
Models of Computation for Embedded SystemDesignLuciano LavagnoDepartment of ElectronicsPolitecnico di TorinoC. Duca degli Abruzzi 24, Torino, Italylavagno@polito.itAlberto Sangiovanni-VincentelliDepartment of EECSUniversity of CaliforniaBerkeley, CA 94709 USAalberto@eecs.berkeley.eduEllen SentovichCadence Berkeley Laboratories2001 Addison St.Berkeley, California USAellens@cadence.comSeptember 28, 1998AbstractIn the near future, most objects of common use will contain electronicsto augment their functionality, performance, and safety. Hence, time-to-market, safety, low-cost, and reliability will have to be addressed by anysystem design methodology. A fundamental aspect of system design is thespeci�cation process. We advocate using an unambiguous formalism torepresent design speci�cations and design choices. This facilitates tremen-dously e�ciency of speci�cation, formal veri�cation, and correct designre�nement, optimization, and implementation. This formalism is oftencalled model of computation. There are several models of computationthat have been used, but there is a lack of consensus among researchersand practitioners on the \right" models to use. To the best of our knowl-edge, there has also been little e�ort in trying to compare rigorously thesemodels of computation. In this paper, we review current models of com-putation and compare them within a framework that has been recently1



proposed. This analysis demonstrates both the need for heterogeneity tocapture the richness of the application domains, and the need for uni�ca-tion for optimization and veri�cation purposes. We describe in detail ourCFSM model of computation, illustrating its suitability for design of reac-tive embedded systems and we conclude with some general considerationsabout the use of models of computations in future design systems.1 Introduction1.1 Embedded System Design TodayAn embedded system is a complex object containing a signi�cant percentage ofelectronic devices (generally including at least one computer) that interacts withthe real world (physical environment, human users, etc.) through sensing andactuating devices. A system is heterogeneous, i.e., is characterized by the co-existence of a large number of components of disparate type and function. Forexample, it may contain programmable components such as micro-processorsand Digital Signal Processors, as well as analog components such as A/D andD/A converters, sensors, transmitters and receivers. In the past, the system de-sign e�ort has focused on these hardware parts, leaving the software design tobe done afterwards as an implementation step. However, today more than 70%of the development cost for complex systems such as automotive electronics andcommunication systems is attributable to software development. This percent-age is increasing constantly. The challenge posed to the semiconductor industryis to provide a new generation of programmable parts and of supporting toolsto help system designers develop software faster and correctly the �rst time.Today much attention is devoted to the hardware-software co-design issue,i.e., to the concurrent development of Application Speci�c Integrated Circuitsand standard hardware components, selection of programmable components,and development of the application software that will run on them. We believethat this approach in fact enters the design process too late to explore interestingdesign trade-o�s.1.2 Our Design Methodology GoalsThe computer-aided design process should begin at a very early stage. Webelieve that the real key to shortening design time and coping with complexityis to start the design process before the hardware-software partitioning. Forthis reason, we believe that the key problem is not so much hardware-softwareco-design, but the sequence consisting of specifying what the system is intendedto do with no bias towards implementation, of the initial functional design, itsanalysis to determine whether the functional design satis�es the speci�cation,the mapping of this design to a candidate architecture, and the subsequent2
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Back-Annotation Figure 1: Proposed design strategyperformance evaluation. It is then clear that the key aspect of system design isindeed function-architecture co-design.Our approach is a design methodology that is based on the use of formalmodels to describe the behavior of the system at a high level of abstraction, be-fore a decision on its decomposition into hardware and software components istaken. Our approach also facilitates the use of existing parts. As the complexityof embedded systems increases, it is unthinkable to design new systems fromscratch. Already hardware components are often standard parts that are ac-quired from silicon vendors, and software is often incrementally upgraded fromprevious versions of the same product. In the future, design re-use will be thekey to pro�tability and market timing. In addition, the decreasing feature sizeof silicon manufacturing processes will make it possible to incorporate multi-ple microprocessors, complex peripherals, and even sensors and actuators onthe same silicon substrate, which will force system developers and IC design-ers/manufacturers to deal with the problem of exchanging Intellectual Propertyin the form of designs instead of chips.1.3 Design StrategyThe overall design strategy that we envision is depicted in Figure 1. There are,of course, other ways to design systems in common use today. The top-downnature of the design methodology that our group has advocated throughout theyears may not be agreed upon by the system design community where a mixedtop-down, bottom-up approach is mostly used. In our methodology, however,we believe that this approach is captured by the presence of architectural andfunctional libraries that could be the result of a bottom-up assembly of basiccomponents. We strongly emphasize that no matter how the design is carriedout, a rigorous framework is necessary to reduce design iterations and to improvedesign quality. 3



1.3.1 Design Conception to Design DescriptionAt the functional level, a behavior for the system to be implemented is selectedand analyzed against a set of speci�cations. The de�nition of speci�cation andbehavior is often the subject of hot debate. For some, there is no di�erencebetween speci�cation and behavior. For some, speci�cation is the I/O relationof the system to realize together with a set of constraints to satisfy and ofgoals to achieve, and behavior is the algorithm that realizes the function to beimplemented. For others, speci�cation is the algorithm itself. From a puristpoint of view, an algorithm is indeed the result of an implementation decisionfrom a given set of speci�cations and we prefer to stick to this view in ourdesign methodology. For example, if we specify the function that a system hasto perform as \given a nonlinear function f over the set of reals, �nd x so thatf(x)=0", then it is a design decision to chose the Newton-Raphson algorithmor a Gauss-Seidel nonlinear relaxation algorithm. On the other hand, for anMPEG encoder, the speci�cation is the encoding of the compressed stream, andany implementation that creates it from a stream of images is \correct". In thissecond case, the �rst step of system design has already been decided upon andthe designer has no freedom to alter the conceptual design.1.3.2 Algorithm DesignAlgorithm development is a key aspect of system design at the functional level.We believe that little has been done in this domain to help the designer to selectan algorithm that satis�es the speci�cations. The techniques and environmentsfor this step are often application dependent. We have experience in automotiveengine control [7], where the algorithms have to have strong correctness proper-ties due to the life critical aspects inherent in this application. In addition, the\plant" to be controlled (the combination of the engine and the drive-line) isa hybrid system consisting of continuous components (drive-line) and discreteones (engine). To assess the properties of the algorithms, one must use con-trol theory and sophisticated simulation techniques involving mixed di�erentialequations-discrete event models. The understanding of the application domainsyields a design methodology that integrates the application-speci�c view withgeneral-purpose techniques that could be re-used in other domains of applica-tion. It is our strong belief that this step of system design carries the maximalleverage when combined with the design methodology proposed here.1.3.3 Algorithm AnalysisThe behavior of an algorithm is veri�ed by performing a set of analysis steps.Analysis is a more general concept than simulation. For example, analysis maymean the formal proof that the algorithm selected always converges, that thecomputation performed satis�es a set of speci�cations, or that the computa-tional complexity, measured in terms of number of operations, is bounded by4



a polynomial in the size of the input. In the view of design re-use, parts ofthe overall behavior may be taken from an existing library of algorithms. Sinceit is the formal model that provides the framework for algorithm analysis, itis very important to decide which mathematical model to support in a designenvironment.1.4 Algorithm ImplementationOnce the algorithm has been selected, there is an intermediate step before theselection of the architecture to support its implementation: its transformationinto a set of functional components that are computationally tractable. Thisset of functional components have to be formally de�ned to ensure that theproperties of the implementation of the algorithm can be assessed. To do so,the concept of models of computation is key. Most system designs use one ormore of the following models of computation: Finite State Machines, Data FlowNetworks, Discrete Event Systems, and Communicating Sequential Processes.A particular model of computation has mathematical properties that can bee�ciently exploited to answer questions about system behavior without carryingout expensive veri�cation tasks. An important issue here is how to compare andcompose di�erent models of computation.Once the model(s) of computation have been selected, then we can safelyproceed towards the implementation of the system by selecting the physicalcomponents (architecture) of the design.1.5 Our GoalsThe main goal of this paper is to review and compare the most important modelsof computations using a unifying theoretical framework introduced recently byLee and Sangiovanni-Vincentelli [43]. We also believe that it is possible tooptimize across model-of-computation boundaries to improve the performanceof and reduce errors in the design at an early stage in the process.There are many di�erent views on how to accomplish this. There are twoessential approaches: one is to develop encapsulation techniques for each pair ofmodels that allow di�erent models of computation to interact in a meaningfulway, i.e., data produced by one object are presented to the other in a consis-tent way so that the object \understands" [17]. The other is to develop anencompassing framework where all the models of importance \reside" so thattheir combination, re-partition and communication happens in the same genericframework. While we realize that today heterogeneous models of computationare a necessity, we believe that the second approach will be possible and willprovide the designer with a powerful mechanism to actually select the appropri-ate models of computation, (e.g., FSMs, Data-
ow, Discrete-Event, that thenbecome a lower level of abstraction with respect to the uni�ed model) for theessential parts of the design. 5



At this level is also important to orthogonalize concerns, that is to separatedi�erent aspects of the design. In this regard, a natural dividing line is theseparation between functionality and communication. That is, we view a de-sign as composed of functional behavior (modules) and communication behavior(between modules), which are themselves further decomposed as we re�ne andanalyze the design. It is our strong belief that communication is key in as-sembling systems on a chip from separate Hip's. Communication is a complexissue since the functionality of the components being interconnected must bepreserved.The separation between function and communication will be emphasizedthroughout the paper. In addition, a model of computation that encompassesthe key aspects of Discrete Event, Data-Flow and Finite State Machine modelswill be presented in detail. This model, called network of Co-design FiniteState Machines (CFSM), is the backbone of the POLIS system developed at theUniversity of California at Berkeley, an environment for function-architectureco-design with particular emphasis on control-dominated applications and onsoftware development. (See Figure 2 for a block diagram of the functionalitiesof the environment.) This model is also used as the basic semantic model for anindustrial product of Cadence Design Systems, an environment for embeddedsystem design including multi-media and telecommunication applications.The paper is organized as follows. In Section 2, we present the mathematicalmachinery used to compare and describe the models of computation. In Sec-tion 3, we present and compare the most important models of computation. InSection 4, we introduce the CFSM model. In Section 5, we give some concludingremarks.2 MOCs: Basic Concepts and the Tagged Sig-nal Model2.1 Modeling Embedded Systems with MOCsAn MOC is composed of a description mechanism (syntax) and rules for com-putation of the behavior given the syntax (semantics). An MOC is chosen fordescribing a sub-behavior of a design based on its suitability: compactness ofdescription, �delity to design style, ability to synthesize and optimize the behav-ior to an appropriate implementation. For example, some MOCs are suitablefor describing complicated data transfer functions and completely unsuitable forcomplex control, while others are designed with complex control in mind.There are a number of basic ideas and primitives that are commonly used informulating models of computation. Most MOCs permit distributed system de-scription (a collection of communicating modules), and give rules dictating howeach module computes (function) and how they transfer information betweenthem (communication). Some of the primitives include combination Boolean6
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functions and synchronous state machines for specifying function, and queues,bu�ers, schedulers for specifying communication. Function and communicationare often not described completely separately for e�ciency and optimization.More precisely, MOCs are typically realized (implemented in practice) by aparticular language and its semantics. We elaborate on the distinction betweenMOCs and languages in Section 2.2.A language is a set of symbols, rules for combining them (its syntax), andrules for interpreting combinations of symbols (its semantics). Two approachesto semantics have evolved, denotational and operational. A language can haveboth (ideally they are consistent with one another, although in practice thiscan be di�cult to achieve). Denotational semantics, �rst developed by Scottand Strachey [59], gives the meaning of the language in terms of relations.Operational semantics, which dates back to Turing machines, gives meaning ofa language in terms of actions taken by some abstract machine, and is typicallycloser to the implementation.Models of computation can be viewed based on the following characteristics:� the kinds of relations that are possible in a denotational semantics� how the abstract machine behaves in an operational semantics� how individual behavior is speci�ed and composed� how hierarchy abstracts this composition� communication styleA design (at all levels of the abstraction hierarchy from functional speci�-cation to �nal implementation) is generally represented as a set of components,which can be considered as isolated monolithic blocks, which interact with eachother and with an environment that is not part of the design. The model ofcomputation de�nes the behavior and interaction of these blocks.We view MOCs at two levels of abstraction. At the higher level, we takethe view of the tagged signal model (which we call here TSM) described insection 2.3. The TSM abstraction de�nes processes and their interaction usingsignals composed of partially ordered events, in turn composed of tags and val-ues. We use processes to describe both functional behavior and communicationbehavior. This is a denotational view, though it is not associated with a par-ticular language. We use this model to compare elements of di�erent models ofcomputation, styles of sequential behavior, concurrency, and communication ata high level.At the lower level of abstraction, we take the view of general primitives forfunction and timing (used in the re�nement of TSM processes), where each MOCconstitutes a particular choice of these two. This is a more operational view.We give precise de�nitions for a number of terms, but these de�nitions will in-evitably con
ict with standard usage in some communities. We have discovered8



