonic pro- 

cesses itself defines a monotonic process. This property 
is valid even for process networks with feedback loops, 
as is formally proven using induction by Panagaden and 
Shanbhogue [78]. It should not be surprising given the 
results so far that one can formally show that networks 
of monotonic processes are determinate. 

B. Nondeterminism 
A useful property in some modern languages is an ability 

to express nondeterminism. This can be used to construct 
programs that respond to unpredictable sequences of events, 
or to build incomplete programs, deferring portions of the 
specification until more complete information about the sys- 
tem implementation is available. Although this capability 
can be extremely valuable, it needs to be balanced against 
the observation that for the vast majority of programming 
tasks, programmers need determinism. Unfortunately, by al- 
lowing too much freedom in the interaction between nodes, 
some graphical programming environments can surprise 
the user with nondeterminate behavior. Nondeterminate 
operations can be a powerful programming tool, but they 
should be used only when such a powerful programming 
tool is necessary. The problems arise because, as shown 
by Apt and Plotkin [4], nondeterminism leads to failures 
of continuity. 

Taking a Bayesian perspective, a system is random if 
the information known about the system and its inputs is 
not sufficient to determine its outputs. The semantics of 
the programming language may determine what is known, 
since some properties of the execution may be unspecified. 
However, since most graphical programming environments 
do not define complete languages, it is easy (and danger- 
ous) to circumvent what semantics there are by using the 
host language. In fact, the common principle of avoiding 
over specifying programs leaves aspects of the execution 
unspecified, and hence opens the door to nondeterminate 
behavior. Any behavior that depends on these unspecified 
aspects will be nondeterminate. 
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Fig. 1. This process network does not specify the relative timing 
of the Drocessing in nodes B and C. If D is a nondeterminate merge, 
it does not specify in which order the results should appear at E. 

Nondeterminism can be added to Kahn networks by any 
of five methods: 1) allowing processes to test inputs for 
emptiness, 2) allowing processes to be internally nonde- 
terminate, 3) allowing more than one process to write to 
a channel, 4) allowing more than one process to consume 
data from a channel, and 5) allowing processes to share 
variables. Boussinot argues that 3) can implement 1) and 2), 
and gives the semantics of such extended process networks 
[ 191. Shared variables, however, form a particular pitfall 
in a coordination language, since they are so easy to 
implement using the host language. 

For example, in the process network shown in Fig. 1, 
nothing in the graph specifies the relative timing of the 
processing in nodes B and C. Suppose that nodes B 
and C each modify a variable that they share. Then the 
order in which they access this variable could certainly 
affect the outcome of the program. The problem here 
is that the process network semantics, which specify a 
communication mechanism, have been circumvented using 
a shared variable in the host language. While this may be 
a powerful and useful capability, it should be used with 
caution, and in particular, it should not surprise the unwary 
programmer. Such a capability has been built into the PGM 
specification [60] in the form of what are called “graph 
variables.” A similar use of shared variables with “peek” 
and “poke” nodes appears in [79]. 

If B and C share a variable as described above, then they 
are potentially nonmonotonic. Knowing that F ( X o )  = YO, 
F(X1)  = Y1, and X O  L XI is not enough to conclude that 
YO Y1 because the extended inputs might somehow affect 
the order in which the shared variable is accessed. However, 
they could be monotonic if, for example, the discipline used 
to access the shared variable is equivalent to implementing 
a Kahn channel. 

As a rather different example, suppose that actor D in 
Fig. 1 is a nondeterminate merge (any of the three variants 
discussed by Panagaden and Shanbhogue [78]). Its behavior 
is that if a data value (a token) is available on either input, 
it can immediately move that token to its output. Now, the 
output depends on the order in which B and C produce 
their outputs, and on the timing with which D examines 
its inputs. It has been shown that a nondeterminate merge 
must be either unfair or nonmonotonic, and hence not con- 
tinuous [21]. Although rather involved technically, unfair 
intuitively means that it favors one input or the other. 

Arvind and Brock [6] argue that the nondeterminate 
merge is practically useful for resource management prob- 
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lems. A resource manager accepts requests for a resource 
(e.g., money in a bank balance), arbitrates between multiple 
requests, and returns a grant or deny, or some related 
data value. It is observed that such a resource manager 
can be used to build a memory cell, precisely the type of 
resource that functional programming is trying to get away 
from. Abramsky [2] points out that the functionality of a 
nondeterminate merge is widely used in practice in time- 
dependent systems, despite unsatisfactory formal methods 
for reasoning about it. 

A network with a nondeterminate merge clearly might 
be nondeterminate, but it might also be determinate. For 
example, suppose that C in Fig. 1 never actually produces 
any outputs. Then the nondeterminate merge in D will not 
make the network nondeterminate. 

The nondeterminate merge does not satisfy one of Kahn’s 
conditions for a process network, that reads from channels 
be blocking. This constraint makes it impossible for a 
process to test an input for the presence of data. Thus if 
D is a nondeterminate merge, then the graph in Fig. 1 is 
not, strictly speaking, a Kahn process network. 

We have been using the term “determinate” loosely. 
If we now formally define determinism in the context 
of process networks, then the main result of this section 
follows immediately. Define the history of a channel to be 
the sequence of tokens that have traversed the channel (i.e., 
have been both written and read). A Kahn process network 
is said to be determinate if the histories of all the internal 
and output channels depend only on the histories of the 
input channels. A monotonic process is clearly determinate. 
Since a network of monotonic processes is monotonic [78], 
then a network of monotonic processes is also determinate. 

C. Streams 
The graphical programming environments that we are 

concerned with are most often used to design or simu- 
late real-time signal processing systems. Real-time signal 
processing systems are reactive, in that they respond to 
a continual stream of stimuli from an environment with 
which they cannot synchronize [ 113. Skillcom [92] argues 
that streams and functions on them are a natural way to 
model reactive systems. Streams are such a good model for 
signals that the signal processing community routinely uses 
them even for nonreal-time systems. 

Wendelbom and Garsden [97] observe that there are 
different ideas in the literature of what a stream is. One 
camp defines streams recursively, using cons-like list con- 
structors, and usually treats them functionally using lazy 
semantics. This view is apparently originally due to Landin 
[62]. Lazy semantics ensure that the entire stream need 
not be produced before its consumer operates on it. For 
example, Burge [26] describes streams as the functional 
analog of coroutines that “may be considered to be a 
particular method of representing a list in which the creation 
of each list element is delayed until it is actually needed.” 
As another example, in Scheme, streams are typically 
implemented as a two-element cell where one element has 
the value of the head of the stream and the other has 
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the procedure that computes the rest of the stream [l]. 
Recursive operations on streams require use of a special 
“delay” operator that defers the recursive call until access 
to the “cdr” of the stream element is attempted. This ad hoc 
mechanism makes recursive streams possible in a language 
without lazy semantics. Another mechanism that avoids 
laziness is the so-called I-structures used in some dataflow 
languages [9]. 

Another camp sees streams as channels, just like the 
channels in a Kahn process network. A channel is not func- 
tional, because it is modified by appending new elements 
to it. Kahn and MacQueen outline in [59] a demand-driven 
multitasking mechanism for implementing such channels. 
Ida and Tanaka argue for the channel model for streams, 
observing that it algorithmically transforms programs from 
a recursive to an iterative form [ S I .  Dennis, by contrast, 
argues for the recursive-cons representation of streams in 
Sisal 2 for program representation, but suggests translating 
them into nonrecursive dataflow implementations using the 
channel model [40]. Franco et al. also argue in [43] for 
using the channel model, with a demand-driven execution 
style, and propose an implementation in Scheme. The 
channels are implemented using a “call with current contin- 
uation” mechanism in Scheme. This mechanism essentially 
supports process suspension and resumption, although the 
authors admit that at the time of their writing, no Scheme 
implementation supported this without the considerable 
expense of a control-stack copy. 

A unique approach implemented in the language Silage 
[50] blends the benefits of a declarative style with the 
simplicity of the channel model. In Silage, a symbol “x” 
represents an infinite stream. The language has the notion 
of a global cycle, and a simple reference to a symbol “5” 

can be thought of as referring to the “current value” of 
the stream x. An implicit infinite iteration surrounds every 
program. This language is being used successfully for both 
software and hardware synthesis in the Mentor Graphics 
DSP Station, the Cathedral project at IMEC [37], and in the 
Hyper project at University of California at Berkeley 1831. 
The use of a global cycle in a process network context has 
also been studied by Boussinot [20], who observes that 
it permits suspension and interruption of processes in a 
predictable way. 

A more general approach is to associate with each stream 
a “clock,” as done in Lustre [46] and Signal [12]. A clock 
is a logical signal that defines the alignment of tokens in 
different streams. For example, one could have a stream y 
where only every second token in y aligns with a token in 
another stream x. Although both streams may be infinite, 
one can view x as having twice as many tokens as y. 
A powerful algebraic methodology has been developed 
to reason about relationships between clocks, particularly 
for the Signal language [12], [68]. Caspi has described a 
preliminary attempt to abstract the notion of clocks so that 
it applies to process networks [29]. He has applied this 
abstraction to the Lucid language to solve certain problems 
like determining whether the program executes in bounded 
memory [30]. A different solution to the same problem 

is given by Buck [22], who uses the so-called balance 
equations, described below in Section 11-E-3. 

The difference between the two models for streams 
need not be important in practice, except that the choice 
of model may lead to unfortunate choices in language 
design. We prefer the channel model for a number of 
reasons. Stylistically, unlike the recursive-cons model, it 
puts equal emphasis on destruction (consumption of data 
from the stream) as construction (production of data onto 
the stream). Moreover, it does not suggest costly lazy 
evaluation. While a demand-driven style of control is 
popular among theoreticians, no established signal process- 
ing programming environment uses it, partly because of 
the cost, and partly because the same benefits (avoiding 
unnecessary computation) can usually be obtained more 
efficiently through compile-time analysis [22], [66]. The 
same objectives are addressed by path analysis, used to 
reduce the cost of lazy evaluation in functional languages 
through compile-time analysis [ 181. 

In the channel model for streams, unlike the streams in 
the synchronous languages Silage, Lustre, and Signal, there 
is no concept of simultaneity of tokens (tokens in different 
streams lining up). Instead, tokens are queued using a FIFO 
discipline, as done in early dataflow schema [36]. 

It is especially important in signal processing applications 
to recognize that streams can carry truly vast amounts 
of data. A real-time digital audio stream, for instance, 
might carry 44 100 samples per second per channel, and 
might run for hours. Video sequences carry much more. 
Viewing a stream as a conventional data structure, therefore, 
gets troublesome quickly. It may require storing forever 
all of the data that ever enters the stream. Any practical 
implementation must instead store only a sliding window 
into the stream, preferably a small window. But just by 
providing a construct for random access of elements of a 
stream, for example, the language designer can make it 
difficult or impossible for a compiler to bound the size of 
the window. 

