Models of Computation for Embedded System
Design

Luciano Lavagno
Department of Electronics
Politecnico di Torino
C. Duca degli Abruzzi 24, Torino, Italy
lavagno@polito.it

Alberto Sangiovanni-Vincentelli
Department of EECS
University of California
Berkeley, CA 94709 USA

alberto@eecs.berkeley.edu

Ellen Sentovich

Cadence Berkeley Laboratories
2001 Addison St.
Berkeley, California USA

ellens@cadence.com

September 28, 1998

Abstract

In the near future, most objects of common use will contain electronics
to augment their functionality, performance, and safety. Hence, time-to-
market, safety, low-cost, and reliability will have to be addressed by any
system design methodology. A fundamental aspect of system design is the
specification process. We advocate using an unambiguous formalism to
represent design specifications and design choices. This facilitates tremen-
dously efficiency of specification, formal verification, and correct design
refinement, optimization, and implementation. This formalism is often
called model of computation. There are several models of computation
that have been used, but there is a lack of consensus among researchers
and practitioners on the “right” models to use. To the best of our knowl-
edge, there has also been little effort in trying to compare rigorously these
models of computation. In this paper, we review current models of com-
putation and compare them within a framework that has been recently

proposed. This analysis demonstrates both the need for heterogeneity to
capture the richness of the application domains, and the need for unifica-
tion for optimization and verification purposes. We describe in detail our
CFSM model of computation, illustrating its suitability for design of reac-
tive embedded systems and we conclude with some general considerations
about the use of models of computations in future design systems.

1 Introduction

1.1 Embedded System Design Today

An embedded system is a complex object containing a significant percentage of
electronic devices (generally including at least one computer) that interacts with
the real world (physical environment, human users, etc.) through sensing and
actuating devices. A system is heterogeneous, i.e., is characterized by the co-
existence of a large number of components of disparate type and function. For
example, it may contain programmable components such as micro-processors
and Digital Signal Processors, as well as analog components such as A/D and
D/A converters, sensors, transmitters and receivers. In the past, the system de-
sign effort has focused on these hardware parts, leaving the software design to
be done afterwards as an implementation step. However, today more than 70%
of the development cost for complex systems such as automotive electronics and
communication systems is attributable to software development. This percent-
age is increasing constantly. The challenge posed to the semiconductor industry
is to provide a new generation of programmable parts and of supporting tools
to help system designers develop software faster and correctly the first time.

Today much attention is devoted to the hardware-software co-design issue,
i.e., to the concurrent development of Application Specific Integrated Circuits
and standard hardware components, selection of programmable components,
and development of the application software that will run on them. We believe
that this approach in fact enters the design process too late to explore interesting
design trade-offs.

1.2 Our Design Methodology Goals

The computer-aided design process should begin at a very early stage. We
believe that the real key to shortening design time and coping with complexity
is to start the design process before the hardware-software partitioning. For
this reason, we believe that the key problem is not so much hardware-software
co-design, but the sequence consisting of specifying what the system is intended
to do with no bias towards implementation, of the initial functional design, its
analysis to determine whether the functional design satisfies the specification,
the mapping of this design to a candidate architecture, and the subsequent

Architecture

Behavioral Libraries

Libraries Functional Level

Capture Verify Capture Verify
Behavior eg| Behavior rchitecturs rchitecture)
\ y
Map Behavior to r;f‘ Verify :
{ Architecture Performance Mappmg Level
h &
Performance Refine HW/SW Link to
Back-Annotation HArchitecture HArchitecture
Y Verification .
Link to Architectural Level

HW/SW

Implementation

Figure 1: Proposed design strategy

performance evaluation. It is then clear that the key aspect of system design is
indeed function-architecture co-design.

Our approach is a design methodology that is based on the use of formal
models to describe the behavior of the system at a high level of abstraction, be-
fore a decision on its decomposition into hardware and software components 1s
taken. Our approach also facilitates the use of existing parts. As the complexity
of embedded systems increases, it is unthinkable to design new systems from
scratch. Already hardware components are often standard parts that are ac-
quired from silicon vendors, and software is often incrementally upgraded from
previous versions of the same product. In the future, design re-use will be the
key to profitability and market timing. In addition, the decreasing feature size
of silicon manufacturing processes will make it possible to incorporate multi-
ple microprocessors, complex peripherals, and even sensors and actuators on
the same silicon substrate, which will force system developers and IC design-
ers/manufacturers to deal with the problem of exzchanging Intellectual Property
in the form of designs instead of chips.

1.3 Design Strategy

The overall design strategy that we envision is depicted in Figure 1. There are,
of course, other ways to design systems in common use today. The top-down
nature of the design methodology that our group has advocated throughout the
years may not be agreed upon by the system design community where a mixed
top-down, bottom-up approach is mostly used. In our methodology, however,
we believe that this approach is captured by the presence of architectural and
functional libraries that could be the result of a bottom-up assembly of basic
components. We strongly emphasize that no matter how the design is carried
out, a rigorous framework is necessary to reduce design iterations and to improve
destgn quality.

1.3.1 Design Conception to Design Description

At the functional level, a behavior for the system to be implemented is selected
and analyzed against a set of specifications. The definition of specification and
behavior is often the subject of hot debate. For some, there is no difference
between specification and behavior. For some, specification is the I/O relation
of the system to realize together with a set of constraints to satisfy and of
goals to achieve, and behavior is the algorithm that realizes the function to be
implemented. For others, specification is the algorithm itself. From a purist
point of view, an algorithm is indeed the result of an implementation decision
from a given set of specifications and we prefer to stick to this view in our
design methodology. For example, if we specify the function that a system has
to perform as “given a nonlinear function f over the set of reals, find x so that
f(x)=0", then it is a design decision to chose the Newton-Raphson algorithm
or a Gauss-Seidel nonlinear relaxation algorithm. On the other hand, for an
MPEG encoder, the specification is the encoding of the compressed stream, and
any implementation that creates it from a stream of images is “correct”. In this
second case, the first step of system design has already been decided upon and
the designer has no freedom to alter the conceptual design.

1.3.2 Algorithm Design

Algorithm development is a key aspect of system design at the functional level.
We believe that little has been done in this domain to help the designer to select
an algorithm that satisfies the specifications. The techniques and environments
for this step are often application dependent. We have experience in automotive
engine control [7], where the algorithms have to have strong correctness proper-
ties due to the life critical aspects inherent in this application. In addition, the
“plant” to be controlled (the combination of the engine and the drive-line) is
a hybrid system consisting of continuous components (drive-line) and discrete
ones (engine). To assess the properties of the algorithms, one must use con-
trol theory and sophisticated simulation techniques involving mixed differential
equations-discrete event models. The understanding of the application domains
yields a design methodology that integrates the application-specific view with
general-purpose techniques that could be re-used in other domains of applica-
tion. It is our strong belief that this step of system design carries the maximal
leverage when combined with the design methodology proposed here.

1.3.3 Algorithm Analysis

The behavior of an algorithm is verified by performing a set of analysis steps.
Analysis is a more general concept than simulation. For example, analysis may
mean the formal proof that the algorithm selected always converges, that the
computation performed satisfies a set of specifications, or that the computa-
tional complexity, measured in terms of number of operations, is bounded by

a polynomial in the size of the input. In the view of design re-use, parts of
the overall behavior may be taken from an existing library of algorithms. Since
it is the formal model that provides the framework for algorithm analysis, it
1s very important to decide which mathematical model to support in a design
environment.

1.4 Algorithm Implementation

Once the algorithm has been selected, there is an intermediate step before the
selection of the architecture to support its implementation: its transformation
into a set of functional components that are computationally tractable. This
set of functional components have to be formally defined to ensure that the
properties of the implementation of the algorithm can be assessed. To do so,
the concept of models of computation is key. Most system designs use one or
more of the following models of computation: Finite State Machines, Data Flow
Networks, Discrete Event Systems, and Communicating Sequential Processes.
A particular model of computation has mathematical properties that can be
efficiently exploited to answer questions about system behavior without carrying
out expensive verification tasks. An important issue here is how to compare and
compose different models of computation.

Once the model(s) of computation have been selected, then we can safely
proceed towards the implementation of the system by selecting the physical
components (architecture) of the design.

1.5 Our Goals

The main goal of this paper is to review and compare the most important models
of computations using a unifying theoretical framework introduced recently by
Lee and Sangiovanni-Vincentelli [43]. We also believe that it is possible to
optimize across model-of-computation boundaries to improve the performance
of and reduce errors in the design at an early stage in the process.

There are many different views on how to accomplish this. There are two
essential approaches: one is to develop encapsulation techniques for each pair of
models that allow different models of computation to interact in a meaningful
way, 1.e., data produced by one object are presented to the other in a consis-
tent way so that the object “understands” [17]. The other is to develop an
encompassing framework where all the models of importance “reside” so that
their combination, re-partition and communication happens in the same generic
framework. While we realize that today heterogeneous models of computation
are a necessity, we believe that the second approach will be possible and will
provide the designer with a powerful mechanism to actually select the appropri-
ate models of computation, (e.g., FSMs, Data-flow, Discrete-Event, that then
become a lower level of abstraction with respect to the unified model) for the
essential parts of the design.

At this level 1s also important to orthogonalize concerns, that is to separate
different aspects of the design. In this regard, a natural dividing line is the
separation between functionality and communication. That is, we view a de-
sign as composed of functional behavior (modules) and communication behavior
(between modules), which are themselves further decomposed as we refine and
analyze the design. It is our strong belief that communication is key in as-
sembling systems on a chip from separate Hip’s. Communication is a complex
issue since the functionality of the components being interconnected must be
preserved.

The separation between function and communication will be emphasized
throughout the paper. In addition, a model of computation that encompasses
the key aspects of Discrete Event, Data-Flow and Finite State Machine models
will be presented in detail. This model, called network of Co-design Finite
State Machines (CFSM), is the backbone of the POLIS system developed at the
University of California at Berkeley, an environment for function-architecture
co-design with particular emphasis on control-dominated applications and on
software development. (See Figure 2 for a block diagram of the functionalities
of the environment.) This model is also used as the basic semantic model for an
industrial product of Cadence Design Systems, an environment for embedded
system design including multi-media and telecommunication applications.

The paper is organized as follows. In Section 2, we present the mathematical
machinery used to compare and describe the models of computation. In Sec-
tion 3, we present and compare the most important models of computation. In
Section 4, we introduce the CFSM model. In Section 5, we give some concluding
remarks.

2 MOCs: Basic Concepts and the Tagged Sig-
nal Model

2.1 Modeling Embedded Systems with MOCs

An MOC is composed of a description mechanism (syntax) and rules for com-
putation of the behavior given the syntax (semantics). An MOC is chosen for
describing a sub-behavior of a design based on its suitability: compactness of
description, fidelity to design style, ability to synthesize and optimize the behav-
ior to an appropriate implementation. For example, some MOCs are suitable
for describing complicated data transfer functions and completely unsuitable for
complex control, while others are designed with complex control in mind.
There are a number of basic ideas and primitives that are commonly used in
formulating models of computation. Most MOCs permit distributed system de-
scription (a collection of communicating modules), and give rules dictating how
each module computes (function) and how they transfer information between
them (communication). Some of the primitives include combination Boolean

Scheduler
Template +
Timing
Constraints

Formal Languages

System Behavior

Co-Simulation)=

Partitioning ormal
Architectural Selection)=—— Verification
Scheduler Selection

Interface
Synthesis

Partitioned Specification

HW Synthesis

| j
S-Graph | [Unoptimized HW | [HW Interfaces | [Verif. Interm. Format|

Opimized FW

- HW Estimation
Logic Synthesis SW Estimation

I Optmized HW|

WW

Standard Components

BOARD LEVEL PROTOTYPING

Physical Prototype

Figure 2: The POLIS design framework

functions and synchronous state machines for specifying function, and queues,
buffers, schedulers for specifying communication. Function and communication
are often not described completely separately for efficiency and optimization.

More precisely, MOCs are typically realized (implemented in practice) by a
particular language and its semantics. We elaborate on the distinction between
MOCs and languages in Section 2.2.

A language is a set of symbols, rules for combining them (its syntaz), and
rules for interpreting combinations of symbols (its semantics). Two approaches
to semantics have evolved, denotational and operational. A language can have
both (ideally they are consistent with one another, although in practice this
can be difficult to achieve). Denotational semantics, first developed by Scott
and Strachey [59], gives the meaning of the language in terms of relations.
Operational semantics, which dates back to Turing machines, gives meaning of
a language in terms of actions taken by some abstract machine, and is typically
closer to the implementation.

Models of computation can be viewed based on the following characteristics:

e the kinds of relations that are possible in a denotational semantics

e how the abstract machine behaves in an operational semantics

how individual behavior is specified and composed
e how hierarchy abstracts this composition
e communication style

A design (at all levels of the abstraction hierarchy from functional specifi-
cation to final implementation) is generally represented as a set of components,
which can be considered as isolated monolithic blocks, which interact with each
other and with an environment that is not part of the design. The model of
computation defines the behavior and interaction of these blocks.

We view MOCGCs at two levels of abstraction. At the higher level, we take
the view of the tagged signal model (which we call here TSM) described in
section 2.3. The TSM abstraction defines processes and their interaction using
signals composed of partially ordered events, in turn composed of tags and val-
ues. We use processes to describe both functional behavior and communication
behavior. This is a denotational view, though it is not associated with a par-
ticular language. We use this model to compare elements of different models of
computation, styles of sequential behavior, concurrency, and communication at
a high level.

At the lower level of abstraction, we take the view of general primitives for
function and timing (used in the refinement of TSM processes), where each MOC
constitutes a particular choice of these two. This is a more operational view.
We give precise definitions for a number of terms, but these definitions will in-
evitably conflict with standard usage in some communities. We have discovered

that, short of abandoning the use of most common terms, no terminology can
be consistent with standard usage in all related communities. We attempt to
avoid confusion by being precise, even at the risk of being pedantic. The basic
primitive concepts are describe in Section 2.4. The primitive building blocks for
specification and implementation are given in Section 2.5.

All these basic primitives and concepts are then used in Section 3 to classify
and describe the main MOCs that appear in the literature.

