
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 1, JANUARY 1996 45

A New Symbolic Technique for
Control-Dependent Scheduling

Ivan RadivojeviC and Forrest Brewer

Abstract-This paper describes an exact symbolic formulation
of control-dependent, resource-constrained scheduling. The tech-
nique provides a closed-form solution set in which all satisfying
schedules are encapsulated in a compressed OBDD-based rep-
resentation. This solution format greatly increases the flexibility
of the synthesis task by enabling incremental incorporation of
additional constraints and by supporting solution space explo-
ration without the need for rescheduling. The technique provides
a systematic treatment of speculative operation execution in
arbitrary forward-branching controVdata paths. An iterative
construction method is presented along with benchmark results.
The experiments demonstrate the ability of the proposed tech-
nique to efficiently exploit parallelism not explicitly specified in
the input description.

I. INTRODUCTION

ESOURCE-CONSTRAINED operation scheduling is the R process of determining the assignment of operations to
time slots of a synchronous system, subject to datdcontrol-
flow dependencies and resource (e.g., functional units, buses,
registers) availability. We say that scheduling is control-
dependent if some operations from the controlldata flow graph
(CDFG) are executed conditionally due to the presence of
control-flow constructs such as if-then-else, goto, case, exit,
etc. Such scheduling plays an important role in high-level
synthesis (HLS) of digital systems [7], [24]. There are two
difficult issues in a formal treatment of control-dependent,
resource-constrained scheduling: i) concise formulation of
the conditional behavior and ii) treatment of resources. An
efficient formulation should not generate an excessive number
of constraints and formulation variables. Moreover, a formal
evaluation of resource availability in the face of conditional
execution is required. This is particularly difficult when move-
ment of operations across basic code block boundaries is not
prohibited. It has been demonstrated that the ability to perform
speculative operation execution leads to superior schedules
W I , 1381, 1431.

Current practical methods for solving this NP-complete
problem involve two basic approaches: i) heuristics and ii)
integer linear programming (ILP). Priority-based heuristic
scheduling (e.g., [5], [26], [28]) can accommodate a variety
of control-dependent behaviors but may fail to find an optimal
solution in tightly constrained problems. The reason for this is

Manuscript received September 20, 1993; revised February 22, 1995. This

Corp. and UC-MICRO under Project 92-019. This paper was recommended
by Associate Editor K. Keutzer.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California, Santa Barbara, CA 93106 USA.

Publisher Item Identifier S 0278-0070(96)01343-7.

woik was supported in part by a fellowship donation from Mentor Graphics

that heuristic schedulers cannot recuperate from early subop-
timal decisions that typically preserve only one representative
from a possibly very large pool of qualified candidates. Con-
ventional ILP methods 1151 can solve scheduling exactly but
suffer from exponential time complexity and the inability to
efficiently formulate control constraints. General applicability
of these ILP methods has been improved by remapping the
constraints [ll], [12], a mixed ILPBDD method [47], and
heuristic approaches based on ILP [14], [18]. However, with
the exception of [6] (discussed below), no ILP-based technique
provides support for conditional behavior. Similarly, a recent
branch-and-bound technique [42] based on execution interval
analysis [41] has been applied only to acyclic DFG’s.

Many HLS systems prohibit code motion in order to avoid
problems related to evaluation of resource availability and
causality of the solutions. An alternative strategy is to explicitly
write constraints describing global movement of operations,
but such approaches reduce to exhaustive enumeration of
potential execution scenarios. In the formulation described in
this paper, code motion is allowed implicitly-there is no need
to describe freedom already available (although implicit) in a
CDFG.

As an example, we consider the formal approach based on
algebra of control-flow expressions (CFE’s) [6]. In that work,
the timing and synchronization requirements for comqunicat-
ing machines are encapsulated in finite-state machine (FSM)
description. From this, scheduling constraints are derived and
subsequently solved using a BDD-based 0 /1 ILP solver.
The FSM description is constructed from an algebraic CFE
specification that implicitly restricts code motion. Consider, for
example, the code segment shown in Fig. 1. A possible CFE
specification for this fragment is p(c:r + C:s). This requires
that p be executed before c and c before either r or s. An
alternative specification is c:pr + C:ps, which allows c to be
executed before p . If c depends on p , only the first statement
is correct. However, if c and p are independent, then both
behaviors are legal. It is possible to create a specijkation that
lists all correct execution scenarios, but the number of such
scenarios and the size of the specification grow dramatically as
the program complexity increases. In contrast, in our approach,
only data dependencies are used to impose the execution order
of p and c. In fact, if the data dependencies allow such motion,
r andor s may be executed before c and potentially before p as
well. Thus, these potential execution scenarios are implicitly
supported by the formulation.

