
Models for Data-Flow Sequential Processes

Mark B. Josephs

Centre for Concurrent Systems and Very-Large-Scale Integration,
Faculty of BCIM, London South Bank University,

103 Borough Road, London SE1 0AA, UK
josephmb@lsbu.ac.uk

Abstract. A family of mathematical models of nondeterministic data
flow is introduced. These models are constructed out of sets of traces, suc-
cesses, failures and divergences, cf. Hoare’s traces model, Roscoe’s stable-
failures model and Brookes and Roscoe’s failures/divergences model of
Communicating Sequential Processes. As in CSP, operators are defined
that are convenient for constructing processes in the various models.

1 Introduction

Consider sequential processes that communicate via input streams and output
streams (FIFO buffers of unlimited storage capacity), as in Kahn-MacQueen
data-flow networks [17, 18]. They are capable of the following actions:

– selectively reading data from their input streams,
– unreading (pushing back) data to their input streams,
– writing data to their output streams, and
– termination.

Processes can be composed in parallel. In particular, an output stream of
one process may be connected to an input stream of a second process. Any
datum written to the output stream by the first process should be transferred
(eventually and automatically) to the input stream, where it becomes available
for reading by the second process.

Processes can also be composed in sequence. When one process terminates
its successor starts to execute. An important point here (implicit in [10]) is that
termination does not destroy the contents of input streams and output streams.

Some years ago, the author, Hoare and He [16, 9] devised a process algebra
for (nondeterministic) data flow, as a variant of Communicating Sequential Pro-
cesses (CSP) [12]. (Part of this work was reproduced in [13].) We showed how
to simplify the failures/divergences model [4] of CSP so that refusal sets were
no longer required; failures could instead be identified with (finite) ‘quiescent
traces’ [7, 14] or ‘traces of completed computation sequences’ [23].

At the time we did not consider a binary angelic choice operator, nor se-
quential composition. One purpose of this article is to rectify those omissions.
Note that termination is modelled in CSP by a special symbol

√
(success) [11],

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): LNCS 3525, pp. 85–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CSP25,

86 M.B. Josephs

but that would not work for what we shall call Data-Flow Sequential Processes
(DFSP). The solution is to create a ‘stub’ (a sequence of unread inputs) when
termination occurs and there are no pending outputs, cf. [10, 6].

Another purpose of this article is to show how the more recent stable-failures
model [27] of CSP can be adapted for DFSP. Indeed, a series of increasingly
sophisticated models for DFSP will be introduced in a step-by-step manner,
cf. [22]. Note that fairness issues, the focus of [23, 2, 3], are not addressed in
these models.

The rest of this article is organised as follows. In Section 2, we recall the
reordering relation [16, 9] between traces of directed events, a relation that cap-
tures the essence of data-flow communication. Subsequently, we define partial-
correctness models (in Sections 3–5) and a total-correctness model (in Section 6)
for DFSP, guided by what Roscoe [27] has done for CSP. In each case we consider
the semantics of operators appropriate to the model. Conclusions are drawn in
Section 7.

2 Directed Events, Traces and Reordering

A process is associated with an alphabet A, a (possibly infinite) set of symbols1,
partitioned into an input alphabet I and an output alphabet O. A symbol in I
designates the transfer of a particular datum to a particular input stream; a sym-
bol in O designates the transfer of a particular datum from a particular output
stream. Such directed events are considered to be atomic, i.e., instantaneous.

Following Hoare [11], we define a trace to be a finite sequence (string) of sym-
bols in A that expresses the occurrence of events over time as a linear order. In
respect of a process that communicates through streams of unbounded capacity,
however, two facts are noteworthy:

1. Events are independent if they are in the same direction but act upon dif-
ferent streams.

2. The occurrence of an input event does not depend upon the prior occurrence
of an output event.

The first fact would justify taking a more abstract approach, namely, to follow
Mazurkiewicz [21] by defining a trace to be an equivalence class on A∗. The two
facts taken together would justify being more abstract still, namely, to follow
Pratt [24] by defining a trace to be a partially-ordered multiset (pomset) on A.
For example, if a and b are independent input events and c and d are indepen-
dent output events, then the strings cabd and cbad are equivalent, but the only
ordering between events is given by a < d and b < d.