2.2 Languages and Models of Computation

The distinction between a language and its underlying model of computation
is important. The same model of computation can give rise to fairly differ-
ent languages (e.g., the imperative Algol-like languages C, C++, Pascal, and
FORTRAN). Some languages, such as VHDL and Verilog, support two or more
models of computation?.

The model of computation affects the expressiveness of a language — which
behaviors can be described in the language, whereas the syntax affects compact-
ness, modularity, and reusability. Thus, for example, object-oriented properties
of imperative languages like C4+4 are more a matter of syntax than a model of
computation.

The expressiveness of a language 1s an important issue. A language that
is not expressive enough to specify a particular behavior is clearly unsuitable,
while a language that 1s too expressive is often too complex for analysis and
synthesis. For very expressive languages, many analysis and synthesis problems
become undecidable: no algorithm will solve all problem instances in finite time.

A language in which a desired behavior cannot be represented succinctly is
also problematic. The difficulty of solving analysis and synthesis problems is at
least linear in the size of the problem description, and can be as bad as several
times exponential, so choosing a language in which the description of the desired
behavior of the system 1s compact can be critical.

A language may be very incomplete and/or very abstract. For example, it
may specify only the interaction between computational modules, and not the
computation performed by the modules. In this case, it provides an interface
to a host language that specifies the computation, and is called a coordination
language (examples include Linda [20], Granular Lucid [34], and Ptolemy do-
mains [17]). Another language may specify only the causality constraints of
the interactions without detailing the interactions themselves nor providing an
interface to a host language. In this case, the language is used as a tool to prove
properties of systems, as done, for example, in process calculi [33, 46] and Petri
nets [50, 53]. In still more abstract modeling, components in the system are

1They directly support the Imperative model within a process, and the Discrete Event
model among processes. They can also support Extended Finite State Machines under suitable
restrictions known as the “synthesizable subset”.

replaced with nondeterminate specifications that give constraints on the behav-
ior, but not the behavior itself. Such abstraction provides useful simplifications
that help formal verification.

2.3 The Tagged-Signal Model

At the highest level of abstraction, we adopt the tagged-signal model (TSM)
proposed by Lee and Sangiovanni-Vincentelli [42]. Tt is a formalism for de-
scribing aspects of models of computation for embedded system specification.
It is denotational in the Scott and Strachey [59] sense, and it defines a semantic
framework (of signals and processes) within which models of computation can
be studied and compared. It is very abstract—describing a particular model of
computation involves imposing further constraints that make it more concrete.

2.3.1 Signals, tags and events

The fundamental entity in the TSM is an event: a value/tag pair. Tags are often
used to denote temporal behavior. A set of events (an abstract aggregation) is a
signal. Processes are relations on signals, expressed as sets of n-tuples of signals.
A particular model of computation is distinguished by the order it imposes on
tags and the character of processes in the model. More formally, given a set of
values V and a set of tags T, an event 1s a member of T'x V. A signal s is a set
of events, and thus is a subset of 7' x V. A functional (or deterministic) signal
is a (possibly partial) function from 7 to V. The set of all signals is denoted S.
A tuple of n signals is denoted s, and the set of all such tuples is denoted S”.

The different models of time that have been used to model embedded systems
can be translated into different order relations on the set of tags 7" in the tagged-
signal model. In a tumed system T is totally ordered, 1.e., there is a binary
relation < on members of 1" such that if ¢1,¢; € 17" and ¢; # t3, then either
ty <tg or ty < ty. In an untimed system, T is only partially ordered.

2.3.2 Processes

A process P with n signals is a subset of the set of all n-tuples of signals, S
for some n. A particular s € S” is said to satisfy the process if s € P. An
s that satisfies a process is called a behavior of the process (intuitively, it is
the generalization of a “simulation trace”). Thus a process is a set of possible
behaviors, or a constraint on the set of “legal” signals.

Intuitively, processes in a system operate concurrently, and constraints im-
posed on their signal tags define communication? among them. The environment
in which the system operates can be modeled with a process as well.

2This is often called also synchronization, but we will try to avoid using the term in this
sense because it is too overloaded.

10

For many (but not all) applications, it is natural to partition the signals
assoclated with a process into inputs and outputs. Intuitively, the process does
not determine the values of the inputs, and does determine the values of the
outputs. If n =i+ o, then (5%, S°) is a partition of S™. A process with i inputs
and o outputs is a subset of S x S°. In other words, a process defines a relation
between input signals and output signals. A (i + o)-tuple s € S**° is said to
satisfy P if s € P. It can be written s = (s1,s3), where s; € S? is an i-tuple of
wmput signals for process P and so € S° is an o-tuple of output signals for process
P. If the input signals are given by s; € %, then the set I = {(s1,s2) | s3 € S°}
describes the inputs, and I N P is the set of behaviors consistent with the input
Sq.

A process F is functional (or deterministic) with respect to an input/output
partition if it is a single-valued, possibly partial, mapping from S? to S°. That
is, if (s1,82) € F and (s1,s3) € F, then s; = s3. In this case, we can write
sy = F(s1), where F' : S — S° is a (possibly partial) function. Given the
input signals, the output signals are determined (or there is unambiguously no
behavior). A process is completely specified if it is a total function, that is, for
all inputs in the input space, there is a unique behavior.

2.3.3 Process composition

Process composition in the TSM is defined by the intersection of the constraints
each process imposes on each signal. To facilitate its definition, we assume that
all the processes that are composed are defined on the same set of signals’.
Hence a composition of a set of processes is also a process.

In the rest of this paper, we will use processes to model both function and
communication. Generally, an MOC defines a flexible mechanism for model-
ing function, and a rigid mechanism (signal, queue, shared variable, ...; see
Section 2.5) for modeling communication. On the other hand, the TSM must
compare different MOCs and hence be flexible when modeling communication as
well. Tt 1s, however, useful to distinguish between the two at least conceptually,
since:

1. Functional processes are mostly concerned with the value component of
their signals, and generally do not have much to do with the tag compo-
nent. In other terms, the constraints a functional process imposes on its
input and output signals are generally complex with respect to values, but
much simpler with respect to tags.

2. Communication processes are solely concerned with the tag component of
their signals, while values are left untouched.

3This can be obtained trivially, since a process can be extended to any new signal by simply
not imposing any constraint on it.

11

One of the most useful and important questions to ask when composing pro-
cesses, 1s what properties of the 1solated processes are preserved by composition.
Here we focus only on two fundamental properties: functionality (unique out-
put n-tuple for every input n-tuple) and complete specification (for every input
n-tuple there exists a unique output n-tuple).

To analyze this aspect, we note that, given a formal model of the functional
specifications and of the properties, three situations may arise:

1. The property is inherent for the model of the specification (i.e., it can be
shown formally to hold for all specifications described using that model).

2. The property can be verified syntactically for a given specification (i.e., it
can be shown to hold with a simple, usually polynomial-time, analysis of
the specification).

3. The property must be verified semantically for a given specification (i.e.,
it can be shown to hold by executing, at least implicitly, the specification
for all inputs that can occur).

For example, consider the functionality property. Any design described by a
dataflow network (a formal model to be described later) is functional (also called
deterministic or determinate in data-flow vernacular), and hence this property
need not be checked for this model of computation. If the design is represented
by a network of FSMs (for example, synchronous composition of Mealy Finite
State Machines), even if the components are functional and completely specified,
the result of the composition may be either incompletely specified (the composi-
tion has no solution) or non-functional (the composition has multiple solutions).
These situations arise if and only if when a combinational feedback loop exists
in the composition: with an odd number of Boolean inverters, there is no “so-
lution” and the composition is incompletely specified, with an even number of
inverters, there are multiple solutions and the composition is non-functional. A
syntactical check on the composition to verify whether combinational loops exist
can be carried out. If none exist, then the composition i1s functional and com-
pletely specified. With Petri nets, on the other hand, functionality is difficult
to prove: it must be checked by exhaustive simulation.

2.3.4 Examples

Consider, as a motivating example introducing these several mechanisms to
denote temporal behavior, two problems: one of analysis, modeling a time-
invariant dynamical system on a computer, and one of design, the design of a
two-elevator system controller.

Analysis Example The underlying mathematical model of a time-invariant
dynamical system, a set of differential equations over continuous time, i1s not

12

directly implementable on a digital computer, due to the double quantization
of real numbers into finite bit strings, and of time into clock cycles. Hence a
first translation is required, by means of an integration rule, from the differential
equations to a set of difference equations, that are used to compute the values of
each signal with a given tag from the values of some other signals with previous
and/or current tags.

If it is possible to identify several strongly connected components in the
dependency graph®, then the system is decoupled. It becomes then possible
to go from the total order of tags implicit in physical time to a partial order
imposed by the depth-first ordering of the components. This partial ordering
gives us some freedom in implementing the integration rule on a computer. We
could, for example, play with scheduling by embedding the partial order into the
total order among clock cycles. It is often convenient, for example, to evaluate a
component completely, for all tags, before evaluating components that depend
on it. It is also possible to spread the computation among multiple processors.

In the end, time comes back into the picture, but the double transformation,
from total to partial order, and back to total order again, is essential to

1. prove properties about the implementation (such as stability of the inte-
gration method, or a bound on the maximum execution time),

2. optimize the implementation with respect to a given cost function (e.g.,
size of the buffers required to hold intermediate signals versus execution
time, or satisfaction of a constraint on the maximum execution time).

Design Example. One of the key motivations for the tagged signal model
was to avoid over-specification of designs. For a two-elevator system controller,
a simplistic set of specifications can be expressed as follows: respond to all re-
quests in the exact order they are received with the criterion that the maximum
delay from the time a request is received and the time the elevator service is
offered, is minimized. It is clear that the two elevators are concurrent subsys-
tems and that their operation can be controlled with no need to “synchronize”
their operation. It is determined by analyzing the order of events not the exact
time of occurrence. However, if no assumption is made about the way requests
are made, then we may end up in a dead-lock situation due to the nature of the
specification. In fact, if three requests are made at the same instant of time,
then the response cannot follow the specification, since there are only two ele-
vators available. One solution to this problem is to assume that no two requests
may happen at the exact same time; then the specification can be met for the
two elevator system. Another solution is to arbitrarily assign priorities among
requests that happen at the same time: the specification is changed to reflect
these priorities instead of those implied by the order of occurrence. The most

4 A directed graph with a node for each signal, and an edge between two signals whenever
the equation for the latter depends on the former.

13

important aspect in design is to capture the intent of the designer by abstracting
away the non-essential aspects of the system. This example illustrates that it is
essential to classify MOCs by their treatment of events with the same tag. This
aspect 1s strictly related to the notion of synchrony and asynchrony as we will
see later.

Once the control algorithm has been developed, then its implementation
needs to be carried out. If the algorithm is implemented in software running on
a single processor, then all events processed are totally ordered and the order
is determined by the intrinsic order coming from the specifications (order of
occurrence of the requests) and by the existence of limited resources. Even if
the partial order dictated by the algorithm exposes some potential parallelism,
the presence of a single processor forces sequential execution determined by a
scheduling algorithm that decides in which order the operations are executed.
Hence, in the end, we need to map an abstract design into the physical world
characterized by real time and limited resources that imposes a global ordering
on events.

2.4 Comparing Models of Computation

A TSM process is, according to the definition given, a partial mapping from
input signals to output signals. In order to consider more concrete mappings,
we introduce some primitive concepts on which they are based.

System behavior, as we have previously stated, i1s composed of functional
behavior and communication behavior, each represented by TSM processes. A
process in turn is composed of functional behavior and timing behavior. Function
is how things happen, or in the TSM, how events are related (how inputs are
used to compute outputs) “around” a particular tag. Time is the order in
which things happen, or in the TSM, the assignment of a tag to each event.
The distinction between function and time is not this clean in every context.
For example, a state in a finite state machine cannot be labeled as belonging
exclusively to the function or time component of the behavior of the machine,
but is rather based on the history of both. Nonetheless, the division between
function and time, particularly at a primitive level, is useful in the conception
and understanding of MOCs.

System operation can be viewed as a series of process computations, some-
times called firings. We will use function, time, computation (firing) to describe
MOCs and their primitives.

In the sections that follow, we consider the fundamental concepts which
are used to refine our processes. For functional processes, we will first consider
state-less processes in which only inputs with a given tag concur to form outputs
with the same tag. We then introduce the notion of state in the context of
process networks. For communication processes, we then consider the primitives
for concurrency and inter-process communication. Finally, we give the basic
building blocks used to realize these concepts in practice. It is from these that

14

today’s most prevalent models of computation are built.

2.4.1 Process function

In the control-dominated arena, since the pioneering work of Shannon, Boolean
functions have been used as a representation of both a system specification and
its implementation in hardware (relay networks in Shannon’s time, CMOS gates
now). Several formally equivalent (but often with different levels of convenience
in practice) representations for binary- and multi-valued boolean functions have
been proposed, such as:

e truth table,

e Boolean network [57], which is a Directed Acyclic Graph (DAG), with a
truth table associated with each node and edges carrying Boolean variable
values,

e Binary Decision Diagram [15], that is also a DAG with one level of nodes
for each input variable, and each node acting as a “multiplexer” between
the function values associated with every variable values.

In the data-dominated arena, Data Flow actors play the role of processes
and represent functions from simple state-less arithmetic operations such as
addition and multiplication, to higher-level “combinational” transformations,
such as Fast Fourier Transform.

2.4.2 Process State

Most models of computation include components with state, where behavior is
given as a sequence of state transitions. State in a process network can always be
simply implemented by means of feedback. An output and an input signal can be
connected together, and thus provide a connection between process inputs and
outputs beyond the tag barrier. However, we can also consider a notion of state
within a process, since this can be useful in order to “hide” the implementation
of the state information.

We can formalize this notion by considering a process F' that is functional
with respect to partition (5%, S°). Let us assume for the moment that F' belongs
to a timed system, in which tags are totally ordered®. Then for any tuple of
signals s, we can define ss+ to be a tuple of the (possibly empty) subset of the
events in s with tags greater than ¢.