that, short of abandoning the use of most common terms, no terminology canbe consistent with standard usage in all related communities. We attempt toavoid confusion by being precise, even at the risk of being pedantic. The basicprimitive concepts are describe in Section 2.4. The primitive building blocks forspeci�cation and implementation are given in Section 2.5.All these basic primitives and concepts are then used in Section 3 to classifyand describe the main MOCs that appear in the literature.2.2 Languages and Models of ComputationThe distinction between a language and its underlying model of computationis important. The same model of computation can give rise to fairly di�er-ent languages (e.g., the imperative Algol-like languages C, C++, Pascal, andfortran). Some languages, such as VHDL and Verilog, support two or moremodels of computation1.The model of computation a�ects the expressiveness of a language | whichbehaviors can be described in the language, whereas the syntax a�ects compact-ness, modularity, and reusability. Thus, for example, object-oriented propertiesof imperative languages like C++ are more a matter of syntax than a model ofcomputation.The expressiveness of a language is an important issue. A language thatis not expressive enough to specify a particular behavior is clearly unsuitable,while a language that is too expressive is often too complex for analysis andsynthesis. For very expressive languages, many analysis and synthesis problemsbecome undecidable: no algorithmwill solve all problem instances in �nite time.A language in which a desired behavior cannot be represented succinctly isalso problematic. The di�culty of solving analysis and synthesis problems is atleast linear in the size of the problem description, and can be as bad as severaltimes exponential, so choosing a language in which the description of the desiredbehavior of the system is compact can be critical.A language may be very incomplete and/or very abstract. For example, itmay specify only the interaction between computational modules, and not thecomputation performed by the modules. In this case, it provides an interfaceto a host language that speci�es the computation, and is called a coordinationlanguage (examples include Linda [20], Granular Lucid [34], and Ptolemy do-mains [17]). Another language may specify only the causality constraints ofthe interactions without detailing the interactions themselves nor providing aninterface to a host language. In this case, the language is used as a tool to proveproperties of systems, as done, for example, in process calculi [33, 46] and Petrinets [50, 53]. In still more abstract modeling, components in the system are1They directly support the Imperative model within a process, and the Discrete Eventmodel among processes. They can also support ExtendedFinite StateMachines under suitablerestrictions known as the \synthesizable subset".9



replaced with nondeterminate speci�cations that give constraints on the behav-ior, but not the behavior itself. Such abstraction provides useful simpli�cationsthat help formal veri�cation.2.3 The Tagged-Signal ModelAt the highest level of abstraction, we adopt the tagged-signal model (TSM)proposed by Lee and Sangiovanni-Vincentelli [42]. It is a formalism for de-scribing aspects of models of computation for embedded system speci�cation.It is denotational in the Scott and Strachey [59] sense, and it de�nes a semanticframework (of signals and processes) within which models of computation canbe studied and compared. It is very abstract|describing a particular model ofcomputation involves imposing further constraints that make it more concrete.2.3.1 Signals, tags and eventsThe fundamental entity in the TSM is an event: a value/tag pair. Tags are oftenused to denote temporal behavior. A set of events (an abstract aggregation) is asignal. Processes are relations on signals, expressed as sets of n-tuples of signals.A particular model of computation is distinguished by the order it imposes ontags and the character of processes in the model. More formally, given a set ofvalues V and a set of tags T , an event is a member of T �V . A signal s is a setof events, and thus is a subset of T � V . A functional (or deterministic) signalis a (possibly partial) function from T to V . The set of all signals is denoted S.A tuple of n signals is denoted s, and the set of all such tuples is denoted Sn.The di�erent models of time that have been used to model embedded systemscan be translated into di�erent order relations on the set of tags T in the tagged-signal model. In a timed system T is totally ordered, i.e., there is a binaryrelation < on members of T such that if t1; t2 2 T and t1 6= t2, then eithert1 < t2 or t2 < t1. In an untimed system, T is only partially ordered.2.3.2 ProcessesA process P with n signals is a subset of the set of all n-tuples of signals, Snfor some n. A particular s 2 Sn is said to satisfy the process if s 2 P . Ans that satis�es a process is called a behavior of the process (intuitively, it isthe generalization of a \simulation trace"). Thus a process is a set of possiblebehaviors, or a constraint on the set of \legal" signals.Intuitively, processes in a system operate concurrently , and constraints im-posed on their signal tags de�ne communication2 among them. The environmentin which the system operates can be modeled with a process as well.2This is often called also synchronization, but we will try to avoid using the term in thissense because it is too overloaded. 10



For many (but not all) applications, it is natural to partition the signalsassociated with a process into inputs and outputs. Intuitively, the process doesnot determine the values of the inputs, and does determine the values of theoutputs. If n = i+ o, then (Si; So) is a partition of Sn. A process with i inputsand o outputs is a subset of Si�So. In other words, a process de�nes a relationbetween input signals and output signals. A (i + o)-tuple s 2 Si+o is said tosatisfy P if s 2 P . It can be written s = (s1; s2), where s1 2 Si is an i-tuple ofinput signals for process P and s2 2 So is an o-tuple of output signals for processP . If the input signals are given by s1 2 Si, then the set I = f(s1; s2) j s2 2 Sogdescribes the inputs, and I \P is the set of behaviors consistent with the inputs1. A process F is functional (or deterministic) with respect to an input/outputpartition if it is a single-valued, possibly partial, mapping from Si to So . Thatis, if (s1; s2) 2 F and (s1; s3) 2 F , then s2 = s3. In this case, we can writes2 = F (s1), where F : Si ! So is a (possibly partial) function. Given theinput signals, the output signals are determined (or there is unambiguously nobehavior). A process is completely speci�ed if it is a total function, that is, forall inputs in the input space, there is a unique behavior.2.3.3 Process compositionProcess composition in the TSM is de�ned by the intersection of the constraintseach process imposes on each signal. To facilitate its de�nition, we assume thatall the processes that are composed are de�ned on the same set of signals3.Hence a composition of a set of processes is also a process.In the rest of this paper, we will use processes to model both function andcommunication. Generally, an MOC de�nes a 
exible mechanism for model-ing function, and a rigid mechanism (signal, queue, shared variable, : : : ; seeSection 2.5) for modeling communication. On the other hand, the TSM mustcompare di�erent MOCs and hence be 
exible when modeling communication aswell. It is, however, useful to distinguish between the two at least conceptually,since:1. Functional processes are mostly concerned with the value component oftheir signals, and generally do not have much to do with the tag compo-nent. In other terms, the constraints a functional process imposes on itsinput and output signals are generally complex with respect to values, butmuch simpler with respect to tags.2. Communication processes are solely concerned with the tag component oftheir signals, while values are left untouched.3This can be obtained trivially, since a process can be extended to any new signal by simplynot imposing any constraint on it. 11



One of the most useful and important questions to ask when composing pro-cesses, is what properties of the isolated processes are preserved by composition.Here we focus only on two fundamental properties: functionality (unique out-put n-tuple for every input n-tuple) and complete speci�cation (for every inputn-tuple there exists a unique output n-tuple).To analyze this aspect, we note that, given a formal model of the functionalspeci�cations and of the properties, three situations may arise:1. The property is inherent for the model of the speci�cation (i.e., it can beshown formally to hold for all speci�cations described using that model).2. The property can be veri�ed syntactically for a given speci�cation (i.e., itcan be shown to hold with a simple, usually polynomial-time, analysis ofthe speci�cation).3. The property must be veri�ed semantically for a given speci�cation (i.e.,it can be shown to hold by executing, at least implicitly, the speci�cationfor all inputs that can occur).For example, consider the functionality property. Any design described by adata
ow network (a formalmodel to be described later) is functional (also calleddeterministic or determinate in data-
ow vernacular), and hence this propertyneed not be checked for this model of computation. If the design is representedby a network of FSMs (for example, synchronous composition of Mealy FiniteState Machines), even if the components are functional and completely speci�ed,the result of the composition may be either incompletely speci�ed (the composi-tion has no solution) or non-functional (the composition has multiple solutions).These situations arise if and only if when a combinational feedback loop existsin the composition: with an odd number of Boolean inverters, there is no \so-lution" and the composition is incompletely speci�ed, with an even number ofinverters, there are multiple solutions and the composition is non-functional. Asyntactical check on the composition to verify whether combinational loops existcan be carried out. If none exist, then the composition is functional and com-pletely speci�ed. With Petri nets, on the other hand, functionality is di�cultto prove: it must be checked by exhaustive simulation.2.3.4 ExamplesConsider, as a motivating example introducing these several mechanisms todenote temporal behavior, two problems: one of analysis, modeling a time-invariant dynamical system on a computer, and one of design, the design of atwo-elevator system controller.Analysis Example The underlying mathematical model of a time-invariantdynamical system, a set of di�erential equations over continuous time, is not12



directly implementable on a digital computer, due to the double quantizationof real numbers into �nite bit strings, and of time into clock cycles. Hence a�rst translation is required, by means of an integration rule, from the di�erentialequations to a set of di�erence equations, that are used to compute the values ofeach signal with a given tag from the values of some other signals with previousand/or current tags.If it is possible to identify several strongly connected components in thedependency graph4, then the system is decoupled . It becomes then possibleto go from the total order of tags implicit in physical time to a partial orderimposed by the depth-�rst ordering of the components. This partial orderinggives us some freedom in implementing the integration rule on a computer. Wecould, for example, play with scheduling by embedding the partial order into thetotal order among clock cycles. It is often convenient, for example, to evaluate acomponent completely, for all tags, before evaluating components that dependon it. It is also possible to spread the computation among multiple processors.In the end, time comes back into the picture, but the double transformation,from total to partial order, and back to total order again, is essential to1. prove properties about the implementation (such as stability of the inte-gration method, or a bound on the maximum execution time),2. optimize the implementation with respect to a given cost function (e.g.,size of the bu�ers required to hold intermediate signals versus executiontime, or satisfaction of a constraint on the maximum execution time).Design Example. One of the key motivations for the tagged signal modelwas to avoid over-speci�cation of designs. For a two-elevator system controller,a simplistic set of speci�cations can be expressed as follows: respond to all re-quests in the exact order they are received with the criterion that the maximumdelay from the time a request is received and the time the elevator service iso�ered, is minimized. It is clear that the two elevators are concurrent subsys-tems and that their operation can be controlled with no need to \synchronize"their operation. It is determined by analyzing the order of events not the exacttime of occurrence. However, if no assumption is made about the way requestsare made, then we may end up in a dead-lock situation due to the nature of thespeci�cation. In fact, if three requests are made at the same instant of time,then the response cannot follow the speci�cation, since there are only two ele-vators available. One solution to this problem is to assume that no two requestsmay happen at the exact same time; then the speci�cation can be met for thetwo elevator system. Another solution is to arbitrarily assign priorities amongrequests that happen at the same time: the speci�cation is changed to re
ectthese priorities instead of those implied by the order of occurrence. The most4A directed graph with a node for each signal, and an edge between two signals wheneverthe equation for the latter depends on the former.13



important aspect in design is to capture the intent of the designer by abstractingaway the non-essential aspects of the system. This example illustrates that it isessential to classify MOCs by their treatment of events with the same tag. Thisaspect is strictly related to the notion of synchrony and asynchrony as we willsee later.Once the control algorithm has been developed, then its implementationneeds to be carried out. If the algorithm is implemented in software running ona single processor, then all events processed are totally ordered and the orderis determined by the intrinsic order coming from the speci�cations (order ofoccurrence of the requests) and by the existence of limited resources. Even ifthe partial order dictated by the algorithm exposes some potential parallelism,the presence of a single processor forces sequential execution determined by ascheduling algorithm that decides in which order the operations are executed.Hence, in the end, we need to map an abstract design into the physical worldcharacterized by real time and limited resources that imposes a global orderingon events.2.4 Comparing Models of ComputationA TSM process is, according to the de�nition given, a partial mapping frominput signals to output signals. In order to consider more concrete mappings,we introduce some primitive concepts on which they are based.System behavior, as we have previously stated, is composed of functionalbehavior and communication behavior, each represented by TSM processes. Aprocess in turn is composed of functional behavior and timing behavior. Functionis how things happen, or in the TSM, how events are related (how inputs areused to compute outputs) \around" a particular tag. Time is the order inwhich things happen, or in the TSM, the assignment of a tag to each event.The distinction between function and time is not this clean in every context.For example, a state in a �nite state machine cannot be labeled as belongingexclusively to the function or time component of the behavior of the machine,but is rather based on the history of both. Nonetheless, the division betweenfunction and time, particularly at a primitive level, is useful in the conceptionand understanding of MOCs.System operation can be viewed as a series of process computations, some-times called �rings. We will use function, time, computation (�ring) to describeMOCs and their primitives.In the sections that follow, we consider the fundamental concepts whichare used to re�ne our processes. For functional processes, we will �rst considerstate-less processes in which only inputs with a given tag concur to form outputswith the same tag. We then introduce the notion of state in the context ofprocess networks. For communication processes, we then consider the primitivesfor concurrency and inter-process communication. Finally, we give the basicbuilding blocks used to realize these concepts in practice. It is from these that14