1 To be more concrete, we have in mind compound symbols with s.d referring to
stream s and datum d. We would then require that s0.d0 ∈ I and s1.d1 ∈ O implies
that s0 �= s1. Moreover, if D is a data type associated with stream s, then s.d ∈ A
for all d ∈ D.

Models for Data-Flow Sequential Processes 87

Anyway, the possibility of reordering a trace without affecting the behaviour
of a process was recognized in [7, 28] and was formalised as a relation t � u (t
reorders u) between strings t and u in [16]. Reordering allows

– input symbols to be moved in front of other symbols
– output symbols to be moved behind other symbols

provided the symbols being swapped are associated with different streams. In
other words, it is the strongest reflexive transitive relation (i.e. preorder) such
that tabu � tbau if a ∈ I or b ∈ O, a and b designating transfers on different
streams. For example, if a and b are independent input events and c and d are
independent output events, then badc�cabd. Various properties of the reordering
relation have been proved in [19, 20].

More abstractly, t and u are equivalent (t �� u) if and only if t � u and u � t.
Note that, if two traces are equivalent, then reordering one into the other involves
only the swapping of input symbols and the swapping of output symbols, not
the swapping of input symbols with output symbols.

Not only does � give us Mazurkiewicz’s equivalence classes, but it also be-
comes a partial order on them. Note that a trace t is minimal (up to equiva-
lence) if and only if t ∈ I∗O∗. Kahn [17] modelled a class of data-flow networks
by means of continuous functions from the histories of input streams to the
histories of output streams. For that class, the minimal traces are all that are
needed. Moreover, reordering of a trace corresponds to ‘augmentation’ [25] or
‘subsumption’ [8], a partial order on pomsets.

3 Traces Model

A process with alphabet A (partitioned into I and O) can be modelled by a
set T of traces, i.e., T ⊆ A∗. (Pratt [24] similarly models a process by a set of
pomsets, and Gischer [8] investigates closure under subsumption.) This model
avoids the Brock-Ackerman anomaly [1]. It embodies the following assumptions:

1. Divergence is always possible, i.e., a process may remain unstable indefinitely.
2. Quiescence (also referred to as stable failure) is always possible, i.e., a process

that has become stable may refuse to output.

3.1 Healthiness Conditions

Four conditions must be satisfied by such a set T :
It contains the empty sequence.

ε ∈ T (1)

It is prefix-closed.2

{t, u : tu ∈ T : t} ⊆ T (2)

2 The set comprehension {l : D : E} denotes the set of all values E obtained by
substituting values that satisfy domain predicate D for the variables in the list l.

88 M.B. Josephs

It is receptive.
TI∗ ⊆ T (3)

It is closed under reordering.

{t, u : t ∈ T ∧ u � t : u} ⊆ T (4)

Observe that the space of healthy sets of traces is a complete lattice, with
least (greatest) member A∗ and greatest (least) member I∗, under the superset
(subset) order. Also, for any non-empty subset S of healthy sets of traces,

⋂
S

is the least upper (greatest lower) bound and
⋃

S is the greatest lower (least
upper) bound.

3.2 Operators

It is convenient to construct a process P out of CSP-like operators. traces(P) is
then the set of traces denoted by P . For a given I and O, P is refined by Q if
traces(P) ⊇ traces(Q). It is essential that the operators preserve the healthiness
conditions and are monotonic with respect to the refinement order. It turns out
that the operators are also continuous in the reverse (subset) order [27].

Quiescence. The process stop does nothing, though data can always be trans-
ferred to its input streams. Thus

traces(stop) = I∗

and we can see that stop refines every other process in the traces model.

Recursion. The meaning of a recursively-defined process µX. F (X) is given by⋃
0≤i F i(stop), the least fixed point of continuous function F with respect to

the subset order.

Nondeterministic Choice. The process P0 � P1 behaves like P0 or like P1.
(Broy [5] calls this ‘erratic’ choice because it is outside the control of the envi-
ronment.)

traces(P0 � P1) = traces(P0) ∪ traces(P1),

the greatest lower bound � with respect to the superset order.

Conditional Choice. Given a Boolean expression B, the process P0 � B � P1
behaves like P0 or like P1, depending upon whether or not B is true.