Two input signal tuples r,s € S? are in relation Ef (denoted (r!,s') € E)
if rv¢ = s5¢ implies F(r)s; = F(8)s¢. This definition intuitively means that
process F' cannot distinguish between the “histories” of r and s prior to time
t. Thus, if the inputs are identical after time ¢, then the outputs will also be
identical.

5A definition of state for untimed systems is also possible, but it is much more involved.

15

EF is obviously an equivalence relation, partitioning the set of input signal
tuples into equivalence classes for each ¢. Following a long tradition, we call these
equivalence classes the states of F'. In the hardware community, components
with only one state for each ¢ are called combinational, while components with
more than one state for some t are called sequential. Note however that the
term “sequential” is used in very different ways in other communities.

2.4.3 Concurrency and Communication

The sequential or combinational behavior just described is related to individual
processes, and embedded systems will typically contain several coordinated con-
current processes. At the very least, such systems interact with an environment
that evolves independently, at its own speed. It is also common to partition the
overall model into tasks that also evolve more or less independently, occasionally
(or frequently) interacting with one another. This interaction implies a need for
coordinated communication.

Communication between processes can be explicit or implicit. Explicit com-
munication implies forcing an order on the events, and this is typically realized
by designating a sender process which informs one or more recetwver processes
about some part of its state. Implicit communication implies the sharing of tags
(i.e., of a common time scale), which forces a common partial order of events,
and a common notion of state. The problem with this form of communication
is that it must be physically implemented via shared signals (e.g., a common
reference clock), whose distribution may be difficult in practice.

Basic Time Time plays a larger role in embedded systems than in classical
computation. In classical transformational systems, the correct result is the
primary concern—when it arrives is less important (although whether it arrives,
the termination question, is important). By contrast, embedded systems are
usually real-time systems, where the time at which a computation takes place
1s very important.

As mentioned previously, different models of time become different order
relations on the set of tags 7" in the tagged-signal model. Recall that in a timed
system T 1is totally ordered, while in an untimed system 1 is only partially
ordered. Implicit communication generally requires totally ordered tags, usually
identified with physical time.

The tags in a metric-time system have the notion of a “distance” between
them, much like physical time. Formally, there exists a partial function d : 7" x
T — R mapping pairs of tags to real numbers such that d(¢;,12) = 0 < t; = ¢,
d(tl,tz) = d(tz,tl) and d(tl,tz) + d(tz,tg) >= d(tl,tg).

Two events are synchronous if they have the same tag (the distance be-
tween them is 0). Two signals are synchronous if each event in one signal is
synchronous with an event in the other signal and vice versa.

16

Treatment of Time in Systems A discreie-event system is a timed system
where the tags in each signal are order-isomorphic with the natural numbers [42].
Intuitively, this means that any pair of ordered tags has a finite number of
intervening tags. This is the basis of the underlying MOC of the Verilog and
VHDL hardware description languages [62, 49].

A synchronous system i1s one in which every signal in the system is syn-
chronous with every other signal in the system.

A discrete-time system is a synchronous discrete-event system.

An asynchronous system 1s a system in which no two events can have the
same tag. If tags are totally ordered, the system is asynchronous interleaved,
while if tags are partially ordered, the system is asynchronous concurrent. For
asynchronous systems concurrency and interleaving are, to a large extent, inter-
changeable, since interleaving can be obtained from concurrency by embedding
the partial order into a total order, and concurrency can be reconstructed from
interleaving by identifying “untimed causality” [4§].

Note that time 1s a continuous quantity. Hence real systems are asyn-
chronous by nature. Synchronicity is only a (very) convenient abstraction, that
may be expensive to implement due to the need to share tags, and hence, as
discussed above, to share a reference “clock” signal.

Synchronous/reactive languages (see e.g. [28]) deserve special mention. They
have an underlying synchronous model in which the set of tags in any behavior
of the system implies a global “clock” for the system. However, to make this
MOC synchronous in the sense of the TSM, we need to assume that every signal
conceptually has an event at every tag. In some synchronous/reactive designs
this may not be the case but if we define the events in the process to include
a value denoting the absence of an event, then all synchronous/reactive models
can be defined as synchronous in our framework. At each clock tick, each process
maps input values to output values. Note that if we include the absent value
for events, then discrete-event systems are also synchronous.

The main differences are:

e in the granularity of tags: intuitively, synchronous models should be used
for systems in which there are fewer tags, and

e in the number of events that have the absent value at any tag: intuitively,
synchronous models should be used for systems in which only few events
have absent values.

Particular attention has to be devoted to events with values at the same tag
and that have cyclic dependencies (”combinational cyeles”). The existence of
such dependencies implies that the input-output relation is described implicitly
as the solution of an algebraic set of equations. This set of equations may
have either a single solution for each input value, in which case the process
is completely specified, no solution for some input value, in which case the
process is functional but not completely specified, or multiple solutions for some

17

input value, in which case the process is not functional. This is the source of
endless problems in systems described by VHDL or Verilog and difficulties in
synchronous/reactive languages. A possibility when facing a cyclic dependency
is to leave the result unspecified, resulting in nondeterminacy or, worse, infinite
computation within one tick according to the particular input values (VADL,
Verilog and some variants of StateCharts belong to this class [65]). A better
approach is to use fixed-point semantics, where the behavior of the system is
defined as a set of events that satisfy all processes [11]. Given this approach
to the problem, there are procedures that can determine the existence of single
or multiple fixed points in finite time, thus avoiding nasty inconsistencies and
difficulties.

Asynchronous systems do not suffer from this problem since there cannot be
cyclic dependencies at the same tag given that only one event can have a value at
any given tag. Note that often asynchronous systems are confused with discrete-
event systems and thus it is not infrequent to find assertions in the literature
that asynchronous systems may have inconsistent or multiple solutions when
indeed this is never the case!

Implementation of Concurrency and Communication Concurrency in
physical implementations of systems implies a combination of parallelism, which
employs physically distinct computational resources, and interleaving, which
means sharing of a common physical resource. Mechanisms for achieving in-
terleaving, generally called schedulers, vary widely, ranging from operating sys-
tems that manage context switches to fully-static interleaving in which multiple
concurrent processes are converted (compiled) into a single process. We focus
here on the mechanisms used to manage communication between concurrent
processes.

Parallel physical systems naturally share a common notion of time, according
to the laws of physics. The time at which an event in one subsystem occurs has a
natural ordering relationship with the time at which an event occurs in another
subsystem. Physically interleaved systems also share a natural common notion
of time: one event happens before another and the time between them can be
computed (of course, accuracy is an issue).

Logical systems, on the other hand, need a mechanism to explicitly share a
notion of time (communicate). Consider two imperative programs interleaved
on a single processor under the control of a time-sharing operating system.
Interleaving creates a natural ordering between events in the two processes, but
this ordering is generally unreliable, because it heavily depends on scheduling
policy, system load and so on. Some explicit communication mechanism is
required for the two programs to cooperate. One way of implementing this could
be by forcing both to operate based on a global notion of time, which in turn
forces a total order on events. This can be extremely expensive. In practice, this
communication is done explicitly, where the total order is replaced by a partial

18

order. Returning to the example of two processes running under a time-sharing
operating system, we take precautions to ensure an ordering of two events only
if the ordering of these two events matters. We can do this by communicating
through common signals, and forcing one process to wait for a signal from the
other, which forces the scheduler to interleave the processes in a particular way.
A variety of mechanisms for managing the order of events, and hence for
communicating information between processes, exists. We will now examine and
classify them according to the tagged-signal model, by using “special-purpose”
processes to model communication. Using processes to model communication
(rather than considering it as “primitives” of the tagged-signal model) makes it
easier to compare different MOCs, and also allows one to consider refining these
communication processes when going from specification to implementation [56].
Recall that the communication primitive in the TSM is the event, which
is a two-component entity whose value is related to function and whose tag is
related to time. That is, communication is implemented by two operations:

1. the transfer of values between processes (function; TSM event value),

2. the determination of the relationship in time between two processes (time;
TSM event tag).

Unfortunately, often the term “communication” (or data transfer) is used
for the former, and the term “synchronization” is used for the latter. We feel
however, that the two are intrinsically connected in embedded systems: both tag
and value carry information about a communication. Thus, communication and
synchronization, as mentioned before, are terms which cannot really be distin-
guished in this sense.

2.5 Basic communication primitives

In this section, we define some of the communication primitives that have been
described in the literature, following the classification developed in the previous
sections.

Unsynchronized In an unsynchronized communication, a producer of infor-
mation and a consumer of the information are not coordinated. There is
some connection between them (e.g., a buffer) but there is no guarantee
that the consumer reads “valid” information produced by the producer,
and no guarantee that the producer will not overwrite previously produced
data before the consumer reads the data. In the tagged-signal model, the
repository for the data is modeled as a process, and the reading and writ-
ing actions are modeled as events without any enforced ordering of their
tags.

Read-modify-write Commonly used for accessing shared data structures in
software, this strategy locks a data structure during a data access (read,

19

write, or read-modify-write), preventing any other accesses. In other
words, the actions of reading, modifying, and writing are atomic (indivisi-
ble, and thus uninterruptible). In the tagged-signal model, the repository
for the data is modeled as a process where events associated with this
process are totally ordered (resulting in a partially ordered model at the
global level). The read-modify-write action is modeled as a single event.

Unbounded FIFO buffered This is a point-to-point communication strat-
egy, where a producer generates (writes) a sequence of data tokens and
a consumer consumes (reads) these tokens, but only after they have been
generated (i.e., only if they are valid). In the tagged-signal model, this
is a simple connection where the signal on the connection is constrained
to have totally ordered tags. The tags model the ordering imposed by
the FIFO model. If the consumer process has unbounded FIFOs on all
inputs, then all inputs have a total order imposed upon them by this com-
munication choice. This model captures essential properties of both Kahn
process networks and dataflow [35].

Bounded FIFO buffered In this case (we discuss only the point-to-point case
for the sake of simplicity), the data repository is modeled as a process that
imposes ordering constraints on its inputs (which come from the producer)
and the outputs (which go to the consumer). Each of the input and output
signals are internally totally ordered, while their combination is partially
ordered. The simplest case is where the size of the buffer is one, in which
case the input and output events must be perfectly interleaved (i.e., that
each output event lies between two input events). Larger buffers impose
a maximum difference (often called synchronic distance [51]) between the
number of input or output events occurring in succession.

Note that some implementations of this communication mechanism may
not really block the writing process when the buffer is full, thus requiring
some higher level of flow control to ensure that this never happens, or that
it does not cause any harm.

Petri net places This is a multi-partner communication strategy, where sev-
eral producers generate tokens and several consumers consume these to-
kens [51]. In the tagged-signal model, this is modeled as a process that
keeps track of the tags of its input (from producers) and output (to con-
sumers) signals. As in the previous case, each signal has totally ordered
events, and the process makes sure that the number of input events is
always greater than or equal to that of output events.

Rendezvous In the simplest form of rendezvous, which is embodied in the
underlying MOC of the Occam and Lotos [64] languages, a single writ-
ing process and a single reading process must simultaneously be at the
point in their control flow where the write and the read occur. It i1s a

20

Transmitters | Receivers Buffer Blocking | Blocking | Single

Size Reads Writes | Reads
Unsynchronized many many one no no no
Read-Modify-Write many many one yes yes no
Unbounded FIFO one one unbounded yes no yes
Bounded FIFO one one bounded maybe maybe yes
Petri net place many many unbounded no no yes
Single Rendezvous one one one yes yes yes
Multiple Rendezvous many many one no no yes

Table 1: A comparison of concurrency and communication schemes.

convenient communication mechanism, because it has the semantics of a
single assignment, in which the writer provides the right-hand side, and
the reader provides the left-hand side. In the tagged-signal model, this is
imposed by events with identical tags [42]. Lotos offers, in addition, mul-
tiple rendezvous, in which one among multiple possible communications is
non-deterministically selected. Multiple rendezvous is more flexible than
single rendezvous, because it allows the designer to specify more easily
several “expected” communication ports at any given time, but it 1s very
difficult and expensive to implement correctly.

Of course, various combinations of the above models are possible. For exam-
ple, in a model that partially uses the unsynchronized communication scheme,
a consumer of data may be required to wait until the first time a producer
produces data, after which the communication is unsynchronized.

The essential features of the concurrency and communication styles described
above are presented in Table 1. These are distinguished by the number of trans-
mitters and receivers (e.g., broadcast versus point-to-point communication), the
size of the communication buffer, whether the transmitting or receiving process
may continue after an unsuccessful communication attempt (blocking reads and
writes), and whether the result of each write can be read at most once (single
reads). Note that, strictly speaking, the blocking/nonblocking read and write
aspects are part of the “functional” processes, and not of the “communication”
processes. However, these communication schemes also specify that aspect, and
hence we chose to include in the table. A “maybe” entry means that MOCs
considering both the “yes” and “no” answer have been proposed in the litera-
ture.

3 Common Models of Computation

We are now ready to use the scheme developed in the previous Section to classify
and analyze several models of computation that have been used to describe

21

embedded systems. We will consider issues such as ease of modeling, efficiency
of analysis (simulation or formal verification), automated synthesizability, and
optimization space versus over-specification.

We assume a background knowledge of basic, non-concurrent MOCs such
as Finite Automata, Turing Machines, and Algebraic State Machines, and we
focus on the timing, concurrency and communication aspects instead.

3.1 Discrete-Event

Time is an integral part of a discrete-event model of computation. Events
usually carry a totally-ordered time stamp indicating the time at which the
event occurs. A DE simulator usually maintains a global event queue that sorts
events by time stamp.

Digital hardware is often simulated using a discrete-event approach. The
Verilog language [62], for example, was designed as an input language for
a discrete-event simulator. The VHDL language [49] also has an underlying
discrete-event model of computation.

Discrete-event modeling can be expensive—sorting time stamps can be time-
consuming. Moreover, ironically, although discrete-event is ideally suited to
modeling distributed systems, 1t is very challenging to build a distributed discrete-
event simulator. The global ordering of events requires tight coordination be-
tween parts of the simulation, rendering distributed execution difficult.

