
Latency Minimization for Synchronous Data Flow Graphs∗

A.H. Ghamarian, S. Stuijk, T. Basten, M.C.W. Geilen and B.D. Theelen
Eindhoven University of Technology, Electronic Systems Group

a.h.ghamarian@tue.nl

Abstract. Synchronous Data Flow Graphs (SDFGs) are a very
useful means for modeling and analyzing streaming applications.
Some performance indicators, such as throughput, have been stud-
ied before. Although throughput is a very useful performance in-
dicator for concurrent real-time applications, another important
metric is latency. Especially for applications such as video con-
ferencing, telephony and games, latency beyond a certain limit
cannot be tolerated. This paper proposes an algorithm to de-
termine the minimal achievable latency, providing an execution
scheme for executing an SDFG with this latency. In addition, a
heuristic is proposed for optimizing latency under a throughput
constraint. Experimental results show that latency computations
are efficient despite the theoretical complexity of the problem. Sub-
stantial latency improvements are obtained, of 24-54% on average
for a synthetic benchmark of 900 models, and up to 37% for a
benchmark of six real DSP and multimedia models. The heuristic
for minimizing latency under a throughput constraint gives opti-
mal latency and throughput results under a constraint of maximal
throughput for all DSP and multimedia models, and for over 95%
of the synthetic models.

1 Introduction and Related Work
Synchronous Data Flow Graphs (SDFGs, [11, 10]) have
been and are being used widely in modeling data flow appli-
cations, both sequential DSP applications [2, 14] and con-
current multimedia applications realized on multiprocessor
systems-on-chip [12]. The main goal is to provide pre-
dictable performance for those applications. Among the
performance indicators, throughput is a prominent one; it
has been extensively studied in the literature on SDFGs
and related models of computation [3, 4, 6, 8, 15, 18].
Other performance indicators are storage requirements and
latency. Buffer minimisation for SDFGs has also been stud-
ied [5, 15], but latency has so far only been studied for the
subclass homogeneous SDFGs [14]. Latency is important
in interactive applications such as video conferencing, tele-
phony and games, where latency beyond a certain bound
becomes annoying to the users. It is in principle possible
to compute latency metrics for an SDFG via a conversion
to a homogeneous SDFG, which is always possible [14].
However, this conversion might lead to an exponential in-
crease in the number of nodes in the graph, which makes
it prohibitively expensive in any SDFG-based design flow
aiming at optimizing and predicting performance metrics
such as throughput, buffer sizes, and latency [6, 15]. In
this paper, we present latency minimization techniques that
work directly on SDFGs. One technique can be used to

∗This work was supported by the Dutch Science Foundation NWO,
project 612.064.206, PROMES.

compute the minimal achievable latency for an SDFG, and
it provides an execution scheme that gives the minimal la-
tency. Another, heuristic technique optimizes latency under
a throughput constraint. Although it does not always result
in the minimal achievable latency, it does give optimal re-
sults for all our experiments on six real DSP and multimedia
models, and for over 95% of our synthetic models.

The nodes of an SDFG, called actors, communicate with
tokens sent over the edges, called channels. Actors typically
model application tasks and edges model data or control de-
pendencies. Each time an SDFG actor fires (executes), it
consumes a fixed amount of tokens, units of control or data,
(in a fifo manner) from its input edges and produces a fixed
amount of tokens on its output edges. These amounts are
called the rates. The production rate of tokens on a chan-
nel may differ from the consumption rate on the channel.
Therefore, SDFGs are well suited for modeling multi-rate
systems. A homogeneous SDFG is an SDFG with all rates
equal to one, i.e., it models a single-rate system. If SDFGs
are used to analyse the timing behavior of an application,
actors are typically annotated with an execution time.

Usually, the dependencies in an SDFG allow some free-
dom in the execution order of actors. This order deter-
mines performance properties like throughput, storage re-
quirements, and latency. An important strength of SDFGs
is that they are statically analyzable. This means that the ex-
ecution order of actors, both for single- and multi-processor
implementations, can be fixed at design time via a schedul-
ing scheme, targeting for example minimal buffer sizes or
optimal throughput. The class of scheduling schemes pro-
viding a static actor execution order is called the class of
static order schedulers. An overview of SDFG scheduling
techniques can be found in [14].

In this paper, we present a technique to compute the min-
imal achievable latency between the executions of any two
actors in an SDFG. We also present an execution scheme
that defines a class of static order schedules that provide
minimal latency. Since this scheme may negatively affect
throughput, we propose a heuristic to minimize latency un-
der a throughput constraint. We evaluate our schemes in
a single-processor context and in a multi-processor con-
text with sufficiently many resources to maximally exploit
parallelism, for various buffering schemes. In the multi-
processor context, we compare our execution schemes with
static order schedules in which all actors fire as soon as they
are enabled, called self-timed execution, which is known to
provide maximal throughput [14]. In many cases, substan-
tial gains in latency are possible. It further turns out that for
all real models and for most synthetic cases minimal latency

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:18 from IEEE Xplore. Restrictions apply.

����� � ���

� �	�

 ���� �
�

�
�

� �

�
�

�
�� ���� � �� ��� �

���
�

Figure 1. An example SDFG.

and maximal throughput can be achieved simultaneously.
We also prove that simultaneously optimal throughput and
latency is not achievable in all cases.