Prefixing. Given a minimal trace t (i.e. t ∈ I∗O∗), the process t → P reads
data from its input streams and writes data to its output streams in the order
given by t, and then behaves like P . The representation of such a sequence of
internal data transfers as a single step is a convenient abstraction.

traces(t → P) = I∗ ∪ {u, v, w : u ∈ traces(P) ∧ vw � tu : v} .3

3 When the input streams referenced in t are each associated with a data type of
cardinality one, the union with I∗ is redundant.

Models for Data-Flow Sequential Processes 89

stop is a fixed-point of input-prefixing:

t → stop = stop , if t ∈ I∗ .

Guarded Choice. Quiescence and prefixing generalise to guarded choice: the
process |0≤i<nti → Pi is constructed from an indexed set t of minimal traces
(guards) and an indexed set P of processes.

traces(|0≤i<nti → Pi)
= I∗ ∪ {i, u, v, w : 0 ≤ i < n ∧ u ∈ traces(Pi) ∧ vw � tiu : v} .

Observe that in the traces model guarded choice is simply a nondeterministic
choice between prefixed processes.

After. The behaviour of P after the occurrence of t is given by the process P/t,
for any trace t ∈ traces(P). In particular, P/t is always meaningful for t ∈ I∗

and behaves like P with the contents of its input streams determined by t.

traces(P/t) = {u : tu ∈ traces(P) : u} .

We have the following cancellation law:

(t → P)/u = P , if t �� u .

Observe also that

P/t is refined by P/u , if t � u ,

which follows from the definitions of refinement and /, and the property of �

that t0 � t1 implies t0u � t1u.

Parallel Composition. Parallel composition corresponds to blending [28] (in
which internal communication is concealed). Let input alphabet Ii and output
alphabet Oi of Pi partition Ai, for i = 0, 1, with I0 ∩ I1 = ∅ and O0 ∩ O1 = ∅.
Then the process P0 ‖ P1 has input alphabet (I0 ∪ I1) \ C and output alphabet
(O0 ∪ O1) \ C, where C = A0 ∩ A1, and

traces(P0 ‖ P1)
= {t : t ∈ (A0 ∪ A1)∗ ∧ t � A0 ∈ traces(P0) ∧ t � A1 ∈ traces(P1) : t \ C} .

(Closure under reordering is proved in [19].) Pratt proposes a similar operator
on sets of pomsets in [24].

Output-prefixing distributes through parallel composition, as follows:

t → (P0 ‖ P1) = (t0 → P0) ‖ (t1 → P1) ,
where t �� t0t1, if t0 ∈ (O0 \ I1)∗ and t1 ∈ (O1 \ I0)∗ .

Trading is also allowed between output-prefixing and after-input:

(t → P0) ‖ P1 = P0 ‖ (P1/t) , if t ∈ (O0 ∩ I1)∗ .

90 M.B. Josephs

4 Traces/Successes Model

A problem with the traces model is that it says nothing about successful ter-
mination and so one cannot define sequential composition. This is remedied by
modelling the set S of successes, where S ⊆ A∗ × I∗. Often we are only in-
terested in the first component of each pair in S, the set of such traces being
dom(S).

The structure of S (viz. a set of pairs of traces) is new4 and can be understood
as follows. For any t ∈ A∗, u ∈ O∗ and v ∈ I∗, (tu, v) ∈ S records the ability of
the process, after engaging in t, to terminate with u determining the contents of
its output streams (i.e. pending outputs) and v determining the contents of its
input streams (i.e. unread inputs). Of course, this implies that if u = u0u1, then
the process is also able to terminate after tu0, leaving u1 pending and v unread.
The second component of a member of S might be referred to as a ‘stub’, being
what is left over upon termination of a process.

Broy and Lengauer [6] provide another way to model terminating processes.
They generalise from deterministic processes represented by functions from states
to states, to nondeterministic processes represented by sets of such
functions.

4.1 Healthiness Conditions

Three conditions must be satisfied by a pair (T, S) in addition to the four stated
above for T :

The first component of every success is a trace.

dom(S) ⊆ T (5)

S is receptive.

{t, u, v : (t, u) ∈ S ∧ v ∈ I∗ : (tv, uv)} ⊆ S (6)

S is closed under reordering of both components.

{t, u, v, w : (t, u) ∈ S ∧ v � t ∧ w �� u : (v, w)} ⊆ S (7)

Note that, in spite of Condition (6), symbols in the stub v of a success (u, v)
are not necessarily present in u. Such successes can arise from the application of
the after operator and from unreading, as we are about to see.