A useful stream model in this context must be as good 
at losing data (and recycling its memory) as it is at storing 
data. The prefix-ordered sequences carried by the channels 
in the Kahn process networks are an excellent model for 
streams because the blocking reads remove data from the 
stream. However, special care is still required if the memory 
requirements of the channels in a network are to remain 
bounded. This problem will be elaborated below. 

In [85]-[87], Reekie et al. consider the problem of 
supporting streams in the functional programming language 
Haskell [53]. They propose some interesting extensions 
to the language, and motivate them with a convincing 
discussion of the information needed by a compiler to 
efficiently implement streams. To do this, they use the Kahn 
process network model for Haskell programs, and classify 
them into static and dynamic. In static networks, all streams 
are infinite. In dynamic networks, streams can come and 
go, and hence the structure of the network can change. 
Mechanisms for dealing with these two types of networks 
are different. Static networks are much more common in 
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signal processing, and fortunately much easier to implement 
efficiently, although we will consider both types below. 

For efficiency, Reekie et al. wish to evaluate the process 
networks eagerly, rather than lazily as normally required 
by Haskell [87]. They propose eager evaluation whenever 
strictness analysis [54] reveals that a stream is “head strict,” 
meaning that every element in the stream will be evaluated. 
This is similar to the optimization embodied in the Eazyflow 
execution model for dataflow graphs, which combines data- 
driven and demand-driven evaluation of operator nets by 
partitioning the net into subnets that can be evaluated 
eagerly without causing any wasteful computation [57]. 
This, in effect, translates the recursive-cons view of streams 
into a channel view. 

Reekie et al. also point out that if analysis reveals that 
a subgraph is synchronous (in the sense of “synchronous 
dataflow” [66], [67]), then very efficient evaluation is 
possible. While this latter observation has been known for 
some time in signal processing circles, putting it into the 
context of functional programming has been a valuable 
contribution. To clarify this point, we can establish a clear 
relationship between dataflow, functional languages, and 
Kahn process networks. 

Streams can be generalized to higher dimensionality, as 
done in Lucid [92] and Ptolemy [31], [65]. This, however, 
is beyond the scope of this paper. 

D. Datajlow, Functional Languages, and Process Networks 
A dataflow actor, when it fires, maps input tokens into 

output tokens. Thus an actor, applied to one or more 
streams, will fire repeatedly. A set of Bring rules specify 
when an actor can fire. Specifically, these rules dictate 
precisely what tokens must be available at the inputs for the 
actor to fire. A firing consumes input tokens and produces 
output tokens. A sequence of such firings is a particular 
type of Kahn process that we call a dataflow process. A 
network of such processes is called a dataflow process 
network. 

More specialized dataflow models, such as Dennis’ static 
dataflow [39] or synchronous dataflow [66], [67] can be 
described in terms of dataflow processes. The models used 
by most signal processing environments mentioned above 
can also be described in terms of dataflow processes. The 
tagged token model of Arvind and Gostelow [7], [8] is 
related, but not identical, as we will show. Signal [12] 
and Lustre [46], which are called “synchronous dataflow 
languages,” do not form dataflow processes at all because 
they lack the FIFO queues of the communication channels. 
They can, however, be implemented using dataflow process 
networks, with certain benefits to parallel implementation 
1691. 

A sufficient condition for a dataflow process to be con- 
tinuous, as defined in (l), is that each actor firing be 
functional, and that the set of firing rules be sequential. 
Here, “functional” means that an actor firing lacks side 
effects and that the output tokens are purely a function of 
the input tokens consumed in that firing. This condition 
is stronger than the Kahn condition that a process be 

778 

functional, meaning that the output sequences are a function 
of the input sequences [58] .  With Kahn’s condition, actors 
can have and manipulate state. We later relax this constraint 
so that actors can have and manipulate state as well. 
“Sequential” means that the firing rules can be tested 
in a predefined order using only blocking reads. A little 
notation will help make this rather technical definition 
precise. 

I) Firing Rules: An actor with p 2 1 input streams can 
have N firing rules 

The actor can fire if and only if one or more of the firing 
rules is satisfied, where each firing rule constitutes a set of 
pattems, one for each of p inputs, 

A pattern Ri,j is a (finite) sequence. For firing rule i to 
be satisfied, each pattern Ri,j must form a prefix of the 
sequence of unconsumed tokens at input j. An actor with 
p = 0 input streams is always enabled. 

For some firing rules, some patterns might be empty 
lists, Ri,j =I. This means that any available sequence at 
input j is acceptable, because I_C X for any sequence 
X. In particular, it does not mean that input j must be 
empty. 

To accommodate the usual dataflow firing rules, we need 
a generalization of the prefix ordering algebra. The symbol 
“*” will denote a token wildcard. Thus the sequence [*] 
is a prefix of any sequence with at least one token. The 
sequence [*, *] is a prefix of any sequence with at least 
two tokens. The only sequence that is a prefix of [*I is I, 
however. Notice therefore, that the statement [*I L X is 
not saying that any one-token sequence is a prefix of X. 
All it says is that X has at least one token. 

Let Aj, for j = 1 ,. . . , p, denote the sequence of available 
unconsumed tokens on the j th input. Then the firing rule 
R, is enabled if 

We can write condition (10) using the partial order on sets 
of sequences 

where A = {A1,A2,...,AP} . 
For many actors, the firing rules are very simple. Con- 

sider an adder with two inputs. It has only one firing 
rule, R1 = {[*I, [*I}, meaning that each of the two inputs 
must have at least one token. More generally, synchronous 
dataflow actors [66], [67], always have a single firing rule, 
and each pattern in the firing rule is of the form [*, *, . . . , *], 
with some fixed number of wildcards. In other words, an 
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2 FALSE DATA 

(a) (b) 
Fig. 2. The select and nondeterminate merge actors each combine 
two data streams into one, but the select actor uses a Boolean 
control signal to determine how to accomplish the merge. 

(a) (b) 
Fig. 3. Illustration that the firing rules of the nondeterminate 
merge are not sequential. A blocking read of either input will cause 
one of these two networks to deadlock inappropriately. 

SDF actor is enabled by a fixed number of tokens at each 
input.’ 

A more interesting actor is the select actor in Fig. 2(a), 
which has the firing rules { R I ,  Rz},  where 

where T and F match true and false-valued Booleans, 
respectively. The behavior of this actor is to read a Boolean 
control input, then read a token from the specified data 
input and copy that token to the output. The firing rules 
are sequential, in that a blocking read of the control input, 
followed by a blocking read of the appropriate data input, 
will invoke the appropriate firing rule. 

The nondeterminate merge with two inputs, also shown 
in Fig. 2(b), also has two firing rules 

These rules are not sequential. A blocking read of either 
input fails to produce the desired behavior, as illustrated 
in Fig. 3. In Fig. 3(a), a blocking read of the top input 
will never unblock. In Fig. 3(b), a blocking read of the 
bottom input will never unblock. In both cases, the behavior 
is incorrect. Note that with any correct implementation 
of the nondeterminate merge, both networks in Fig. 3 are 
nondeterminate. It is unspecified how many times a given 
token will circulate around the feedback loop between 
arrivals of tokens from the left. 

‘An SDF actor also produces a fixed number of tokens when it fires, 
but this is not captured in the firing rules. An interesting variant, called 
cyclo-static dataflow [17], permits the number of tokens produced and 
consumed to vary cyclically. Modeling this with firing rules requires a 
straightforward generalization. We will give this generalization below in 
Section 111-B-2. 

2) Identifying Sequential Firing Rules: In general, a set 
of firing rules is sequential if the following procedure does 
not fail:2 

1) Find an input j such that [*I Ri,j for all i = 
1, . . . , N .  That is, find an input such that all the firing 
rules require at least one token from that input. If no 
such input exists, fail. 

2) For the choice of input j, divide the firing rules into 
subsets, one for each specific token value mentioned 
in the first position of Ri,j for any i = 1, . . . , N .  If 
Ri,j = [*,.. .I,  then the firing rule Ri should appear 
in all such subsets. 

3) Remove the first element of Ri,j for all i = 1, . . . , N .  
4) If all subsets have empty firing rules, then succeed. 

Otherwise, repeat these four steps for any subset with 
any nonempty firing rules. 

The first step identifies an input where a token is required 
by all firing rules. The idea of the second step is that reading 
a token from that particular input will often at least partially 
determine which firing rules apply. Observing its value, 
therefore, will often reduce the size of the set of applicable 
firing rules. 

Consider the select actor in Fig. 2. The above steps 
become: 

1) j = 3. 
2) The firing rules divide into two sets, { R I }  and {Rz} ,  

each with only one rule. 
3) The new firing rules become RI = {[*],I, I} in 

the first subset and R2 = {I, [*I, I} in the second 
subset. 

4) The procedure repeats trivially for each subset, and 
in step 3, the modified firing rules become empty. 

For the nondeterminate merge, the procedure fails immedi- 
ately, in the first application of step 1. 

3) Relationship to Higher-Order Functions: Constraining 
the actors to be functional makes a dataflow process roughly 
equivalent to the function “maps” used by Burge [26] and 
Reekie [ S I .  It is similar to the “map” function in Haskell 
and the “mapcar” function in Lisp, except that it introduces 
the notion of consuming the tokens that match the firing 
rule, and hence easily deals with infinite streams. 

All of these variants of “map” are higher-orderfunctions, 
in that they take functions as arguments and return functions 
[71]. We define F = m a p ( f ) ,  where f: SP + Sq is a 
function, to return a function F :  SP --f Sq that applies f to 
each element of a stream when one of a set of firing rules 

’In (8). we imply that the number of firing rules is finite. J. Reekie has 
pointed out in a personal communication that if we relax this constraint, 
then for some sequential firing rules corresponding to determinate actors, 
this procedure will not fail, but will also never terminate. Thus as a 
practical matter, we may need the additional restruction that the procedure 
terminate. His example is an actor with two inputs, one of which is an 
integer specifying the number of tokens to consume from the other. The 
firing rules take the form { { [ O ] ,  I}, {[I], [*I}, { [2], [*, *I}, . . .}. 
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is enabled. More precisely, F = m a p ( f ) ,  where 

F ( R . X )  = f ( R ) : F ( X )  (16) 

and R is any firing rule of f .  The colon “:” indicates 
concatenation of sequences. That is, if X and Y are 
each in SP, then X : Y  is a new set of sequences formed 
by appending each sequence in Y to the end of the 
corresponding sequence in X. Following the notation in 
Haskell, (16) defines the sequences returned by F when 
the input sequences have R as a prefix. 