The next section provides basic definitions for SDFGs.
Section 3 defines a notion of latency for SDFGs, general-
izing a definition of latency for homogeneous SDFGs [14].
Section 4 introduces an execution scheme that minimizes
latency, while Section 5 presents latency-optimal static or-
der scheduling policies for single-processor systems and for
a multi-processor context with sufficient resources to ex-
ploit maximal parallelism. Section 6 gives our technique
for minimizing latency under a throughput constraint. It
also disproves the existence of a general scheduling scheme
for achieving simultaneous optimal throughput and latency
in all cases by providing a counter example. In Section 7,
we experimentally evaluate our techniques. Section 8 con-
cludes. Proofs are omitted and can be found in [7].

2 Synchronous Data Flow Graphs
Let IN0 = {0, 1, . . .} (and IN = IN0\{0}) denote the natu-
ral numbers. An SDFG G is a pair (A, C) where A is a set
of actors, and C ⊆ A2×IN2 is a set of channels. Each chan-
nel (s, d, p, c) ∈ C denotes that actor s communicates with
actor d where p and c are production and consumption rates,
respectively. Channels connecting actor s to some other ac-
tor d are called output channels of s and input channels of d.
An SDFG where all rates are one is called a homogeneous
SDFG (HSDFG).

A (channel) state S of G is a mapping S : C 7→ IN 0 that
associates to each channel the number of available tokens
on that channel. Each SDFG has an initial state denoted
by S0, providing the number of initially available tokens on
each channel.

To enable performance analysis, an SDFG is anno-
tated with timing information. A timed SDFG is a triple
(A, C, E), with (A, C) an SDFG and E : A 7→ IN 0 an exe-
cution time mapping that associates to each actor a ∈ A, the
amount of time E(a) that it needs for firing, the execution
time of a.

Figure 1 shows an example of an SDFG. It has six actors
src, dst , a, b, j, k, denoted by circles containing the actor
name and its execution time. Arcs represent channels, and
are annotated with production and consumption rates. To-
kens are depicted as black dots.

The execution of an SDFG is defined based on actor fir-
ings, which may change the state of the SDFG, and hence
determine the (reachable) state space of the SDFG. An actor
a ∈ A of SDFG (A, C) is enabled in state Si if Si contains
at least c tokens for each input channel (s, a, p, c) of a. An

����������� ��� ��� ������� ��� �� �� ��

! � ! � "#�$� % "#� &'�(�)�*�+ ��� *�,�- ��� . �0/
! � ! �1�

&#�1�

"'� "'�0/
)�*�+ ���

������� ������� ��� ��� ��� ��� �� �� /�

. ��/! �1�

Figure 2. A timed execution of the example SDFG.

actor can fire when it is enabled. Firing a changes state
Si into Si+1, consuming c tokens from each input channel
(s, a, p, c) and producing p tokens on each output channel
(a, d, p, c).

A timed state of a timed SDFG G = (A, C, E) is a pair
(S, τ), with S a channel state and τ the accumulated time.
The initial timed state of G is (S0, 0). A timed execution of
G is a (finite or infinite) sequence of timed states (S0, τ0),
(S1, τ1), . . . where τi+1 ≥ τi. Each two consecutive timed
states correspond to the firing of an actor a that started its
firing in τi+1 − E(a) and finishes its firing in τi+1. An
execution in which all actors fire as soon as they are enabled
is called a self-timed execution. Actor firings take time in a
timed SDFG which means that they are not atomic. We
assume, conservatively, that changes in channel states due
to actor firings happen at the end of those firings.

Figure 2 shows a timed execution of the example of Fig-
ure 1. A state consists of a pair describing the token dis-
tribution over the channels and the accumulated time. The
token distribution is given as a tuple, stating the number of
tokens per channel, when going through the graph of Fig-
ure 1 from left to right and from bottom to top. For clarity,
only two states are made explicit. The steps in the execu-
tion are labeled with the actor names of active firings, plus
the progress of time during that step. For example, in the
first step of the execution, actor j fires two times and actor
k once; time progresses with one time unit. Since j has an
execution time of 1, its firings end upon completion of this
step. The firing of k continues to be active in the next step,
which is denoted using a tilde in front of the actor name.
It can be observed that the behavior of the example SDFG
consists of a transient phase and a periodic phase. It turns
out below that the shown execution minimizes the latency
between firings of actors src and dst (and hence between
firings of a and b).

Only SDFGs satisfying the structural property of con-
sistency are of interest. Inconsistent graphs either dead-
lock or need unbounded channel capacities. Consistency
can be verified efficiently [11, 1]. A (timed) SDFG G =
(A, C(, E)) is consistent if and only if it has a non-trivial
repetition vector. A repetition vector for G is a function
γ : A → IN0 such that for every channel (s, d, p, c) ∈ C,
the so-called balance equation pγ(s) = cγ(d) holds. A rep-
etition vector is non-trivial iff it has no zero entries. The
smallest non-trivial repetition vector of a consistent SDFG
is referred to as the repetition vector. An iteration is a set
of actor firings with as many firings as the repetition vector
entry for each actor. The repetition vector γ of the running

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:18 from IEEE Xplore. Restrictions apply.

example equals (src, a, j, k, b, dst) = (1, 2, 3, 2, 1, 1), and
the period of the execution shown in Figure 2 consists of
precisely one iteration.