today's most prevalent models of computation are built.2.4.1 Process functionIn the control-dominated arena, since the pioneering work of Shannon, Booleanfunctions have been used as a representation of both a system speci�cation andits implementation in hardware (relay networks in Shannon's time, CMOS gatesnow). Several formally equivalent (but often with di�erent levels of conveniencein practice) representations for binary- and multi-valued boolean functions havebeen proposed, such as:� truth table,� Boolean network [57], which is a Directed Acyclic Graph (DAG), with atruth table associated with each node and edges carrying Boolean variablevalues,� Binary Decision Diagram [15], that is also a DAG with one level of nodesfor each input variable, and each node acting as a \multiplexer" betweenthe function values associated with every variable values.In the data-dominated arena, Data Flow actors play the role of processesand represent functions from simple state-less arithmetic operations such asaddition and multiplication, to higher-level \combinational" transformations,such as Fast Fourier Transform.2.4.2 Process StateMost models of computation include components with state, where behavior isgiven as a sequence of state transitions. State in a process network can always besimply implemented by means of feedback. An output and an input signal can beconnected together, and thus provide a connection between process inputs andoutputs beyond the tag barrier. However, we can also consider a notion of statewithin a process, since this can be useful in order to \hide" the implementationof the state information.We can formalize this notion by considering a process F that is functionalwith respect to partition (Si; So). Let us assume for the moment that F belongsto a timed system, in which tags are totally ordered5. Then for any tuple ofsignals s, we can de�ne s>t to be a tuple of the (possibly empty) subset of theevents in s with tags greater than t.Two input signal tuples r; s 2 Si are in relation EFt (denoted (ri; si) 2 EFt )if r>t = s>t implies F (r)>t = F (s)>t. This de�nition intuitively means thatprocess F cannot distinguish between the \histories" of r and s prior to timet. Thus, if the inputs are identical after time t, then the outputs will also beidentical.5A de�nition of state for untimed systems is also possible, but it is much more involved.15



EFt is obviously an equivalence relation, partitioning the set of input signaltuples into equivalence classes for each t. Following a long tradition, we call theseequivalence classes the states of F . In the hardware community, componentswith only one state for each t are called combinational , while components withmore than one state for some t are called sequential . Note however that theterm \sequential" is used in very di�erent ways in other communities.2.4.3 Concurrency and CommunicationThe sequential or combinational behavior just described is related to individualprocesses, and embedded systems will typically contain several coordinated con-current processes. At the very least, such systems interact with an environmentthat evolves independently, at its own speed. It is also common to partition theoverall model into tasks that also evolve more or less independently, occasionally(or frequently) interacting with one another. This interaction implies a need forcoordinated communication.Communication between processes can be explicit or implicit. Explicit com-munication implies forcing an order on the events, and this is typically realizedby designating a sender process which informs one or more receiver processesabout some part of its state. Implicit communication implies the sharing of tags(i.e., of a common time scale), which forces a common partial order of events,and a common notion of state. The problem with this form of communicationis that it must be physically implemented via shared signals (e.g., a commonreference clock), whose distribution may be di�cult in practice.Basic Time Time plays a larger role in embedded systems than in classicalcomputation. In classical transformational systems, the correct result is theprimary concern|when it arrives is less important (although whether it arrives,the termination question, is important). By contrast, embedded systems areusually real-time systems, where the time at which a computation takes placeis very important.As mentioned previously, di�erent models of time become di�erent orderrelations on the set of tags T in the tagged-signal model. Recall that in a timedsystem T is totally ordered, while in an untimed system T is only partiallyordered. Implicit communication generally requires totally ordered tags, usuallyidenti�ed with physical time.The tags in a metric-time system have the notion of a \distance" betweenthem, much like physical time. Formally, there exists a partial function d : T �T ! R mapping pairs of tags to real numbers such that d(t1; t2) = 0, t1 = t2,d(t1; t2) = d(t2; t1) and d(t1; t2) + d(t2; t3) >= d(t1; t3).Two events are synchronous if they have the same tag (the distance be-tween them is 0). Two signals are synchronous if each event in one signal issynchronous with an event in the other signal and vice versa.16



Treatment of Time in Systems A discrete-event system is a timed systemwhere the tags in each signal are order-isomorphic with the natural numbers [42].Intuitively, this means that any pair of ordered tags has a �nite number ofintervening tags. This is the basis of the underlying MOC of the Verilog andVHDL hardware description languages [62, 49].A synchronous system is one in which every signal in the system is syn-chronous with every other signal in the system.A discrete-time system is a synchronous discrete-event system.An asynchronous system is a system in which no two events can have thesame tag. If tags are totally ordered, the system is asynchronous interleaved ,while if tags are partially ordered, the system is asynchronous concurrent . Forasynchronous systems concurrency and interleaving are, to a large extent, inter-changeable, since interleaving can be obtained from concurrency by embeddingthe partial order into a total order, and concurrency can be reconstructed frominterleaving by identifying \untimed causality" [48].Note that time is a continuous quantity. Hence real systems are asyn-chronous by nature. Synchronicity is only a (very) convenient abstraction, thatmay be expensive to implement due to the need to share tags, and hence, asdiscussed above, to share a reference \clock" signal.Synchronous/reactive languages (see e.g. [28]) deserve special mention. Theyhave an underlying synchronous model in which the set of tags in any behaviorof the system implies a global \clock" for the system. However, to make thisMOC synchronous in the sense of the TSM, we need to assume that every signalconceptually has an event at every tag. In some synchronous/reactive designsthis may not be the case but if we de�ne the events in the process to includea value denoting the absence of an event, then all synchronous/reactive modelscan be de�ned as synchronous in our framework. At each clock tick, each processmaps input values to output values. Note that if we include the absent valuefor events, then discrete-event systems are also synchronous.The main di�erences are:� in the granularity of tags: intuitively, synchronous models should be usedfor systems in which there are fewer tags, and� in the number of events that have the absent value at any tag: intuitively,synchronous models should be used for systems in which only few eventshave absent values.Particular attention has to be devoted to events with values at the same tagand that have cyclic dependencies ("combinational cycles"). The existence ofsuch dependencies implies that the input-output relation is described implicitlyas the solution of an algebraic set of equations. This set of equations mayhave either a single solution for each input value, in which case the processis completely speci�ed, no solution for some input value, in which case theprocess is functional but not completely speci�ed, or multiple solutions for some17



input value, in which case the process is not functional. This is the source ofendless problems in systems described by VHDL or Verilog and di�culties insynchronous/reactive languages. A possibility when facing a cyclic dependencyis to leave the result unspeci�ed, resulting in nondeterminacy or, worse, in�nitecomputation within one tick according to the particular input values (VHDL,Verilog and some variants of StateCharts belong to this class [65]). A betterapproach is to use �xed-point semantics, where the behavior of the system isde�ned as a set of events that satisfy all processes [11]. Given this approachto the problem, there are procedures that can determine the existence of singleor multiple �xed points in �nite time, thus avoiding nasty inconsistencies anddi�culties.Asynchronous systems do not su�er from this problem since there cannot becyclic dependencies at the same tag given that only one event can have a value atany given tag. Note that often asynchronous systems are confused with discrete-event systems and thus it is not infrequent to �nd assertions in the literaturethat asynchronous systems may have inconsistent or multiple solutions whenindeed this is never the case!Implementation of Concurrency and Communication Concurrency inphysical implementations of systems implies a combination of parallelism, whichemploys physically distinct computational resources, and interleaving, whichmeans sharing of a common physical resource. Mechanisms for achieving in-terleaving, generally called schedulers, vary widely, ranging from operating sys-tems that manage context switches to fully-static interleaving in which multipleconcurrent processes are converted (compiled) into a single process. We focushere on the mechanisms used to manage communication between concurrentprocesses.Parallel physical systems naturally share a commonnotion of time, accordingto the laws of physics. The time at which an event in one subsystem occurs has anatural ordering relationship with the time at which an event occurs in anothersubsystem. Physically interleaved systems also share a natural common notionof time: one event happens before another and the time between them can becomputed (of course, accuracy is an issue).Logical systems, on the other hand, need a mechanism to explicitly share anotion of time (communicate). Consider two imperative programs interleavedon a single processor under the control of a time-sharing operating system.Interleaving creates a natural ordering between events in the two processes, butthis ordering is generally unreliable, because it heavily depends on schedulingpolicy, system load and so on. Some explicit communication mechanism isrequired for the two programs to cooperate. One way of implementing this couldbe by forcing both to operate based on a global notion of time, which in turnforces a total order on events. This can be extremely expensive. In practice, thiscommunication is done explicitly, where the total order is replaced by a partial18



order. Returning to the example of two processes running under a time-sharingoperating system, we take precautions to ensure an ordering of two events onlyif the ordering of these two events matters. We can do this by communicatingthrough common signals, and forcing one process to wait for a signal from theother, which forces the scheduler to interleave the processes in a particular way.A variety of mechanisms for managing the order of events, and hence forcommunicating information between processes, exists. We will now examine andclassify them according to the tagged-signal model, by using \special-purpose"processes to model communication. Using processes to model communication(rather than considering it as \primitives" of the tagged-signal model) makes iteasier to compare di�erent MOCs, and also allows one to consider re�ning thesecommunication processes when going from speci�cation to implementation [56].Recall that the communication primitive in the TSM is the event, whichis a two-component entity whose value is related to function and whose tag isrelated to time. That is, communication is implemented by two operations:1. the transfer of values between processes (function; TSM event value),2. the determination of the relationship in time between two processes (time;TSM event tag).Unfortunately, often the term \communication" (or data transfer) is usedfor the former, and the term \synchronization" is used for the latter. We feel,however, that the two are intrinsically connected in embedded systems: both tagand value carry information about a communication. Thus, communication andsynchronization, as mentioned before, are terms which cannot really be distin-guished in this sense.2.5 Basic communication primitivesIn this section, we de�ne some of the communication primitives that have beendescribed in the literature, following the classi�cation developed in the previoussections.Unsynchronized In an unsynchronized communication, a producer of infor-mation and a consumer of the information are not coordinated. There issome connection between them (e.g., a bu�er) but there is no guaranteethat the consumer reads \valid" information produced by the producer,and no guarantee that the producer will not overwrite previously produceddata before the consumer reads the data. In the tagged-signal model, therepository for the data is modeled as a process, and the reading and writ-ing actions are modeled as events without any enforced ordering of theirtags.Read-modify-write Commonly used for accessing shared data structures insoftware, this strategy locks a data structure during a data access (read,19



write, or read-modify-write), preventing any other accesses. In otherwords, the actions of reading, modifying, and writing are atomic (indivisi-ble, and thus uninterruptible). In the tagged-signal model, the repositoryfor the data is modeled as a process where events associated with thisprocess are totally ordered (resulting in a partially ordered model at theglobal level). The read-modify-write action is modeled as a single event.Unbounded FIFO bu�ered This is a point-to-point communication strat-egy, where a producer generates (writes) a sequence of data tokens anda consumer consumes (reads) these tokens, but only after they have beengenerated (i.e., only if they are valid). In the tagged-signal model, thisis a simple connection where the signal on the connection is constrainedto have totally ordered tags. The tags model the ordering imposed bythe FIFO model. If the consumer process has unbounded FIFOs on allinputs, then all inputs have a total order imposed upon them by this com-munication choice. This model captures essential properties of both Kahnprocess networks and data
ow [35].Bounded FIFO bu�ered In this case (we discuss only the point-to-point casefor the sake of simplicity), the data repository is modeled as a process thatimposes ordering constraints on its inputs (which come from the producer)and the outputs (which go to the consumer). Each of the input and outputsignals are internally totally ordered, while their combination is partiallyordered. The simplest case is where the size of the bu�er is one, in whichcase the input and output events must be perfectly interleaved (i.e., thateach output event lies between two input events). Larger bu�ers imposea maximum di�erence (often called synchronic distance [51]) between thenumber of input or output events occurring in succession.Note that some implementations of this communication mechanism maynot really block the writing process when the bu�er is full, thus requiringsome higher level of 
ow control to ensure that this never happens, or thatit does not cause any harm.Petri net places This is a multi-partner communication strategy, where sev-eral producers generate tokens and several consumers consume these to-kens [51]. In the tagged-signal model, this is modeled as a process thatkeeps track of the tags of its input (from producers) and output (to con-sumers) signals. As in the previous case, each signal has totally orderedevents, and the process makes sure that the number of input events isalways greater than or equal to that of output events.Rendezvous In the simplest form of rendezvous, which is embodied in theunderlying MOC of the Occam and Lotos [64] languages, a single writ-ing process and a single reading process must simultaneously be at thepoint in their control 
ow where the write and the read occur. It is a20