Notice that definition (16) is recursive. The recursion 
terminates when the argument to F no longer has any firing 
rule as a prefix. 

The function f will typically require only some finite 
number of tokens on each input, while the function returned 
by m u p ( f )  can take infinite stream arguments. Thus F = 
m a p ( f )  is a dataflow process, where each firing consists 
of one application of the dataflow actor function f.  

4 )  A Nondeteninate Example: An example that com- 
bines many of the points made so far can be constructed 
using the nondeterminate operator introduced by McCarthy 
[721 and used by Hudak [531: 

f l (2 ,L)  = x  
fl(LY) = Y  
fl (z, y) = z or y chosen randomly 

These three declarations define the output of the f l  function 
under three firing rules: R1 = {[*I, I} ,Rz = {I, [*I} and 
R3 = {[*I, [*I}. A dataflow process could be constructed 
by repeatedly firing this function on stream inputs. 

McCarthy points out that the expression fl(1, 2)+fl (1, 
2) could take on the value 3, and uses this to argue that 
nondeterminism implies a loss of referential transparency .3 

However, when used to create a dataflow process, this 
example actually mixes two distinct causes for nonde- 
terminism. Random behavior in an actor acting alone is 
sufficient to lose determinacy and referential transparency. 
The simpler definition: 

fz(x, y) = z or y chosen randomly 

is sufficient for fz(1, 2)+fz(1, 2) to take on the value 3. If 
the choice of random number is made using a random num- 
ber generator, then normally the random number generator 
has state, initialized by a seed. Perhaps the seed should be 
shown explicitly as an argument to the function: 

f3(z, y, s) = x or y chosen by generating 
a random number from seed s. 

3 A  basic notion used in the X calculus [32], referential transparency 
means that any two identical expressions have identical values. If 
f1(1,2)+f1(1,2)= 3, then clearly the two instances of fi(1.2) cannot 
have taken on the same value. 

Suddenly, we regain referential transparency and determi- 
nacy. It would not be possible for fd1 ,  2, 3)+f3(1, 2, 
3) to equal 3, for example. Without giving the seed as an 
argument, f3 is not functional. 

Consider the simplified definition: 

This definition has no random numbers in it, but in a 
dataflow process network, it is still possible for f4(l, 2) 
+f4(1, 2) to equal 3. The firing rules are not sequential. 
The output depends on how the choice between firing rules 
is made, something not specified by the language semantics. 

We can show directly that an attempt to construct a 
dataflow process from the function f4 yields a process 
that is not monotonic, and hence is not continuous. Let 
F4 = map(f4) represent the dataflow process made with 
actor function f4.  It is easy to show that the process is not 
monotonic. In fact, it is not even a function, since for some 
inputs, it can take on more than one possible output value. 
Consider F4 ( XI, Yl ) and F4 (Xa , YZ ) where 

X1 = [l],Xz = [l, 11, and Y1 =I ,Yz  = [2] (17) 

where Y1 is the empty sequence. Clearly, XI C XZ and 
Y1 C Yz. However, 

We get F4(XlrY1) = [l], while F4(xZ,YZ) can take on 
any of the following possible values: [2, 11, [ l ,  21, [ l ,  2, 11, 
[ l ,  1, 21, or [2, 1, 13. This is clearly nondeterminate (and 
nonfunctional). Only three of the five possible outcomes 
satisfy the monotonicity constraint. And these choose rather 
arbitrarily from among the firing rules. If we were to make 
a policy of these choices, it would be easy to construct 
other example inputs that would violate monotonicity. 

One might argue for a different interpretation of the firing 
rules, in which a I in a firing rule pattern matches only an 
empty input (no tokens available). Under this interpretation, 
we get F4(Xl,Yl) = [ l ]  and F4(Xz,Yz) = [2,1]. While 
not monotonic, this might appear to be determinate (recall 
that we’ve only argued that continuity is sufficient for de- 
terminacy, not that it is necessary). But further examination 
reveals that we have made some implicit assumptions about 
synchronization between the input streams. To see this, 
consider the prefix ordered sequences 

X1 = [I], X2 = [I], X3 = [l, 11, and 
Y1 = I ,Yz  = [2],Y3 = [2]. (19) 

It would seem reasonable to argue that these are in fact 
exactly the same sequences as in (17). We are just looking 
at the value of the sequences more often. However, under 
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sequential =)continuous monotonic 

monotonic X E Y F 0 E F CY). 

Fig. 4. A variant of McCarthy’s ambiguous function embedded 
in a dataflow process network. 

the same implicit synchronization assumptions, the output 
is different: 

These outputs are not prefix ordered, as they would be for 
a monotonic process. 

This issue becomes much clearer if one considers a more 
complete dataflow process network, as shown in Fig. 4. The 
dataflow processes A and B have no inputs, so their firing 
rule is simple; they are always enabled. They produce at 
their outputs the streams X and Y. The problems addressed 
above, in this context, refer to the relative timing of token 
production at A and B compared to the timing of the firings 
of the F4 = map(f4) process. In dataflow process network 
semantics, this timing is not specified. 

5) Firing Rules and Template Matching: Some functional 
languages use template matching in function definitions the 
way we have been using firing rules. Consider the following 
Haskell example (with slightly simplified syntax): 

fac 0 = 1 
fac n = n x fac(n - 1). 

This defines a factorial function. If the argument is 0, the 
result is 1. If the argument is n, the result is n x fac(n - 1). 
These are not ambiguous because the semantics of Haskell 
gives priority to the first template, removing any ambiguity. 
The second template is really a shorthand for “any n except 
0.” These two templates, therefore, viewed as firing rules, 
are naturally sequential, since each rule consumes one token 
and implicitly states: “use me if no previously declared 
firing rule applies and the inputs match my pattern.” Of 
course, this does not remove ambiguities due to function 
arguments where no data is needed. (Haskell has lazy 
semantics, defemng the evaluation of function arguments 
until the data is needed, so a function may be invoked that 
will decide it does not need data from one its arguments). 

Embedding this example, the factorial function, in a 
dataflow process network introduces new and interesting 
problems. Consider F ( X ) ,  where F = map (fac) and X is 
a stream. Each firing of the actor can trigger the creation of 
new streams, so this process network is not static. We will 

Fig. 5. 
ships for the function F: SP -+ Sq. 

Summary of function class definitions and their relation- 

consider more interesting recursive examples than this in 
considerable detail below, so we defer further discussion. 

6) Sequential Processes: Vuillemin [95] has given a 
mathematical definition of sequential functions that is 
entirely consistent with the notion given here of sequential 
firing rules. Both our actor functions and the processes 
made from them are sequential in his sense. The definition 
and its relationship to continuity and monotonicity is 
summarized in Fig. 5. 

A process F :  SP -+ SQ is sequential if it is continuous 
and if for any X = {XI , X2, . . . , X P } ,  there exists an 
i ,  1 5 i 5 p ,  such that for any X’ where X 5 X’ 
and Xi = X;, F ( X )  = F ( X ’ ) .  This is intuitively easy 
to understand in the context of process networks if one 
considers X’ to be simply a more evolved state of the 
input streams than X. In other words, X’ extends the 
streams in X, except the one stream Xi ,  which is not 
extended. The process is sequential because it needs for the 
stream X ;  to be extended before it can extend any output 
stream. Moreover, for any X, there is an i such that the 
process needs Xi to be extended before it can extend the 
output. Notice that this definition of sequentiality can be 
applied just as easily to an actor function f as to a process 
F = m u p ( f ) .  Given this, the following theorem is obvious. 

Theorem: If an actor function f has sequential firing 
rules, then the process F = m a p ( f )  is sequential. 

The question naturally arises whether there are nonse- 
quential functions that are continuous (and thus guarantee 
determinacy). In fact, a rather trivial example of such a 
function is the identity function with two inputs, 

It is easy to see that it is not sequential (extending either 
input extends the output). It is also straightforward to prove 
that it is continuous. In order to define F = m a p ( f ) ,  we 
need a set of firing rules. A reasonable set of firing rules for 
the identity function is R1 = { [*I, I} and Rz = {I, [*I}. 
Even though these are the same firing rules used earlier for 
the nondeterminate merge, the identity function is clearly 
determinate. In this case f is continuous and F = map( f )  
is also continuous. 

The question naturally arises whether the above theorem 
extends to continuous functions. That is, given that f 
is continuous, can we conclude that F = m a p ( f )  is 
continuous? The answer is no, as demonstrated by the 
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following counter example. Let Y be some nonempty finite 
sequence. Define 

f ( X , , X , )  = { Y :  X 1 , Y :  X2} .  

The colon “:” again means concatenation of two sequences. 
This function is similar to the identity function, with the 
simple difference that it prepends a prefix to each of two 
input sequences. It is easy to show that this is continuous. 
However, F = map( f) is not continuous if we use the 
firing rules we defined for the identity function. In fact, 
it is not monotonic, nor even functional. That is, for any 
input sequences X I  and X Z ,  there is more than one possible 
output. This is because the function f produces a copy 
of the prefix on both outputs when it fires. On the output 
streams there can be any number of copies of the sequence 
Y inserted between tokens from the corresponding input 
stream. 

Berry [14] has defined a class of functions called stable 
functions that may not be sequential but are always contin- 
uous. This class is not as broad as the class of continuous 
functions, but in certain circumstances, is easier to work 
with. But this is beyond the scope of this paper. 

7) The Relationship to Kahn Process Networks: Dataflow 
process networks with sequential firing rules and functional 
actors are a special case of Kahn process networks. They 
construct a process F as a sequence m a p ( f )  of atomic 
actor invocations f .  Instead of suspending a process on a 
blocking read or nonblocking write, processes can be freely 
interleaved by a scheduler, which determines the sequence 
of actor firings. Since the actors are functional, no state 
needs to be stored when one actor terminates and another 
fires. The biggest advantage, therefore, is that the context 
switch overhead of process suspension and resumption is 
entirely avoided. 

There is still the cost of scheduling. However, for most 
programs, this cost can be entirely shifted to the compiler 
[66], [22]. While it is impossible to always shift all costs to 
the compiler [22], large clusters within a process network 
can be scheduled at compile time, greatly reducing the 
number of dataflow processes that must be dynamically 
scheduled. As a consequence of this efficiency, much finer 
granularity is practical, with processes often being as simple 
as to just add two streams. We will now consider execution 
models in more detail. 

E. Execution Models 
Given a dataflow process network, a surprising variety 

of execution models can be associated with it. This variety 
is due, in no small part, to the fact that a dataflow process 
network does not over specify an algorithm the way non- 
declarative semantics do. Execution models have different 
strengths and weaknesses, and there is, to date, no clear 
winner. 