3 Latency
This section formally defines a notion of latency for timed
SDFGs. Generally speaking, latency is the time delay be-
tween the moment that a stimulus occurs and the moment
that its effect begins or ends. In timed SDFGs, stimuli are
actor firings and their effects are the consumptions of pro-
duced tokens by some other actors. To define latency, first,
we need to define the following.

Definition 1 [Corresponding Firing] Let a1, a2, . . . , ak ∈
A be actors of a timed SDFG (A, C, E) on a path
a1, a2, . . . , ak connecting a1 to ak. We say that the j1-th
firing of a1 corresponds to the jk-th firing of ak iff j2 is
the first firing of a2 which consumes at least one token pro-
duced by the j1-th firing of a1, j3 is the first firing of a3

which uses at least one token produced by the j2-th firing of
a2, and so on. We denote the firing of ak corresponding to
the j1-th firing of a1 by cf (a1, j1, ak).
Note that in general the time that tokens need to travel from
some source actor to some destination actor may differ in
different firings of the source actor. In an HSDFG, where
all production and consumption rates are one, there is a one-
to-one correspondence between actor firings of some source
and some destination. Because of differing firing rates, this
correspondence does not exist, in general, between actors in
an SDFG. In order to arrive at a proper definition of latency
for SDFGs, we add an explicit source actor to the source
of our latency measurement and a destination actor to the
intended destination, each of which fires by construction
exactly once in every iteration of the graph. If an SDFG
already has meaningful input and output actors with rep-
etition vector entries of one, these actors can function as
source and destination and no actors need to be added.

Definition 2 [Latency Graph] Let a, b ∈ A be two ac-
tors of a timed SDFG (A, C, E) with repetition vector
γ, and let src, dst /∈ A be two new actors. We de-
fine the latency graph for actors a and b as GL(a,b) =
(AL, CL, EL), where AL = A ∪ {src, dst}, CL =
C ∪ {(src, a, γ(a), 1), (b, dst , 1, γ(b))}, and EL = E ∪
{(src, 0), (dst , 0)}.
The latency between two actors is defined through the la-
tency of different firings of actors src and dst in the latency
graph. Note that src and dst have execution time 0, so that
their addition does not influence the timing behavior of the
graph. Observe that the example of Figure 1 shows in fact
the latency graph for actors a and b of the SDFG obtained
when omitting the src and dst actors. The following propo-
sition shows that there is a one-to-one correspondence be-
tween src and dst firings (where dst may have some initial
firings without corresponding src firing)

Proposition 3 Let GL(a,b) be some latency graph. The k-
th firing of source actor src for arbitrary k, corresponds to

the (k + δ)-th firing of dst , where δ is a constant num-
ber, i.e., there is a δ ∈ IN 0, such that for all k ∈ IN ,
cf (src, k, dst) = k + δ.

In practice, we are mostly interested in the latency of actors
which are considered the input and the output of the system,
and these actors often have a repetition vector entry of one
already. Furthermore, usually, only executions of complete
iterations of graphs are meaningful. Therefore, in case ac-
tors have repetition vector entries different from one, we do
not look at all firings of those actors. Instead, via the addi-
tion of the src and dst actors, the latency is defined on the
groups of firings of each actor that contain as many firings
of the actors as their repetition vector entries.

In the following, F σ
a,k represents the finishing time of the

k-th firing of an actor a ∈ A in execution σ. Furthermore,
due to resource constraints, such as for example a limited
number of processing units, some executions might not be
feasible. The set of feasible executions is denoted FE .

Definition 4 [Latency] Let a, b ∈ A be two actors of a
timed SDFG (A, C, E) with latency graph GL(a,b). The k-
th latency of a and b for an execution σ is defined as the time
delay between the k-th firing of src and its corresponding
firing of dst in σ, and it is denoted by Lσ

k (a, b):

Lσ
k(a, b) = F σ

dst,cf (src,k,dst) − F σ
src,k.

The latency of actors a and b in execution σ, Lσ(a, b), is de-
fined as the maximum k-th latency of a and b for all firings
of a:

Lσ(a, b) = max
k∈N

Lσ
k(a, b).

The minimal latency of actors a and b, Lmin(a, b), is de-
fined as the minimum over all feasible executions in FE :

Lmin(a, b) = min
σ∈FE

Lσ(a, b).

Note that this definition implies that latency is measured
from the start time of a firing of actor a (or group of fir-
ings), intuitively corresponding to the consumption of some
input, to the finishing time of the corresponding (group of)
firing(s) of actor b, intuitively corresponding to the produc-
tion of output directly related to the consumed input. The
current definition is consistent with and generalizes the def-
inition of latency given for HSDFGs in [14]. The latency
between actors a and b for the execution of Figure 2 of the
running example equals 7, being the total delay between the
firings of actors src and dst in any period.

4 Minimum Latency Executions
In [6], a technique to compute throughput of SDFGs based
on a state-space traversal is presented, showing that this can
be done very efficiently in practice, despite the potentially
exponential size of the state space. Therefore, in this sec-
tion, we introduce an execution scheme to determine the
minimal possible latency. As an immediate by-product, we
obtain a class of static order schedules that achieve mini-
mum latency. We restrict ourselves to strongly-connected

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:18 from IEEE Xplore. Restrictions apply.

graphs. In practice, this is not a restriction, because all SD-
FGs that can be executed within bounded memory can be
turned into strongly connected graphs by modeling channel
capacity constraints via backward channels [15].
Definition 5 [Minimum Latency Execution] Let GL(a,b) be
the latency graph of a strongly connected timed SDFG
G = (A, C, E) with actors a and b. A feasible execution
consisting of the repetition of the following four phases is
called a minimum latency execution.