The space of healthy pairs (T, S) is a complete lattice under the pair-wise
superset (subset) order.

4 Roscoe discusses at length in [27] how termination is modelled in CSP with
√

. He
does mention as an alternative, however, that ‘the termination traces (at least) would
have to be included as a separate component’.

Models for Data-Flow Sequential Processes 91

4.2 Operators

The refinement order remains superset (now in each component). The operators
previously introduced for the traces model can be lifted to the traces/successes
model by defining their successes, and several more operators are now
meaningful.

successes(stop) = ∅ .

successes(P0 � P1) = successes(P0) ∪ successes(P1) .

successes(t → P) = {u, v, w : (u, v) ∈ successes(P) ∧ w � tu : (w, v)} .

successes(|0≤i<nti → Pi)
= {i, u, v, w : 0 ≤ i < n ∧ (u, v) ∈ successes(Pi) ∧ w � tiu : (w, v)} .

successes(P/t) = {u, v : (tu, v) ∈ successes(P) : (u, v)} .

Parallel composition requires distributed termination [27] (in which both com-
ponents must terminate before the composite process can).

successes(P0 ‖ P1) = {t, u : t ∈ (A0 ∪ A1)∗ ∧ u ∈ (I0 ∪ I1)∗

∧ (t � A0, u � I0) ∈ successes(P0)
∧ (t � A1, u � I1) ∈ successes(P1) : (t \ C, u \ C)} .

Termination. The process skip differs from stop in that it terminates success-
fully.

traces(skip) = I∗

successes(skip) = {u, v : u ∈ I∗ ∧ u �� v : (u, v)} .

Reaction. The process t, where t is a minimal trace, reads data from its input
streams and writes data to its output streams in the order given by t, and then
terminates successfully. (So ε is the same as skip.)

traces(t) = I∗ ∪ {u, v, w : u ∈ I∗ ∧ vw � tu : v}
successes(t) = {u, v : u ∈ I∗ ∧ v � tu : (v, u)} .

It is a special case of prefixing:

t = t → skip , if t ∈ I∗O∗ .

Unreading. The process t−1, t ∈ I∗, unreads (pushes back) data on its input
streams before terminating successfully. (So ε−1 is also the same as skip.)

traces(t−1) = I∗

successes(t−1) = {u, v : u ∈ I∗ ∧ tu �� v : (u, v)} .

92 M.B. Josephs

Sequential Composition. The process P0; P1 behaves like P0 until that ter-
minates successfully, allowing P1 to take over.

traces(P0; P1)
= traces(P0)

∪ {t0, t1, t, u, v : (t0, v) ∈ successes(P0) ∧ vt1 ∈ traces(P1) ∧ tu � t0t1 : t}
successes(P0; P1)
= {t0, t1, t, v, w : (t0, v) ∈ successes(P0)

∧ (vt1, w) ∈ successes(P1) ∧ t � t0t1 : (t, w)} .

Compare the following law to how division by a non-zero number relates to
multiplication by the reciprocal of that number:

P/t = t−1; P , if t ∈ I∗ .

Iteration ∗P is a special case of recursion [12]: µ X. P ; X .

5 Traces/Successes/Failures Model

A problem with the above models is that quiescence is always a possibility. This
is remedied by modelling the set F of (stable) failures, where F ⊆ A∗.

The structure of F (viz. a set of traces) is the same as in the author’s earlier
work [16, 15]. For any t ∈ A∗, t ∈ F records the ability of the process, after
engaging in t, to refuse to output after becoming stable, cf. Roscoe’s stable-
failures model5 [27].

5.1 Healthiness Conditions

Two conditions must be satisfied by a triple (T, S, F) in addition to the seven
stated above for a pair (T, S):

F is a subset of T .
F ⊆ T (8)

F is closed under reordering.

{t, u : t ∈ F ∧ u � t : u} ⊆ F (9)

Note that whether or not a process, after engaging in t ∈ T , is able to
terminate is independent of whether or not it is able to become quiescent. That
is, t
∈ dom(S) ∪ F , t ∈ dom(S) \ F , t ∈ F \ dom(S) and t ∈ dom(S) ∩ F are all
possible.

The space of healthy triples (T,S,F) is a complete lattice under the component-
wise superset (subset) order.