I )  Concurrent Processes: Kahn and MacQueen propose 
an implementation of Kahn process networks using multi- 
tasking with a primarily demand-driven style [59]. A single 

“driver” process (one with no outputs) demands inputs. 
When it suspends due to an input being unavailable, the 
input channel is marked “hungry” and the source process 
is activated. It may in tum suspend, if its inputs are not 
available. Any process that issues a “put” command to 
a hungry channel will be suspended and the destination 
process restarted where it left off, thus injecting also a 
data-driven phase to the computation. If a “get” operation 
suspends a process, and the source process is already 
suspended waiting for an input, then deadlock has been 
detected. 

In the Kahn and MacQueen schema, configuration of the 
network on the fly is allowed. This allows for recursive 
definition of processes. Recursive definition of streams 
(data) is also permitted in the form of directed loops in 
the process graph. 

The repeated task suspension and resumption in this 
style of execution is relatively expensive, since it requires 
a context switch. It suggests that the granularity of the 
processes should be relatively large. For dataflow process 
networks, the cost can be much lower than in the general 
case, and hence the granularity can be smaller. 

2) Dynamic Scheduling of Dataflow Process Networks: 
Dataflow process networks have other natural execution 
models due to the breakdown of a process into a sequence 
of actor firings. A firing of an actor provides a different 
quantum of execution than a process that suspends on 
blocking reads. Using this quantum avoids the complexities 
of task management (context switching and scheduling) that 
are implied by Kahn and MacQueen [59] and explicitly 
described by Franco et al. [43]. Instead of context 
switching, dataflow process networks are executed by 
scheduling the actor firings. This scheduling can be done 
at compile time or at run time, and in the latter case, can 
be done by hardware or by software. 

The most widely known execution models for dataflow 
process networks have emerged from research into com- 
puter architectures for executing dataflow graphs [5], [93]. 
This association may be unfortunate, since the performance 
of such architectures has yet to prove competitive [49]. In 
such architectures, actors are fine-grained, and scheduling is 
done by hardware. Although there have been some attempts 
to apply these architectures to signal processing [77], the 
widely used dataflow programming environments for signal 
processing have nothing to do with dataflow architectures. 

Some signal processing environments, for example COS- 
SAP from Cadis (now Synopsys) and the dynamic dataflow 
domain in Ptolemy, use a run-time scheduler implemented 
in software. This performs essentially the same function 
performed in hardware by dataflow machines, but is usually 
used with actors that have larger granularity. The scheduler 
tracks the availability of tokens on the inputs to the actors, 
and fires actors that are enabled. 

3) Static Scheduling of Dataflow Process Networks: For 
many signal processing applications, the firing sequence 
can be determined statically (at compile-time). The class 
of dataflow process networks for which this is always 
possible is called synchronous dataflow [61], [66], [67]. 
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In synchronous dataflow, the solution to a set of balance 
equations relating the production and consumption of to- 
kens gives the relative firing rates of the actors. These 
relative firing rates combined with simple precedence anal- 
ysis allows for the static construction of periodic schedules. 
Synchronous dataflow is used in COSSAP (for code gener- 
ation, not for simulation), in the multirate version of SPW 
from the Alta Group of Cadence (formerly Comdisco), and 
in several domains in Ptolemy. 

Balance equation methods have recently been extended 
to cover most dynamic dataflow graphs [22],  [64] and have 
been implement in the Boolean dataflow and CGC (code 
generation in C) domains in Ptolemy. However, Buck has 
shown that the addition of only the select actor of Fig. 2 
and a switch actor (which routes input data tokens to one 
of two outputs under the control of a Boolean input) to 
the synchronous dataflow model is sufficient to make it 
Turing complete [22]. This means that one can implement 
a universal Turing machine using this programming model. 
It also means that many critical questions become unde- 
cidable. For this reason, Buck’s methods cannot statically 
schedule all dynamic dataflow graphs. For Turing complete 
dataflow models, it is still necessary for some programs to 
have some responsibilities deferred to a run-time scheduler. 

4)  Compilation of Datajlow Graphs: The static schedules 
that emerge from Buck’s Boolean dataflow scheduler are 
finite sequential representations of an infinite execution of 
a dataflow graph. Given such a schedule, the dataflow graph 
can be translated into a lean sequential program, a process 
we normally call compilation. (Parallel implementations are 
briefly discussed below in Section 111-1). 

In addition to scheduling, efficient compilation requires 
that memory allocation be done statically, if possible. 
Despite the Kahn process network model of infinite FIFO 
channels, it is usually possible to construct bounded 
memory implementations with statically allocated memory 
for the channels [22] .  Unfortunately, since the Boolean 
dataflow model is Turing complete, it is undecidable 
whether an arbitrary dataflow graph can be executed in 
bounded memory, so static memory allocation for the 
channels is not always possible. But for most programs, 
it is, so the cost of dynamically allocated memory for the 
channels only needs to be incurred when the static analysis 
techniques break down. 

To address the same problems, Benveniste et al., argue 
in [ 131 for the so-called synchronous approach to dataflow, 
where clocks are associated with tokens carried by the 
channels. A major part of the motivation is to guarantee 
bounded memory. There are other compelling advantages 
to this approach as well. The clocks impose a total order 
on tokens in the system, compared to the partial order 
specified in a process network. This makes it easy to 
implement, for example, a determinate merge operation. 
Viewed another way, actors can test their inputs for ab- 
sence of data, something that would cause nondeterminism 
in process networks. However, the synchronous approach 
alone does not make the critical questions decidable. So 
further restrictions on a language are required if all pro- 

grams are to be “executable” [13]. Moreover, one could 
argue that the total ordering in a synchronous specification 
is in fact an overspecification, reducing the implementation 
options. However, this can be at least partially ameliorated 
by desynchronizing the implementation, as explored by 
Mafe’is and Le Guemic [69]. 

5)  The Tagged-Token Model: An execution model devel- 
oped by Arvind and Gostelow [7], [SI generalizes the 
dataflow process network model. In this model, each token 
has a tag associated with it, and firing of actors is enabled 
when inputs with matching tags are available. Outputs to a 
given stream are produced with distinct tags. An immediate 
consequence is that there is no need for a FIFO discipline 
in the channels. The tags keep track of the ordering. More 
importantly, there is no need for the tokens to be produced 
or consumed in order. The possibility for out-of-order 
execution allows us to construct dataflow graphs that would 
deadlock under the FIFO scheme but not under the tagged- 
token scheme. We will consider a detailed example below, 
after developing a usable language. 

111. EXPERIMENTING WITH LANGUAGE DESIGN 

The dataflow process network model, as defined so 
far, provides a framework within which we can define a 
language. To define a complete language, we would need 
to specify a set of primitive actors. Instead, we will outline a 
coordination language, leaving the design of the primitives 
somewhat arbitrary. There are often compelling reasons to 
leave the primitives unspecified. Many graphical dataflow 
environments rely on a host language for specification of 
these primitives, and allow arbitrary granularity and user 
extensibility. Depending on the design of these primitives, 
the language may or may not be functional, may or may 
not be able to express nondeterminism, and may or may 
not be as expressive other languages. 

Granular Lucid, for example, is a coordination language 
with the semantics of Lucid [56]. Coordination languages 
with dataflow semantics are described by Suhler et al. [94], 
Gifford and Lucassen [44], Onanian [77], Printz [82], and 
Rasure and Williams [84]. Contrast these to the approach 
of Reekie [85] and the DSP Station from Mentor Graphics 
[41], where new actors are defined in a language with 
semantics identical to those of the visual language. There 
are compelling advantages to that approach, in that all 
compiler optimizations are available down to the level of 
the host language primitives. But the hybrid approach, in 
which the host language has imperative semantics, gives 
the user more flexibility. Since our purpose is to explore 
the dataflow process network model fully, this flexibility is 
essential. 

A. The Ptolemy System 
To make the discussion concrete, we will use the Ptolemy 

software environment [25] to illustrate some of the trade- 
offs. It is well suited for several reasons: 

LEE AND PARKS: DATAFLOW PROCESS NETWORKS 783 

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore.  Restrictions apply.



It has both a visual (“block diagram”) and a textual 
interface; the visual interface is similar in principle to 
many of those used in other signal processing software 
environments. 
It does not have any model of computation built 
into the kernel, and hence can be used to experiment 
with different models of computation, and interactions 
between the models. 
Three dataflow process network “domains” have al- 
ready been built in Ptolemy, precisely to carry out 
such experiments. 
The set of primitive actors is easily extended (using 
C++ as the host language). This gives us more than 
enough freedom to test the limits of the dataflow 
process network model of computation. 

A domain in Ptolemy is a user-defined subsystem imple- 
menting a particular model of computation. Three Ptolemy 
domains have been constructed with dataflow semantics, 
and one with more general process network semantics. The 
synchronous datajow domain (SDF) [661, [67] is partic- 
ularly well suited to signal processing [24], where low- 
overhead execution is imperative. The SDF domain makes 
all scheduling decisions at compile time. The dynamic 
dataflow domain (DDF) makes all scheduling decisions 
at run-time, and is therefore much more flexible. The 
Boolean dataflow domain (BDF) attempts to make sched- 
uling decisions for dynamic dataflow graphs at compile 
time, using the so-called token-flow formalism [22], [MI. 
It resorts to run-time scheduling only when its analysis 
techniques break down. The process network domain (PN) 
uses a multitasking kernel to manage process suspension 
and resumption. It permits nonblocking reads, and hence 
allows nondeterminism. 

Ptolemy supports two distinct execution models, inter- 
preted and compiled. Compilation can be implemented 
using a simple code generation mechanism, allowing for 
quick experimentation, or it can be implemented using more 
sophisticated transformation and optimization techniques. 
Such optimization may require more knowledge about the 
primitives than the simple code generation mechanism, 
which simply stitches together code fragments defining each 
actor [go]. 

B. Visual Hierarchy-The Analog to 
Procedural Abstraction 

In keeping with the majority of signal processing pro- 
gramming environments, we will use a visual syntax for the 
interconnection of dataflow processes. In fact, in Ptolemy, 
a program is not entirely visual, since the actors and data 
structures are defined textually, using C++.  Only the gross 
program structure is described visually. The visual equiva- 
lent of an expression, of course, is a subgraph. Subgraphs 
can be encapsulated into a single node, thus forming a 
larger dataflow process by composing smaller ones. This is 
analogous to procedural abstraction in imperative languages 
and functional abstraction in functional languages. 

Fig. 6. Referential transparency implies that these two dataflow 
process networks are equivalent. 