Phase 1 Execute actors except src until src is the only en-
abled actor. (Note that src is always enabled because
it does not have any inputs.)

Phase 2 Fire src once.

Phase 3 Execute, without any unnecessary delays, the min-
imum set of required actor firings for enabling dst for
one firing.

Phase 4 Fire dst once.

Let Pn with n ∈ IN represent the n-th execution of the four
phases.
Figure 2 shows a minimum latency execution of the running
example. In Phases 1 and 3, execution is self-timed (see
Sec. 2). Note that the above execution scheme explicitly
schedules the src and dst actors, which is typically possi-
ble for DSP and multimedia applications. Also note that an
SDFG may exhibit more executions that realize minimum
latency than those defined in Def. 5. However, the defined
executions are guaranteed to have minimum latency.
Proposition 6 Let G = (A, C, E) be a timed SDFG with
GL(a,b) the latency graph for actors a and b in A. Any min-
imum latency execution of GL(a,b) has the following prop-
erties.

1. Pn equals one iteration for all n > 1 and the state
reached after Phase 1 is the same for all n ≥ 1.

2. The n-th firing of src and its corresponding firing
cf (src, n, dst) of dst occur in the same Pn.

3. The set of actor firings between any firing of src and
its corresponding firing of dst is the smallest possible
set among all executions.

Proposition 6 shows that the set of firings in between the
designated src and dst actors is minimal in any minimum
latency execution (prop. 3), that a minimum latency execu-
tion is periodic (prop. 1), and that the pairs of corresponding
src and dst firings that determine the latency always occur
in one period (prop. 2). The precise duration of the firings
between src and dst firings depends on the particular exe-
cution. The set of allowed executions may be constrained
by the available platform; a single-processor platform, for
example, does not allow concurrent execution. If Phase 3
firings are executed within platform constraints without un-
necessary delays, the following result follows immediately
from Proposition 6.

2�354 60798 3;: 7�<�= 3�: > 3 ?

@�3546�7A8 3�:

@�3B4 @�354 C 3;?

> 3 ?C 3;?

C 30? @	3#4
@D3#4

2�3B4

Figure 3. A single-processor minimum latency static or-
der schedule of the example SDFG.

Theorem 7 [Minimum Latency] Let σ be any minimum la-
tency execution of a latency graph GL(a,b) taken from the
set of feasible executions FE . Then, we have

Lσ(a, b) = Lmin(a, b).

Observe that Proposition 6 proves that a minimum latency
execution has a periodic phase consisting of one iteration of
the SDFG. An interesting consequence of this is that code
size is limited. In general, executions, such as for example
self-timed executions that optimize throughput, might have
a periodic phase consisting of multiple iterations [6], which
implies a larger code size.

Another interesting observation is that the periodic exe-
cution of an SDFG allows for a straightforward computation
of the throughput of an actor, i.e., the average number of fir-
ings of the actor per time unit. In the example execution of
Figure 2, the throughput of (output) actor b is 1/9.

5 Static Order Scheduling Policies
5.1 Single-Processor Scheduling

In the previous section, we have seen that any minimum
latency execution leads to a minimum latency between the
designated pair of actors. To create a static order schedule
for a single processor, it only remains to order the various
executions in Phases 1 and 3 of the scheme. If only con-
sidering latency, this order can be arbitrary, as long as it
satisfies the data and control dependencies specified by the
channels in the SDFG. One could decide to try to optimize
other constraints such as code size, using for example sin-
gle appearance scheduling techniques [2, 17]. With respect
to throughput, it can be observed that the order in which the
individual actors are scheduled in any feasible schedule of a
consistent SDFG on a single processor does not impact the
average throughput of the application as long as there are
no idle periods. Therefore, any minimum latency execution
combines minimum latency with the maximal throughput
that can be obtained on a single processor.

Figure 3 shows a single-processor static order schedule
for our running example that adheres to the minimum la-
tency execution scheme. The latency between actors a and
b is 8 and the throughput of b is 1/12. Both latency and
throughput are optimal for a single processor. It is inter-
esting to observe that the minimal achievable latency given
some arbitrary amount of processing resources is always be-
tween the minimal value as defined in Definition 4 under the
assumption that all executions are feasible, which gives the
limit imposed by the data and control dependencies in the
SDFG, and the minimum latency for a single processor.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:18 from IEEE Xplore. Restrictions apply.

EDF�EDF G�F1H I5F1H J�K�L F�M K�N�O F�M P F�Q
EDF EDF G�F1H
P F R5G'F$H

J0KSL F�M

EDF G'F1H R P F$H

R5G'F1H

I5F R5G'F1H

Figure 4. A minimum latency static order schedule using
the optimized execution scheme for unlimited resources.

5.2 Scheduling with Maximal Parallelism

An interesting case in a multi-processor context, is the case
that sufficiently many resources are available to maximally
exploit parallelism, or in other words, a context with un-
limited processing resources so that any enabled actor can
always make progress and all executions are feasible. As
mentioned, this allows to determine the minimum achiev-
able latency constrained only by the dependencies in the
SDFG. The result can be used as a feasibility check for the
application latency in a (multi-processor) design trajectory.