Transmitters Receivers Bu�er Blocking Blocking SingleSize Reads Writes ReadsUnsynchronized many many one no no noRead-Modify-Write many many one yes yes noUnbounded FIFO one one unbounded yes no yesBounded FIFO one one bounded maybe maybe yesPetri net place many many unbounded no no yesSingle Rendezvous one one one yes yes yesMultiple Rendezvous many many one no no yesTable 1: A comparison of concurrency and communication schemes.convenient communication mechanism, because it has the semantics of asingle assignment, in which the writer provides the right-hand side, andthe reader provides the left-hand side. In the tagged-signal model, this isimposed by events with identical tags [42]. Lotos o�ers, in addition, mul-tiple rendezvous, in which one among multiple possible communications isnon-deterministically selected. Multiple rendezvous is more 
exible thansingle rendezvous, because it allows the designer to specify more easilyseveral \expected" communication ports at any given time, but it is verydi�cult and expensive to implement correctly.Of course, various combinations of the above models are possible. For exam-ple, in a model that partially uses the unsynchronized communication scheme,a consumer of data may be required to wait until the �rst time a producerproduces data, after which the communication is unsynchronized.The essential features of the concurrency and communication styles describedabove are presented in Table 1. These are distinguished by the number of trans-mitters and receivers (e.g., broadcast versus point-to-point communication), thesize of the communication bu�er, whether the transmitting or receiving processmay continue after an unsuccessful communication attempt (blocking reads andwrites), and whether the result of each write can be read at most once (singlereads). Note that, strictly speaking, the blocking/nonblocking read and writeaspects are part of the \functional" processes, and not of the \communication"processes. However, these communication schemes also specify that aspect, andhence we chose to include in the table. A \maybe" entry means that MOCsconsidering both the \yes" and \no" answer have been proposed in the litera-ture.3 Common Models of ComputationWe are now ready to use the scheme developed in the previous Section to classifyand analyze several models of computation that have been used to describe21



embedded systems. We will consider issues such as ease of modeling, e�ciencyof analysis (simulation or formal veri�cation), automated synthesizability, andoptimization space versus over-speci�cation.We assume a background knowledge of basic, non-concurrent MOCs suchas Finite Automata, Turing Machines, and Algebraic State Machines, and wefocus on the timing, concurrency and communication aspects instead.3.1 Discrete-EventTime is an integral part of a discrete-event model of computation. Eventsusually carry a totally-ordered time stamp indicating the time at which theevent occurs. A DE simulator usually maintains a global event queue that sortsevents by time stamp.Digital hardware is often simulated using a discrete-event approach. TheVerilog language [62], for example, was designed as an input language fora discrete-event simulator. The VHDL language [49] also has an underlyingdiscrete-event model of computation.Discrete-event modeling can be expensive|sorting time stamps can be time-consuming. Moreover, ironically, although discrete-event is ideally suited tomodeling distributed systems, it is very challenging to build a distributed discrete-event simulator. The global ordering of events requires tight coordination be-tween parts of the simulation, rendering distributed execution di�cult.Discrete-event simulation is most e�cient for large systems with large, fre-quently idle or autonomously operating sections. Under discrete-event simula-tion, only the changes in the system need to be processed, rather than the wholesystem. As the activity of a system increases, the discrete-event paradigm be-comes less e�cient because of the overhead inherent in processing time stamps.Simultaneous events, especially those arising from zero-delay feedback loops,present a challenge for discrete-event models of computation. In such a situation,events may need to be ordered, but are not.Consider the discrete-event system shown in Figure 3. Process B has zerodelay, meaning that its output has the same time stamp as its input. If process Aproduces events with the same time stamp on each output, there is ambiguityabout whether B or C should be invoked �rst, as shown in Figure 3(a).Suppose B is invoked �rst, as shown in Figure 3(b). Now, depending onthe simulator, C might be invoked once, observing both input events in oneinvocation, or it might be invoked twice, processing the events one at a time.In the latter case, there is no clear way to determine which event should beprocessed �rst.The problem could be solved by requiring the user to provide a delay foreach process, but this is not convenient in general. Hence various simulatorshave resorted to various heuristic techniques:� The VHDL simulation semantics [49] uses a synchronous model (with unit22



A B Ct t A B Ctt(a) (b)A B Ct+�t A B Ct +�(c) (d)Figure 3: Simultaneous events in a discrete-event system. (a) Process A pro-duces events with the same time stamp. Should B or C be �red next? (b)Zero-delay process B has �red. How many times should C be �red? (c) Delta-delay process B has �red; C will consume A's output next. (d) C has �red once;it will �re again to consume B's output.delay, called \delta step") in order to provide a two-level structure of timeand thus solve non-determinism within a given \real time" instant. Eachinstant of time (level 1) is broken into (a potentially in�nite number of)totally ordered delta steps (level 2). A \zero-delay" process in this modelactually has delta steps, or ordered progress towards a solution though noreal time elapses. For example, if Process B contains a delta step betweeninput and output, �ring A followed by B would result in the situation inFigure 3(c). The next �ring of C will see the event from A only; the �ringafter that will see the (delay-ordered) event from B.� The Discrete Event domain in Ptolemy [17] uses a synchronous model,but with mostly zero delay and only enough delta steps to eliminate allzero-delay cycles.� The BONES simulator by Cadence uses an asynchronous model.Adding a feedback loop from Process C to A in Figure 3 would create aproblem if events circulate through the loop without any increment in timestamp. The same problem occurs in synchronous languages, where such loopsare called causality loops. No precedence analysis can resolve the ambiguity. Insynchronous languages, the compiler may simply fail to compile such a program.23



Discrete-event simulators attempt to identify such cases and report them to theuser.We wish to stress that delta steps do not have a meaning of time (though theyare often called delta \delay"). They are just a clever mechanism to implement a�xed point computation used to compute the behavior of the system at a pointin time. Fixed point iteration can also be used in the synchronous/reactivemodel to de�ne its semantics and make it determinate. Hence \delta steps"can also be thought of as an \iteration index". Moreover, VHDL uses an eventmodel that is not monotonic, and hence the �xed point may never be reached,as discussed above. On the other hand, synchronous language use a ternarylogic model, in which �xed point convergence in ensured in a �nite number ofsteps [16].The reason why DE is a popular MOC in practice is that it has been im-plemented e�ciently in a number of event-driven simulators, and it is quiteconvenient to evaluate the performance of very large and complex systems. Byimposing little restriction on the modeling style, it makes simulation simple andsynthesis as well as formal veri�cation hard.3.2 Data
ow Process NetworksIn data
ow, a program is speci�ed by a directed graph where the nodes (calledactors) represent computations and the arcs represent totally ordered sequences(called streams) of events (called tokens). In �gure 4(a), the large circles repre-sent actors, the small circle represents a token and the lines represent streams.The graphs are often represented visually and are typically hierarchical, in thata node in a graph may represent another directed graph. The nodes in thegraph can be either language primitives or subprograms speci�ed in anotherlanguage, such as C or fortran. In the latter case, we are actually mixing twomodels of computation, where data
ow serves as the coordination language forsubprograms written in an imperative host language.Data
ow is a special case of Kahn process networks [35, 41]. In a Kahn pro-cess network, communication is by unbounded FIFO bu�ering, and processes areconstrained to be continuous mappings from input streams to output streams.\Continuous" in this usage is a topological property that ensures that the pro-gram is determinate [35]. Intuitively, it implies a form of causality withouttime; speci�cally, a process can use partial information about its input streamsto produce partial information about its output streams. Adding more tokensto the input stream will never result in having to change or remove tokens onthe output stream that have already been produced. One way to ensure con-tinuity is with blocking reads, where any access to an input stream results insuspension of the process if there are no tokens. One consequence of blockingreads is that a process cannot test an input channel for the availability of dataand then branch conditionally to a point where it will read a di�erent input.In data
ow, each process is decomposed into a sequence of �rings, indivisible24



quanta of computation. Each �ring consumes and produces tokens. Dividingprocesses into �rings avoids the multi-tasking overhead of context switchingin direct implementations of Kahn process networks. In fact, in many of thesignal processing environments, a major objective is to statically (at compiletime) schedule the actor �rings, achieving an interleaved implementation of theconcurrent model of computation. The �rings are organized into a list (for oneprocessor) or set of lists (for multiple processors). Figure 4(a) shows a data
owgraph, and Figure 4(b) shows a single processor schedule for it. This schedule isa list of �rings that can be repeated inde�nitely. One cycle through the scheduleshould return the graph to its original state (here, state is de�ned as the numberof tokens on each arc). This is not always possible, but when it is, considerablesimpli�cation results [12]. In many existing environments, what happens withina �ring can only be speci�ed in a host language with imperative semantics, suchas C or C++. A CB D(a)A B C D(b)Figure 4: (a) A data
ow process network (b) A single-processor static schedulefor itA useful formal device is to constrain the operation of a �ring to be func-tional, i.e., a simple, stateless mapping from input values to output values. Note,however, that this does not constrain the process to be stateless, since it canmaintain state in a self-loop: an output that is connected back to one of itsinputs. An initial token on this self-loop provides the initial value for the state.Many possibilities have been explored for precise semantics of data
ow co-ordination languages, including Karp and Miller's computation graphs [37],Lee and Messerschmitt's synchronous data
ow graphs [40], Lauwereins et al.'scyclo-static data
ow model [39, 13], Kaplan et al.'s Processing Graph Method(PGM) [36], Granular Lucid [34], and others [1, 20, 22, 60]. Many of theselimit expressiveness in exchange for formal properties (e.g., provable livenessand bounded memory). 25



Synchronous data
ow (SDF) and cyclo-static data
ow require processes toconsume and produce a �xed number of tokens for each �ring. Both have theuseful property that a �nite static schedule can always be found that will returnthe graph to its original state. This admits extremely e�cient implementa-tions [12]. For more general data
ow models, it is undecidable whether such aschedule exists [18].A looser model of data
ow is the tagged-token model, in which the partialorder of tokens is explicitly carried with the tokens [3]. A signi�cant advantageof this model is that while it logically preserves the FIFO semantics of thechannels, it permits out-of-order execution.Some examples of graphical data
ow programming environments intendedfor signal processing (including image processing) are Khoros [52], andPtolemy [17].3.3 Petri netsPetri nets [50, 53] are, in their basic form, an in�nite state model (just likedata
ow) for which, however, most properties are decidable in �nite time andmemory. They are interesting as an uninterpreted model for several very dif-ferent classes of problems, including some relevant to embedded system design(e.g., process control, asynchronous communication, and scheduling).Moreover, a large user community has developed an impressive body of the-oretical results and practical design aids and methods based on Petri nets. Inparticular, partial order-based veri�cation methods (e.g. [63], [27], [45]) are onepossible answer to the state explosion problem plaguing Finite State Machine-based veri�cation techniques.A Petri net (PN) is a directed bipartite graph N = fP; T; Fg. P is a setof places holding the distributed state (via tokens) of the system. T is a set oftransitions, denoting the activity of the system. F � P � T [T �P is the 
owrelation, from places to transitions and vice-versa. Nodes linked by F are saidto be in a predecessor/successor relationship.Transitions are often labeled with statements in a host language, just as inthe case of DF actors. The state of the PN is the marking of the places, thatis a non-negative integer valuation (\token assignment") of each place. Thedynamic evolution of the PN is determined by the �ring process of transitions.A transition may �re whenever all its predecessor places are marked, and ifit �res, it decrements the marking (removes a token) of each predecessor andincrements the marking of each successor (adds a token).PNs are interesting in general, and in particular in embedded system design,because they are a very general model of control, potentially with in�nite state,yet very powerful analysis techniques, both exact and approximate, have beende�ned for them.In particular, the �ring rule of a PN bears a strong connection with linearalgebra. If we represent the graph of the 
ow relation (given arbitrary orderings26
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t3 t6Figure 5: Example of Free Choice Petri net and its Reachability Graphof the sets T and P ) as an incidence matrix I, and if we represent the currentmarking as an integer vector M , we can model the e�ect of a sequence of tran-sitions � starting from M as follows. Let us denote by f� the \�ring vector"of �, that is a vector whose i-th position contains the number of times the i-thtransition appears in �. The markingM 0 reached after � is given byM 0 = If� +MFor example, consider the PN in Figure 5.(a), whose set of reachable mark-ings is shown in Figure 5.(b). Its incidence matrix (one row for each place andone column for each transition) is:�������������� 1 �1 �1 0 0 0 00 1 0 �1 0 0 00 1 0 0 �1 0 00 0 1 0 0 �1 00 0 1 0 0 0 �1�1 0 0 1 0 1 0�1 0 0 0 1 0 1 ��������������The �rst line corresponds to place p0, and has a 1 in position 0, because t0 adds1 token to place p0, and �1 in positions 1 and 2 because t1 and t2 remove onetoken from it.Consider now �ring sequence � = t0; t1; t3 whose �ring vector (transposed)is f� = j1101000jt. The marking M 0 reached from the initial marking M =27