1) Determinacy and Referential Transparency: To make 
the dataflow process network determinate, as discussed 
above, it is sufficient for the actors to have two properties: 
Their mappings from input tokens to output tokens should 
be functional (free from side effects), and the firing rules 
for each actor should be sequential, in the technical sense 
given in Section 11-D. If our actors have these properties, 
then our language has referential transparency, meaning 
that syntactically identical expressions have the same value 
regardless of their lexical position in the program. 

With referential transparency, the two subgraphs shown 
in Fig. 6 are equivalent. The two inputs to the identical 
dataflow processes A are identical streams, so the outputs 
will be identical. If the primitive actors are functional, then 
hierarchical actors may be functional as well, but there are 
some complications due to scheduling, directed loops in 
the graph, and delays. 

2 )  Functional Behavior and Hierarchy: In modern lan- 
guages, it is often considered important that abstractions 
be semantically little different from language primitives. 
Thus, if the primitive actors are functional, the hierarchical 
nodes should be functional. If the primitive actors have 
firing rules, then the hierarchical nodes should have firing 
rules. We will find this goal problematic. 

A hierarchical node in a dataflow process network has 
a subnetwork and inputloutput ports, as shown in the 
examples in Fig. 7. To reach the above ideal, we should 
be able to describe the behavior of a hierarchical node by 
F = m u p ( f ) ,  where f constitutes a single, functional firing 
of the hierarchical node. This is not always possible. Two 
problems arise: f may not be well defined, and when it 
is, it may not be functional. Note that no problem arises 
in defining the hierarchical node to be a mapping F from 
input sequences to output sequences. F will be functional 
if the actors in the hierarchial node have functional firings 
and sequential firing rules. 

a)  Firing subgraphs-the balance equations: Examples 
that have more than one actor, such as in Fig. 7(a) and (c), 
raise the question of how to determine how many firings 
of the constituent actors make up a “reasonable” firing 
of a hierarchical node. One approach would be to solve 
the balance equations of [MI, [66], [67] to determine how 
many firings of each actor are needed to retum a subsystem 
to its original state. By “original state” we mean that the 
number of unconsumed tokens on each intemal channel 
(arc) should be the same before and after the firing. 

Consider the example in Fig. 7(a). Following Lee and 
Messerschmitt [66], the “1” symbol next to the output of 
AI  means that it produces one token when it fires. The “1” 
next to the input of A2 means that it consumes one token 
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Fig. 7. Hierarchical nodes in a dataflow process network may not 
be functional even if the primitives they contain are functional. 
The large arrowheads indicate input and output for the hierarchical 
node. 

when it fires. A “reasonable” firing of the hierarchical node 
would therefore consist of one firing of AI and one of Aa. 
The single balance equation for this example is 

where T A ,  is the number of firings of Ai.  This equation 
simply says that TA, should be such that the number 
of tokens produced on the arc should equal the number 
consumed, thus keeping it “in balance.” Any “firing” of 
the hierarchical node that invokes the ith actor TA, times 
(for all i) will therefore retum the subsystem to its original 
state. For dynamic dataflow graphs, these balance equations 
are a bit more complicated, but often lead to definitive 
conclusions about the relative number of firings of the 
actors that are required to maintain balance. 

A nonempty set of firings that retums a subsystem to 
its original state is called a complete cycle [64]. Unfor- 
tunately, three problems arise. First, some useful systems 
have balance equations with no solution [22], 1231. Such 
systems are said to be inconsistent, or unbalanced, and have 
no complete cycle, and usually have unbounded memory 
requirements. A simplified (and probably not useful) ex- 
ample is shown in Fig. 7(c). The balance equations for this 
subsystem are (one for each arc) 

These equations have no solution. Indeed, any set of firings 
of these actors will leave the subsystem in a new state. 

To hint that unbalanced systems are sometimes useful, 
consider an algorithm that computes an ordered sequence 
of integers of the form 2a3b5c for all a,b,c  2 0. This 
problem has been considered by Dijkstra [421 and Kahn 
and MacQueen [59]. A dataflow implementation equivalent 
to the first of two by Kahn and MacQueen is shown in 
Fig. 8(a). The “merge” block is an ordered merge [W]; 
given a nondecreasing sequence of input values on two 

i 
EUOE 

reclull t 
(a) (b) 

Fig. 8. Two inconsistent dataflow graphs that compute an ordered 
sequence of integers of the form 2a3b5c. The triangular icons 
multiply their inputs by the indicated constant. The delay icon 
(a diamond) represents an initial token with value 1, 3, or 5, as 
annotated. 

streams, it merges them into a single stream of nonde- 
creasing values, and removes duplicates. A more efficient 
implementation that does not generate such duplications 
(and hence does not need to eliminate them) is given in 
Fig. 8(b). It is also inconsistent. Neither of these can be 
implemented with bounded memory. 

The second, more fundamental problem is that the ex- 
istence of complete cycles for dynamic dataflow graphs is 
undecidable [22]. Thus no algorithm will be able to identify 
a complete cycle for all graphs that have one. 

A third problem is that the actors in a hierarchical node 
may not form a connected graph without considering as 
well the graph within which the hierarchical node sits. In 
this case, the balance equations for the hierarchical node 
alone will have more than one solution. There is no way 
to select among these solutions. 

When a hierarchical node has a complete cycle that can 
be identified, then we may be able to define f to be the 
mapping performed by this complete cycle. In this case, 
F = map( f )  captures the behavior of the hierarchical node. 
Unfortunately, there are still difficulties. 

b) Side effects and state: Even when a hierarchical 
node has a complete cycle, a second problem arises in our 
attempt to define its mapping in terms of F = m a p ( f ) .  
Even if all actors within the node are functional, the 
hierarchical node may not be. 

Consider the example in Fig. 7(b). A single firing of actor 
B obviously defines a complete cycle. The feedback loop 
is used to implement a recurrence, so the feedback channel 
will store tokens from one firing of the hierarchical node 
for use in the next firing. With this usage, the hierarchical 
node has state, and is therefore not functional even if f~ 
is. In this case, the feedback loop must be initialized with 
tokens in order to avoid deadlock. 

The shaded diamond is called a delay, which is typically 
implemented as an initial token in the channel. It cannot 
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be described by F = m a p ( f ) ,  where f is functional, but 
its behavior is easily defined by F ( X )  = i : X ,  where X 
is the input sequence, i is the initial token, and “:” is the 
concatenation operator. The initial token enables the first 
firing of actor B if it requires a token on the top input. 
It is called a “delay” because for any channel with a unit 
delay, the nth token read from the channel is the (n - 1)th 
written to it. A feedback loop with delay effectively stores 
state, making any single firing of the hierarchical node 
nonfunctional. 

The delay shown in Fig. 7(b) is typically implemented 
using the “cons” operator to initialize streams when streams 
are based on the recursive-cons model [62]. It is roughly 
equivalent to the “D” operator in the tagged-token model 
181. It is the visual equivalent of “fby” (followed by) in 
Lucid [92] and the “pre” operator in Lustre [47]. In the 
single assignment language Silage, developed for signal 
processing [50], a delay is written “x@ 1.” This expression 
refers to the stream “x” delayed by one token, with the 
initial token value defined by a declaration like “x@ @ 1 = 
value.” For example, 

x = 1 + x@l; 
x@@1 = o  

defines a stream consisting of all nonnegative integers, in 
order. 

In functional languages, instead of using a recurrent 
construct like a delay, state is usually carried in the pro- 
gram using recursion. Consider, for example, the following 
Haskell program: 

integrate 2s  = scanl (+) 0 zs  

where scanl is a higher order function with three arguments, 
a function, a number, and a list. It is defined as follows 
(taking certain liberties with Haskell syntax): 

scanl f q I= [q] 
scanl j q  ( 2 : ~ s )  = q:scanl f f ( q ,  z)zs ‘ 

These two definitions use template matching; the first is 
invoked if the third argument is an empty stream. The q first 
gives the initial value for the sum, equivalent to the value 
of the initial token in a delay, and later carries the running 
summation. The syntax (z:zs) divides a list into the first 
element (z) and the rest (zs). The syntax q:ezpr represents 
a list where q is the head and ezpr defines the rest, just as 
we have done above for sequences. For example, 

scanl (+) 0 [l, 2,3,4] 

produces [0, 1, 3, 6, lo]. 
The program above uses recursion to carry state, via 

the higher-order function s c a d  It has been observed that 
for efficiency this recursion must be translated into an 

iterative implementation [40], [43], [ S I .  For streams this 
is mandatory, since otherwise the depth of the recursion 
could become extremely large. 

Delays in a hierarchical node can make a single firing of 
the node nonfunctional even if it is not in a feedback loop. 
Consider the example in Fig. 7(a). The balance equations 
tell us that a complete cycle consists of one firing of AI 
and one of Az. But under this policy, state will have 
to be preserved between firings on the arc connecting 
the two actors, making a firing of the hierarchical node 
nonfunctional. 

Some of the problems with state could be solved by 
requiring all delays to appear only at the top level of the 
hierarchy, as was done for example in the BOSS system 
[89]. This is awkward, however, and anyway provides only 
a partial solution. A better solution is simply to reconcile the 
desire for functional behavior with the desire to maintain 
state. This can be done simultaneously for hierarchical 
nodes and primitives, greatly increasing the flexibility and 
convenience of the language, while still maintaining the 
desirable properties of functional behavior. 

The basic observation is that internal state in a primitive 
or a hierarchical node is syntactic sugar (a convenient 
syntactic shorthand) for delays on feedback loops at the 
top level of the graph. In other words, there is no reason 
to actually put all such feedback loops at the top level 
if semantics can be maintained with a more convenient 
syntax. With this observation, we can now allow actors 
with state. These become more like objects than functions, 
since they represent both data and methods for operating on 
the data. The (implicit) feedback loop around any actor or 
hierarchical node with state also establishes a precedence 
relationship between successive firings of the actor. This 
precedence serializes the actor firings, thus ensuring proper 
state updates. 

Once we allow actors with state, it is a simple extension 
to allow actors with other side effects, such as those han- 
dling VO. The inherently sequential nature of an actor that 
outputs a stream to a file, for example, is simply represented 
by a feedback loop that does not carry any meaningful data, 
but establishes precedences between successive firings of 
the actor. 

If actors have state, the notation F = m a p ( f )  is no 
longer directly valid. With a little adaptation, however, we 
can still use it. If we wish to model an actor with p inputs 
and q outputs, plus state, we can define F :  FP+’ + Sq+l 

based on an actor function f :  Sp+’ --f SQ+l, where the 
extra argument carries the state from one firing to the next. 