Observe that the crucial point in the 4-phase minimum
latency execution scheme is that the actor firings of Phase
1 cannot interfere with the firings in Phase 3. In a single-
processor context, this simply means that these two phases
have to be executed completely separately. However, in a
context with sufficient resources, the two phases can be al-
lowed to execute concurrently, in a self-timed manner (as
defined in Sec. 2), because firings of Phase 1 that are exe-
cuted concurrently with firings of Phase 3 do not interfere
with those Phase 3 firings. Furthermore, self-timed execu-
tion minimizes the execution time of the critical path of the
actor firings in Phase 3. Since also the firing of dst (Phase
4) can be integrated into this self-timed execution scheme,
these observations lead to the following execution scheme.

Definition 8 [Minimum Latency Execution Scheme with
Unlimited Resources]

Phase 1 Execute actors of the latency graph except src in a
self-timed manner until src is the only enabled actor.

Phase 2 Fire src once, and repeat.

This scheme suggests a concrete multi-processor static or-
der schedule that simply schedules the actor firings in the
two phases of this minimum latency execution scheme iter-
atively in a self-timed manner. Note that the first execution
of Phase 1 might be different from the other executions of
Phase 1, so that the resulting static order schedule still has
a transient part and a periodically repeated part. Figure 4
shows a latency-optimal static order schedule adhering to
this scheme. It uses the same conventions as those used for
Figure 2. The latency between actors a and b is 7, which is
of course the same latency as in the execution of Figure 2
which was already optimal given the dependencies inherent
in the SDFG. The advantage of the new execution scheme
shows in the improved throughput. The throughput of actor
b in the execution of Figure 4 is 1/7, whereas it is 1/9 in the
execution of Figure 2.

T�U V�W
X Y W Z ['W Z

V�W Z

\ T�]�W
X^_ ^ ^

^ ^
^`_

__

Figure 5. A counter example G for simultaneously opti-
mizing throughput and latency.

1 2 3 4 5 6 7 8
src dst c src dst src dst

a b a b c a b
a b a b a b

Figure 6. Minimal latency execution of G.

1 2 3 4 5 6 7 8

(1)
src src dst src dst

a b c a b c a b
a b a b

(2)
src dst c src dst src dst

a b a b c a b
a b a b a b

Figure 7. Maximal throughput execution of G.

6 Throughput Constraints
A multimedia application is often subject to multiple per-
formance constraints such as latency, throughput and mem-
ory usage. So far, we have seen several scheduling policies
for obtaining minimum latency. The single-processor pol-
icy achieves also the maximum throughput since it fully uti-
lizes the only processing unit. As mentioned, the schedule
could be further optimized for code size.

The maximum parallelism policy, as the other policies,
disallows overlap between multiple iterations of the SDFG.
This has a positive effect on code size, but it potentially
influences throughput negatively. By allowing simultane-
ous firings of the source actor in Phase 1 of Definition 8,
multiple iterations of the SDFG execution can be scheduled
in parallel, which may lead to a higher throughput [9, Sec.
3.4]. However, this might have a negative effect on latency.
In fact, we have the following proposition.

Proposition 9 [Latency and Throughput Optimization]
Given an arbitrary SDFG G; assume all executions are fea-
sible. G does not necessarily have an execution that simul-
taneously minimizes latency and maximizes throughput.

Figure 5 shows an example SDFG G for which it is not
possible to simultaneously optimize latency and through-
put. The minimal latency that can be obtained for G is 2.
The minimal latency execution obtained via Definition 8 is
shown in Figure 6 in a tabular form.

Figure 7 shows the self-timed execution of this example
(split in two parts, as explained later), with the exception
that actor src fires only when actor a needs tokens for firing.
Self-timed execution is known to give maximal achievable
throughput [14]. The firings of src in Figure 7 are scheduled
in such a way that they do not constrain throughput, so the
execution in Figure 7 achieves maximal throughput. For
example, the throughput of actor b is 4/3 firings per time
unit. We see that the latency of the execution is 5 (due to
the src and dst firings in part (1) of the execution).

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:18 from IEEE Xplore. Restrictions apply.

acb�d e f bg h i

j aDk

l
l l

l

l
ll

Figure 8. Modeling a throughput constraint.

The self-timed execution of G can be divided into two
parts. Suppose we color the first token on channel c-a and
the token on b-c blue and the second and third token on
channel c-a red. This coloring implies that firings of actor c
always consume and produce tokens of one color. In Figure
7, (1) and (2) correspond to actor firings involving blue and
red tokens on channels a-b, b-c, and c-a respectively.

The minimal latency execution of Figure 6 follows the
schedule of part (2) in Figure 7, i.e., all tokens are processed
according to the red scheme. Throughput of b in the execu-
tion of Figure 6 is 2/3 firings per time unit. This is the
maximum that can be achieved without executing multiple
iterations of G concurrently. (Note that an iteration of G
consists of one firing of src, dst , and c, and two firings of a
and b.) However, executing multiple iterations concurrently
implies that tokens are necessarily processed according to
the blue scheme, part (1), of Figure 7 (or an even slower
scheme). This implies that increasing throughput necessar-
ily leads to a higher latency, proving Proposition 9.

A consequence of Proposition 9 is that it is interesting
to explore throughput and latency trade-off under the max-
imal parallelism assumption. In the remainder of this sec-
tion, we propose a heuristic execution scheme that attempts
to minimize latency under a given throughput constraint.
That is, the algorithm tries to schedule the SDFG in such a
way that the throughput constraint is met, while latency is
minimized. If the SDFG is inherently too slow to meet the
throughput constraint, the algorithm returns a schedule with
maximum throughput and a minimized latency.