j0000011jt after �ring � is:�������������� 0010010 �������������� = �������������� 1 �1 �1 0 0 0 00 1 0 �1 0 0 00 1 0 0 �1 0 00 0 1 0 0 �1 00 0 1 0 0 0 �1�1 0 0 1 0 1 0�1 0 0 0 1 0 1 �������������� �������������� 1101000 ��������������+ �������������� 0000011 ��������������that corresponds to p2; p5 being marked, as expected.As another example, consider the initial marking with two tokens each inp5; p6 and the �ring sequence � = t0; t0; t1; t3. In that case,M = j0000022jt,f� = j2110000jt, andM 0 = j0111100jt.This equation provides an interesting characterization of sequences of tran-sitions that, when �red from a marking M , return the net to same M . Thesesequences, also called T-invariants, must be solutions to0 = If�This is only a necessary condition, of course, since the sequences must also be�reable fromM (some intermediate step may yield a negative marking), but it isuseful, e.g., when proving liveness conditions (e.g., showing that some transitioncan �re in�nitely often) or schedulability properties [47].For example, in Figure 5 �ring sequence t0; t1; t3; t4 is a T-invariant j1101100jtthat happens to be �reable from the initial marking. The reader can check thatthis invariant is indeed a solution of the equation shown above.By duality (a very useful concept in Petri nets, based on exchanging theroles of places and transitions), one can also identify sets of places whose totalcumulative marking cannot be changed by any �ring sequence of the net. Thesesets, also called S-invariants can be used to establish the unreachability of agiven marking, if it cannot be expressed as a linear combination of a basis ofS-invariants [25]. Hence they can be very useful in proving (but not disprov-ing) safety properties (e.g., the fact that some \dangerous" marking cannot bereached).Invariant-based techniques become necessary and su�cient for a restricted(but expressive) class of PNs called free-choice nets [24], in which a multi-successor place must be the only predecessor of its successors. The net of Fig-ure 5.(a) is a free-choice net, since the only multi-successor place (p0) has onlysingle-predecessor successors (t1; t2).In addition, reachability-based techniques for analysis, based on building thecomplete state space (or deciding in �nite time that it is actually in�nite), canalso be used to prove properties of a given PN.28



The basic PN model is interesting but somewhat limited in expressive power6.For this reasons, people have extended it in various ways, such as adding colorsto tokens. Colored PNs are similar to Data
ow networks (with places playingthe role of FIFOs and transitions playing the role of actors), but allow multiplepredecessors and successors for a place/FIFO. In this way, they lose one of themost interesting properties of DF networks, determinacy , and of course gainsomething in terms of compactness and expressiveness7 .Time can also play an explicit role in PNs. Time has been associated withtransitions and places, in various combinations and forms ([55]). Generallyspeaking, time is associated with tokens, that carry a time stamp, and timestamps determine when transitions may �re (and thus create new tokens withnew time stamps). The problem with timed PNs is, as usual with real-timeMOCs, that they su�er from a particularly serious combinatorial explosion prob-lem when reducing the originally in�nite timed state space to a �nite set ofequivalence classes, as discussed more in detail in Section 3.8.3.4 Synchronous/ReactiveIn a synchronous model of computation, all events are synchronous, i.e., allsignals have events with identical tags. The tags are totally ordered, and globallyavailable. Unlike the discrete-event model, all signals have events at all clockticks, simplifying the simulator by requiring no sorting. Simulators that exploitthis simpli�cation are called cycle-based or cycle-driven simulators. Processingall events at a given clock tick constitutes a cycle. Within a cycle, the orderin which events are processed may be determined by data precedences, whichde�ne the delta steps. These precedences are not allowed to be cyclic, andtypically impose a partial order (leaving some arbitrary ordering decisions to thescheduler). Cycle-based models are excellent for clocked synchronous circuits,and have also been applied successfully at the system level in certain signalprocessing applications.A cycle-based model is ine�cient for modeling systems where events do notoccur at the same rate in all signals. While conceptually such systems can bemodeled (using, for example, special tokens to indicate the absence of an event),the cost of processing such tokens is considerable. Fortunately, the cycle-basedmodel is easily generalized to multirate systems. In this case, every nth eventin one signal aligns with the events in another.A multirate cycle-based model is still somewhat limited. It is an excellentmodel for synchronous signal processing systems where sample rates are relatedby constant rational multiples, but in situations where the alignment of eventsin di�erent signals is irregular, it can be ine�cient.6It is more powerful than regular grammars, is incomparable with context-free grammars,and is less powerful than Turing machines.7The formal power is the same, being that of Turing machines for both general CPN andgeneral DF. 29



The more general synchronous/reactive model is embodied in the so-calledsynchronous languages [8]. Esterel [14] is a textual imperative language withsequential and concurrent statements that describe hierarchically-arranged pro-cesses. Lustre [29] is a textual declarative language with a data
ow 
avor anda mechanism for multirate clocking. Signal [9] is a textual relational language,also with a data
ow 
avor and a more powerful clocking system. Argos [44],a derivative of Harel's Statecharts [30], is a graphical language for describinghierarchical �nite state machines (described more in detail in the next section).Halbwachs [28] gives a good summary of this group of languages.The synchronous/reactive languages describe systems as a set of concurrently-executing synchronized modules. These modules communicate through signalsthat are either present or absent in each clock tick. The presence of a signal iscalled an event, and often carries a value, such as an integer.Most of these languages are static in the sense that they cannot request ad-ditional storage nor create additional processes while running. This makes themwell-suited for bounded and speed-critical embedded applications, since their be-havior can be extensively analyzed at compile time. This static property makesa synchronous program �nite-state, greatly facilitating formal veri�cation.Verifying that a synchronous program is causal (non-contradictory and de-terministic) is a fundamental challenge with these languages. Since computa-tion in these languages is delay-free and arbitrary interconnection of processesis possible, it is possible to specify a program that has either no interpretation(a contradiction where there is no consistent value for some signal) or mul-tiple interpretations (some signal has more than one consistent value). Bothsituations are undesirable, and usually indicate a design error. A conservativeapproach that checks for causality problems structurally 
ags an unacceptablylarge number of programs as incorrect because most will manifest themselvesonly in unreachable program states. The alternative, to check for a causalityproblem in any reachable state, can be expensive since it requires an exhaustivecheck of the state space of the program.In addition to the ability to translate these languages into �nite-state de-scriptions, it is possible to compile these languages directly into hardware. Tech-niques for translating both Esterel [10] and Lustre [54] into hardware have beenproposed. The result is a logic network consisting of gates and 
ip-
ops that canbe optimized using traditional logic synthesis tools. To execute such a systemin software, the resulting network is simply simulated. The technique is alsothe basis to perform more e�ciently causality checks, by means of implicit statespace traversal techniques [58].3.5 Communicating Synchronous Finite State MachinesFinite State Machines (FSMs) are an attractive model for embedded systems.The amount of memory required by such a model is always decidable, and isoften an explicit part of its speci�cation. Halting and performance questions are30



always decidable since each state can, in theory, be examined in �nite time. Inpractice, however, this may be prohibitively expensive, and thus formal veri�ca-tion techniques based on interacting FSMs require various forms of (non-trivialand non-automatable) abstraction in order to be kept manageable [38, 45].A traditional FSM consists of:� a set of input symbols (the Cartesian product of the sets of values of theinput signals),� a set of output symbols (the Cartesian product of the sets of values of theoutput signals),� a �nite set of states with a distinguished initial state,� an output function mapping input symbols and states to output symbols,and� a next-state function mapping input symbols and states to (next) states.The input to such a machine is a sequence of input symbols, and the outputis a sequence of output symbols. The model is synchronous (i.e., all signalshave the same tags), and hence input and output symbols are well de�ned (theycorrespond to the set of events with a given tag). It is also semantically identicalto that of previous section. However, there are enough syntactic di�erences towarrant a separate treatment (see [28, 11] for a discussion of possible mappingsbetween the two).Traditional FSMs are good for modeling sequential behavior, but are prob-lematic for modeling system with concurrency or large memories, because ofthe state explosion problem. Every global state of a concurrent system mustbe represented individually, even when interleaving of independent actions maygive rise to an exponential number of states. Similarly, a memory has as manystates as the number of values that can be stored at each location raised to thepower of the number of locations. The number of states alone is not always agood indication of complexity, but it often has a strong correlation.Harel advocated the use of three major mechanisms that reduce the size(and hence the visual complexity) of �nite automata for modeling practical sys-tems [31]. The �rst one is hierarchy, in which a state can represent an enclosedstate machine. That is, being in a particular state a has the interpretation thatthe state machine enclosed by a is active. Equivalently, being in state a meansthat the machine is in one of the states enclosed by a. Under the latter inter-pretation, the states of a are called \or states." Or states can exponentiallyreduce the complexity (the number of states) required to represent a system.They compactly describe the notion of preemption (a high-priority event sus-pending or \killing" a lower priority task), that is fundamental in embeddedcontrol applications. 31



The second mechanism is concurrency. Two or more state machines areviewed as being simultaneously active. Since the system is in one state of eachparallel state machine simultaneously, these are sometimes called \and states."They also provide a potential exponential reduction in the size of the systemrepresentation.The third mechanism is non-determinism. While often non-determinism issimply the result of an imprecise (maybe erroneous) speci�cation, it can be anextremely powerful mechanism to reduce the complexity of a system model byabstraction. This abstraction can either be due to the fact that the exact func-tionality must still be de�ned, or that it is irrelevant to the properties currentlyconsidered of interest. E.g., during veri�cation of a given system component,other components can be modeled as non-deterministic entities to compactlyconstrain the overall behavior. A system component can also be describednon-deterministically to permit some optimization during the implementationphase. Non-determinism can also provide an exponential reduction in com-plexity. Note that non-determinism can be divided into and-non-determinismand or-non-determinism. In the �rst, the resolution of the non-determinismexecutes all possibilities, while in the second, resolution chooses just one. And-non-determinism is equivalent to hierarchy.These three mechanisms have been shown in [26] to cooperate synergisticallyand orthogonally, to provide a potential triple exponential reduction in the sizeof the representation with respect to a single, 
at deterministic FSM8.Harel's Statecharts model uses a synchronous concurrency model (also calledsynchronous composition). The set of tags is a totally ordered countable set thatdenotes a global \clock" for the system. The events on signals are either pro-duced by state transitions or inputs. Events at a tick of the clock can triggerstate transitions in other parallel state machines at the same clock. Unfortu-nately, Harel left open some questions about the semantics of causality loopsand chains of instantaneous (same tick) events, triggering a 
urry of activity inthe community that has resulted in at least twenty variants of Statecharts [65].A model that is closely related to FSMs is Finite Automata. FAs emphasizethe acceptance or rejection of a sequence of inputs rather than the sequenceof output symbols produced in response to a sequence of input symbols. Mostnotions, such as composition and so on, can be naturally extended from onemodel to the other. FAs without accepting conditions are also called LabeledTransition Systems in the literature.8The exact claim in [26] was that and-non-determinism (in which all non-deterministicchoicesmust be successful), rather than hierarchical states, was the third source of exponentialreduction together with \or" type non-determinism and concurrency. Hierarchical states, onthe other hand, were shown in that paper to be able to simulate \and" non-determinismwithonly a polynomial increase in size. 32