5 Consider a trace t that can be extended by u ∈ O∗ to tu ∈ F and, for simplicity,
define a refusal set to be a set of streams. Then we may associate with t any refusal
set consisting of output streams that are not involved in the events recorded in u [9].

Models for Data-Flow Sequential Processes 93

5.2 Operators

The refinement order remains superset. The operators previously introduced
can be lifted to the traces/successes/failures model by defining their failures, and
several more operators are now meaningful. In particular, the first approximation
to a recursion is now div rather than stop.

failures(stop) = I∗ .

failures(P0 � P1) = failures(P0) ∪ failures(P1) .

failures(t → P)
= (I∗ \ {u, v, w : {u, v} ⊆ I∗ ∧ w ∈ O∗ ∧ vw � tu : v})

∪ {u, v : u ∈ failures(P) ∧ v � tu : v} .

A guarded choice is between those prefixed-processes for which all the inputs
required by their guards are available.

failures((|0≤i<nti → Pi)
= (I∗ \ {i, u, v, w : 0 ≤ i < n ∧ {u, v} ⊆ I∗ ∧ w ∈ O∗ ∧ vw � tiu : v}

∪ {i, u, v : 0 ≤ i < n ∧ u ∈ failures(Pi) ∧ v � tiu : v} .

failures(skip) = failures(t−1) = ∅ .

failures(t) = I∗ \ {u, v, w : {u, v} ⊆ I∗ ∧ w ∈ O∗ ∧ vw � tu : v} .

failures(P/t) = {u : tu ∈ failures(P) : u} .

failures(P0; P1)
= failures(P0)

∪ {t0, t1, t, v : (t0, v) ∈ successes(P0) ∧ vt1 ∈ failures(P1) ∧ t � t0t1 : t} .

failures(P0 ‖ P1)
= {t : t ∈ (A0∪A1)∗∧ ((t � A0 ∈ dom(successes(P0)) ∧ t � A1 ∈ failures(P1))

∨ (t � A0 ∈ failures(P0)) ∧ t � A1 ∈ dom(successes(P1))
∨ (t � A0 ∈ failures(P0) ∧ t � A1 ∈ failures(P1))) : t \ C} .

Divergence. The process div never becomes stable.

traces(div) = I∗

successes(div) = failures(div) = ∅ .

Angelic Choice. The process P0�P1
6 behaves like P0 or like P1, except that

it can only refuse to produce its first output if both P0 and P1 can so refuse.
(In CSP, a similar operator can only refuse to engage in its first event if both
arguments can so refuse.)

traces(P0�P1) = traces(P0) ∪ traces(P1)

successes(P0�P1) = successes(P0) ∪ successes(P1)

failures(P0�P1) = ((failures(P0)∪failures(P1))\I∗)∪(failures(P0)∩failures(P1)) .

6 Unfortunately, Broy [5] uses the symbol ∇ for angelic choice and � for erratic choice.

94 M.B. Josephs

The following ‘step’ law [27] relates angelic choice to guarded choice.

Let Q = |0≤i<mti → Pi and R = |m≤i<nti → Pi. Then
Q�R = |0≤i<nti → ((Pi�((R � i < m � Q)/ti)) � ti ∈ I∗ � Pi) .

6 Successes/Failures/Divergences Model

One may object to the above models on the grounds that they imply that di-
vergence is the best thing that can happen. An alternative approach goes to
the opposite extreme, as in Brookes and Roscoe’s failures/divergences model [4].
Divergence is modelled as chaos, being the worst thing that can happen. The
set D of divergences is a subset of A∗.

In the traces/successes/failures model, T had to be given explicitly because
after certain traces no stable state might be reachable. Now, however, we shall
consider every divergence to be a failure too, enabling us to extract T from F
and S, by means of the following definition:

T = {t, u : u ∈ O∗ ∧ tu ∈ F ∪ dom(S) : t} .

All nine conditions of the previous sections must still be satisfied. There is some
redundancy, however, since Conditions (4), (5) and (8) follow from the definition
of T and Conditions (7) and (9).

6.1 Healthiness Conditions

There are five more healthiness conditions:

Every divergence is a failure.
D ⊆ F (10)

Every divergence paired with any sequence of input events is a success.

D × I∗ ⊆ S (11)

D is extension-closed.
DA∗ ⊆ D (12)

D is closed under reordering.

{t, u : t ∈ D ∧ u � t : u} ⊆ D (13)

Every trace that gives rise to unbounded nondeterminism is a divergence.