An important observation is that a throughput constraint
can be modeled in an SDFG, see Figure 8. Assume we want
to impose a throughput constraint of τ firings per time unit
on a designated actor b, with repetition vector entry γ(b).
This can be achieved by adding a fresh actor tc to the SDFG
with a self-loop containing one token to avoid simultaneous
firings of tc and with an execution time of τ−1. By adding
two channels between b and tc as shown in the figure, tc on
the long run prohibits b to fire more often than τ times per
time unit. Note that the rest of the SDFG might slow down b
even more than tc, so the realized throughput for b could be
lower than τ . The number of tokens in the tc-b channel de-
termines how much short-term deviation in b-s throughput
is allowed. This jitter may influence the minimal achiev-
able latency from any source actor to b. We have chosen
to initialize the channel with γ(b) tokens, which provides
maximal firing freedom for b within the scope of a single
iteration. One initial token would disallow any jitter, but
might effect latency negatively.

A throughput constraint can be added to the sink actor
of a pair of actors for which latency needs to be minimized.
This results in the throughput-constrained latency graph.

Definition 10 [Throughput-constrained Latency Graph]
Let GL(a,b) = (AL, CL, EL) be the latency graph of some
SDFG G = (A, C, E) with actors a, b ∈ A and with rep-
etition vector γ. Let τ be a throughput constraint on ac-
tor b, and let tc /∈ A be a new actor. We define the τ -
constrained latency graph for actors a and b as GL(a,b,τ) =
(Aτ , Cτ , Eτ), where Aτ = AL ∪ {tc}, Cτ = CL ∪
{c0 = (b, tc, 1, 1), c1 = (tc, b, 1, 1), c2 = (tc, tc, 1, 1)},
and Eτ = EL ∪ {(tc, τ−1)}. The initial state S0 for the
new channels c0, c1, c2 is defined as follows: S0(c0) = 0,
S0(c1) = γ(b), and S0(c2) = 1.

Given a throughput-constrained latency graph, the goal of
minimizing latency under the throughput constraint reduces
to minimizing latency while maintaining maximal through-
put of the throughput-constrained SDFG. As mentioned,
maximal throughput can be achieved via self-timed execu-
tion. The algorithm presented below essentially performs
a self-timed execution, except that the firings of the desig-
nated actor src are delayed. The idea is that latency is min-
imized by scheduling the firing of src precisely the min-
imum achievable latency number of time units before the
dst firing times in self-timed execution. The algorithm does
not change the average number of firings over time of any
actor in the graph, although it may delay some firings over
time. In other words, the maximal throughput of entirely
self-timed execution is maintained, but dependencies in the
graph may cause the dst actor to fire at a different moment
in time in the schedule produced by the algorithm when
compared to the self-timed execution. Consequently, the la-
tency need not be equal to the minimal achievable latency.

Algorithm optimizeThroughputLatency (GL(a,b,τ))
Input: A τ -constrained latency graph GL(a,b,τ) of a

strongly connected SDFG G.
Output: “A schedule with maximal throughput (under con-

straint τ) and (close to) minimal latency”
1. Calculate Lmin(a, b) from the execution defined in

Def. 8.
2. Execute GL(a,b,τ) in the self-timed manner, and store

the time of all the firings of actor dst .
3. Execute GL(a,b,τ) as follows

- Fire all actors but src if they are enabled.
- Fire src (which is always enabled) if the time is
Lmin(a, b) earlier than the time stored in Line 2
for the corresponding dst firing.

return The schedule obtained from the execution of
Line 3.

Theorem 11 [Maximal Throughput] The schedule
returned by algorithm optimizeThroughputLatency
achieves maximal throughput under the given constraint τ .

Figure 9 illustrates algorithm optimizeThroughputLatency
for the running example. The aim is to achieve maximal
throughput. In this case, it is not necessary to explicitly
model a throughput constraint in the graph. Figure 9(a)

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:18 from IEEE Xplore. Restrictions apply.

m�nSmSn o0n#p q�rDn s�t uAncv q�r�n'p
m�n m�n o0n'p

r	n q0ocn#pm�n o0n#p
q�rDn#p

rDn w0n q0o0n�pq0o0n tyxyz�ncv

m�nym	n o0n�p
m�n m�n o0n#p

rDn q0o0n#p
m�n o0n�p

q�rDn'p

q�r�n sct uAncv q#r	n#pr�n wcn q0ocn#p

{ rD|�tS}�~ �y� u�� ��}�s�}	�c}Dz	�Du�� �������5���	� � � �9� { � ���c��xy� �0��tyxyz�|

{ w0|0xS}	ty�0~ u'���5�S�'� � ��� �����c�c���c�� ��S�#��� ¡(¢�� ��£�¤ ¥

Figure 9. Optimizing latency under maximal throughput.

shows the self-timed execution of the latency graph, ignor-
ing actor src (which in principle can fire infinitely often in
zero time at time 0 providing unlimited tokens for actor a).
This execution is known to provide the maximal throughput
for b, which is 1/6. Actor dst fires at times 2 + 6n for every
n ∈ IN0. The first of these firings does not need a firing of
src and can therefore be ignored for latency purposes. Fig-
ure 9(b) shows the output of optimizeThroughputLatency.
Actor src is scheduled at times 1+6n, i.e., 7 time units (the
minimum latency) before every dst firing in the self-timed
execution except the first one. The result is a schedule that
follows self-timed execution, with the src actor appropri-
ately inserted. It achieves the minimal achievable latency of
7 and the maximal throughput of 1/6. For each src firing,
the latency spans the duration till the second subsequent dst
firing, i.e., the latency exceeds the length of one period.