Since operation level parallelism may not be explicit in the
input description, some heuristic schedulers focus on detection

0278-0070/96$05.00 0 1996 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

4 6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO I , JANUARY 1996

P ;
if (c) r;
else s;

Fig. 1 . Conditional behavior.

of mutual exclusiveness in CDFG’s. Tree scheduling (TS) [131
uses a tree-representation of the execution paths to enable
movement of operations. Conditional vector list scheduling
(CVLS) [43] uses condition vectors [44] to dynamically track
mutual exclusiveness of the operations that can be executed in
a speculative fashion (i.e., pre-executed). Transformation of a
CDFG with conditional branches into one without conditional
branches is performed in 1171, but there is no support for spec-
ulative execution. Furthermore, these heuristics are restricted
to nested conditional branches (conditional tree control struc-
ture). Multiple conditional trees are addressed by Wakabayashi
[43], but the trees are either scheduled sequentially (using a
priority scheme), or conditional tree duplication is performed.

Some synthesis systems emphasize treatment of behavioral
level timing specifications. However, either a predefined or-
der of operation is enforced before the scheduling [5], or
the treatment of resource constraints is not fully considered
[19]. The PUBSS system [45] forms a product machine of
individual behavior FSM’s (BFSM’s) to statically schedule I/O
communication between the components. PUBSS supports a
variety of timing Constraints. However, parallelism increasing
techniques [9] are applied in a static fashion (before BFSM
collapsing and scheduling). The issue of resource constraints
is either not formally discussed [40], [48], or the formulation
of exclusivity constraints requires an excessive number of 0/1
ILP variables [39].

To our knowledge, the first attempt to address the sched-
uling problem using symbolic computations was made by
Kam in [16]. There, several CAD applications of MDD’s
(multivalued decision diagrams) were described. Scheduling of
acyclic DFG’s with function unit constraints was formulated
using multivalued variables, but the approach seemed to
be practicable only for tightly constrained problems. Un-
fortunately, too few experimental results were left docu-
mented to make a critical assessment of that approach. An
exact symbolic formulation of the control-dependent, resource-
constrained scheduling problem was introduced in [3 11. Unlike
other approaches in which a single representative solution
is generated, in this technique, all feasible schedules are
encapsulated in a compressed Ordered Binary Decision Di-
agram [4] (OBDD) form. This is advantageous since the
exact effect of additional constraints derived during subsequent
synthesis steps is incrementally computable. Also, there is
the additional benefit of being able to explore the solution
space without the need to reschedule the problem instance. An
alternative symbolic formulation [46] uses finite automata to
capture resource/timing/synchronization constraints. A product
automaton is built that satisfies the specified behavior. Its
OBDD representation is then traversed to find a minimum-
latency schedule. However, similar to [6], the technique lacks

support for various forms of a parallelism extraction to be
described in Section 11.

In this paper, we describe a symbolic technique for
exact resource-<:onstrained scheduling of arbitrary forward-
branching contrjol structures. Scheduling is performed with
the assumption that the allocation of resources is known.
The technique supports speculative operation execution and
global treatment of parallel control structures. To allow
a systematic treatment of the problem, a flexible control
representation based on guard variables, guard functions, and
traces is introduced. A trace validation algorithm is proposed
to enforce causality and completeness of the set of all feasible
solutions. The scheduling technique presented in this paper
supports arbitrary Boolean constraints as well as conventional
timing constraints. Scheduling of multirate interacting FSM’s
is not addressed1 in this paper. Similarly, we do not discuss
optimizations based on algebraic transformations [30].

The paper is organized as follows. In Section 11, we describe
several approaches to resource-constrained control-dependent
scheduling, as well as some features desirable to improve
scheduling quality. The formulation is presented in Section
111. Aspects related to the OBDD construction process are
considered in Section IV. Experimental results are discussed
in Section V. Finally, in Section VI, we present conclusions
as well as the questions to be addressed in the future.

11. HIGH-PERFORMANCE SCHEDULING ISSUES

Our scheduling technique assumes an input in the form of a
CDFG specification. The CDFG describes both dataflow and
control dependencies between the operations and is similar
to the one used by Wakabayashi [44]. Fig. 2 contains an
pseudocode exaimple and its CDFG representation. Operation
nodes are atomic actions potentially requiring use of hard-
ware resources i(e.g., arithmeticAogica1 operations, readwrite
cycles). Conditional behavior is specified by means of fork and
join nodes. An operation node generating a control signal for a
fork/join pair is called a conditional. Directed arcs establish a
link between the conditional and a related fork/join pair. In Fig.
2, the conditional labeled op-2 tests the result of the addition
(op-1) and determines the flow of control (i.e., whether “true”
(T) or “false” (F) branches should provide operands for op-6).