{t : |{u : u ∈ O∗ ∧ tu ∈ F : u}|
+ |{u, v : u ∈ O∗ ∧ (tu, v) ∈ S : (u, v)}| = ∞ : t} ⊆ D

(14)

Note that Conditions (10), (12) and (14) together imply that {t, u : u ∈
O∗ ∧ tu ∈ D : t} ⊆ D. Note also that, if O
= ∅, then D can be defined to be

Models for Data-Flow Sequential Processes 95

{t : |{u : u ∈ O∗ ∧ tu ∈ F : u}| + |{u, v : u ∈ O∗ ∧ (tu, v) ∈ S : (u, v)}| = ∞ : t},
Condition (13) becoming redundant because it follows from the definition of D
and Conditions (7) and (9).

This time the conditions that we impose mean that our space of healthy
tuples is not a complete lattice, but only a complete partial order (cpo) under
the component-wise superset order.

6.2 Operators

The refinement order remains component-wise superset. Recursion is now the
least fixed point with respect to this order.

As T , F and S have to be augmented to reflect the chaos that arises after di-
vergence, we need new semantic functions traces⊥(P), successes⊥(P),failures⊥(P)
and divergences(P).

The semantic clauses for each operator will be omitted here, but it is worth
making the following point. In the successes/failures/divergences model, if t ∈
O∗, then (t → div) = div and so µX. (t → X) = div . Thus the model is
unsuitable for analysis of networks relying upon processes that output forever
without waiting for input. The traces/successes/failures model should be used
instead.

7 Conclusion

A mathematical framework has been developed for Data-Flow Sequential Pro-
cesses, a CSP-like language that assumes buffered communication between pro-
cesses. DFSP operators include stop, skip, div, recursion, reaction, unread-
ing, after, nondeterministic choice, angelic choice, conditional choice, prefixing,
guarded choice, sequential composition, iteration and parallel composition. Each
term in DFSP denotes a process in an abstract model. The traces/successes/ fail-
ures model is an adaptation of the stable-failures model of CSP; the successes/
failures/divergences model is an adaptation of the failures/divergences model of
CSP.

Upon termination of a process, the contents of its input streams and output
streams remain available to its successor. It suffices to know how that successor
behaves for the single case in which all of the streams are empty, in order to
determine the effect of this sequential composition! This contrasts with the se-
mantics of occam [26], for example. Stubs allow state information to be passed
through a sequence of processes. Alternatively, Broy and Lengauer’s approach [6]
is adequate for nondeterministic choice, but does not handle angelic choice (as
found in ‘nonstrict merge’, for example) [5]. Failures-based models are more
expressive in this respect.

Note that program variables can be accommodated within DFSP: each vari-
able is represented by an input stream on which read and unread actions are
performed; their states are passed through stubs.

This paper has highlighted just a few of the algebraic laws of DFSP, focusing
instead on its denotational semantics. As future work one might follow the same

96 M.B. Josephs

research agenda for DFSP as for CSP [27], namely, algebraic semantics, opera-
tional semantics, relationships between the various semantics, a full-abstraction
result for the denotational models, a characterization of deterministic processes,
application of the theory and provision of tool support.

Acknowledgment

The author is grateful to the anonymous reviewer for his insightful comments.

References

1. J.D. Brock, W.B. Ackerman. Scenarios: A Model of Non-Determinate Computa-
tion. In J. Dia, I. Ramos (editors) Formalization of Programming Concepts, Lect.
Notes in Comp. Sci. 107, pp. 252–259, Springer-Verlag, 1981.

2. S.D. Brookes. On the Kahn Principle and Fair Networks. Technical Report CMU-
CS-98-156, School of Computer Science, Carnegie Mellon University, Pittsburg,
USA, 1998.

3. S.D. Brookes. Traces, Pomsets, Fairness and Full Abstraction for Communicating
Processes. In L. Brim, P. Janar, M. Ketinsky, A. Kuera (editors) CONCUR 2002
— Concurrency Theory, Lect. Notes in Comp. Sci. 2421, pp. 466–482, Springer-
Verlag, 2002.

4. S.D. Brookes, A.W. Roscoe. An improved failures model for CSP. In S.D. Brookes
(editor) seminar on Semantics of Concurrency, Lect. Notes in Comp. Sci. 197,
pp. 281–305, Springer-Verlag, 1985.