3.6 Process algebraeSynchronous FSMs, as described above, have a clear and deterministic composi-tion mechanism that makes them relatively easy to understand, synthesize andverify. Of course, there is also a signi�cant drawback: deciding when composi-tion is well-de�ned (loosely speaking, there are no combinational loops) has ahigh computational complexity.Moreover, for many applications, the tight coordination implied by the syn-chronous model is inappropriate. In particular, it is very di�cult to keep atight synchronization between heterogeneous components of an embedded sys-tem, since the pace of a synchronous system is dictated by its slowest component.In response to this, a number of more loosely coupled asynchronous FSM modelshave evolved, including CSP [33], CCS [46], behavioral FSMs [61], SDL processnetworks [61], and codesign FSMs [21].In this section we focus on process algebraic models that constitute thesemantical foundation of the Occam and Lotos [64] languages9: Communicat-ing Sequential Processes [33] and the related Calculus of Communicating Sys-tems [46]. In the following we discuss only the control aspect of CSP and CCS,and ignore the fact that their processes can also manipulate data via assign-ments, tests and so on. We also do not consider recursion, that can be de�nedin the process algebra but has limited interest (except for tail recursion, thatde�nes looping) in the context of embedded systems.The behavior of each process is modeled by a Labeled Transition System(only �nite LTSs are of interest in embedded system design, for obvious rea-sons). Arcs in the transition system are labeled with signal names, and thestate transition activity imposes a total order on the signals of each process.Communication is based on rendezvous. That is, two LTSs may share a signal,thus imposing that all the events of that signal must occur in both processes(\at the same time", if we interpret tags as time). Finally, process algebrae gen-erally imply a completely interleaved view of concurrent actions, meaning thatno two events may have the same tag . Concurrent (i.e., independent) eventsoccur in all possible interleaving in the LTS.No two events may have have the same tag, and hence process algebrae arean inherently asynchronous model. Note that a single LTS is an interleavedasynchronous model, while multiple LTSs communicating via rendezvous (and,equivalently, Petri nets in which at most one token can reside in each placein each reachable marking) are a partially ordered asynchronous model. Asmentioned above, the rich theory of regions [48, 23] can be used to freely movebetween the two classes of models.The result of process composition using this communication mechanism isanother LTS, thus resulting in a hierarchical compositional model10. Composi-9Ada also uses rendezvous, although the implementation is stylistically quite di�erent,using remote procedure calls rather than more elementary communication primitives.10Compositionality means that two or more communicating processes can be viewed as a33
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(b)Figure 6: Example of Labeled Transition Systems and rendezvous communica-tiontionality is very important for proving properties of the system in a hierarchicalfashion. This property is also true of communicating synchronous Finite StateMachines, but not of data
ow networks (i.e., a data
ow network is di�erentfrom an actor).Let us consider a simple case of an interface with error detection. The LTSsspecifying the protocols followed by the two partners are shown in Figure 6.(a-b).1. The sender has two states, �rst sending a request on signal R, then waitingfor either an acknowledgment of correct reception on signal A, or an errorindication on signal E.2. The receiver has a similar behavior, but in case of error, it requires oneinternal action (labeled � ) to resynchronize, and hence it has a third state.The composed LTS using the rendezvous mechanism is shown in Figure 6.(c).Note how the state space of the composition is the product of the two statespaces, and the two LTSs synchronize on common edge labels.For the sake of comparison, Figure 6.(d) shows the synchronous compositionof the same two LTSs. Note how in case of error, the receiver waits for one clocktick, and hence becomes de-synchronized with the transmitter, thus leading toa deadlock11.Rendezvous-based models of computation are sometimes called synchronousin the literature. However, by the de�nition we have given, they are not syn-single process, that can in turn be used as a unit and composed with others.11Of course, the fact that synchronous composition deadlocks while asynchronous composi-tion does not is just a coincidence. It is easy to construct an example where the converse canhappen. 34



chronous. Events are partially ordered, not totally ordered, with rendezvouspoints imposing the partial ordering constraints.3.7 SDL process networksSDL [61] is a language for speci�cation, simulation and design of telecommu-nication protocols. Its underlying semantical model12 is based on a processnetwork. Each process is an FSM, and communication is via one unboundedFIFO queue per process. If we ignore the ability of a process to manipulate itsinput queue, the MOC is roughly equivalent to DE, with the restriction thatthe FSM can only read one event at a time.SDL networks have a basic implementability problem, since both the size ofthe queues and the topology of the network can change at run time. (Processescan be created on the 
y, and signals can be routed dynamically based onprocess identi�ers.) Hence they either require a software implementation basedon a Real-Time Operating System with dynamic memory allocation and taskinstantiation, or require the designer to pre-size queues and pre-instantiate allprocesses.3.8 Timed AutomataSynchronous and asynchronous Finite State Machines cannot reason easily abouttime, since in the best case (the synchronous one) time must be represented bycounting clock ticks. This may cause a state explosion, and has been proven tobe an inadequate abstraction of reality unless special care is taken [19].For this reason, Alur and Dill [2] have proposed explicitly introducing timeas a continuous quantity in the Timed Automata MOC. A Timed Automaton(TA) is a special case of hybrid systems, which are described in the next section.It is su�ciently restricted, so that most properties become decidable. A TA isa Finite Automaton (FA) plus a set of clocks. The state of the TA is the stateof the FA together with a real valuation of the clocks. A transition of the TAis labeled with a symbol (from the FA alphabet) and a Boolean formula overatomic propositions comparing clocks with integers. The transition can alsoreset some clocks to zero.While the state space of a TA is clearly in�nite, a key result by Alur andDill shows that it admits a �nite state representation, by means of a partitioninto equivalence classes. Basically, [2] showed that the exact value of a clockdoes not matter after it grows beyond the largest constant with which it canbe compared in any transition label. This imposes an equivalence relation onthose portions of the state space that grow towards in�nity. Moreover, sincecomparisons involve only integers, one can also partition the remaining part of12As usual, we focus on the control and communication aspects over the data computations,which are commonly speci�ed with an imperative host language, in addition to a more formaland less practical treatment based on Abstract Data Types.35



the space into a �nite set of equivalence classes (called regions), that admit anormal form representation (computed via an all-pair shortest path algorithm).This is a very signi�cant contribution, however it has shown only limitedpractical applicability so far because the state explosion problem is even moresevere than in the communicating FSM case. Good generally applicable ab-straction techniques are only beginning to be developed for TAs.3.9 Hybrid systemsA hybrid system is a Finite Automaton in which each state is associated witha set of di�erential equations, and transitions occur when inequalities over thecontinuous variables of the di�erential equations are satis�ed. Hybrid systemsare a powerful mechanism for modeling non-linear dynamic systems, and thusare becoming an essential tool in control theory. However, they are clearlyTuring-equivalent, and hence too powerful, in almost all of their incarnations,with the notable exceptions of Timed Automata described above. It is likelythat they will play an ever increasing role in embedded system design due tothe growing need to raise the level of abstraction, but it is di�cult to give thema complete and fair treatment in this brief overview, and we refer the interestedreader to [32].In the TSM, there are two possible views of hybrid systems (and hence ofTAs).1. A hybrid system (FA plus di�erential equations) can be modeled as asingle TSM process. This provides an easy mechanism for composinghybrid systems. Signal tags in this case are order-isomorphic with thereal numbers, but tags in which a transition of the automaton can occurcan be only discrete.2. A hybrid system can be modeled as a set of TSM processes. In this casewe have two components for each hybrid system:� one process, whose signal tags can only be discrete, represents theautomaton, and multiplexes the hybrid system outputs between� a set of processes, each behaving as a set of di�erential equations.4 Codesign Finite State MachinesCodesign Finite State Machines (CFSMs) are the underlying MOC of the PO-LIS embedded system design environment [21, 6]. We describe them at lengthbecause, as we will argue later, they combine interesting aspects from severalother MOCs, while preserving both formality and e�ciency in implementation.As we pointed out above, one of the most important properties of an MOC issynchronicity or asynchronicity. We wish to summarize our views on this topicto motivate the introduction of yet another MOC.36



4.1 Synchrony and asynchronySynchrony and asynchrony represent two fundamentally di�erent views of time.That is, synchrony uses the notions of zero and in�nite time, while asynchronyuses non-zero �nite (and typically bounded) time. Both synchrony and asyn-chrony have appeared a number of times in our previous descriptions of variousmodels of computation. In this section, we summarize our previous presenta-tions of synchrony and asynchrony, and consider the di�erences in the behaviorsproduced under each model.As usual, we consider a system of processes interacting through events.4.1.1 SynchronyBasic operation: At each clock tick (i.e., tag of its signals), each modulereads inputs, computes, and produces outputs simultaneously. That is, all thesynchronous events (both inputs and outputs) happen simultaneously, implyingzero-delay calculations. In between clock ticks, an \in�nite" time passes. Ofcourse, no calculations happen in zero time in practice, nor does one wait anin�nite amount of time between ticks (it is normally �nite but unspeci�ed).In practice, the computation times are much smaller than the clock rate, andthus can be considered to be zero with respect to the reaction times of theenvironment. The very desirable feature of designs implemented as synchronoussystems with no cyclic dependencies among values of events with the same tags,is that the behavior of the implementation is not dependent upon the timing ofthe signals, thus simplifying tremendously the veri�cation task.Triggering and Ordering: All modules are triggered to compute at everyclock tick. At a tick, there is no ordering of reading of inputs, computations, orwriting of outputs. However, an ordering can be imposed in addition with theconcept of delta steps (delays). A delta step (delay), as previously mentioned,is the (zero) time that passes between events at the same clock tick and whichserves simply to order the events.System solution: The system solution is the output reaction to a set ofinputs. A well-designed synchronous system will have a unique solution (as-signment to all signals) at each clock tick, though the corresponding models ofcomputation, as well as many synchronous languages or speci�cation methods,allow the designer to specify systems that do not have this property (see, e.g,[65]). We recall that the presence of cyclic dependencies among values of eventswith the same tag are responsible for this di�culty. It is the domain of thelanguage and its semantical interpretation to verify whether a unique solutionexists. Synchronous systems that have a unique solution, have a \single" �nitestate machine equivalent even though they consist of several interconnectedcomponents, and thus can be analyzed and veri�ed with e�cient techniques.37



Implementation cost: Adherence to the synchronous assumption, that is, aprocess computes in negligible time compared to its environment, is a propertythat must be veri�ed or enforced on the �nal design, and which may be expensiveto implement. The assumption is checked on the �nal implementation. Forhardware, one must ensure that the clock period is higher than the maximumpossible computation time for a synchronous block; this may imply a clock ratethat is much slower than might otherwise be achieved. For software, one mustensure that an invoked process is allowed to complete before another process orthe operating system changes its inputs.4.1.2 AsynchronyBasic operation: Asynchronous events always have a non-zero amount oftime between them: it is impossible to specify that two events happen simul-taneously in a truly asynchronous system (as in real life : : : ). An individualprocess can run whenever it has a change on its inputs, and it may take anarbitrary time (that is typically bounded) to complete its computation.Triggering and Ordering: A module is only triggered to run (and alwaystriggered to run) when it has inputs that have changed. However, among thetriggered modules, there is no a priori ordering of processes. One may laterbe imposed by a scheduling algorithm, but this is part of the implementationchoice.System solution: There is strong dependency of the solution from inputsignals and their timing. Thus, asynchronous systems are much more di�cultto analyze. In addition, in a practical implementation or a model thereof, someevents may appear to happen simultaneously. In practice it may be di�cult andexpensive to maintain the total ordering. If the actual order of these seeminglysimultaneous events is not preserved, any order may be used possibly resultingin multiple behaviors. This is no longer an asynchronous model but a discrete-event model that has no guarantee of uniqueness of the solution because ofthe possible cyclic dependency of values of events with the same tags. It isthis practical aspect that has misled many when assessing the properties ofasynchronous systems, loading asynchronous systems with problems that aretypical of discrete-event systems.Implementation cost: Asynchronous implementations are usually chosenwhen the cost, particularly in terms of computation time, is too high for asynchronous solution. The 
exibility provided by an asynchronous implementa-tion implies that di�erent parts of the same system (or the same system underdi�erent inputs) can operate at quite di�erent rates, only communicating atparticular check-points in the computation. For system design, it is usually38



imperative to have an asynchronous model at the highest level of communica-tion. On the other hand, analysis of the behavior of designs implemented asasynchronous systems has to take into consideration the timing of the signalsand, hence, is much more complex than the analysis of synchronous systems.This is the reason why much research on asynchronous system has been devotedto implementations that are more or less insensitive to \internal" delays, thusretaining the most desirable property of synchronous systems without payingthe full penalty implied in a synchronous implementation.4.1.3 Combining Synchrony and AsynchronyAn ideal MOC for system design should combine the advantages of veri�abilityin synchrony and 
exibility in asynchrony in a globally asynchronous, locallysynchronous (GALS) model. It is important to be explicit about where theboundary is between synchrony and asynchrony, because the behavior of thetwo, clearly, is very di�erent. The di�erences can be illustrated simply in termsof event bu�ering and timing of event reading/writing.In an asynchronous implementation, there is typically a need for an explicitbu�ering mechanism for the events, since it is not known when a module willrun and hence read its inputs, and since di�erent modules will run at di�erenttimes and use the same input at di�erent times. For synchrony, inputs areall read once at the beginning of a computation, so one global copy of eachevent value su�ces and this one copy is cleared at the end of each tick. Thus,a synchronous communication transmits all events simultaneously and in zerotime with no bu�ering; every module is guaranteed to see the same set of eventsat each clock tick. An asynchronous communication transmits events whenready and through bu�ers; each module sees its own stream of inputs whichdepends on the global scheduling.Many programs will behave the same for an asynchronous or synchronousimplementation, and such systems are typicallymore tolerant to implementation
uctuations. One can program in a style that is more robust with respect tothese di�erences, by, for example� Never assuming or waiting for simultaneous (synchronous) events. Sincesimultaneity is nearly impossible to guarantee, it is more robust to waitfor the occurrence of two events rather than the simultaneous occurrenceof them.� Never programming with a global timing, e.g. a global clock tick, in mind.Synchronous languages have mechanisms for allowing a clock tick to pass,and thus for counting clock ticks and waiting for a certain amount ofthis arti�cial time to pass. Asynchronous systems of course do not havesuch a speci�c notion of time, so the same style of programming with anasynchronous model interpretation (in which a clock tick usually forces anordering rather than referring to a time) will produce di�erent behavior.39