Fig. 2(a)-(c) shows three different ways to schedule the
example assuming that only one resource of each type is
available. The schedule in Fig. 2(a) uses the knowledge that
after a conditional (op-2) is executed, operations belonging to
“T” and “F” branch arcs are mutually exclusive. However, the
join node is treated as a synchronization point: op-6 cannot
be scheduled until both the “T” and “F” branch are executed.
This leads to inefficient schedules, since the execution times
for alternative branch arcs may differ widely. Consequently,
in this example, it takes five cycles to execute the schedule no
matter what decision is made by the conditional. This approach
corresponds to that used by traditional ILP schedulers (e.g.,

The schedule shown in Fig. 2(b) improves the “average”
execution time io 4.5 cycles by scheduling op-G on the fourth
cycle at the “F”’ branch. Note that the operation execution

~ 5 1) .

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

RADIVOJEVIC AND BREWER: A NEW SYMBOLIC TECHNIQUE FOR CONTROL-DEPENDENT SCHEDULING 41

in x, y;
out 2;

if ((X+Y)>~) {
x = x + 3 ;
y = y + 5 ;

x=x+4;
) else

z = x * y ;

OP-2-

CDFG source

O P

OP-

CDFG sink

Fig. 2. Example CDFG and its schedules.

resources:
- 2 adders (white)
- 1 subtracter (black)
- 1 comparator

execution time: - 3 cycles (2 before I)
4 cycles (I before 2)

Fig. 3. Speculative operation execution.

order is predetermined before scheduling (e.g., op-2 before
op-3, although no data dependency exists between these two
operations in the CDFG). This approach is supported by a
number of heuristic schedulers (e.g., [5]) and by one recent
exact technique [6].

The schedule from Fig. 2(c) not only further improves
the average execution time but reduces the longest execution
path to four cycles as well. This is done by scheduling op-3
on the second cycle in a speculative fashion (i.e., before
the corresponding conditional op-2 is resolved). Note that
the resource requirements cannot be predicted in a static
fashion. For example, if more adders are available, op-4 can be
executed in a speculative fashion as well. The mutual exclusion
of op-3 and op-4 must be evaluated dynamically by taking
into account when the corresponding conditional (op-2) is
scheduled. This kind of scheduling is supported by several
heuristics ([13], [29], [37], [43]).

There are several ways to improve the scheduling quality
by exploiting parallelism implicit in the CDFG representation.

Speculative Operation Execution: It is often beneficial to
determine the control value simultaneously with branch execu-
tion. Operations from branch arcs that are executed before the
corresponding conditional value is evaluated are said to be pre-
executed. Such speculative operation execution allows more
flexibility in using given hardware resources. A conditional
is a scheduled operation that generates a control value. Fig.
3(a) shows a CDPG where the control dependencies between
the conditionals (comparators 1 and 2) and the corresponding
fork/join pairs are explicitly indicated. Speculative operation
execution is not possible if the control precedence between the
conditional and the fork node is enforced. In this case, at least
six time steps are necessary to execute the CDFG, since the
longest controlldata dependency chain includes six operations.
However, if precedence between the conditional and the fork
node is removed, operations from the branch arcs can be
preexecuted. Fig. 3(b) shows a schedule executing in three
cycles using the indicated resources. In general, precedence
between a conditional and join node need not be enforced
either. In this case, the execution time is bounded only by
data dependencies (given sufficient resources).

Out-of-Order Execution of Conditionals: It can happen that
a faster schedule is obtained if the top-level conditional (in
the input specification) is evaluated after some other nested
conditional. A simple example of this behavior is shown in Fig.
3(b). The schedule executes in three cycles with the conditional
1 left unresolved until the end of the very last cycle. The
knowledge that conditional 2 is resolved during the first cycle
is essential to properly interpret resource usage. Both TS [13]
and CVLS [43] rely on a conditional-tree representation of
the control and cannot accommodate out-of-order execution
of the conditionals without dynamically modifying the tree
structure.

Irredundant Operation Scheduling: Another way to improve
scheduling quality is to identify operations that are not re-
dundant in the input description but are redundant for certain
control paths. The importance of such information has been
observed, and the algorithms to detect such operations have
been discussed in the literature [131, [44].