5. M. Broy. A Theory for Nondeterminism, Parallelism, Communication, and Con-
currency. Theoretical Computer Science 45, pp. 1–61, 1986.

6. M. Broy, C. Lengauer. On Denotational versus Predicative Semantics. Journal of
Computer and System Sciences 42(1), pp. 1–29, 1991.

7. K.M. Chandy, J. Misra. Reasoning about networks of communicating processes.
Unpublished. Presented at INRIA Advanced NATO Study Institute on Logics and
Models for Verification and Specification of Concurrent Systems, La Colle-sur-
Loupe, France, 1984.

8. J.L. Gischer. The Equational Theory of Pomsets. Theoretical Computer Science
62, pp. 299–224, 1988.

9. He Jifeng, M.B. Josephs, C.A.R. Hoare. A Theory of Synchrony and Asynchrony.
In M. Broy, C.B. Jones (editors) Programming Concepts and Methods, pp. 459–478,
Elsevier Science Publishers (North-Holland), 1990.

10. E.C.R. Hehner. Predicative Programming Part II. Communications of the ACM
27(2), pp. 144–151, 1984.

11. C.A.R. Hoare. A model for communicating sequential processes. In R.M. McK-
eag, A.M. MacNaughten (editors) On the construction of programs, pp. 229–254,
Cambridge University Press, 1980.

12. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
13. C.A.R. Hoare, He Jifeng. Unifying Theories of Programming. Prentice Hall, 1998.
14. B. Jonsson. A model and proof system for asynchronous networks. Proc. 4th An-

nual ACM Symp. on Principles of Distributed Computing, pp. 49–58, 1985.
15. M.B. Josephs, Receptive process theory. Acta Informatica 29, pp. 17–31, 1992.

Models for Data-Flow Sequential Processes 97

16. M.B. Josephs, C.A.R. Hoare, He Jifeng. A theory of asynchronous processes. Tech-
nical Report PRG-TR-6-89, Oxford University Computing Laboratory, Oxford,
England, 1989.

17. G. Kahn. The semantics of a simple language for parallel programming. In
J.L. Rosenfeld (editor) Information Processing ’74, pp. 471–475, North-Holland,
1974.

18. G. Kahn, D.B. MacQueen. Coroutines and networks of parallel processes. In
B. Gilchrist (editor) Information Processing ’77, pp. 993–998, North-Holland, 1977.

19. P.G. Lucassen. A Denotational Model and Composition Theorems for a Calculus of
Delay-Insensitive Specifications. PhD Thesis, University of Groningen, Groningen,
The Netherlands, 1994.

20. W.C. Mallon. Theories and Tools for the Design of Delay-Insensitive Communicat-
ing Processes. PhD Thesis, University of Groningen, Groningen, The Netherlands,
2000.

21. A. Mazurkiewicz. Concurrent Program Schemes and their Interpretation. Technical
Report DAIMI PB-78, Århus University, Denmark, 1977.

22. E.-R. Olderog, C.A.R. Hoare. Specification-Oriented Semantics for Communicating
Processes. Acta Informatica 23, pp. 9–66, 1986.

23. P. Panangaden, V. Shanbhogue. The Expressive Power of Indeterminate Dataflow
Primitives. Information and Computation 98, pp. 99–131, 1992.

24. V.R. Pratt. On the composition of processes. Proc. 9th Annual ACM Symp. on
Principles of Programming Languages, pp. 213–223, 1982.

25. V.R. Pratt. Modeling Concurrency with Partial Orders. International Journal of
Parallel Programming 15(1), pp. 33–71, 1986.

26. A.W. Roscoe. Denotational semantics for occam. In S.D. Brookes, A.W. Roscoe,
G. Winskel (editors) Seminar on Concurrency, Lecture Notes in Computer Science
197, pp. 306–321, Springer-Verlag, 1984.

27. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
28. J.T. Udding. Classification and Composition of Delay-Insensitive Circuits. PhD

Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1984.

	Introduction
	Directed Events, Traces and Reordering
	Traces Model
	Healthiness Conditions
	Operators

	Traces/Successes Model
	Healthiness Conditions
	Operators

	Traces/Successes/Failures Model
	Healthiness Conditions
	Operators

	Successes/Failures/Divergences Model
	Healthiness Conditions
	Operators

	Conclusion