One may certainly use these programming techniques within a synchronousportion of the design. At the system level, however, a time-intolerant style ofprogramming and thinking about the behavior of a design should be employed.Our CFSM model re
ects these views and was strongly motivated by theneed of combining synchronous and asynchronous behavior where it made mostsense.4.2 CFSM OverviewEach CFSM is an extended FSM, where the extensions add support for datahandling and asynchronous communication. In particular, a CFSM has� a �nite state machine part that contains a set of inputs, outputs, andstates, a transition relation, and an output relation.� a data computation part in the form of references in the transition relationto external, instantaneous (combinational) functions.� a locally synchronous behavior: each CFSM executes a transition by pro-ducing a single output reaction based on a single, snap-shot input assign-ment in zero time. This is synchronous from its own perspective.� a globally asynchronous behavior: each CFSM reads inputs, executes atransition, and produces outputs in an unbounded but �nite amount oftime as seen by the rest of the system. This is asynchronous interactionfrom the system perspective.This semantics, along with a scheduling mechanism to coordinate the CFSMs,provides a GALS communication model: Globally (at the system level) Asyn-chronous and Locally (at the CFSM level) Synchronous.4.3 Communication Primitives4.3.1 SignalsCFSMs, as TSM processes, communicate through signals, which carry infor-mation in the form of events. They may function as inputs, outputs, or statesignals.A signal is communicated between two CFSMs via a connection (single-input, single-output communication process) that has an associated input bu�er(or 1-place bu�er), which contains one memory element for the event (eventbu�er) and one for the data (data bu�er).The event is emitted (produced) by a sender CFSM setting the event bu�erto 1. It may be detected and consumed by a receiver CFSM. It is detected byreading the event bu�er; it is consumed by setting the bu�er to 0.40



A signal is therefore present if it has been emitted and not yet consumed.In the tagged signal model, this means that the input signal of the connectionhas had an event with a tag larger than the largest tag of the output signal.The data may be written by a sender and read by a receiver. Reading andwriting is done on the data bu�er on the connection between the sender andthe receiver.A control signal carries only event information, i.e., it may only be emittedand detected/consumed and its value is irrelevant. A data signal carries onlydata information, i.e., it may only be read and written.An input signal can only be detected/consumed and read (depending on itsstatus as a signal, control signal, or data signal). A (possibly incomplete) setof values for the input signals of a CFSM is termed input assignment, a setof input values read by a CFSM at a particular time is termed captured inputassignment, and an input assignment with at least one present event is termedinput stimulus.An output signal can only be emitted and written. A (possibly incomplete)set of values for the outputs of a CFSM is termed output reaction.A state signal is an internal input/output data signal; it may be written andsubsequently read by its CFSM. A state is a set of values for the state signals.A set of states may be given by a subset of state values. States are implicitlyrepresented by the state signals and hence may be encoded or symbolic. Thestate signals could be considered part of the input and output signal sets, and itis only for the exposition that they are separated: discussion of scheduling andrunnable CFSMs is facilitated by identifying an input assignment that triggersthe CFSM separately from its state.Where the type is unimportant, we may refer to any of the basic signal types(signal, control signal, data signal, input signal, output signal, state signal)simply as signal.As will be seen in the behavior sections to follow, CFSMs initiate commu-nication through events. The input events of a CFSM determine when it mayreact. That is, the model forbids a CFSM to react unless it has at least oneinput event present (except for the initial reaction, described in the functionalbehavior section). Without this restriction, a global clock would be requiredto execute the CFSMs at regular intervals, and this clock would in fact be atriggering input for all CFSMs. This would clearly imply a more costly imple-mentation. A CFSM can trigger itself by emitting an output and detecting thatsame signal in the next execution. A CFSM with at least one present inputevent is termed runnable.For CFSM A to send a signal S to B, A writes the data of S and thenemits its event. This order ensures that the data is ready when the event iscommunicated. B is scheduled, sees the event (which is its stimulus), reads thecorresponding data, and reacts. Pure data signals will only be read and writtenby a CFSM that has already been triggered by the presence of another inputevent. 41



4.3.2 CFSM NetworksA net is a set of connections on the same output signal, i.e., it is associated witha single sender and at least one receiver (in the TSM, it is a set of connectionprocesses with the same input). There is an input bu�er (TSM connection) foreach receiver on a net, hence the communication mechanism is multi-cast: asender communicates a signal to several receivers with a single emission, andeach receiver has a private copy of the communicated signal. Each CFSM canthus independently detect/consume and read its inputs.A network is a set of CFSMs and nets. The behavior of the network (andeven of a single CFSM) depends on both the individual behavior, and thatof the global system. In the mathematical model, the system is composed ofCFSMs and a scheduling mechanism coordinating them. It can be implementedas: � a set of CFSMs in software (e.g., C), a compiler, an operating system,and a microprocessor (the software domain),� a set ofCFSMs in hardware (e.g., gates mapped to an FPGA), a hardwareinitialization scheme, and a clocking scheme (the hardware domain), and� the interface between them (e.g., a polling or interrupt scheme to passevents from hardware CFSMs to software ones via the RTOS, a memory-mapped scheme to pass events from software to hardware).Thus the scheduling mechanism in the model may take several forms in theimplementation: a simple RTOS scheduler for software on a single processorand concurrent execution for hardware, or a set of RTOSs on a heterogeneousmulti-processor for software and a set of scheduling FSMs for hardware.The CFSM model does not require any coordination between these sched-ulers in order to guarantee correct behavior, apart from an implementation ofthe event delivery mechanism (the interface). Explicit or implicit coordination isrequired only in order to satisfy timing constraints, which in turn may guaranteean ordering of events and/or a particular functional behavior.4.4 Timing BehaviorIn the CFSMmodel, a global \scheduler" controls the interaction of the CFSMs,and invokes each appropriately during execution of the design. The system out-put will depend on the functional and timing behavior of the individualCFSMs,and the functional and timing behavior of their ensemble.The scheduler operates by continually deciding which CFSMs can be run,and calling them to be executed. Each CFSM is either idle (waiting for in-put events or waiting to be run by the scheduler), or executing (generating asingle reaction). During an execution, a CFSM reads its inputs, performs acomputation, and possibly changes state and writes its outputs.42



The mathematical model places few restrictions on the timing of an execu-tion. Each CFSM execution can be associated with a single transition point,ti, in time. The model dictates that it is at this point that the CFSM beginsreacting: reading inputs, computing, changing state, and writing outputs. Sincethe reaction time is unbounded, one cannot say exactly at which time a partic-ular input (event or data) is read, at which time that input had previously beenwritten, or at which time a particular output is written. There are, however,some restrictions. For each execution, each input signal is read at most once,each input event is cleared at every execution, and there is a partial order on thereading and writing of signals. Since the data value of a signal (with an eventand data part) only has meaning when that signal is present, the model dictatesthat the event is read before the data. Similarly for the outputs, the data iswritten before the event, so that it is valid at the time the event is emitted.This means that for transition point ti,� an input may be read at any time between ti and ti+1 (but not later,because that would correspond to transition point ti+1),� the event that is read may have occurred at any time between ti�1 andti+1,� the data that is read may have been written at any time between t0 andti+1, and� the outputs are written at some time between ti and ti+1.After reading an input, its value may be changed by the sender before ti+1, butthe receiver reacts to the captured input and the new value is not read until thenext reaction.This 
exibility in timing can have non-intuitive behavior.Example: Event/data separation. Suppose a sender S writes data valuev1 at t1 for signal X and emits it at t2. Let this emission be e1, so the pair is(e1, v1). This is illustrated in Figure 7. A receiver R at ti sometime later readsthe event, but takes longer than expected to read its corresponding value v1. Scommunicates X again: value v2 then emission of X, for pair (e2, v2). R nowreads the value for X, and reads v2. The captured input for the R is thus thepair (e1, v2), which was not the pair intended by S. Furthermore, data v1 hasbeen lost forever, even though it was sent with an event to signal its presence.Problems such as this can easily be resolved by requiring the appropriatelevel of atomicity in the model and in the implementation, i.e., by restrictingsome parts of the communication to take place simultaneously and instanta-neously { as a single entity. In the CFSM model, the requirement is simplythat the input events are read atomically. At each ti, a CFSM reads its in-put events without interruption, and without those events being overwrittenby the sending CFSMs. This is easily implemented in software by reading abit-vector of input events in one instruction, and in hardware by clocking all43
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Read eventstit2ti�1 t3 t4 ti+1t1Figure 7: Event/data separation.CFSMs together, with a separate read phase and a compute/write phase (perclock cycle).Atomicity of input event reading implies an implementation that retainsmuch of the 
exibility required for e�ciency, while mitigating the worst of thesynchronicity problems. It should be clear that allowing input event and datareading and output event and data writing to happen at completely arbitrarytimes leads to behavior with very di�cult to predict and prescribe results. Giventhe event-based communication of CFSMs, atomicity of input event reading is anatural means of ensuring some predictability: a receiver CFSM is guaranteedto see a snapshot of input events that are simultaneously present at some pointin real time. Additional constraints, if necessary, can be imposed to ensure thatthe values subsequently read are meaningful. These constraints will vary con-siderably depending on the implementation chosen and the design constraints.Example: no atomicity of data reading. Consider a sender S and tworeceivers R1 and R2, as illustrated in �gure 8. S is sending the value of signalsX and Y. Both X and Y are currently 4 and are changing to 5. R1 reads Xat t1 and Y at t6. R2 reads X at t3 and Y at t4. S changes X at t2 and Yat t5. R1 therefore captures X = 4 and Y = 5 while R2 captures X = 5and Y = 4. Not only do they capture di�erent input assignments, but R1captures a set of values that never occurs simultaneously. Note that if X andY were (control/data) signals, they would be sent with events as well, and theywould both be changed to 5 before the events were emitted and hence beforethe receivers can read them. However, those new values can be overwritten bythe sender if the receiver doesn't read fast enough, leading to the separation ofthe event/data pair as illustrated in the previous example.Example: atomicity of event reading. Now consider a system with a44
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t1 t2 t3 t5t4 t6Figure 8: No atomicity of data value reading.sender S and three receivers R1, R2, and R3 as illustrated in Figure 9. S emitscontrol signals X and Y at times t2 and t4. R1 reads at t1 and sees both absent.R2 reads at t3 and sees only X present. R3 reads at t5 and sees both X and Ypresent. Though each has a di�erent captured input assignment, each sees aninput assignment that occurs at some point in real time.4.5 Functional BehaviorThe functional behavior of a CFSM at each execution is determined by thespeci�ed transition relation (TR). This relation is a set of tuples (input set,previous state, output set, next state) where input set is an input as-signment, previous state is a state, output set is an output assignment, andnext state the next state. Each tuple of the TR represents a speci�ed tran-sition of the machine, and the set of tuples is the speci�ed behavior of themachine. A transition in which the input set includes an input stimulus istermed a valid transition.At each execution, a CFSM1. Reads an input assignment.2. Looks for a transition Transition = ( input set, previous state, out-put set next state) such that the read input includes input set and thepresent state of the CFSM matches present state (hence the absence ofan input from input set means \don't care about that input").45
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t2 t3 t5t4t1Figure 9: Atomicity of event reading.3. If Transition is found, it is executed by(a) consuming the inputs (setting input event bu�ers to 0)(b) making the state transition to next state(c) writing the new output events in output set (hence absence fromoutput set means \don't emit/don't modify").4. If Transition is not found, the CFSM consumes no inputs, makes nostate change, and writes no outputs.The last case, in which no matching transition is found, is known as theempty execution. If this can happen for some input stimulus, the transition re-lation is incomplete; otherwise it is complete. For software, this is precisely thesame behavior that would be produced if this CFSM had not been scheduledby the RTOS. If several transitions match, the CFSM is non-deterministic andthe execution can perform any of the matching transitions. For the implementa-tion, all CFSMs must be deterministic in order to simulate and synthesize thebehavior. Non-determinism can be used at the initial stages of a design in orderto model partial speci�cations, later to be re�ned into deterministic CFSMs.A trivial transition is one in which no output events are emitted, no outputvalues are changed, and no state change is e�ected, but inputs are consumed. It46