Applications to Parallel Control Structures: Control struc-
tures that are either fully parallel or have correlated control
introduce additional scheduling challenges. As the number of
control paths increases, it becomes difficult to keep track of
the mutual exclusiveness among the operations. Ideally, the
scheduler should evaluate and maintain this information for all
control paths. In Fig. 4, a CDFG is shown in which two parallel
trees have a correlated control (shaded comparator). The reader
can verify that, given one adder (“white” operation), one
subtracter (“black” operation) and one comparator (single-
cycle units assumed), a six-cycle schedule can be found only
if the control correlation is properly interpreted (i.e., “false”
paths are not scheduled). As indicated in Fig. 4, speculative
execution (and additional or more versatile resources) can
further improve the execution time. Although not typical for
conventional structured programs, parallel control structures
are likely to result from program transformations performed
by parallelizing compilers (e.g., loop unrolling where a con-
ditional behavior is present within the loop body) [35].

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

48 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 1, JANUARY 1996

no speculative execution:
- 6 cycles (3ALU or ladd/lsub/lcomp)
speculative execution:
- 5 cycles (3ALU or 2add/l sub/l comp)
- 4 cycles (SALU or 3add/2sub/2comp)

I I
sink

Guards: G1 (corresponding to C1 decisions)
G2 (corresponding to C2 decisions)

Fig. 4. CDFG with correlated control. Fig. 5. Kim’s example.

The formulation presented in this paper supports all of the
advanced scheduling features discussed above. The execution
delay of the longest path of a scheduled CDFG is frequently
referred to as the minimum latency of the schedule. Our goal
is to find all minimum-latency schedules, given a CDFG
specification and resource constraints. By using OBDD’s,
we can encode all feasible solutions to a particular problem
instance.

111. FORMULATION

In this formulation, all scheduling constraints are repre-
sented as Boolean functions, and an OBDD corresponding to
the intersection is built. Each variable C,, describes operation
j occurring at time step s. C,, is true iff operation j is
scheduled at time step s in a particular solution. We assume a
unique mapping from operation type to function unit type. To
represent control-dependent behavior, a set of guard variables
is introduced. Each guard G represents a control-flow decision
by a particular conditional-the guard is true for one branch
and false for the other. Every control path through an arbitrary
combination of forkljoin pairs is described by a product of the
corresponding guard variables. For each operation j, a Boolean
guard function I?, (defined on the guard variables) encodes all
the control paths on which j must be scheduled.

Computation of I? Functions: Assume that operation i has
n successors (j l , j,, . . . , j n) and that none of the successors
is a join node. Then a guard function rz can be simply
computed as a Boolean Or of the successors’ guard functions
r j k (I C = 1 , 2 , . . . , n). This means that operation i has to
provide operands to all of its successors. If a successor of i
is a join node, then its contribution to is equal to FjoznGk
or rJOtnGk (depending whether i belongs to the “T” or “F”
branch). Guard functions corresponding to all of the nodes can
be computed by a one-pass traversal of the CDFG that starts

-

from a sink node whose guard function is initialized to “1”
(tautology).

Shown in Fig. 5 is a CDFG fragment of Kim’s example [17]
in which two guards (Gl , G2) encode the conditional behavior.
There are three possible execution paths: (G I G2, G I G2, G I) .
Indicated blocks (1, GI , GIG,, GIG^, G I) correspond to op-
erations that share the same guard function r. Operations that
must be scheduled on all control paths have r = 1. Note that
the number of guard variables is not proportional to the number
of control paths. (In Fig. 4, only five guard variables encode
18 control paths). Furthermore, we observe that r ’s are not
restricted to product terms (thus, they can handle constructs
such as: goto, exit, case). A more detailed discussion of the
guard-based model is available in [34].

In many aspects, the guard-based model is similar to ex-
ecution conditions from path analysis [2]. In that approach,
however, Boolean conditions are used in the hardware alloca-
tion phase (after AFAP scheduling is performed). Nevertheless,
that research demonstrated that OBDD’ s efficiently represent
control signals in large scale problems. In fact, similar guard-
based representations have been used in areas other than
HLS-for example, to perform “if-conversion’’ in experimen-
tal vectorizing compilers [11 and simplify code generation
for VLIW and superscalar machines supporting predicated
execution [8], [22], [36]. A fundamental difference in our
approach is that we dynamically consider when the guard
becomes known, not just what its value is on a particular
control path.