Discrete-event simulation is most efficient for large systems with large, fre-
quently 1dle or autonomously operating sections. Under discrete-event simula-
tion, only the changes in the system need to be processed, rather than the whole
system. As the activity of a system increases, the discrete-event paradigm be-
comes less efficient because of the overhead inherent in processing time stamps.

Simultaneous events, especially those arising from zero-delay feedback loops,
present a challenge for discrete-event models of computation. In such a situation,
events may need to be ordered, but are not.

Consider the discrete-event system shown in Figure 3. Process B has zero
delay, meaning that its output has the same time stamp as its input. If process A
produces events with the same time stamp on each output, there is ambiguity
about whether B or C should be invoked first, as shown in Figure 3(a).

Suppose B is invoked first, as shown in Figure 3(b). Now, depending on
the simulator, C might be invoked once, observing both input events in one
invocation, or it might be invoked twice, processing the events one at a time.
In the latter case, there is no clear way to determine which event should be
processed first.

The problem could be solved by requiring the user to provide a delay for
each process, but this is not convenient in general. Hence various simulators
have resorted to various heuristic techniques:

e The VHDL simulation semantics [49] uses a synchronous model (with unit

22

N

() (d)

Figure 3: Simultaneous events in a discrete-event system. (a) Process A pro-
duces events with the same time stamp. Should B or C be fired next? (b)
Zero-delay process B has fired. How many times should C be fired? (c¢) Delta-
delay process B has fired; C will consume A’s output next. (d) C has fired once;
it will fire again to consume B’s output.

delay, called “delta step”) in order to provide a two-level structure of time
and thus solve non-determinism within a given “real time” instant. Each
instant of time (level 1) is broken into (a potentially infinite number of)
totally ordered delta steps (level 2). A “zero-delay” process in this model
actually has delta steps, or ordered progress towards a solution though no
real time elapses. For example, if Process B contains a delta step between
input and output, firing A followed by B would result in the situation in
Figure 3(c). The next firing of C will see the event from A only; the firing
after that will see the (delay-ordered) event from B.

The Discrete Event domain in Ptolemy [17] uses a synchronous model,
but with mostly zero delay and only enough delta steps to eliminate all
zero-delay cycles.

e The BONES simulator by Cadence uses an asynchronous model.

Adding a feedback loop from Process C to A in Figure 3 would create a
problem if events circulate through the loop without any increment in time
stamp. The same problem occurs in synchronous languages, where such loops
are called causality loops. No precedence analysis can resolve the ambiguity. In
synchronous languages, the compiler may simply fail to compile such a program.

23

Discrete-event simulators attempt to identify such cases and report them to the
user.

We wish to stress that delta steps do not have a meaning of time (though they
are often called delta “delay”). They are just a clever mechanism to implement a
fixed point computation used to compute the behavior of the system at a point
in time. Fixed point iteration can also be used in the synchronous/reactive
model to define its semantics and make it determinate. Hence “delta steps”
can also be thought of as an “iteration index”. Moreover, VHDL uses an event
model that is not monotonic, and hence the fixed point may never be reached,
as discussed above. On the other hand, synchronous language use a ternary
logic model, in which fixed point convergence in ensured in a finite number of
steps [16].

The reason why DE is a popular MOC in practice is that it has been im-
plemented efficiently in a number of event-driven simulators, and it is quite
convenient to evaluate the performance of very large and complex systems. By
imposing little restriction on the modeling style, 1t makes simulation simple and
synthesis as well as formal verification hard.

3.2 Dataflow Process Networks

In dataflow, a program is specified by a directed graph where the nodes (called
actors) represent computations and the arcs represent totally ordered sequences
(called streams) of events (called tokens). In figure 4(a), the large circles repre-
sent actors, the small circle represents a token and the lines represent streams.
The graphs are often represented visually and are typically hierarchical, in that
a node in a graph may represent another directed graph. The nodes in the
graph can be either language primitives or subprograms specified in another
language, such as C or FORTRAN. In the latter case, we are actually mixing two
models of computation, where dataflow serves as the coordination language for
subprograms written in an imperative host language.

Dataflow is a special case of Kahn process networks [35, 41]. In a Kahn pro-
cess network, communication is by unbounded FIFO buffering, and processes are
constrained to be continuous mappings from input streams to output streams.
“Continuous” in this usage is a topological property that ensures that the pro-
gram is determinate [35]. Intuitively, it implies a form of causality without
time; specifically, a process can use partial information about its input streams
to produce partial information about its output streams. Adding more tokens
to the input stream will never result in having to change or remove tokens on
the output stream that have already been produced. One way to ensure con-
tinuity is with blocking reads, where any access to an input stream results in
suspension of the process if there are no tokens. One consequence of blocking
reads is that a process cannot test an input channel for the availability of data
and then branch conditionally to a point where it will read a different input.

In dataflow, each process is decomposed into a sequence of firings, indivisible

24

quanta of computation. Each firing consumes and produces tokens. Dividing
processes into firings avoids the multi-tasking overhead of context switching
in direct implementations of Kahn process networks. In fact, in many of the
signal processing environments, a major objective is to statically (at compile
time) schedule the actor firings, achieving an interleaved implementation of the
concurrent model of computation. The firings are organized into a list (for one
processor) or set of lists (for multiple processors). Figure 4(a) shows a dataflow
graph, and Figure 4(b) shows a single processor schedule for it. This schedule is
a list of firings that can be repeated indefinitely. One cycle through the schedule
should return the graph to its original state (here, state is defined as the number
of tokens on each arc). This is not always possible, but when it is, considerable
simplification results [12]. In many existing environments, what happens within
a firing can only be specified in a host language with imperative semantics, such

as C or C++.

(A B C D>

Figure 4: (a) A dataflow process network (b) A single-processor static schedule
for it

A useful formal device is to constrain the operation of a firing to be func-
tional, i.e., a simple, stateless mapping from input values to output values. Note,
however, that this does not constrain the process to be stateless, since it can
maintain state in a self-loop: an output that is connected back to one of its
inputs. An initial token on this self-loop provides the initial value for the state.

Many possibilities have been explored for precise semantics of dataflow co-
ordination languages, including Karp and Miller’s computation graphs [37],
Lee and Messerschmitt’s synchronous dataflow graphs [40], Lauwereins et al.’s
cyclo-static dataflow model [39, 13], Kaplan et al.’s Processing Graph Method
(PGM) [36], Granular Lucid [34], and others [1, 20, 22, 60]. Many of these
limit expressiveness in exchange for formal properties (e.g., provable liveness
and bounded memory).

25

Synchronous dataflow (SDF) and cyclo-static dataflow require processes to
consume and produce a fixed number of tokens for each firing. Both have the
useful property that a finite static schedule can always be found that will return
the graph to its original state. This admits extremely efficient implementa-
tions [12]. For more general dataflow models, it is undecidable whether such a
schedule exists [18].

A looser model of dataflow is the tagged-token model, in which the partial
order of tokens is explicitly carried with the tokens [3]. A significant advantage
of this model is that while it logically preserves the FIFO semantics of the
channels, it permits out-of-order execution.

Some examples of graphical dataflow programming environments intended
for signal processing (including image processing) are Khoros [52], and
Ptolemy [17].

3.3 Petri nets

Petri nets [50, 53] are, in their basic form, an infinite state model (just like
dataflow) for which, however, most properties are decidable in finite time and
memory. They are interesting as an uninterpreted model for several very dif-
ferent classes of problems, including some relevant to embedded system design
(e.g., process control, asynchronous communication, and scheduling).

Moreover, a large user community has developed an impressive body of the-
oretical results and practical design aids and methods based on Petri nets. In
particular, partial order-based verification methods (e.g. [63], [27], [45]) are one
possible answer to the state explosion problem plaguing Finite State Machine-
based verification techniques.

A Petri net (PN) is a directed bipartite graph N = {P, T, F'}. P is a set
of places holding the distributed state (via tokens) of the system. T is a set of
transitions, denoting the activity of the system. FF C P x T'UT x P is the flow
relation, from places to transitions and vice-versa. Nodes linked by F' are said
to be in a predecessor/successor relationship.

Transitions are often labeled with statements in a host language, just as in
the case of DF actors. The state of the PN is the marking of the places, that
is a non-negative integer valuation (“token assignment”) of each place. The
dynamic evolution of the PN is determined by the firing process of transitions.
A transition may fire whenever all its predecessor places are marked, and if
it fires, it decrements the marking (removes a token) of each predecessor and
increments the marking of each successor (adds a token).

PNs are interesting in general, and in particular in embedded system design,
because they are a very general model of control, potentially with infinite state,
yet very powerful analysis techniques, both exact and approximate, have been
defined for them.

In particular, the firing rule of a PN bears a strong connection with linear
algebra. If we represent the graph of the flow relation (given arbitrary orderings

26

(@ (b)

Figure 5: Example of Free Choice Petri net and its Reachability Graph

of the sets 7" and P) as an incidence matrix I, and if we represent the current
marking as an integer vector M, we can model the effect of a sequence of tran-
sitions ¢ starting from M as follows. Let us denote by f7 the “firing vector”
of o, that is a vector whose i-th position contains the number of times the i-th
transition appears in o. The marking M’ reached after o is given by

M =1 +M

For example, consider the PN in Figure 5.(a), whose set of reachable mark-
ings is shown in Figure 5.(b). Its incidence matrix (one row for each place and
one column for each transition) is:

_—_0 O O O =
O OO D ==
OO = = OO
[N el e Nel =
_— o o O = OO
|
O RO = O oo
_ o= O o oo

The first line corresponds to place p0, and has a 1 in position 0, because t0 adds
1 token to place p0, and —1 in positions 1 and 2 because ¢1 and #2 remove one
token from it.

Consider now firing sequence ¢ = t0,¢1,t3 whose firing vector (transposed)
is f7 = |1101000|. The marking M’ reached from the initial marking M =

27

|0000011[" after firing o is:

o oo R, OO
[l
[e == I
e R e Rl S SN
oo R~ OO
o oo O, O
—oc oo~ OO
|
oo R OO O
e I T e i e B R)
cCoOOoO R, O
+
[N e R ==)

that corresponds to p2, pb being marked, as expected.

As another example, consider the initial marking with two tokens each in
ps, pe and the firing sequence o = t0,0,¢1,¢3. In that case,
M =10000022[,
f7 = 12110000, and
M’ =10111100/".

This equation provides an interesting characterization of sequences of tran-
sitions that, when fired from a marking M, return the net to same M. These
sequences, also called T-invariants, must be solutions to

0=1f°

This is only a necessary condition, of course, since the sequences must also be
fireable from M (some intermediate step may yield a negative marking), but it is
useful, e.g., when proving liveness conditions (e.g., showing that some transition
can fire infinitely often) or schedulability properties [47].

For example, in Figure 5 firing sequence 10, 1,13, t4is a T-invariant |[1101100]
that happens to be fireable from the initial marking. The reader can check that
this invariant is indeed a solution of the equation shown above.

By duality (a very useful concept in Petri nets, based on exchanging the
roles of places and transitions), one can also identify sets of places whose total
cumulative marking cannot be changed by any firing sequence of the net. These
sets, also called S-invariants can be used to establish the unreachability of a
given marking, if it cannot be expressed as a linear combination of a basis of
S-invariants [25]. Hence they can be very useful in proving (but not disprov-
ing) safety properties (e.g., the fact that some “dangerous” marking cannot be
reached).

Invariant-based techniques become necessary and sufficient for a restricted
(but expressive) class of PNs called free-choice nets [24], in which a multi-
successor place must be the only predecessor of its successors. The net of Fig-
ure 5.(a) is a free-choice net, since the only multi-successor place (p0) has only
single-predecessor successors (¢1,12).

In addition, reachability-based techniques for analysis, based on building the
complete state space (or deciding in finite time that it is actually infinite), can
also be used to prove properties of a given PN.

t

28

The basic PN model is interesting but somewhat limited in expressive power®.

For this reasons, people have extended 1t in various ways, such as adding colors
to tokens. Colored PNs are similar to Dataflow networks (with places playing
the role of FIFOs and transitions playing the role of actors), but allow multiple
predecessors and successors for a place/FIFO. In this way, they lose one of the
most interesting properties of DF networks, determinacy, and of course gain
something in terms of compactness and expressiveness’ .

Time can also play an explicit role in PNs. Time has been associated with
transitions and places, in various combinations and forms ([55]). Generally
speaking, time 1s associated with tokens, that carry a time stamp, and time
stamps determine when transitions may fire (and thus create new tokens with
new time stamps). The problem with timed PNs is, as usual with real-time
MOCs, that they suffer from a particularly serious combinatorial explosion prob-
lem when reducing the originally infinite timed state space to a finite set of
equivalence classes, as discussed more in detail in Section 3.8.

3.4 Synchronous/Reactive

In a synchronous model of computation, all events are synchronous, i.e., all
signals have events with identical tags. The tags are totally ordered, and globally
available. Unlike the discrete-event model, all signals have events at all clock
ticks, simplifying the simulator by requiring no sorting. Simulators that exploit
this simplification are called cycle-based or cycle-driven simulators. Processing
all events at a given clock tick constitutes a cycle. Within a cycle, the order
in which events are processed may be determined by data precedences, which
define the delta steps. These precedences are not allowed to be cyclic, and
typically impose a partial order (leaving some arbitrary ordering decisions to the
scheduler). Cycle-based models are excellent for clocked synchronous circuits,
and have also been applied successfully at the system level in certain signal
processing applications.

A cycle-based model is inefficient for modeling systems where events do not
occur at the same rate in all signals. While conceptually such systems can be
modeled (using, for example, special tokens to indicate the absence of an event),
the cost of processing such tokens is considerable. Fortunately, the cycle-based
model is easily generalized to multirate systems. In this case, every nth event
in one signal aligns with the events in another.

A multirate cycle-based model 1s still somewhat limited. It is an excellent
model for synchronous signal processing systems where sample rates are related
by constant rational multiples, but in situations where the alignment of events
in different signals is irregular, it can be inefficient.

61t is more powerful than regular grammars, is incomparable with context-free grammars,
and is less powerful than Turing machines.

"The formal power is the same, being that of Turing machines for both general CPN and
general DF.