With this device, notice that the firing rules can now de- 
pend on the state. For example, in the cyclo-static dataflow 
model of Lauwereins et al. [63], an actor can consume 
a cyclically varying number of tokens on an input. For 
instance, a dataflow process with one input and one output 
might consume one token on its odd-numbered firings 
and two tokens on even-numbered firings. In this case, a 
binary-valued state variable will have value zero on even- 
numbered firings and one on odd-numbered firings. Thus 
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the firing rules become 

where the first argument is the state. Any cyclo-static actor 
can be modeled in this way. In fact, firing rules that change 
over the course of several firings can be modeled in the 
same way even if they do not vary cyclically, as long as 
the firing rules for the nth firing can be determined during 
the (n-1)th firing. 

C. Function Arguments-Parameters and Input Streams 
In Ptolemy, as in many software environments of this 

genre, there are three phases to the execution of a program. 
The setup phase makes a pass over the hierarchical pro- 
gram graph initializing delays, initializing state variables, 
evaluating parameters, evaluating whatever portion of the 
schedule is precomputed, and performing whatever other 
setup functions the program modules require. The run phase 
involves executing either the precomputed schedule or a 
dynamic schedule that is computed on-the-fly. If the run is 
finite (it often is not), there is a wrapup phase, in which 
allocated memory is freed, final results are presented to the 
user, and any other required cleanup code is executed. 

The parameters that are evaluated during the setup phase 
are often related to one another via an expression language. 
Thus parameters represent the part of the computation that 
does not operate on streams, in which values that might be 
used during stream processing are computed. Some simple 
examples are the gain values associated with the triangular 
icons in Fig. 8 or the initial values of the delays in the 
same figure. In principle, these values may be specified as 
arbitrarily complex expressions. 

The gain blocks in Fig. 8 may be viewed as functions 
with two arguments, the multiplying constant and the input 
stream. But unlike functional languages, a clear syntac- 
tic distinction is made between parameter arguments and 
stream arguments. In functional languages, if the distinction 
is made at all, it is made through the type system. The 
syntax in Ptolemy is to use a textual expression language 
to specify the value of the parameters, using a parameter 
screen like that in Fig. 9. This expression language has 
some of the trappings of standard programming languages, 
including types and scoping rules. It could be entirely 
replaced by a standard programming language, although 
preferably one with declarative semantics. 

Parameters are still formally viewed as arguments to 
the function represented by the actor. But the syntactic 
distinction between parameters and stream arguments is 
especially convenient in visual programming. It avoids 
cluttering a diagrammatic program representation with a 
great many arcs representing streams that never change 
in value. Moreover, it can make the job of a compiler 
or interpreter simpler, obviating the optimization step of 
identifying such static streams. In Ptolemy, when compiled 
mode is used for implementation, code generation occurs 

afrer the parameters have been evaluated, thus allowing 
highly optimized, application-specific code to be generated. 
For example, instead of a single telephone channel simu- 
lator subroutine capable of simulating any combination of 
impairments, optimized code that takes advantage of the 
fact that the third harmonic distortion is set to zero (see 
Fig. 9) can be synthesized. This becomes particularly im- 
portant when the implementation is via hardware synthesis, 
as is becoming increasingly common in signal processing 
systems. 

Sometimes, all of the arguments to a function are param- 
eters, in which case we call the actor a source, since it has 
no dynamic inputs (see, for example, the A and B actors 
in Fig. 4). Referential transparency for source actors is also 
preserved, as long as the parameters are considered. Thus 
the transformation shown in Fig. 6 is now possible only if 
the actors or subgraphs being consolidated have identical 
parameters. Thus with these syntactic devices (actors with 
state, the notation F = m u p ( f ) ,  delays, and actors with 
parameters as well as inputs), referential transparency is 
still possible. We call such actors generalized functional 
actors. 

D. Firing Rules and Strictness 
A function is strict if it requires that all its arguments 

be present before it can begin computation. A dataflow 
process, viewed as a function applied to a stream, clearly 
should not be strict, in that the stream should not have to be 
complete for the process to begin computation. The process 
is in fact defined as a sequence of firings that consume 
partial input data and produce partial output data. But in 
our context, this is a rather trivial form of nonstrictness. 

A dataflow process is composed of a sequence of ac- 
tor firings. The actor firings themselves might be strict 
or nonstrict. This is determined by the firing rules. For 
example, an actor formed from the McCarthy f l  function 
in Section 11-D4 is clearly nonstrict, since it can fire with 
only one of the two arguments available. A process made 
with this actor, however, is not continuous, and the process 
is nondeterminate. 

It is possible to have a determinate process made of 
nonstrict actors. Recall the select actor from Fig. 2(a). 

select(z, I, T )  = z 

select(1, y, F )  = y 

The firing rules implied by this definition are sequential, 
since a token is always required for the third argument, 
and the value of that argument determines which firing 
rule applies. Moreover, select is functional, so a process 
made up of repeated firings of this actor is determinate. 
The Ptolemy icon for this process is shown in Fig. 10. This 
function, however, is clearly not strict, since the function 
does not require that all three arguments be present. More- 
over, we will see that this nonstrictness is essential for the 
most general form of recursion. The fact that nonstrictness 
is essential for recursion in functional languages has been 
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Fig. 9. Top: A typical parameter screen in Ptolemy for a hierarchical node that models a telephone 
channel. The first parameter is given as a reference to a file. The icon for the node is shown to the 
right. The next level down in the hierarchy is shown in the lower right window. At the lower left, 
the parameter screen shows that the parameter for the Gain actor inherits its value from the “noise” 
parameter above it in the hierarchy. Parameter values can also be expressions. 

I- -1 
Fig. 10. Switch and Select actors in the dynamic dataflow do- 
mains of Ptolemy. These are determinate actors that merge or split 
streams under the control of a Boolean stream. 

observed before, of course [53] (at least the if-then-else 
must be nonstrict in the consequent and the alternative). 

The next natural question is whether hierarchical nodes 
should be strict. In particular, for those hierarchical nodes 
for which there exists a well defined firing, should that 
firing be strict? The example shown in Fig. 11 suggests a 
definitive “no” for the answer. A hierarchical node A is 
composed of subprocesses B and C as shown in the figure. 
A firing of the expanded definition in Fig. ll(b) might 
consist of a firing of B followed by C. However, when 
connected as shown in Fig. ll(a), the network deadlocks, 

Fig. 11. A hierarchical node A in a simple subnetwork (a) and 
its expanded definition (b). If the actor A is strict, the subnetwork 
in (a) deadlocks. 

quite unnecessarily, if we insist that the hierarchical node 
have both inputs available before firing. 
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All three dataflow domains in Ptolemy have nonstrict 
hierarchical nodes. To implement this, most schedulers used 
in these domains take a simple approach: They flatten the 
hierarchy before constructing a schedule. This approach 
may be expensive for large programs with repeated use 
of the same hierarchical nodes, particularly if in-line code 
is generated. It also precludes incremental compilation of 
hierarchical nodes. But it appears to be necessary to support 
graphs like that in Fig. 11. At least one more sophisticated 
scheduler [ 161 constructs strict hierarchical nodes (when 
this is safe) through a clustering process, in order to 
build more compact schedules. It ignores the user-specified 
hierarchy in doing this. 

E. Recurrences and Recursion 
Functional languages such as Haskell commonly use 

recursion to carry state. The comparable mechanism for 
dataflow process networks is feedback loops, usually with 
initial tokens, as shown in Fig. 7(a) and (b). These feed- 
back loops specify recurrence relations, but are not self- 
referential in the usual sense of recursion. Ida and Tanaka 
[55] and Abramsky [2] have also noted the advantages of 
this representation. A consequence of this is that recursion 
plays a considerably reduced role in dataflow process 
networks compared to functional languages. But this does 
not mean that recursion is not useful. 

Consider the “sieve of Eratosthenes,” an algorithm con- 
sidered by Kahn and MacQueen [59], among others. It 
computes prime numbers by constructing a chain of “fil- 
ters,” one for each prime number it has found so far. Each 
filter removes from the stream any multiple of its prime 
number. The algorithm starts by creating a single filter for 
the prime number 2 in the chain and runs each successively 
larger integer through the chain of filters. Each time a 
number gets through to the end of the chain, it must be 
prime, so a new filter is created and added to the chain. 
A recursive implementation of this algorithm is concise, 
convenient, and elegant, although of course we can express 
any recursive algorithm iteratively [53]. 

A recursive implementation in the dynamic dataflow 
domain of Ptolemy is shown in Fig. 12. The icon with 
the concentric squares is actually a higher-order function 
(explained further below) that invokes a named hierarchical 
node (s@) when it fires. In this case, the named hierarchical 
node is a recursive reference to the very hierarchical node in 
which the icon appears. More direct expression of recursion 
is not yet supported by the Ptolemy graphical interface, 
although it is supported in the underlying kernel. Ptolemy 
implements this in a simple, and rather expensive way; it 
dynamically expands the graph when the recursive block is 
invoked. More efficient implementations are easy to image, 
however. 

Note that recursion in Fig. 12 expresses a “mutable 
graph,” in that the structure of the graph changes as 
the program executes. Such dynamics are also permit- 
ted by Kahn and MacQueen [59] and in TLDF [94]. 
Mutability, however, considerably complicates compile- 
time analysis of the graph. The compile-time scheduling 

methods in [22] and E661 have yet to be extended to 
recursive graphs. This raises the interesting question of 
whether recursion precludes compile-time scheduling. We 
find, perhaps somewhat surprisingly, that often it does 
not. To illustrate this point, we will derive a recursive 
implementation of the fast Fourier transform (FIT) in the 
synchronous dataflow domain in Ptolemy, and show that it 
can be completely scheduled at compile time. It can even 
be statically parallelized, with the recursive description 
imposing no impediment. The classic derivation of the 
FFT leads directly to a natural and intuitive recursive 
representation. For completeness, we repeat this simple 
derivation here. 

The Nth order discrete Fourier transform (DFT) of a 
sequence x(n) is given by 

for 0 5 k < N .  To get the values for other k, simply 
periodically repeat the values given above, with period N .  
Define 

and note the following properties: 

W$ = w N , ~  and w,N+‘ = wk N .  

Using this we can write 

n=O n=O 
n even 

N-1 

n=l 
n odd 

By change of variables on the summations, this becomes 

(”-1 

XI, = s(2n)W$ 

This is the key step in the derivation of the so-called 
“decimation-in-time FFT”; the first summation is the ( N / 2 )  
order DFT of the even samples, while the second is the 
( N / 2 )  order DFT of odd samples. Thus, in general, we can 
write 
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Fig. 12. A recursive implementation of the sieve of Eratosthenes in the dynamic dataflow domain 
in Ptolemy. The top-level system (with just three actors) produces all the integers greater than 1, 
filters them for primes, and displays the results. Other icons are explained once each. 