7 Experimental Results
In this section, we evaluate our scheduling schemes. In
case of the single processor scheme, static order schedules
with an arbitrary order of the concurrently enabled actors
are used as a reference point. In the maximal parallelism
scenario, the latency and throughput of the schemes of Def-
inition 8 and of algorithm optimizeThroughputLatency are
compared with those of the self-timed execution. Since
truly arbitrary single processor static order schedules can
have a very poor latency, for each SDFG in the experiment,
the generated static order schedules were constrained allow-
ing only a single iteration of the SDFG in the periodic part
of the schedule, and 100 different static orders were tested,
choosing the best result.

We created a benchmark containing six real DSP and
multimedia models and three sets of 300 synthetic SDFGs,
generated using the SDF3 tool [16]. The first set is com-
posed of arbitrary strongly connected SDFGs. The second
set contains graphs in which the dedicated storage capac-
ity for channels is set to the minimum allowing non-zero
throughput (computed via techniques from [15]). The third
set contains SDFGs in which the buffer sizes for channels
are set to the minimum which is enough to obtain the maxi-
mal achievable throughput [15]. All experiments were per-
formed on a P4 PC running at 3.4Ghz.

Table 1 shows results for optimal latency single-
processor schedules and the randomly generated static or-

Table 1. Results: synthetic, single-processor.
Min Lat Arbitr. Order

Strongly Conn. Graphs 4.40 9.65
Min Buff./Throughput 1.36 1.83
Max Throughput 1.31 2.10

Table 2. Results: synthetic, maximal parallelism.
Latency Throughput Execution Time[ms]

Strongly Connected Graphs
Min latency 1 0.68 5.04
Self-timed 1.43 1 6.29
optThrLat 1.12 1 15.44

Minimum Buffers and Throughput
Min latency 1 0.90 4.71
Self-timed 1.54 1 6.34
optThrLat 1.10 1 14.14

Maximal Throughput
Min latency 1 0.78 3.15
Self-timed 1.31 1 3.06
optThrLat 1.01 1 8.73
optThrLat min latency-max throughput: 858/900 (95.3%)

der schedules. The latency entries are averaged over the
entire set of models and normalized wrt minimal achievable
latency (without the single-processor constraint). Minimum
latency execution improves latency between 26% and 54%.
Recall that throughput is the same for both techniques.

Table 2 shows, for the synthetic graphs and the maximal
parallelism scheme, the latency, throughput and execution
time results of minimum latency execution (Def. 8), self-
timed execution and latency optimized maximal through-
put execution (Alg. optimizeThroughputLatency). All en-
tries show the average numbers taken over all 300 graphs of
each set. The entries for latency are normalized wrt the re-
sults of the minimum latency schedule and the throughput
entries are normalized wrt the throughput achieved in the
self-timed execution (i.e., the maximal achievable through-
put). The self-timed schedule has a 31-54% higher latency
than the minimum latency execution. In other words, mini-
mum latency execution gives a latency reduction of 24-35%
compared to self-timed execution. The price to be paid is a
decrease in throughput of 10-32%. The latency optimized
maximal throughput execution reduces the latency with 22-
29% wrt self-timed execution, while guaranteeing maximal
throughput. The achieved latency is close to the minimally
achievable latency (within 10% on average). In over 95% of
the graphs the result combines minimal achievable latency
with maximal achievable throughput. The average execu-
tion time for a single SDFG for any of the scheduling algo-
rithms is a few milliseconds.

We also experimented with SDFG models of actual DSP
and multimedia applications. DSP domain applications are

Table 3. Results: DSP and multimedia benchmark.
Lat (avg/worst) Thr (avg/worst) Exec Time[ms]

Single-processor results
Min latency 1/1 1/1 3316
Random-order 1/1.03 1/1 3963

Minimum Buffers and Throughput
Min latency 1/1 0.67/0.34 7339
Self-timed 1.11/1.36 1/1 38262
optThrLat 1/1 1/1 80410

Maximal Throughput
Min latency 1/1 0.56/0.32 7050
Self-timed 1.11/1.59 1/1 4840
optThrLat 1/1 1/1 10339
optThrLat min latency-max throughput: 6/6 (100%)

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:18 from IEEE Xplore. Restrictions apply.

a modem and a sample-rate converter from [2], a channel
equalizer, and a satellite receiver [13]. For the multimedia
domain, we used an MP3 and an H.263 decoder from [15].
Table 3 shows the results, giving both average and worst-
case values for latency and throughput.

The single-processor experiments show only a small la-
tency improvement in one case. Due to the limited paral-
lelism in the graphs, 100 randomly generated static order
schedules was in five out of six cases sufficient to achieve
optimal results.