29

The more general synchronous/reactive model is embodied in the so-called
synchronous languages [8]. Esterel [14] is a textual imperative language with
sequential and concurrent statements that describe hierarchically-arranged pro-
cesses. Lustre [29] is a textual declarative language with a dataflow flavor and
a mechanism for multirate clocking. Signal [9] is a textual relational language,
also with a dataflow flavor and a more powerful clocking system. Argos [44],
a derivative of Harel’s Statecharts [30], is a graphical language for describing
hierarchical finite state machines (described more in detail in the next section).
Halbwachs [28] gives a good summary of this group of languages.

The synchronous/reactive languages describe systems as a set of concurrently-
executing synchronized modules. These modules communicate through signals
that are either present or absent in each clock tick. The presence of a signal is
called an event, and often carries a value, such as an integer.

Most of these languages are static in the sense that they cannot request ad-
ditional storage nor create additional processes while running. This makes them
well-suited for bounded and speed-critical embedded applications, since their be-
havior can be extensively analyzed at compile time. This static property makes
a synchronous program finite-state, greatly facilitating formal verification.

Verifying that a synchronous program is causal (non-contradictory and de-
terministic) is a fundamental challenge with these languages. Since computa-
tion in these languages is delay-free and arbitrary interconnection of processes
is possible, it is possible to specify a program that has either no interpretation
(a contradiction where there is no consistent value for some signal) or mul-
tiple interpretations (some signal has more than one consistent value). Both
situations are undesirable, and usually indicate a design error. A conservative
approach that checks for causality problems structurally flags an unacceptably
large number of programs as incorrect because most will manifest themselves
only in unreachable program states. The alternative, to check for a causality
problem in any reachable state, can be expensive since it requires an exhaustive
check of the state space of the program.

In addition to the ability to translate these languages into finite-state de-
scriptions, it is possible to compile these languages directly into hardware. Tech-
niques for translating both Esterel [10] and Lustre [54] into hardware have been
proposed. The result is a logic network consisting of gates and flip-flops that can
be optimized using traditional logic synthesis tools. To execute such a system
in software, the resulting network is simply simulated. The technique is also
the basis to perform more efficiently causality checks, by means of implicit state
space traversal techniques [58].

3.5 Communicating Synchronous Finite State Machines

Finite State Machines (FSMs) are an attractive model for embedded systems.
The amount of memory required by such a model is always decidable, and 1s
often an explicit part of its specification. Halting and performance questions are

30

always decidable since each state can, in theory, be examined in finite time. In
practice, however, this may be prohibitively expensive, and thus formal verifica-
tion techniques based on interacting FSMs require various forms of (non-trivial
and non-automatable) abstraction in order to be kept manageable [38, 45].

A traditional FSM consists of:

e a set of input symbols (the Cartesian product of the sets of values of the
input signals),

e a set of output symbols (the Cartesian product of the sets of values of the
output signals),

e a finite set of states with a distinguished initial state,

e an output function mapping input symbols and states to output symbols,
and

e a next-state function mapping input symbols and states to (next) states.

The input to such a machine is a sequence of input symbols, and the output
is a sequence of output symbols. The model is synchronous (i.e., all signals
have the same tags), and hence input and output symbols are well defined (they
correspond to the set of events with a given tag). Tt is also semantically identical
to that of previous section. However, there are enough syntactic differences to
warrant a separate treatment (see [28, 11] for a discussion of possible mappings
between the two).

Traditional FSMs are good for modeling sequential behavior, but are prob-
lematic for modeling system with concurrency or large memories, because of
the state explosion problem. Every global state of a concurrent system must
be represented individually, even when interleaving of independent actions may
give rise to an exponential number of states. Similarly, a memory has as many
states as the number of values that can be stored at each location raised to the
power of the number of locations. The number of states alone is not always a
good indication of complexity, but it often has a strong correlation.

Harel advocated the use of three major mechanisms that reduce the size
(and hence the visual complexity) of finite automata for modeling practical sys-
tems [31]. The first one is hierarchy, in which a state can represent an enclosed
state machine. That is, being in a particular state ¢ has the interpretation that
the state machine enclosed by a is active. Equivalently, being in state ¢ means
that the machine is in one of the states enclosed by a. Under the latter inter-
pretation, the states of a are called “or states.” Or states can exponentially
reduce the complexity (the number of states) required to represent a system.
They compactly describe the notion of preemption (a high-priority event sus-
pending or “killing” a lower priority task), that is fundamental in embedded
control applications.

31

The second mechanism is concurrency. Two or more state machines are
viewed as being simultaneously active. Since the system is in one state of each
parallel state machine simultaneously, these are sometimes called “and states.”
They also provide a potential exponential reduction in the size of the system
representation.

The third mechanism is non-determinism. While often non-determinism is
simply the result of an imprecise (maybe erroneous) specification, it can be an
extremely powerful mechanism to reduce the complexity of a system model by
abstraction. This abstraction can either be due to the fact that the exact func-
tionality must still be defined, or that it is irrelevant to the properties currently
considered of interest. E.g., during verification of a given system component,
other components can be modeled as non-deterministic entities to compactly
constrain the overall behavior. A system component can also be described
non-deterministically to permit some optimization during the implementation
phase. Non-determinism can also provide an exponential reduction in com-
plexity. Note that non-determinism can be divided into and-non-determinism
and or-non-determinism. In the first, the resolution of the non-determinism
executes all possibilities, while in the second, resolution chooses just one. And-
non-determinism is equivalent to hierarchy.

These three mechanisms have been shown in [26] to cooperate synergistically
and orthogonally, to provide a potential triple exponential reduction in the size
of the representation with respect to a single, flat deterministic FSM®.

Harel’s Statecharts model uses a synchronous concurrency model (also called
synchronous composition). The set of tags is a totally ordered countable set that
denotes a global “clock” for the system. The events on signals are either pro-
duced by state transitions or inputs. Events at a tick of the clock can trigger
state transitions in other parallel state machines at the same clock. Unfortu-
nately, Harel left open some questions about the semantics of causality loops
and chains of instantaneous (same tick) events, triggering a flurry of activity in
the community that has resulted in at least twenty variants of Statecharts [65].

A model that is closely related to FSMs is Finite Automata. FAs emphasize
the acceptance or rejection of a sequence of inputs rather than the sequence
of output symbols produced in response to a sequence of input symbols. Most
notions, such as composition and so on, can be naturally extended from one
model to the other. FAs without accepting conditions are also called Labeled
Transition Systems in the literature.

8The exact claim in [26] was that and-non-determinism (in which all non-deterministic
choices must be successful), rather than hierarchical states, was the third source of exponential
reduction together with “or” type non-determinism and concurrency. Hierarchical states, on
the other hand, were shown in that paper to be able to simulate “and” non-determinism with
only a polynomial increase in size.

32

3.6 Process algebrae

Synchronous FSMs, as described above, have a clear and deterministic composi-
tion mechanism that makes them relatively easy to understand, synthesize and
verify. Of course, there is also a significant drawback: deciding when composi-
tion is well-defined (loosely speaking, there are no combinational loops) has a
high computational complexity.

Moreover, for many applications, the tight coordination implied by the syn-
chronous model is inappropriate. In particular, it is very difficult to keep a
tight synchronization between heterogeneous components of an embedded sys-
tem, since the pace of a synchronous system is dictated by its slowest component.
In response to this, a number of more loosely coupled asynchronous FSM models
have evolved, including CSP [33], CCS [46], behavioral FSMs [61], SDL process
networks [61], and codesign FSMs [21].

In this section we focus on process algebraic models that constitute the
semantical foundation of the Occam and Lotos [64] languages®: Communicat-
ing Sequential Processes [33] and the related Calculus of Communicating Sys-
tems [46]. In the following we discuss only the control aspect of CSP and CCS,
and ignore the fact that their processes can also manipulate data via assign-
ments, tests and so on. We also do not consider recursion, that can be defined
in the process algebra but has limited interest (except for tail recursion, that
defines looping) in the context of embedded systems.

The behavior of each process is modeled by a Labeled Transition System
(only finite LTSs are of interest in embedded system design, for obvious rea-
sons). Arcs in the transition system are labeled with signal names, and the
state transition activity imposes a total order on the signals of each process.
Communication is based on rendezvous. That is, two LTSs may share a signal,
thus imposing that all the events of that signal must occur in both processes
(“at the same time”, if we interpret tags as time). Finally, process algebrae gen-
erally imply a completely interleaved view of concurrent actions, meaning that
no two events may have the same tag. Concurrent (i.e., independent) events
occur in all possible interleaving in the LTS.

No two events may have have the same tag, and hence process algebrae are
an inherently asynchronous model. Note that a single LTS is an nterleaved
asynchronous model, while multiple LTSs communicating via rendezvous (and,
equivalently, Petri nets in which at most one token can reside in each place
in each reachable marking) are a partially ordered asynchronous model. As
mentioned above, the rich theory of regions [48, 23] can be used to freely move
between the two classes of models.

The result of process composition using this communication mechanism is
another LTS, thus resulting in a hierarchical compositional model'?. Composi-

9Ada also uses rendezvous, although the implementation is stylistically quite different,
using remote procedure calls rather than more elementary communication primitives.
10Compositionality means that two or more communicating processes can be viewed as a

33

-
e‘é

Yo
e{}@
26
O-‘@
26

(© (d)

Figure 6: Example of Labeled Transition Systems and rendezvous communica-
tion

tionality is very important for proving properties of the system in a hierarchical
fashion. This property is also true of communicating synchronous Finite State
Machines, but not of dataflow networks (i.e., a dataflow network is different
from an actor).

Let us consider a simple case of an interface with error detection. The LTSs
specifying the protocols followed by the two partners are shown in Figure 6.(a-

b).

1. The sender has two states, first sending a request on signal R, then waiting
for either an acknowledgment of correct reception on signal A, or an error
indication on signal E.

2. The receiver has a similar behavior, but in case of error, it requires one
internal action (labeled 7) to resynchronize, and hence it has a third state.

The composed LTS using the rendezvous mechanism is shown in Figure 6.(c).
Note how the state space of the composition is the product of the two state
spaces, and the two L'TSs synchronize on common edge labels.

For the sake of comparison, Figure 6.(d) shows the synchronous composition
of the same two L'TSs. Note how in case of error, the receiver waits for one clock
tick, and hence becomes de-synchronized with the transmitter, thus leading to
a deadlock!!.

Rendezvous-based models of computation are sometimes called synchronous
in the literature. However, by the definition we have given, they are not syn-

single process, that can in turn be used as a unit and composed with others.

110f course, the fact that synchronous composition deadlocks while asynchronous composi-
tion does not is just a coincidence. It is easy to construct an example where the converse can
happen.

34

chronous. Events are partially ordered, not totally ordered, with rendezvous
points imposing the partial ordering constraints.

3.7 SDL process networks

SDL [61] is a language for specification, simulation and design of telecommu-
nication protocols. Its underlying semantical model'? is based on a process
network. Each process is an FSM, and communication is via one unbounded
FIFO queue per process. If we ignore the ability of a process to manipulate its
input queue, the MOC is roughly equivalent to DE, with the restriction that
the FSM can only read one event at a time.

SDL networks have a basic implementability problem, since both the size of
the queues and the topology of the network can change at run time. (Processes
can be created on the fly, and signals can be routed dynamically based on
process identifiers.) Hence they either require a software implementation based
on a Real-Time Operating System with dynamic memory allocation and task
instantiation, or require the designer to pre-size queues and pre-instantiate all
processes.

3.8 Timed Automata

Synchronous and asynchronous Finite State Machines cannot reason easily about
time, since in the best case (the synchronous one) time must be represented by
counting clock ticks. This may cause a state explosion, and has been proven to
be an inadequate abstraction of reality unless special care is taken [19].

For this reason, Alur and Dill [2] have proposed explicitly introducing time
as a continuous quantity in the Timed Automata MOC. A Timed Automaton
(TA) is a special case of hybrid systems, which are described in the next section.
It is sufficiently restricted, so that most properties become decidable. A TA 1s
a Finite Automaton (FA) plus a set of clocks. The state of the TA is the state
of the FA together with a real valuation of the clocks. A transition of the TA
is labeled with a symbol (from the FA alphabet) and a Boolean formula over
atomic propositions comparing clocks with integers. The transition can also
reset some clocks to zero.

While the state space of a TA is clearly infinite, a key result by Alur and
Dill shows that 1t admits a finite state representation, by means of a partition
into equivalence classes. Basically, [2] showed that the exact value of a clock
does not matter after it grows beyond the largest constant with which it can
be compared in any transition label. This imposes an equivalence relation on
those portions of the state space that grow towards infinity. Moreover, since
comparisons involve only integers, one can also partition the remaining part of

12 As usual, we focus on the control and communication aspects over the data computations,
which are commonly specified with an imperative host language, in addition to a more formal
and less practical treatment based on Abstract Data Types.

35

the space into a finite set of equivalence classes (called regions), that admit a
normal form representation (computed via an all-pair shortest path algorithm).

This 1s a very significant contribution, however it has shown only limited
practical applicability so far because the state explosion problem is even more
severe than in the communicating FSM case. Good generally applicable ab-
straction techniques are only beginning to be developed for TAs.

3.9 Hybrid systems

A hybrid system is a Finite Automaton in which each state is associated with
a set of differential equations, and transitions occur when inequalities over the
continuous variables of the differential equations are satisfied. Hybrid systems
are a powerful mechanism for modeling non-linear dynamic systems, and thus
are becoming an essential tool in control theory. However, they are clearly
Turing-equivalent, and hence too powerful, in almost all of their incarnations,
with the notable exceptions of Timed Automata described above. It is likely
that they will play an ever increasing role in embedded system design due to
the growing need to raise the level of abstraction, but it is difficult to give them
a complete and fair treatment in this brief overview, and we refer the interested
reader to [32].

In the TSM, there are two possible views of hybrid systems (and hence of
TAs).

1. A hybrid system (FA plus differential equations) can be modeled as a
single TSM process. This provides an easy mechanism for composing
hybrid systems. Signal tags in this case are order-isomorphic with the
real numbers; but tags in which a transition of the automaton can occur
can be only discrete.