e�ectively discards the current input assignment and waits for a new one. Trivialtransitions are speci�ed in the TR like any other transition, with output setempty (or leaving state variables unchanged).Each state variable may have a designated set of reset values (or initialvalues) that are speci�ed with the transition relation. A set of reset values, onefor each state variable, is a reset state (or initial state). If there are severalreset values for a state variable, there are several reset states. This representsa non-deterministic starting condition which must be resolved before synthesisor simulation can be performed.The initial transition(s) is a special transition(s) where the present statepart is equal to the reset state. Moreover, this transition is allowed to not haveany input events present in the input assignment. (Recall that for all othertransitions, at least one input event is required to trigger the CFSM.) Theinitial transition(s) may be speci�ed for a CFSM, but is not required. Theremay be several possible initial transitions depending on the initial state(s) andthe values of the corresponding input assignments. If there is non-determinism,again, it must be resolved before synthesis and simulation.4.6 CFSMs and process networksWe can now classify CFSMs along the same lines that were used for the otherformal models.CFSMs are an asynchronous Extended FSM model, that is di�erent fromCSP and CCS because communication is not via rendezvous but via bounded(1-deep) non-blocking bu�ers, and di�erent from SDL since queues are boundedand the process network topology is �xed.Moreover, each CFSM can be modeled with an LTS in which each edge labelcan involve presence and absence tests of several signals, while in CSP, CCS,and SDL each label consists of a single symbol.Signals are distinguished among inputs and outputs. Transitions, unlikedata
ow networks, can be conditioned to the absence of an event over a signal.Hence CFSMs are not continuous in Kahn's sense [35] (arrival of two events indi�erent orders may change the behavior).The semantics of a CFSM network is de�ned based on a global explicit notionof time (imposing a total ordering of events). Thus CFSMs can be formallyconsidered as synchronous with relaxed timing . I.e., while a global consistentstate of the signals is required in order to perform a transition, no relationshipis required between the tags of input events involved in a given transition, norbetween those of its output events. There is only a partial order relationshipbetween input and output events of the transition (inputs must have tags smallerthan outputs).Finite bu�ering without blocking write implies, as mentioned above, thatevents can be overwritten, if the sending end is faster than the receiving end.47
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CFigure 10: Example of CFSM network.This sort of \deadline violation" in the CFSM context may or may not be aproblem, depending both on the application and on the type of event.The designer can make sure that \critical" events are never lost:� either by providing an explicit handshaking mechanism, built by means ofpairs or sets of signals, between the CFSMs,� or by using scheduling techniques that ensure that no such loss can everoccur [5].4.7 Examples of CFSM behaviorsIn this sections we provide a few examples of what it means to specify a \be-havior" with a relaxed timing model such as CFSMs, and we discuss the notionof behavior equivalence classes.Consider a simple case of three CFSMs as shown in �gure 10. These CFSMsspecify an \almost data
ow" behavior. CFSMs A and B take the same inputstream i, and perform two di�erent kinds of (unimportant) processing on it, byproducing an output event for every input event. CFSM C takes an event fromeach input i1 and i2 and produces� either an event on its o output if there is no error (e.g., its inputs arewithin a speci�ed range)� or an event on its err output, if some problem in the input stream or theCFSM state is detected.The err signal causes A and B to perform some recovery action (e.g., realigntheir state variables).The intuitive behavior speci�ed by these three CFSMs is, in the designer'seyes, the same regardless of the scheduling in time of CFSM transitions, as longas: 48



1. no events are lost (they are all \critical" in this case), and2. (possibly) some latency constraint is satis�ed (e.g., o maybe needed earlierthan the next external input arrival).This means that, given the choice of possible timed executions of theseCFSMs, they are partitioned into a set of equivalence classes. Let us con-sider, for the sake of simplicity, only reaction times and no other schedulingconstraints (each CFSM is allocated its own hardware resource or processor).Let us assume that every CFSM has the same reaction time of nr time units ifthere are no errors, and of 2nr in case of errors (C when it emits err , A and Bwhen they detect err). Let us also assume that input events arrive at a regularrate of ni time units, and that there are only \no-missed-event" constraints andno other no latency constraints.In this case, we can consider the following equivalence classes with respectto the above mentioned intuitive behavior:1. Zero-delay executions: nr = 0. These are logically inconsistent (non-causal in the Esterel terminology [11]), since if C detects an error, A andB should instantaneously react and produce di�erent outputs (conceivablywithout the error conditions). This is clearly absurd.2. Executions in which the execution delay of A, B and C is larger than theinter-arrival time of inputs: ni < nr. These executions clearly do notsatisfy the intuitive behavior requirements listed above.3. Executions in which the delay of A, B and C is smaller than the inter-arrival times of external inputs, but larger than half of that: ni=2 < nr �ni. These executions handle correctly the normal 
ow of data, but \miss"an input in the case of error. This happens because the execution time ofC is too long and causes it to miss the �rst input events after the error.Also A and B are too slow and miss an input event when recovering.4. Executions in which the delay of A, B and C is smaller than half of theinter-arrival times of external inputs: nr � ni=2. In this case, no event islost.If errors are infrequent enough, the designer may want to consider the twolast classes to be equally good, and accept the cheapest one. On the otherhand, if errors are frequent, or if every single input really matters (there iszero redundancy in the input stream), only the last, conceivably most expensiveequivalence class is acceptable.Note how the notion of equivalence classes can be applied to analyze alsoexecutions in which a scheduler coordinates CFSMs by enforcing mutual ex-clusion constraints (this is an appropriate model, e.g., for a single-processorimplementation). In that case event loss can occur due to49



� Timing constraints. E.g., ni < 3nr would imply that an execution fallsinto the second class above, and misses deadlines due to excessive processoroccupation.� \Incorrect" scheduling. E.g. if 3nr � ni < 4nr and the scheduler activatesthe CFSMs in the �xed order ACBC. In that case, the �rst activation ofC is valid, since it has an input stimulus, but redundant, since it alwaysresults in an empty execution (assumed with the same nr delay), andcauses the system to miss a deadline even during \normal operation". Onthe other hand, another valid schedule ABC will not miss deadlines innormal operation.Obviously this de�nition of \equivalence classes" between behaviors of aCFSM network is very application-dependent, and as such di�cult to formalize.Here we can suggest only a few criteria that could be used for this purpose, suchas:1. Equality between streams of values produced at some output by two di�er-ent timed behaviors of the same network, given the same stream of valueson the inputs (\data
ow" equivalence).2. Compatibility with a given partial ordering between events (\Petri net"equivalence).3. No missed critical events, possibly quali�ed as, e.g., \no missed eventsexcept for the �rst n events after abnormal event x" (\quasi-data
ow"equivalence).4. Equality of input-output sequences, possibly modulo reordering of \con-current events", with respect to a completely deterministic reference spec-i�cation (\golden model" equivalence).5. Equality of input-output sequences modulo �ltering by some testbed enti-ties that model the external, physical system constraints (\�ltered" equiv-alence).While we are still far from a formalization of these criteria, we believe thatthe richness of the CFSM model stems, among other factors, from the abilityto exploit all these sorts of equivalence while, for example, data
ow networkscan exploit only one (data
ow equivalence). We will further elaborate on thisin the next section.5 ConclusionsThe relative advantages and disadvantages of the various MOCs have been de-scribed in the previous sections. We are still far from having a single agreed-upon standard MOC that is suitable for all types of embedded system designs.50



Some authors ([17]) advocate heterogeneity at the MOC level as an essentialrequirement of embedded systems. However, based on the discussions above,we can identify a new MOC that is expressive enough to capture most practicalembedded systems, and formal to permit e�cient veri�cation and synthesis ofsome special cases.This model is that of CFSMs with initially unbounded FIFO bu�ers. Boundson bu�ers (essential for implementability) are imposed by re�nement , exactlyas timing information is re�ned in the original CFSM model. The motivationsfor this proposal are as follows.1. Local synchrony: concentrating the control inside relatively large atomicsynchronous entities helps the designer to better understand the overallcoordination. Models such as Colored Petri Nets, which view control at a�ner level of granularity, are di�cult to use for large realistic designs.2. Global asynchrony: breaking synchronicity helps resolving compositionproblems and mapping to a heterogeneous architecture. Synchronousmodels, as argued previously, cannot handle multi-rate e�ciently, espe-cially when the rates of di�erent signals are totally uncorrelated. This isessentially due to the need to always consider all signals, including thosethat are not present in most clock cycles.3. Unbounded bu�ers: leaving bu�ers unbounded at the outset o�ers oppor-tunities to perform static and quasi-static scheduling whenever possible([40, 18, 47]). As a result, some bu�ers become statically sized, as deter-mined by the static schedule of reader and writer processes. The designersizes the remaining bu�ers to ensure implementability, and to use simu-lation, formal veri�cation or Real-time scheduling [4, 5] to validate thedesign in presence of �nite FIFO bu�ers.The use of lossy bu�ers (i.e., with non-blocking write) is somewhat arguable,because� there are cases in which loss is essential (in general, any time there aretight timing constraints, that make some of the signals irrelevant undersome conditions, e.g., an emergency), and� there are cases in which loss is problematic (in general, any time one wouldlike to model data
ow computations or any other blocking communicationmechanism, such as, e.g., Remote Procedure Call).Our choice is to keep bu�ers lossy in the formal model , and give the designertools to verify a priori if loss can occur , as well as to enforce no loss for somebu�ers in the implementation. In general this can be enforced at an acceptablecost only under some speci�c conditions, e.g., that the lossless bu�er must belocal to a processor, or that the communicating processes must be staticallyscheduled with respect to each other. 51



The resulting model combines interesting properties of the main MOCs seenabove, while still keeping a strong link to veri�ability and implementability. Inparticular:� At the initial, untimed level it describes a partial ordering between sig-nal tags, and hence captures a whole class of possible implementationson a variety of architectural options. These options include software onmultiple processors, pipelined hardware, and so on.� It keeps computation (in the FSM), communication (in the bu�ers) andtiming (in the architectural mapping) as separate as possible.� After architectural mapping, it becomes essentially a Discrete Event model,and thus lends itself to performance and power consumption analysis, inorder to evaluate architectural trade-o�s.� A subset, such that CFSMs have a deterministic behavior (i.e., behave asSDF actors) can be statically scheduled as SDF [40]. A larger subset canalso be quasi-statically scheduled (thus performing static bu�er sizing) bymeans of a mapping to Petri Nets [47].While the opportunities for system-level optimization o�ered by this choicestill need to be fully explored, we can already envision a design 
ow in whichthe designer uses multiple languages, depending on the domain of applicationand other requirements (e.g., tool availability, company policy or personal pref-erence), that all have a semantics in terms of CFSMs. Then multiple schedul-ing, allocation, partitioning, hardware and software synthesis algorithms canbe applied on the CFSM network, possibly depending on the identi�cation ofspecial cases that admit an especially e�cient implementation. Formal veri�ca-tion and simulation can be used throughout the design process, thanks to there�nement-based design applied to a formal model. Re�nement occurs both atthe functional level, implementingCFSMs ([6]), and at the communication level,implementing communication ([56]) and scheduling ([6, 47]). This scheme hasbeen adopted in the POLIS system and has been also followed by a commercialproduct of the Alta Group of Cadence Design Systems, Inc.Acknowledgments We thank Prof. Ed Lee for the work that led to the devel-opment of the Tagged Signal Model that has been used throughout this paper,and for his many contributions to the �eld of system design for many years.Part of this paper has been adapted from an earlier version co-authored withProf. Lee and Dr. Stephen Edwards. We wish to thank the Polis team andthe Felix team of Cadence Design Systems, Inc., who shared the discoveriesand developments which lead to this work. In particular, we wish to thankDr. Jim Rowson for the key role he has played in putting together the designmethodology and the architecture in the Cadence work, and Dr. Felice Balarin52
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