Under the maximum parallelism scheme, we considered
the application models both with minimal buffers for non-
zero throughput and minimal buffers for maximal through-
put. The average latency improvement of minimum latency
execution wrt self-timed execution is 10%, at a through-
put loss of 33-44% on average. The satellite receiver, the
modem, and the H.263 decoder do not show any improve-
ment. The channel equalizer (26%, minimal buffers) and
the MP3 decoder (37%, maximal throughput) show the
largest latency improvements (but also the largest through-
put loss). However, applying algorithm optimizeThrough-
putLatency to achieve optimal latency for maximal through-
put, achieves maximal throughput and minimal latency si-
multaneously in all cases. Execution times confirm the fea-
sibility of the proposed techniques.

To test the hypothesis expressed in the introduction that
latency optimization via a conversion to homogeneous SD-
FGs is often infeasible, we applied our techniques also to
the HSDFG equivalents of our DSP and multimedia mod-
els. In two cases (satellite receiver, H.263 decoder), self-
timed execution of Phase 2 of minimum latency execution
(Def. 5), which in essence for HSDFGs is a critical path
analysis taking into account parallel and pipelined execu-
tion that any potential HSDFG-based latency optimization
technique has to perform, takes several hours. This indeed
renders HSDFG-based techniques prohibitively expensive
in these cases.

8 Conclusions and Future Work
We have presented a technique to compute the minimum la-
tency that can be achieved between firings of a designated
pair of actors of some SDFG. The technique is based on
an execution scheme that guarantees this minimum latency.
We presented static-order schedules for single-processor
platforms, and for a multi-processor context with sufficient
resources to maximally exploit the available parallelism in
an SDFG. The latter can be used as a feasibility check for
application latency in any multi-processor design trajectory.
The experimental evaluation shows that the latency compu-
tations and the underlying execution schemes are efficient.
Compared to traditional scheduling techniques and execu-
tion schemes, substantial reductions in latency can be ob-
tained, sometimes at the price of other performance metrics
such as throughput. We showed that it is not always possible
to simultaneously optimize latency and throughput. There-
fore, we also presented a heuristic for optimizing latency
under a throughput constraint. The heuristic gives optimal
results for both latency and throughput simultaneously for

all our real DSP and multimedia models, and for over 95%
of our synthetic models. Future work includes the devel-
opment of scheduling schemes for concrete multiproces-
sor platforms without exploiting maximal parallelism, ei-
ther because insufficient resources are available or because
inter-processor communication is expensive. We also plan
to investigate the trade-offs between latency, throughput,
code size and storage requirements in more detail.

References
[1] S. Bhattacharyya, P. Murthy, and E. Lee. Software Synthesis

from Dataflow Graphs. Kluwer Academic Publishers, 1996.
[2] S. Bhattacharyya, P. Murthy, and E. Lee. Synthesis of em-

bedded software from synchronous dataflow specifications.
Journal on VLSI Signal Process. Syst., 21(2):151–166, 1999.

[3] A. Dasdan. Experimental analysis of the fastest optimum
cycle ratio and mean algorithms. ACM Trans. on Design
Automation of Electronic Systems, 9(4):385–418, 2004.

[4] A. Dasdan and R. Gupta. Faster maximum and mini-
mum mean cycle algorithms for system-performance analy-
sis. Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 17(10):889–899, 1998.

[5] M. Geilen, T. Basten, and S. Stuijk. Minimising buffer
requirements of synchronous dataflow graphs with model-
checking. In DAC’05, Proc., p. 819–824. ACM, 2005.

[6] A. H. Ghamarian et al. Throughput analysis of synchronous
data flow graphs. In ACSD’06, Proc., p. 25–34. IEEE, 2006.

[7] A. H. Ghamarian et al. Latency minimization for syn-
chronous data flow graphs. Tech. report ESR-2007-04, TU
Eindhoven, http://www.es.ele.tue.nl/esreports/, 2007.

[8] R. Karp. A characterization of the minimum cycle mean in
a digraph. Discrete Mathematics, 23(3):309–311, 1978.

[9] E. Lee. A Coupled Hardware and Software Architecture for
Programmable Digital Signal Processors. PhD thesis, UC
Berkeley, June 1986.

[10] E. Lee and D. Messerschmitt. Synchronous dataflow. Pro-
ceedings of the IEEE, 75(9):1235–1245, September 1987.

[11] E. Lee et al. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Transactions
on Computers, 36(1):24–35, 1987.

[12] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, and
B. Mesman. Task-level timing models for guaranteed perfor-
mance in multiprocessor networks-on-chip. In CASES’03,
Proc., p. 63–72. ACM, 2003.

[13] S. Ritz, M. Willems, and H. Meyr. Scheduling for opti-
mum data memory compaction in block diagram oriented
software synthesis. In Int. Conf. on Acoustics, Speech, and
Signal Processing, Proc., p. 2651–2654. IEEE, 1995.

[14] S. Sriram and S. Bhattacharyya. Embedded Multiproces-
sors: Scheduling and Synchronization. Marcel Dekker, Inc,
NY, 2000.

[15] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-offs
in buffer requirements and throughput constraints for syn-
chronous dataflow graphs. In DAC’06, Proc., p. 899–904.
ACM, 2006.

[16] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free.
In ACSD’06, Proc., p. 276–278. IEEE, 2006.

[17] W. Sung, J. Kim, and S. Ha. Memory efficient software
synthesis from dataflow graphs. In ISSS’98, Proc., p. 137–
144. IEEE, 1998.

[18] N. Young, R. Tarjan, and J. Orlin. Faster parametric
shortest path and minimum-balance algorithms. Networks,
21(2):205–221, 1991.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 14:18 from IEEE Xplore. Restrictions apply.