2. A hybrid system can be modeled as a set of TSM processes. In this case
we have two components for each hybrid system:

e one process, whose signal tags can only be discrete, represents the
automaton, and multipleres the hybrid system outputs between

e a set of processes, each behaving as a set of differential equations.

4 Codesign Finite State Machines

Codesign Finite State Machines (CFSMs) are the underlying MOC of the PO-
LIS embedded system design environment [21, 6]. We describe them at length
because, as we will argue later, they combine interesting aspects from several
other MOCs, while preserving both formality and efficiency in implementation.
As we pointed out above, one of the most important properties of an MOC is
synchronicity or asynchronicity. We wish to summarize our views on this topic
to motivate the introduction of yet another MOC.

36

4.1 Synchrony and asynchrony

Synchrony and asynchrony represent two fundamentally different views of time.
That is, synchrony uses the notions of zero and infinite time, while asynchrony
uses non-zero finite (and typically bounded) time. Both synchrony and asyn-
chrony have appeared a number of times in our previous descriptions of various
models of computation. In this section, we sumimnarize our previous presenta-
tions of synchrony and asynchrony, and consider the differences in the behaviors
produced under each model.
As usual, we consider a system of processes interacting through events.

4.1.1 Synchrony

Basic operation: At each clock tick (i.e., tag of its signals), each module
reads inputs, computes, and produces outputs simultaneously. That is, all the
synchronous events (both inputs and outputs) happen simultaneously, implying
zero-delay calculations. In between clock ticks, an “infinite” time passes. Of
course, no calculations happen in zero time in practice, nor does one wait an
infinite amount of time between ticks (it is normally finite but unspecified).
In practice, the computation times are much smaller than the clock rate, and
thus can be considered to be zero with respect to the reaction times of the
environment. The very desirable feature of designs implemented as synchronous
systems with no cyclic dependencies among values of events with the same tags,
is that the behavior of the implementation is not dependent upon the timing of
the signals, thus simplifying tremendously the verification task.

Triggering and Ordering: All modules are triggered to compute at every
clock tick. At a tick, there is no ordering of reading of inputs, computations, or
writing of outputs. However, an ordering can be imposed in addition with the
concept of delta steps (delays). A delta step (delay), as previously mentioned,
is the (zero) time that passes between events at the same clock tick and which
serves simply to order the events.

System solution: The system solution is the output reaction to a set of
inputs. A well-designed synchronous system will have a unique solution (as-
signment to all signals) at each clock tick, though the corresponding models of
computation, as well as many synchronous languages or specification methods,
allow the designer to specify systems that do not have this property (see, e.g,
[65]). We recall that the presence of cyclic dependencies among values of events
with the same tag are responsible for this difficulty. It is the domain of the
language and its semantical interpretation to verify whether a unique solution
exists. Synchronous systems that have a unique solution, have a “single” finite
state machine equivalent even though they consist of several interconnected
components, and thus can be analyzed and verified with efficient techniques.

37

Implementation cost: Adherence to the synchronous assumption, that is, a
process computes in negligible time compared to its environment, is a property
that must be verified or enforced on the final design, and which may be expensive
to implement. The assumption is checked on the final implementation. For
hardware, one must ensure that the clock period is higher than the maximum
possible computation time for a synchronous block; this may imply a clock rate
that is much slower than might otherwise be achieved. For software, one must
ensure that an invoked process is allowed to complete before another process or
the operating system changes its inputs.

4.1.2 Asynchrony

Basic operation: Asynchronous events always have a non-zero amount of
time between them: it 1s impossible to specify that two events happen simul-
taneously in a truly asynchronous system (as in real life ...). An individual
process can run whenever it has a change on its inputs, and it may take an
arbitrary time (that is typically bounded) to complete its computation.

Triggering and Ordering: A module is only triggered to run (and always
triggered to run) when it has inputs that have changed. However, among the
triggered modules, there 1s no a priori ordering of processes. One may later
be imposed by a scheduling algorithm, but this is part of the implementation
choice.

System solution: There is strong dependency of the solution from input
signals and their timing. Thus, asynchronous systems are much more difficult
to analyze. In addition, in a practical implementation or a model thereof, some
events may appear to happen simultaneously. In practice it may be difficult and
expensive to maintain the total ordering. If the actual order of these seemingly
simultaneous events i1s not preserved, any order may be used possibly resulting
in multiple behaviors. This is no longer an asynchronous model but a discrete-
event model that has no guarantee of uniqueness of the solution because of
the possible cyclic dependency of values of events with the same tags. It is
this practical aspect that has misled many when assessing the properties of
asynchronous systems, loading asynchronous systems with problems that are
typical of discrete-event systems.

Implementation cost: Asynchronous implementations are usually chosen
when the cost, particularly in terms of computation time, is too high for a
synchronous solution. The flexibility provided by an asynchronous implementa-
tion implies that different parts of the same system (or the same system under
different inputs) can operate at quite different rates, only communicating at
particular check-points in the computation. For system design, it is usually

38

imperative to have an asynchronous model at the highest level of communica-
tion. On the other hand, analysis of the behavior of designs implemented as
asynchronous systems has to take into consideration the timing of the signals
and, hence, is much more complex than the analysis of synchronous systems.
This 1s the reason why much research on asynchronous system has been devoted
to implementations that are more or less insensitive to “internal” delays, thus
retaining the most desirable property of synchronous systems without paying
the full penalty implied in a synchronous implementation.

4.1.3 Combining Synchrony and Asynchrony

An ideal MOC for system design should combine the advantages of verifiability
in synchrony and flexibility in asynchrony in a globally asynchronous, locally
synchronous (GALS) model. Tt is important to be explicit about where the
boundary is between synchrony and asynchrony, because the behavior of the
two, clearly, is very different. The differences can be illustrated simply in terms
of event buffering and timing of event reading/writing.

In an asynchronous implementation, there is typically a need for an explicit
buffering mechanism for the events, since it is not known when a module will
run and hence read its inputs, and since different modules will run at different
times and use the same input at different times. For synchrony, inputs are
all read once at the beginning of a computation, so one global copy of each
event value suffices and this one copy is cleared at the end of each tick. Thus,
a synchronous communication transmits all events simultaneously and in zero
time with no buffering; every module is guaranteed to see the same set of events
at each clock tick. An asynchronous communication transmits events when
ready and through buffers; each module sees its own stream of inputs which
depends on the global scheduling.

Many programs will behave the same for an asynchronous or synchronous
implementation, and such systems are typically more tolerant to implementation
fluctuations. One can program in a style that is more robust with respect to
these differences, by, for example

e Never assuming or waiting for simultaneous (synchronous) events. Since
simultaneity is nearly impossible to guarantee, it is more robust to wait
for the occurrence of two events rather than the simultaneous occurrence
of them.

e Never programming with a global timing, e.g. a global clock tick, in mind.
Synchronous languages have mechanisms for allowing a clock tick to pass,
and thus for counting clock ticks and waiting for a certain amount of
this artificial time to pass. Asynchronous systems of course do not have
such a specific notion of time, so the same style of programming with an
asynchronous model interpretation (in which a clock tick usually forces an
ordering rather than referring to a time) will produce different behavior.

39

One may certainly use these programming techniques within a synchronous
portion of the design. At the system level, however, a time-intolerant style of
programming and thinking about the behavior of a design should be employed.

Our CFSM model reflects these views and was strongly motivated by the
need of combining synchronous and asynchronous behavior where 1t made most
sense.

4.2 CFSM Overview

Each CFSM is an extended FSM, where the extensions add support for data
handling and asynchronous communication. In particular, a CFSM has

e a finite state machine part that contains a set of inputs, outputs, and
states, a transition relation, and an output relation.

e a data computation partin the form of references in the transition relation
to external, instantaneous (combinational) functions.

e a locally synchronous behavior: each CFSM executes a transition by pro-
ducing a single output reaction based on a single, snap-shot input assign-
ment in zero time. This is synchronous from its own perspective.

e a globally asynchronous behavior: each CFSM reads inputs, executes a
transition, and produces outputs in an unbounded but finite amount of
time as seen by the rest of the system. This is asynchronous interaction
from the system perspective.

This semantics, along with a scheduling mechanism to coordinate the CFSMs;,
provides a GALS communication model: Globally (at the system level) Asyn-
chronous and Locally (at the CFSM level) Synchronous.

4.3 Communication Primitives
4.3.1 Signals

CFSMs, as TSM processes, communicate through signals, which carry infor-
mation in the form of events. They may function as inputs, outputs, or state
signals.

A signal is communicated between two CFSMs via a connection (single-
input, single-output communication process) that has an associated input buffer
(or 1-place buffer), which contains one memory element for the event (event
buffer) and one for the data (data buffer).

The event is emitted (produced) by a sender CFSM setting the event buffer
to 1. It may be detected and consumed by a receiver CFSM. It is detected by
reading the event buffer; it is consumed by setting the buffer to 0.

40

A signal 1s therefore present if it has been emitted and not yet consumed.
In the tagged signal model, this means that the input signal of the connection
has had an event with a tag larger than the largest tag of the output signal.

The data may be written by a sender and read by a receiver. Reading and
writing is done on the data buffer on the connection between the sender and
the receiver.

A control signal carries only event information, i.e.; it may only be emitted
and detected/consumed and its value is irrelevant. A data signal carries only
data information, i.e., it may only be read and written.

An input signal can only be detected/consumed and read (depending on its
status as a signal, control signal, or data signal). A (possibly incomplete) set
of values for the input signals of a CFSM is termed nput assignment, a set
of input values read by a CFSM at a particular time is termed captured input
assignment, and an input assignment with at least one present event is termed
mput stimulus.

An output signal can only be emitted and written. A (possibly incomplete)
set of values for the outputs of a CFSM is termed output reaction.

A state signal is an internal input/output data signal; it may be written and
subsequently read by its CFSM. A state is a set of values for the state signals.
A set of states may be given by a subset of state values. States are implicitly
represented by the state signals and hence may be encoded or symbolic. The
state signals could be considered part of the input and output signal sets, and it
is only for the exposition that they are separated: discussion of scheduling and
runnable CFSMs is facilitated by identifying an input assignment that triggers
the CFSM separately from its state.

Where the type 1s unimportant, we may refer to any of the basic signal types
(signal, control signal, data signal, input signal, output signal, state signal)
simply as signal.

As will be seen in the behavior sections to follow, CFSMs nitiate commu-
nication through events. The input events of a CFSM determine when it may
react. That is, the model forbids a CFSM to react unless it has at least one
input event present (except for the initial reaction, described in the functional
behavior section). Without this restriction, a global clock would be required
to execute the CFSMs at regular intervals, and this clock would in fact be a
triggering input for all CFSMs. This would clearly imply a more costly imple-
mentation. A CFSM can trigger itself by emitting an output and detecting that
same signal in the next execution. A CFSM with at least one present input
event is termed runnable.

For CFSM A to send a signal S to B, A writes the data of S and then
emits its event. This order ensures that the data is ready when the event is
communicated. B is scheduled, sees the event (which is its stimulus), reads the
corresponding data, and reacts. Pure data signals will only be read and written
by a CFSM that has already been triggered by the presence of another input
event.

41

4.3.2 CFSM Networks

A netis aset of connections on the same output signal, i.e., it is associated with
a single sender and at least one receiver (in the TSM, it is a set of connection
processes with the same input). There is an input buffer (TSM connection) for
each receiver on a net, hence the communication mechanism is multi-cast: a
sender communicates a signal to several receivers with a single emission, and
each receiver has a private copy of the communicated signal. Each CFSM can
thus independently detect/consume and read its inputs.

A network is a set of CFSMs and nets. The behavior of the network (and
even of a single CFSM) depends on both the individual behavior, and that
of the global system. In the mathematical model, the system is composed of
CFSMs and a scheduling mechanism coordinating them. It can be implemented
as:

e a set of CFSMs in software (e.g., C), a compiler, an operating system,
and a microprocessor (the software domain),

e aset of CFSMs in hardware (e.g., gates mapped to an FPGA), a hardware
initialization scheme, and a clocking scheme (the hardware domain), and

o the interface between them (e.g., a polling or interrupt scheme to pass
events from hardware CFSMs to software ones via the RTOS, a memory-
mapped scheme to pass events from software to hardware).

Thus the scheduling mechanism in the model may take several forms in the
implementation: a simple RTOS scheduler for software on a single processor
and concurrent execution for hardware, or a set of RTOSs on a heterogeneous
multi-processor for software and a set of scheduling FSMs for hardware.

The CFSM model does not require any coordination between these sched-
ulers in order to guarantee correct behavior, apart from an implementation of
the event delivery mechanism (the interface). Explicit or implicit coordination is
required only in order to satisfy timing constraints, which in turn may guarantee
an ordering of events and/or a particular functional behavior.

4.4 Timing Behavior

In the CFSM model, a global “scheduler” controls the interaction of the CFSMs,
and invokes each appropriately during execution of the design. The system out-
put will depend on the functional and timing behavior of the individual CFSMs,
and the functional and timing behavior of their ensemble.

The scheduler operates by continually deciding which CFSMs can be run,
and calling them to be executed. Fach CFSM is either idle (waiting for in-
put events or waiting to be run by the scheduler), or ezecuting (generating a
single reaction). During an ezecution, a CFSM reads its inputs, performs a
computation, and possibly changes state and writes its outputs.

42

The mathematical model places few restrictions on the timing of an execu-
tion. Each CFSM execution can be associated with a single transition point,
t;, in time. The model dictates that it is at this point that the CFSM begins
reacting: reading inputs, computing, changing state, and writing outputs. Since
the reaction time is unbounded, one cannot say exactly at which time a partic-
ular input (event or data) is read, at which time that input had previously been
written, or at which time a particular output is written. There are, however,
some restrictions. For each execution, each input signal is read at most once,
each input event is cleared at every execution, and there is a partial order on the
reading and writing of signals. Since the data value of a signal (with an event
and data part) only has meaning when that signal is present, the model dictates
that the event is read before the data. Similarly for the outputs, the data is
written before the event, so that it is valid at the time the event is emitted.

This means that for transition point t;,

e an input may be read at any time between #; and ¢;4; (but not later,
because that would correspond to transition point ¢;41),

e the event that is read may have occurred at any time between ¢;_; and
ti+1a

e the data that is read may have been written at any time between ty and
tit1, and

e the outputs are written at some time between ¢; and ¢;41.