Recall that D F 2 ’ ~ ( z ( n ) )  is periodic with period N ,  so 
DFTN,2(x(2n)) is periodic with period N/2.  

From this, we arrive at the recursive specification shown 
in Fig. 13. The first actor is a distributor, which collects 
two samples each time it fires, routing the first one to 
the top output and the second one to the lower output. 
The recursive invocation of this block accomplishes the 
decimation in time. The outputs of the distributor are 
connected to two IjThenElse blocks, represent one of two 
possible replacement subsystems. When the order param- 
eter is larger than some threshold, the IjThenElse block 
replaces itself with a recursive reference to the galaxy 
within which it sits, implementing an FFT of half the order. 
When the order parameter gets below some threshold, 
then the I’henElse block replaces itself with some direct 
implementation of a small order FFT. The IjThenElse block 
is another example of a higher-order function, and will be 
discussed in more detail below. The repeat block takes 

into account the periodicity of the DFT’s of order N/2 
without duplicating the computation. The expgen block 
at the bottom simply generates the W i  sequence. The 
sequence might be precomputed, or computed on the fly. 

A more traditional visual representation of an FFT is 
shown in Fig. 14. This representation is extremely in- 
convenient for programming, however, since it cannot 
represent FFTs of the size typically used (128-1024 points). 
Moreover, any such visual representation has the order 
of the FFT and the granularity of the specification hard- 
wired into the specification. It is better to have both 
parameterized, as in Fig. 13. Moreover, we argue that the 
visual representation in Fig. 13 is more intuitive, since it is 
a more direct representation of the underlying idea. 

An interesting generalization of the conditional used 
in the recursion in Fig. 13 would use templates on the 
parameter values to select from among the possible im- 
plementations for the node. This would make the recursion 

790 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 ,  MAY 1995 

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:16 from IEEE Xplore.  Restrictions apply.



Fig. 13. A recursive specification of an FFT implemented in the SDF domain in Ptolemy. The 
recursion is unfolded during the setup phase of the execution, so that the graph can be completely 
scheduled at compile time. 

-1 
2 
+ 

aMF--, - 

Fig. 14. A fourti-order decimation-in-time FFT shown graph- 
ically. The order of the FFT, however, is hard-wired into the 
representation. 

1- - - 2 + 
1 - 1 

3 

stylistically identical to that found in functional languages 
like Haskell, albeit with a visual syntax. This can be 
illustrated with another practical example of an application 
of recursion. 

Consider the system shown in Fig. 15. It shows a mul- 
tirate signal processing application: an analysidsynthesis 
filter bank with harmonically spaced subbands. The stream 
coming in at the left is split by matching highpass and 
lowpass filters (labeled “QMF” for “quadrature mirror 
filter”). These are decimating polyphase finite impulse 
response (FIR) filters, so for every two tokens consumed 
on the input, one token is produced on each of two outputs. 
The left-most QMF only is labeled with the number of 
tokens consumed and produced, but the others behave the 
same way. The output of the lowpass side is further split 
by a second QMF, and the lowpass output of that by a 
third QMF. The boxes labeled “F” represent some function 
performed on the decimated stream (such as quantization). 
The QMF boxes to the right of these reconstruct the signal 
using matching polyphase interpolating FIR filters. 

There are four distinct sample rates in Fig. 15 with a ratio 
of 8:l  between the largest and the smallest. This type of 
application typically needs to be implemented in real time 
at low cost, so compile-time scheduling is essential. 

The graphical representation in Fig. 15 is useful for 
developing intuition, and exposes exploitable parallelism, 
but it is not so useful for programming. The depth of the 
filter bank is hard-wired into the visual representation, so 
it cannot be conveniently made into a parameter of a filter- 
bank module. The representation in Fig. 16 is better. A 
hierarchical node called “FB,” for “filterbank” is defined, 
and given a parameter D for “depth.” For D > 0 the 
definition of the block is at the center. It contains a 
self-reference, with the parameter of the inside reference 
changed to D- 1. When D = 0, the definition at the 
bottom is used. The system at the top, consisting of just 
one block, labeled “FB(D = 3),” is exactly equivalent 
to the representation in Fig. 15, except that the visual 
representation does not now depend on the depth. The 
visual recursion in Fig. 16 can be unfolded completely 
at compile time, exposing all exploitable parallelism, and 
incurring no unnecessary run-time overhead. 

F. Higher-Order Functions 
In dataflow process networks, all arcs connecting actors 

represent streams. The icons represent both actors and 
the processes made up of repeated firings of the actor. 
Functional languages often represent such processes using 
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FB(D > 0) 

Fig. 16. 
This representation uses template matching. 

A recursive representation of the filter bank application. 

Fig. 17. 
lent of the Haskell “scanl f a xs” higher-order function. 

Visual syntax for the dataflow process network equiva- 

higher order functions. For example, in Haskell, 

map f xs 

applies the function f to the list xs. Every single-input 
process in a dataflow process network constitutes an invo- 
cation of such a higher order function, applied to a stream 
rather than a list. In a visual syntax, the function itself is 
specified simply by the choice of icon. Moreover, Haskell 
has the variant 

zipwith f xs ys 

where the function f takes two arguments. This corresponds 
simply to a dataflow process with two inputs. Similarly, the 
Haskell function 

scanl f a x s  

takes a scalar a and a list xs. The function f is applied 
first to a and the head of xs. The function is then applied 
to the first returned value and the second element of 5s. A 
corresponding visual syntax for a dataflow process network 
is given in Fig. 17. 

Recall our proposed syntactic sugar for representing 
feedback loops such as that in Fig. 17 using actors with 
state. Typically the initial value of the state (U) will be a 
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bbdo”: RaisedCosine 
where_delined: 
penumrter-map: exmssBW = 1 .o/instance_numbe~ 
input-map: -In 
arqut_map: sig- 

Fig. 18. 
different raised cosine pulses. 

An example of the use of the Map actor to plot three 

Panel 1. Icon for the Map higher-order function in Ptolemy. 

parameter of the node. In fact, dataflow processes with state 
cover many of the commonly used higher-order functions 
in Haskell. 

The most basic use of icons in our visual syntax may 
therefore be viewed as implementing a small set of built-in 
higher-order functions. More elaborate higher-order func- 
tions will be more immediately recognizable as such, and 
will prove extremely useful. Pioneering work in the use 
of higher-order functions in visual languages was done by 
Hills [51], Najork and Golin [75], and Reekie [U]. We 
will draw on this work here. 

We created an actor in Ptolemy called Map that general- 
izes the Haskell map. Its icon is shown in Panel 1. 

It has the following parameters: 

blockname 
wheredejned 

parametermap 

inputmap 
outputmap 

Our implementation of Map is simple but effective. It 
creates one or more instances of a the specified actor (which 
may itself be a hierarchical node) and splices those instance 
into its own position in the graph. Thus we call the specified 
actor the replacement actor, since it takes the place of the 
Map actor. The Map actor then self-destructs. This is done 
in- the setup phase of execution so that no overhead is 
incurred for the higher order function during the run phase 
of execution, which for signal processing applications is the 
most critical. This replacement can be viewed as a form of 
partial evaluation of the program [34]. 

Consider the example shown in Fig. 18. The replacement 
actor is specified to be RaisedCosine, a built-in actor in 

The name of the replacement actor. 
The location of the definition of the 
actor. 
How to set the parameters of the 
replacement actor. 
How to connect the inputs. 
How to connect the outputs. 
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1 .00 

0.80 

0.60 

0.40 

0.20 

0.00 

-0.20 
0.00 20.00 

Fig. 19. The plot that results from running the program in Fig. 18. 

n n 

Fig. 20. 
higher-order functions. 

A program equivalent to that in Fig. 18, but without 

the signal processing environment in Ptolemy. Since this is 
built-in, there is no need to specify where it is defined, so 
the wheredejned parameter is blank. The RaisedCosine 
actor has a single input named signalln and a single 
output named signalout, so these names are given as 
the values of the inputmap and outputmap parameters. 
The parametermp  parameter specifies the values of the 
excessB W parameter for each instance of the replacement 
block to be created. This parameter specifies the excess 
bandwidth of the raised cosine pulse generated by this actor. 
The value of the excessBW parameter will be 1.0 for the 
first instance of the RaisedCosine actor, 0.5 for the second, 
and 0.33 for the third. 

The diagonal slash through the last connection on the 
right in Fig. 18 is a Bus. Its single parameter specifies 
the number of logical connections that the single visual 
connection represents. Here, the bus width is three. This 
must be so because there are three inputs to the Map 
actor, so three instances of the RaisedCosine actor will 
be created. The three outputs from these three instances 
need somewhere to go. The result of running this system 
is shown in Fig. 19. 

The program in Fig. 18 is equivalent to that in Fig. 20. 
Indeed, after the setup phase of execution, the topology of 

40.00 60.00 

the process network will be exactly as in Fig. 20. The Map 
actor itself will not appear in the topology. 

In both Figs. 18 and 20, the number of instances of the 
RaisedCosine actor is specified graphically. In Fig. 18, it is 
specified by implication, through the number of instances 
of the Impulse actor. In Fig. 20 it is specified directly. 
Neither of these really takes advantage of higher-order 
functions. The program in Fig. 21 is equivalent to both 
Figs. 18 and 20, but can be more easily modified to include 
more or fewer instances of the RaisedCosine actor. It is 
only necessary to modify the parameters of the bus icons, 
not the visual representation. 

The left-most actor in Fig. 21 is a variant of the Map 
actor called Src. It has no inputs. In this case, the number 
of instances of the replacement actor that are created must 
match the number of output streams. 

In the visual programming languages ESTL [75] and 
DataVis [5 I], higher-order functions use a "function slots" 
concept, visually representing the replacement function 
as a box inside the icon for the higher-order function. 
We have implemented in Ptolemy a conceptually similar 
visual representation. Variants of the Map and Src actors, 
called MupGr and SrcGr, have the following icons (see 
Panel 2). 

It is important to realize that the above graphic con- 
tains only two icons, each representing a single actor. 
The complicated shape of the icon is intended to be 
suggestive of its function when it is found in a block 
diagram. The MapGr and SrcGr actors work just like the 
Map and Src actors, except that the programmer specifies 
the replacement block visually rather than textually. For 
example, the system in Fig. 21 can be specified as shown 
in Fig. 22. Notice that replacement actors Impulse and 
RaisedCosine each have one instance shown visually. The 
MapGr and SrcGr actors have only a single parameter, 
called parametermap. The other parameters of Map and 
Src are now represented visually (the replacement block 
and input/output mapping). 