After reading an input, its value may be changed by the sender before ¢;41, but
the receiver reacts to the captured input and the new value is not read until the
next reaction.

This flexibility in timing can have non-intuitive behavior.

Example: Event/data separation. Suppose a sender S writes data value
vl at ¢; for signal X and emits it at ¢5. Let this emission be el, so the pair is
(el, v1). This is illustrated in Figure 7. A receiver R at t; sometime later reads
the event, but takes longer than expected to read its corresponding value v1. S
communicates X again: value v2 then emission of X, for pair (e2, v2). R now
reads the value for X, and reads v2. The captured input for the R is thus the
pair (el, v2), which was not the pair intended by S. Furthermore, data v1 has
been lost forever, even though it was sent with an event to signal its presence.

Problems such as this can easily be resolved by requiring the appropriate
level of atomicity in the model and in the implementation, i.e., by restricting
some parts of the communication to take place simultaneously and instanta-
neously — as a single entity. In the CFSM model, the requirement is simply
that the input events are read atomically. At each ¢;, a CFSM reads its in-
put events without interruption, and without those events being overwritten
by the sending CFSMs. This is easily implemented in software by reading a
bit-vector of input events in one instruction, and in hardware by clocking all

43

emit (X) emit (X)

X:=vl (el:i=1) X:=v2 (e2:=1)
| | | |
Sender S ‘ ! ‘ ‘ time
¥ ' * ¥
| | | |
| | | |
Receiver R ! ' Read events ! ! Read|value X
| | - | | - =
| | | |
| | | |
ti_q ty ts t; t3 ty tigy

Receiver R captures (€1, v2)

Figure 7: Event/data separation.

CFSMs together, with a separate read phase and a compute/write phase (per
clock cycle).

Atomicity of input event reading implies an implementation that retains
much of the flexibility required for efficiency, while mitigating the worst of the
synchronicity problems. It should be clear that allowing input event and data
reading and output event and data writing to happen at completely arbitrary
times leads to behavior with very difficult to predict and prescribe results. Given
the event-based communication of CFSMs, atomicity of input event reading is a
natural means of ensuring some predictability: a receiver CFSM is guaranteed
to see a snapshot of input events that are simultaneously present at some point
in real time. Additional constraints, if necessary, can be imposed to ensure that
the values subsequently read are meaningful. These constraints will vary con-
siderably depending on the implementation chosen and the design constraints.

Example: no atomicity of data reading. Consider a sender S and two
receivers R1 and R2, as illustrated in figure 8. S is sending the value of signals
X and Y. Both X and Y are currently 4 and are changing to 5. Rl reads X
at t; and Y at ¢5. R2 reads X at f3 and Y at ¢4. S changes X at ¢ and Y
at t5. R1 therefore captures X = 4 and Y = 5 while R2 captures X = 5
and Y = 4. Not only do they capture different input assignments, but R1
captures a set of values that never occurs simultaneously. Note that if X and
Y were (control/data) signals, they would be sent with events as well, and they
would both be changed to 5 before the events were emitted and hence before
the receivers can read them. However, those new values can be overwritten by
the sender if the receiver doesn’t read fast enough, leading to the separation of
the event/data pair as illustrated in the previous example.

Example: atomicity of event reading. Now consider a system with a

44

Vi X:=5 Y:=5

I I I I I I I

Sender S I I I I I I I

" 1 * 1 1 " 1

I I I I I I I

I | I I I I |

Receiver R1 Read X I I I I Read Y

1 * 1 1 1 1 #—= time

I I I I I I I

I I I | | I I

Receiver R2 ! | | Read X ReadY | |

1 1 1 " * 1 1

I I I I I I I

ty ts t3 ty ts tg

Receiver R1: X =4,Y =5
Receiver R2: X =5,Y =4

Figure 8: No atomicity of data value reading.

sender S and three receivers R1, R2, and R3 as illustrated in Figure 9. S emits
control signals X and Y at times ¢ and ¢4. R1 reads at ¢; and sees both absent.
R2 reads at ¢3 and sees only X present. R3 reads at ¢5 and sees both X and Y
present. Though each has a different captured input assignment, each sees an
input assignment that occurs at some point in real time.

4.5 Functional Behavior

The functional behavior of a CFSM at each execution is determined by the
specified transition relation (TR). This relation is a set of tuples (input_set,
previous state, output_set, next_state) where input_set is an input as-
signment, previous_state is a state, output_set is an output assignment, and
next_state the next state. Fach tuple of the TR represents a specified tran-
sitton of the machine, and the set of tuples is the specified behavior of the
machine. A transition in which the input_set includes an input stimulus is

termed a valid transition.
At each execution, a CFSM

1. Reads an input assignment.

2. Looks for a transition Transition = (input_set, previous_state, out-
put_set next_state) such that the read input includes input_set and the
present state of the CFSM matches present _state (hence the absence of
an input from input_set means “don’t care about that input”).

45

Sender S : : : : :

| - | - |

[| | |

: | | | |

| | | | |
Recaiver REEIX | i i

-\ | | | |

I I I I I i

ime

Receiver R2 : : Read X : :

| | | |

| | \- | |

| | | | |
Receiver R3 : : : : Read X

1 L | | - =

| | | | |

| | | | |

tl tz t3 t4 t5

Receiver R1: X, Y absent
Receiver R2: X present, Y absent
Receiver R3: X, Y present

Figure 9: Atomicity of event reading.

3. If Transition is found, it is executed by

(a) consuming the inputs (setting input event buffers to 0)
(b) making the state transition to next_state

(¢) writing the new output events in output_set (hence absence from
output_set means “don’t emit/don’t modify”).

4. If Transition is not found, the CFSM consumes no inputs, makes no
state change, and writes no outputs.

The last case, in which no matching transition is found, is known as the
empty execution. If this can happen for some input stimulus, the transition re-
lation is incomplete; otherwise it is complete. For software, this is precisely the
same behavior that would be produced if this CFSM had not been scheduled
by the RTOS. If several transitions match, the CFSM is non-deterministic and
the execution can perform any of the matching transitions. For the implementa-
tion, all CFSMs must be deterministic in order to simulate and synthesize the
behavior. Non-determinism can be used at the initial stages of a design in order
to model partial specifications, later to be refined into deterministic CFSMs.

A trivial transition 1s one in which no output events are emitted, no output
values are changed, and no state change is effected, but inputs are consumed. Tt

46

effectively discards the current input assignment and waits for a new one. Trivial
transitions are specified in the TR like any other transition, with output_set
empty (or leaving state variables unchanged).

Fach state variable may have a designated set of reset walues (or initial
values) that are specified with the transition relation. A set of reset values, one
for each state variable, is a reset state (or initial state). If there are several
reset values for a state variable, there are several reset states. This represents
a non-deterministic starting condition which must be resolved before synthesis
or simulation can be performed.

The initial transition(s) is a special transition(s) where the present state
part is equal to the reset state. Moreover, this transition is allowed to not have
any input events present in the input assignment. (Recall that for all other
transitions, at least one input event is required to trigger the CFSM.) The
initial transition(s) may be specified for a CFSM, but is not required. There
may be several possible initial transitions depending on the initial state(s) and
the values of the corresponding input assignments. If there is non-determinism,
again, 1t must be resolved before synthesis and simulation.

4.6 CFSMs and process networks

We can now classify CFSMs along the same lines that were used for the other
formal models.

CFSMs are an asynchronous Extended FSM model, that is different from
CSP and CCS because communication is not via rendezvous but via bounded
(1-deep) non-blocking buffers, and different from SDL since queues are bounded
and the process network topology is fixed.

Moreover, each CFSM can be modeled with an LTS in which each edge label
can involve presence and absence tests of several signals, while in CSP, CCS,
and SDL each label consists of a single symbol.

Signals are distinguished among inputs and outputs. Transitions, unlike
dataflow networks, can be conditioned to the absence of an event over a signal.
Hence CFSMs are not continuous in Kahn’s sense [35] (arrival of two events in
different orders may change the behavior).

The semantics of a CFSM network is defined based on a global explicit notion
of time (imposing a total ordering of events). Thus CFSMs can be formally
considered as synchronous with relazed timing. l.e., while a global consistent
state of the signals 1s required in order to perform a transition, no relationship
is required between the tags of input events involved in a given transition, nor
between those of its output events. There is only a partial order relationship
between input and output events of the transition (inputs must have tags smaller
than outputs).

Finite buffering without blocking write implies, as mentioned above, that
events can be overwritten, if the sending end is faster than the receiving end.

47

Figure 10: Example of CFSM network.

This sort of “deadline violation” in the CFSM context may or may not be a
problem, depending both on the application and on the type of event.
The designer can make sure that “critical” events are never lost:

e either by providing an explicit handshaking mechanism, built by means of
pairs or sets of signals, between the CFSMs,

e or by using scheduling techniques that ensure that no such loss can ever
occur [5].

4.7 Examples of CFSM behaviors

In this sections we provide a few examples of what it means to specify a “be-
havior” with a relaxed timing model such as CFSMs, and we discuss the notion
of behavior equivalence classes.

Consider a simple case of three CFSMs as shown in figure 10. These CFSMs
specify an “almost dataflow” behavior. CFSMs A and B take the same input
stream ¢, and perform two different kinds of (unimportant) processing on it, by
producing an output event for every input event. CFSM C takes an event from
each input 71 and ¢2 and produces

e either an event on its o output if there is no error (e.g., its inputs are
within a specified range)

e or an event on its err output, if some problem in the input stream or the
CFSM state is detected.

The err signal causes A and B to perform some recovery action (e.g., realign
their state variables).

The intuitive behavior specified by these three CFSMs is, in the designer’s
eyes, the same regardless of the scheduling in time of CFSM transitions, as long
as:

48

1. no events are lost (they are all “critical” in this case), and

2. (possibly) some latency constraint is satisfied (e.g., o may be needed earlier
than the next external input arrival).

This means that, given the choice of possible timed executions of these
CFSMs, they are partitioned into a set of equivalence classes. Let us con-
sider, for the sake of simplicity, only reaction times and no other scheduling
constraints (each CFSM is allocated its own hardware resource or processor).
Let us assume that every CFSM has the same reaction time of n, time units if
there are no errors, and of 2n, in case of errors (C when it emits err, A and B
when they detect err). Let us also assume that input events arrive at a regular
rate of n; time units, and that there are only “no-missed-event” constraints and
no other no latency constraints.

In this case, we can consider the following equivalence classes with respect
to the above mentioned intuitive behavior:

1. Zero-delay executions: n, = 0. These are logically inconsistent (non-
causal in the Esterel terminology [11]), since if C detects an error, A and
B should instantaneously react and produce different outputs (conceivably
without the error conditions). This is clearly absurd.

2. Executions in which the execution delay of A, B and C is larger than the
inter-arrival time of inputs: n; < n,. These executions clearly do not
satisfy the intuitive behavior requirements listed above.

3. Executions in which the delay of A, B and C is smaller than the inter-
arrival times of external inputs, but larger than half of that: n;/2 < n, <
n;. These executions handle correctly the normal flow of data, but “miss”
an input in the case of error. This happens because the execution time of
C is too long and causes it to miss the first input events after the error.
Also A and B are too slow and miss an input event when recovering.

4. Executions in which the delay of A; B and C is smaller than half of the
inter-arrival times of external inputs: n, < n;/2. In this case, no event is
lost.

If errors are infrequent enough, the designer may want to consider the two
last classes to be equally good, and accept the cheapest one. On the other
hand, if errors are frequent, or if every single input really matters (there is
zero redundancy in the input stream), only the last, conceivably most expensive
equivalence class is acceptable.

Note how the notion of equivalence classes can be applied to analyze also
executions in which a scheduler coordinates CFSMs by enforcing mutual ex-
clusion constraints (this is an appropriate model, e.g., for a single-processor
implementation). In that case event loss can occur due to

49

e Timing constraints. E.g., n; < 3n, would imply that an execution falls

into the second class above, and misses deadlines due to excessive processor
occupation.

“Incorrect” scheduling. E.g. if 3n, < n; < 4n, and the scheduler activates
the CFSMs in the fixed order ACBC. In that case, the first activation of
C is valid, since it has an input stimulus, but redundant, since it always
results in an empty execution (assumed with the same n, delay), and
causes the system to miss a deadline even during “normal operation”. On
the other hand, another valid schedule ABC will not miss deadlines in
normal operation.

Obviously this definition of “equivalence classes” between behaviors of a

CFSM network is very application-dependent, and as such difficult to formalize.
Here we can suggest only a few criteria that could be used for this purpose, such

as:

. Equality between streams of values produced at some output by two differ-

ent timed behaviors of the same network, given the same stream of values
on the inputs (“dataflow” equivalence).

. Compatibility with a given partial ordering between events (“Petri net”

equivalence).

. No missed critical events, possibly qualified as; e.g., “no missed events

except for the first n events after abnormal event z” (“quasi-dataflow”
equivalence).

. Equality of input-output sequences, possibly modulo reordering of “con-

current events”, with respect to a completely deterministic reference spec-
ification (“golden model” equivalence).

. Equality of input-output sequences modulo filtering by some testbed enti-

ties that model the external, physical system constraints (“filtered” equiv-
alence).

While we are still far from a formalization of these criteria, we believe that

the richness of the CFSM model stems, among other factors, from the ability
to exploit all these sorts of equivalence while, for example, dataflow networks
can exploit only one (dataflow equivalence). We will further elaborate on this
in the next section.

5

Conclusions

The relative advantages and disadvantages of the various MOCs have been de-
scribed in the previous sections. We are still far from having a single agreed-
upon standard MOC that is suitable for all types of embedded system designs.

50

Some authors ([17]) advocate heterogeneity at the MOC level as an essential
requirement of embedded systems. However, based on the discussions above,
we can identify a new MOC that is expressive enough to capture most practical
embedded systems, and formal to permit efficient verification and synthesis of
some special cases.

This model is that of CFSMs with initially unbounded FIFO buffers. Bounds
on buffers (essential for implementability) are imposed by refinement, exactly
as timing information is refined in the original CFSM model. The motivations
for this proposal are as follows.