Note that the same effect could be accomplished by tricks 
in the graphical user interface, as done for instance in 
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blodarame: Impulse bbckname: RaisedCosine 
where-defined: where-defined: 
parameter-map: 
outputmap: output input-map: signalin 

parameter-map: excessBW = 1 .Mnstance-number 

outputmap: signelout 

Fig. 21. A program equivalent to that in Figs. 18 and 20, except that the number of instances of 
the RuisedCosine and Impulse actors can be specified by a parameter. 

SrcGr 

parameter-map: parameter-map: excessBW = 1 .O/instance-number 

I etc. ty 
Fig. 22. A program equivalent to that in Fig. 21 except that the replacement actors for the two 
higher-order actors are specified visually rather than textually. 

GRAPE I1 [63]. However, this then requires modifying the 
GUI to support new capabilities. 

A number of additional variations are possible. First, 
the replacement actor may have more than one input, in 
which case the input streams are grouped in appropriately 
sized groups to provide the arguments for each instance of 
the specified actor. For example, if the replacement actor 
has two inputs, and there are 12 input streams, then six 
instances of the actor will be created. The first instance 
will process the first two streams, the second the next two 
streams, etc. 

Since the Map actor always creates at least one instance 
of the replacement actor, it cannot be used directly for 
recursion. Such a recursion would never terminate. A 
variant of the Map actor can be defined that instantiates the 
replacement actor@) only at run time. This is (essentially) 
what we used in Fig. 12 to implement recursion. Using dy- 
namic dataflow, the dynamic Map actor fires conditionally. 
When it fires, it creates an instance of its replacement actor 
(which may be a hierarchical node recursively referenced), 
and self-destructs. 

The dynamic Map was the first higher-order function 
implemented in Rolemy (it was implemented under a 
different name by Soonhoi Ha). Its run-time operation is 
quite expensive, however, requiring dynamic creation of a 
dataflow graph. So there is still considerable motivation for 
recursion that can be statically unrolled, as done in Fig. 13. 

194 

In fact, that system is implemented using another higher- 
order function, IjThenElse, which is derived from Map. The 
IjThenElse actor takes two replacement actors as parameters 
plus a .predicate. The predicate specifies which of the two 
replacement actors should be used. That actor is expanded 
into a graph instance and spliced into the position of the 
IjThenElse actor. The IjThenElse actor, like the Map actor, 
then self-destructs. Since the unused replacement actor 
argument is not evaluated, the semantics are nonstrict, and 
the IjThenElse actor can be used to implement recursion. 
The recursion is completely evaluated during the setup 
phase of execution (or at compile time), so the recursion 
imposes no run-time overhead during the run phase. This is 
analogous to the unrolling style of partial evaluation [34], 
and could be called manifest recursion. 

The higher order functions above have a key restriction: 
the replacement actor is specified by a parameter, not by 
an input stream. Thus, we avoid embedding unevaluated 
closures in streams. In Rolemy, since tokens that pass 
through the channels are C++ objects, it would not be hard 
to implement the more general form. It warrants further 
investigation. 

G. The Tagged-Token Execution Model 
Recall that the tagged-token execution model developed 

by h i n d  and Gostelow [7], [8] allows out-of-order execu- 
tion. This allows some dataflow graphs to produce output 
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N-2 
... ... 

T 

T 

Fig. 23. This factorial program deadlocks without out-of-order execution, as provided for example 
by the tagged token model. 

4 f w etc. 

C 
NI 

(N-l)! 
(N-2)! 

- 
... 
2 
1 

1 

D 
(N-l)! 
(N-2)1 
(N-3) I 

- 
... 
1 

1 

Panel 2. 
in Ptolemy. 

Icons for the MapCr and SrcGr higher-order functions 

that would deadlock under the FIFO channel model. An 
example is shown in Fig. 23. This graph computes N! if 
out-of-order execution is allowed, but deadlocks without 
producing an output under the FIFO model. The sequence 
of values on the labeled arcs is given in the table in the 
figure. 

The loop at the left counts down from N to 0, since the 
delay is initialized to N and the value circulating in the loop 
is decremented by 1 each time around. The test (diamond 
shape) compares the value at A to 1. When A < 1, it outputs 
a true. Until that time, the select is not enabled, because 
there are no tokens on the false input. But notice that at 
that time, the queue at the control input (B) of the select 
has N false tokens followed by one true token. The false 
tokens still cannot be consumed. If out-of-order execution 
is not allowed, then the select will never be able to fire. 
However, since the select has no state, there is no reason 
to prohibit out-of-order execution. 

Out-of-order execution requires bookkeeping like that 
provided by the tagged-token model. The consumption of 
the true token is by the (N+l)th firing (logically) of the 
select. Thus the 1 produced at its output is (logically) the 
(N+l)th output produced by the select. Hence, at C ,  we 
show the 1 output as the last entry in the table, even though 
it is the first one produced temporally. The logical ordering 
must be preserved. 

Fig. 24. 
the first token that arrives on the input stream. 

One way to implement a negative delay, which discards 

Recall that a delay is an initial token on a channel. The 
delay at the left is an ordinary delay, where the initial token 
is initialized to value N .  The delay on the right, however, 
is something new, a negative delay. Instead of an initial 
token, this delay discards the first token that enters the 
channel. It can be implemented in a variety of ways, one 
of which is shown in Fig. 24. The effect of the negative 
delay is shown in column D: the first token (logically, 
not temporally) produced by the select is discarded by the 
negative delay. Thus the 1 produced by the (N+l)th firing 
(logically) of the select must be consumed by the Nth firing 
of the multiply at the upper right. The other input of the 
multiply has a value “1” as its Nth input (A), so the Nth 
output (logically) or first output (temporally) of the multiply 
is 1 x 1 = 1. This makes available the Nth token (logically) 
of the select false input, which can now be consumed by 
the Nth firing (logically) of the select. The “1” produced 
here will be multiplied by 2, enabling the (N-2)th firing 
of the select. We continue until the first firing (logically) 
of the select produces N!. At this point, there are N +  1 
tokens at the downsampler input (the icon at the bottom 
with the downward arrow), enabling it. It consumes these 
tokens and outputs the first one (logically). Thus the output 
of the downsampler is N!. 

Note that although this might appear to be an unduly 
complicated way to compute a factorial, it nonetheless 
demonstrates that enabling out-of-order execution does 
increase the expressiveness in the language. Of course, this 
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has limited value if its only use is to represent obscure and 
unnecessarily complicated algorithms. 

H. Data Types and Polymorphism 
A key observation about our dataflow process networks 

so far is that the only data type represented visually is the 
stream. The tokens on a stream can have arbitrary type, so 
this approach is more flexible than it sounds like at first. 
For instance, we can embed arrays into streams directly by 
sequencing the elements of the array, or by encapsulating 
each array into a single token, or by generalizing to 
multidimensional streams [65], [92]. In Ptolemy, tokens can 
contain arbitrary C++ objects, so the actors can operate on 
these tokens in rather sophisticated ways, making effective 
use of data abstraction. 

Ptolemy networks are strongly typed. Each actor port 
(input or output) has a type, and type consistency is 
statically checked. Polymorphism, in which a single actor 
can operate on any of a variety of data types, is supported 
in a natural way. 

Hudak distinguishes two types of polymorphism, para- 
metric and ad hoc (or overloading) [53]. In the former, 
a function behaves the same way regardless of the data 
type of its arguments. In the latter, the behavior can be 
different, depending on the type. Although in principle 
both are supported in Ptolemy, we have made more use 
of parametric polymorphism in the visual programming 
syntax. The way that parametric polymorphism is handled 
is that actors declare their inputs or outputs to be of 
type “anytype.” The actors then operate on the tokens via 
abstracted type handles. 

Polymorphic blocks in Ptolemy include all those that 
perform control functions on streams, like the distributor 
in Fig. 13. The Map actor is also polymorphic, although in 
a somewhat more complicated way. 

I. Parallelism 
For functional languages, the dominant view appears 

to be that parallelism must be explicitly defined by the 
programmer by annotating the program with the proces- 
sor allocation [53]. Moreover, as indicated by Harrison 
[48], the ubiquity of recursion in functional programs 
sequentializes what would otherwise be parallel algorithms. 
Harrison proposes using higher-order functions to express 
parallel algorithms in a functional language, in place of 
recursion. The parallel implementation is accomplished 
by mechanized program transformations from the higher- 
order function description. This is called “transformational 
parallel programming,” and has also been explored by 
Reekie and Potter [87] in the context of process networks. 
The transformations could also be interactive, supported 
by “meta-programming.” One transformation methodology 
is the unfoldfold method of Burstall and Darlington [27], 
which is based on partial (symbolic) evaluation and substi- 
tution of equal expressions. 

In the dataflow community, by contrast, parallelism has 
always been implicit. This is, in part, due to the scarce use 
of recursion. A dataflow graph typically reveals a great 

deal of parallelism that can be exploited either by run- 
time hardware [5] or, if the firing sequence is sufficiently 
predictable, a compiler [451, [82], [901, [911. 

Dataflow process networks can combine the best of these. 
Parallelism can be implicit, and higher-order functions can 
be used to simplify the syntax of the graphical specification. 
The phased execution, in which the static higher-order 
functions are evaluated during a setup phase, is analogous to 
the foldunfold method of Burstall and Darlington [27], but 
there is no need for a specialized transformation tool that 
“understands” the semantics of the higher-order functions. 
Thus parallelism is exploited equally well with user-defined 
higher-order functions as with those that are built into the 
language. 

Moreover, in a surprising twist, the use of statically 
evaluated higher-order functions enables the use of recur- 
sion without compromising parallelism. The recursion is 
evaluated during the setup phase, before the parallelizing 
scheduler is invoked. Thus the scheduler sees only the fully 
expanded graph, not the recursion. It can fully exploit at 
compile time the parallelism in this graph. Thus we regain 
much of the elegance that the use of recursion lends to 
functional languages. An example (a recursive specification 
of an FFT) is given above in Fig. 13. In situations where 
the recursion cannot be evaluated during the setup phase, 
as in the sieve of Eratosthenes in Fig. 12, it is much more 
difficult to exploit the parallelism at compile time. 

IV. CONCLUSIONS 

Signal processing software environments are domain- 
specific. Some of the techniques they use, including (and 
maybe especially) their visual syntax has only been proven 
in this domain-specific context. Nonetheless, they have (or 
can have) the best features of the best modem languages, 
including natural and efficient recursion, higher-order func- 
tions, data abstraction, and polymorphism. 

This paper presents a theory of design that has been (at 
least partially) put into practice by the signal processing 
community. In the words of Milner [74], such a theory 
“does not stand or fall by experiment in the conventional 
scientific sense.” It is the “pertinence” of a theory that is 
judged by experiment rather than its “truth.” 
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