1. Local synchrony: concentrating the control inside relatively large atomic
synchronous entities helps the designer to better understand the overall
coordination. Models such as Colored Petri Nets, which view control at a
finer level of granularity, are difficult to use for large realistic designs.

2. Global asynchrony: breaking synchronicity helps resolving composition
problems and mapping to a heterogeneous architecture. Synchronous
models, as argued previously, cannot handle multi-rate efficiently, espe-
cially when the rates of different signals are totally uncorrelated. This is
essentially due to the need to always consider all signals, including those
that are not present in most clock cycles.

3. Unbounded buffers: leaving buffers unbounded at the outset offers oppor-
tunities to perform static and gquasi-static scheduling whenever possible
([40, 18, 47]). As a result, some buffers become statically sized, as deter-
mined by the static schedule of reader and writer processes. The designer
sizes the remaining buffers to ensure implementability, and to use simu-
lation, formal verification or Real-time scheduling [4, 5] to validate the
design in presence of finite FIFO buffers.

The use of lossy buffers (i.e., with non-blocking write) is somewhat arguable,
because

e there are cases in which loss is essential (in general, any time there are
tight timing constraints, that make some of the signals irrelevant under
some conditions, e.g., an emergency), and

o there are cases in which loss is problematic (in general, any time one would
like to model dataflow computations or any other blocking communication
mechanism, such as, e.g., Remote Procedure Call).

Our choice is to keep buffers lossy in the formal model, and give the designer
tools to verify a priori if loss can occur, as well as to enforce no loss for some
buffers in the implementation. In general this can be enforced at an acceptable
cost only under some specific conditions, e.g., that the lossless buffer must be
local to a processor, or that the communicating processes must be statically
scheduled with respect to each other.

51

The resulting model combines interesting properties of the main MOCs seen
above, while still keeping a strong link to verifiability and implementability. In
particular:

e At the initial, untimed level it describes a partial ordering between sig-
nal tags, and hence captures a whole class of possible implementations
on a variety of architectural options. These options include software on
multiple processors, pipelined hardware, and so on.

o Tt keeps computation (in the FSM), communication (in the buffers) and
timing (in the architectural mapping) as separate as possible.

e After architectural mapping, it becomes essentially a Discrete Event model,
and thus lends itself to performance and power consumption analysis, in
order to evaluate architectural trade-offs.

o A subset, such that CFSMs have a deterministic behavior (i.e., behave as
SDF actors) can be statically scheduled as SDF [40]. A larger subset can
also be quasi-statically scheduled (thus performing static buffer sizing) by
means of a mapping to Petri Nets [47].

While the opportunities for system-level optimization offered by this choice
still need to be fully explored, we can already envision a design flow in which
the designer uses multiple languages, depending on the domain of application
and other requirements (e.g., tool availability, company policy or personal pref-
erence), that all have a semantics in terms of CFSMs. Then multiple schedul-
ing, allocation, partitioning, hardware and software synthesis algorithms can
be applied on the CFSM network, possibly depending on the identification of
special cases that admit an especially efficient implementation. Formal verifica-
tion and simulation can be used throughout the design process, thanks to the
refinement-based design applied to a formal model. Refinement occurs both at
the functional level, implementing CFSMs ([6]), and at the communication level,
implementing communication ([56]) and scheduling ([6, 47]). This scheme has
been adopted in the POLIS system and has been also followed by a commercial
product of the Alta Group of Cadence Design Systems, Inc.

Acknowledgments We thank Prof. Ed Lee for the work that led to the devel-
opment of the Tagged Signal Model that has been used throughout this paper,
and for his many contributions to the field of system design for many years.
Part of this paper has been adapted from an earlier version co-authored with
Prof. Lee and Dr. Stephen Edwards. We wish to thank the Polis team and
the Felix team of Cadence Design Systems, Inc., who shared the discoveries
and developments which lead to this work. In particular, we wish to thank
Dr. Jim Rowson for the key role he has played in putting together the design
methodology and the architecture in the Cadence work, and Dr. Felice Balarin

52

for introducing the notion of equivalence classes between CFSM behaviors. We
are indebted to our colleagues of the University of California at Berkeley, of
the Politecnico di Torino, of Cadence Berkeley and European Labs and of PA-
RADES for the many discussions and their contributions. This work has been
partially sponsored by grants of CNR, and Cadence Design Systems.

References

(1]
[2]

[10]

W. B. Ackerman. Data flow languages. Computer, 15(2), 1982.

R. Alur and D. Dill. Automata for Modeling Real-Time Systems. In Au-
tomata, Languages and Programmang: 17th Annual Colloguium, volume
443 of Lecture Notes in Computer Science, pages 322-335, 1990. Warwick
University, July 16-20.

Arvind and K. P. Gostelow. The U-Interpreter. Computer, 15(2), 1982.

F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-
Vincentelli. Formal verification of embedded systems based on CFSM net-
works. In Proceedings of the Design Automation Conference, 1996.

F. Balarin and A. Sangiovanni-Vincentelli. Schedule validation for embed-
ded reactive real-time systems. In Proceedings of the Design Automation

Conference, 1997.

F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B. Tabbara,
A. Jurecska, L. Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-
Vincentelli. Hardware-Software Co-design of Embedded Systems — The PO-
LIS approach. Kluwer Academic Publishers, 1997.

A. Balluchi, M. Di Benedetto, C. Pinello, C. Rossi, and A. Sangiovanni-
Vincentelli. Hybrid control for automotive engine management: The cut-off
case. In Furst International Workshop on Hybrid Systems: Computation
and Control. LNCS - Springer-Verlag, April 1997.

A. Benveniste and G. Berry. The synchronous approach to reactive and
real-time systems. Proceedings of the IEEE, 79(9):1270-1282, 1991.

A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the
SIGNAL language. IFEE Transactions on Automatic Control, 35(5):525—
546, May 1990.

G. Berry. A hardware implementation of pure Esterel. In Proceedings of
the International Workshop on Formal Methods in VLSI Design, January
1991.

53

[11] G. Berry. The foundations of esterel. In G. Plotkin, C. Stirling, and
M. Tofte, editors, Proof, Language and Interaction: Fssays in Honour of
Robin Milner. MIT Press, 1998.

[12] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from
Dataflow Graphs. Kluwer Academic Press, Norwood, Mass, 1996.

[13] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Static schedul-
ing of multi-rate and cyclo-static DSP applications. In Proc. 1994 Workshop
on VLSI Signal Processing. IEEE Press, 1994.

[14] F. Boussinot and R. De Simone. The ESTEREL language. Proceedings of
the IEEE, 79(9), 1991.

[15] R. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677-691, August 1986.

[16] J.A. Brzozowski and C-J. Seger. Advances in Asynchronous Circuit Theory
— Part I: Gate and Unbounded Inertial Delay Models. Bulletin of the
Furopean Association of Theoretical Computer Science, October 1990.

[17] J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt. Ptolemy: a framework
for simulating and prototyping heterogeneous systems. Interntional Journal
of Computer Simulation, special issue on Simulation Software Development,
January 1990.

[18] J. T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory
Using the Token Flow Model. PhD thesis, U.C. Berkeley, 1993. UCB/ERL
Memo M93/69.

[19] J. R. Burch. Awutomatic Symbolic Verification of Real-Time Concurrent
Systems. PhD thesis, Carnegie Mellon University, August 1992.

[20] N. Carriero and D. Gelernter. Linda in context. Comm. of the ACM,
32(4):444-458, April 1989.

[21] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli. Hardware/software codesign of embedded sys-

tems. IEEE Micro, 14(4):26-36, August 1994.

[22] F. Commoner and A. W. Holt. Marked directed graphs. Journal of Com-
puter and System Sciences, 5:511-523, 1971.

[23] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving
Petri nets from finite transition systems. IEEE Transactions on Computers,

47(8):859-882, August 1998.

[24] J. Desel and J. Esparza. Free choice Petri nets. Cambridge University
Press, New York, 1995.

54

[25] J. Desel, K.-P. Neuendorf, and M.-D. Radola. Proving non-reachability by
modulo-invariants. Theorectical Computer Science, 153(1-2):49-64, 1996.

[26] D. Drusinski and D. Harel. On the power of bounded concurrency. I. Finite
automata. Journal of the Association for Computing Machinery, 41(3):517-
539, May 1994.

[27] P. Godefroid. Using partial orders to improve automatic verification meth-
ods. In E.M Clarke and R.P. Kurshan, editors, Proceedings of the Computer
Aided Verification Workshop, 1990. DIMACS Series in Discrete Mathemat-
ica and Theoretical Computer Science, 1991, pages 321-340.

[28] N. Halbwachs. Synchronous Programming of Reaclive Systems. Kluwer
Academic Publishers, 1993.

[29] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305-1319, 1991.

[30] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Com-
put. Program., 8:231-274, 1987.

[31] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot. Statemate: A working environ-
ment for the development of complex reactive systems. IFEE Trans. on

Software Engineering, 16(4), April 1990.

[32] T.A. Henzinger. The theory of hybrid automata. Technical Report
UCB/ERL M96/28, University of California, Berkeley, 1996.

[33] C. A. R. Hoare. Communicating sequential processes. Communicalions of

the ACM, 21(8), 1978.

[34] R. Jagannathan. Parallel execution of GLU programs. In 2nd Interna-
tional Workshop on Dataflow Computing, Hamilton Island, Queensland,
Australia, May 1992.

[35] G. Kahn. The semantics of a simple language for parallel programming. In
Proc. of the IFIP Congress 74. North-Holland Publishing Co., 1974.

[36] D.J. Kaplan et al. Processing graph method specification version 1.0. The
Naval Research Laboratory, Washington D.C., December 1987.

[37] R. M. Karp and R. E. Miller. Properties of a model for parallel computa-
tions: Determinacy, termination, queueing. SIAM Journal, 14:1390-1411,
November 1966.

[38] R. P. Kurshan. Automata-Theoretlic Verificalion of Coordinating Processes.
Princeton University Press, 1994.

99

[39] R.Lauwereins, P. Wauters, M. Adé, and J. A. Peperstraete. Geometric par-
allelism and cyclostatic dataflow in GRAPE-IL. In Proc. 5th Int. Workshop
on Rapid System Prototyping, Grenoble, France, June 1994.

[40] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. IEEE Pro-
ceedings, September 1987.

[41] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the
IEFE, May 1995.

[42] E. A. Lee and A. Sangiovanni-Vincentelli. The tagged signal model - a
preliminary version of a denotational framework for comparing models of
computation. Technical report, Electronics Research Laboratory, Univer-

sity of California, Berkeley, CA 94720, May 1996.

[43] E.A. Lee and A. Sangiovanni-Vincentelli. Comparing models of computa-
tion. In Proceedings of the International Conference on Computer-Aided
Design, pages 234-241, 1996.

[44] F. Maraninchi. The Argos language: Graphical representation of automata
and description of reactive systems. In Proc. of the IEEE Workshop on
Visual Languages, Kobe, Japan, October 1991.

[45] K. McMillan. Symbolic model checking. Kluwer Academic, 1993.

[46] R. Milner. Communication and Concurrency. Prentice-Hall, Englewood

Cliffs, NJ, 1989.

[47] M.Sgroi, L.Lavagno, and A.Sangiovanni-Vincentelli. Quasi-static schedul-
ing of free-choice petri nets. Technical report, UC Berkeley.
http://www-cad.eecs.berkeley.edu/ sgroi/gss.ps, 1997.

[48] M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transition
systems. Theoretical Computer Science, 96:3-33, 1992.

[49] Institute of Electrical and Electronics Engineers. IEEE standard VHDL
language reference manual. IEEE, 1994.

[50] J. L. Peterson. Petri Nel Theory and the Modeling of Systems. Prentice-
Hall Inc., Englewood Cliffs, NJ, 1981.

[51] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn, Institut
fiir Instrumentelle Mathematik, 1962. (technical report Schriften des TTM
Nr. 3).

[62] J. Rasure and C. S. Williams. An integrated visual language and software
development environment. Journal of Visual Languages and Computing,

2:217-246, 1991.

56

[53]
[54]

W. Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985.

F. Rocheteau and N. Halbwachs. Implementing reactive programs on cir-
cuits: A hardware implementation of LUSTRE. In Real-Time, Theory in
Practice, REX Workshop Proceedings, volume 600 of LNCS, pages 195-208,
Mook, Netherlands, June 1992. Springer-Verlag.

T. G. Rokicki. Representing and Modeling Digital Circuits. PhD thesis,
Stanford University, 1993.

J. Rowson and A. Sangiovanni-Vincentelli. Interface-based design. In Pro-
ceedings of the Design Automation Conference, pages 178-183, 1997.

E.M. Sentovich, K.J. Singh, C. Moon, H. Savoj, R.K. Brayton, and
A. Sangiovanni-Vincentelli. Sequential Circuit Design Using Synthesis and
Optimization. In Proc of the ICCD, pages 328-333, October 1992.

T. R. Shiple, G. Berry, and H. Touati. Constructive analysis of cyclic
circuits. In Proceedings of the European Design and Test Conference, March

1996.

J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
grammaing Language Theory. The MIT Press, Cambridge, MA, 1977.

P. A. Suhler, J. Biswas, K. M. Korner, and J. C. Browne. Tdfl: A task-level
dataflow language. J. on Parallel and Distributed Systems, 9(2), June 1990.

W. Takach and A. Wolf. An automaton model for scheduling constraints
in synchronous machines. IEEE Tr. on Computers, 44(1):1-12, January
1995.

D.E. Thomas and P. Moorby. The Verilog Hardware Description Language.
Kluwer Academic Publishers, 1991.

A. Valmari. A stubborn attack on state explosion. Formal Methods in

System Design, 1(4):297-322, 1992.

P.H.J. van Eijk, C. A. Vissers, and M. Diaz, editors. The Formal description
technique Lotos. North-Holland, 1989.

M. von der Beeck. A comparison of statecharts variants. In Proc. of Formal
Techniques in Real Time and Fault Tolerant Systems, volume 863 of LNCYS,
pages 128-148. Springer-Verlag, 1994.

57