The technique presented in this paper generates a solution
in the form of a collection of traces. A trace is a possible
execution instance for a particular control path. In OBDD
form, traces correspond to product terms of the Boolean
function. Each trace includes the guard variables (identifying
a control path) and operation variables (indicating a schedule
for the path). For example, in Fig. 5, each trace corresponding
to the “false” branch of conditional C1 contains q, as well

_ _
_ _

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

RADIVOJEVIC AND BREWER: A NEW SYMBOLIC TECHNIQUE FOR CONTROL-DEPENDENT SCHEDULING 49

as 0/1 assignment of C,j variables. Operations with r =
or I’ = 1 must be scheduled on that trace. If other operations
are scheduled on this trace, they are preexecuted.

The ensemble schedule is a set of traces forming a complete
deterministic schedule. Conditions for the existence of such a
schedule are discussed in Section 111.3. The solution OBDD
includes only traces belonging to at least one ensemble sched-
ule and implicitly incorporates all feasible ensemble schedules.
Note that the number of ensemble schedules can be much
larger than the number of traces.

3.1. Speculative Execution Model
In our speculative execution model, only the control prece-

dence between the conditional and join node is enforced.
CDFG operations can be scheduled at different time steps on
distinct control paths but cannot be scheduled more than once
per trace. Each operation from the CDFG is executed at most
once regardless of the actual control decisions made when
the schedule is executed. For example, this means that in the
current model the following scenario is prohibited: i) operation
j executes in a speculative fashion using operands A and B
and generates result R, ii) a control decision is made and R
is discarded, and iii) operation j executes using a different set
of input operands (e.g., C and D) and a correct value of R
is recomputed.

Fig. 3(b) shows an example where precedences between the
conditionals and forks are removed. The critical path length of
6 in the original CDFG is reduced to just 3. All four possible
control paths may start executing simultaneously.

3.2. Derivation of Constraints

For brevity, we assume nonpipelined, unit-time operations.
Pipelined and multicycle functional units can be accommo-
dated by incorporating execution delay in the equations pre-
sented in Sections 111.2 and 111.3 [31]. To model operation
chaining, a precedence relation can be added between op-
erations that cannot be chained [15]. (A S A P) , (as soon as
possible) and (A L A P) , (as late as possible) bounds are con-
structed to limit the time spans over which an operation j can
be scheduled. These bounds are not required for correctness
but improve the efficiency of the construction. C,, denotes
operation j ’ s instance at time step s. Fork (join) nodes are not
explicitly used in the formulation. Precedences to fork (join)
nodes are translated in a transitive fashion to the successor
nodes of the fork (join). Symbols ‘‘E” and “+” correspond
to Boolean Or function, and “II” stands for Boolean And.
Product “ab” implies “a And b.”

1) Uniqueness: Equations 1 enforce unique scheduling of
operations from the CDFG at time step s. If (ASAP), 5
s < (ALAP), :

where R,? is the range [(A S A P) j + . s] . If time step s =

(ALAP)? :

Equation (la) states that prior to step (ALAP)? , operation
j is not scheduled more than once. On step (ALAP) , , (lb)
ensures that operation j has been executed on all paths covered
by rj. On paths not covered by I?,, operation j can be either
uniquely scheduled (preexecuted) or not scheduled at all.

The constraint formulated in (la) can be simplified. An
iterative form of (la) that enforces uniqueness implicitly (by
construction) is formulated in the following equation:

where R(s-l)j is the range [(A S A P) ? . . . (s - l)].
2) Precedence Relations: If operation i precedes operation

j (i.e., there is a dependency arc from i to j in the CDFG)
and Pi 2 rj (Ti covers F?) then for every step s in the range
[(A S A P) ? * - . (ALAP) ,] the following must hold:

(G+ Cl,) = 1.
A S A P, 5 1 < s

Equation (2a) states that either operation i has to be sched-
uled before step s, or operation j cannot be scheduled at step s.
The case ‘‘I?(covers (but is not equal to) rj” (I?, 3 rj) occurs
when the dependency from i to j goes through a fork node.
When I?; 2 rj (rj not contained in ri--e.g., the dependency
from i to j goes through a join node), the precedence relation
is enforced only on the paths covered by I?,:

Effectively, (2a) ensures that the operation can be preexe-
cuted only if all of its predecessors have already been executed.
An operation after the join node cannot be preexecuted in our
model. Thus (2b), the dependencies to its predecessors are
enforced only conditionally.

3) Termination: A single sink variable is used in the OBDD
representation to indicate that a particular trace has concluded.
It is initialized to “0” and is set to “1” when the terminating
condition for the trace is met. Equation (3) is used as a
terminating condition for all traces in parallel. The scheduling
process can be terminated when sink assumes the value “1”
on all paths of an ensemble schedule. In these equations,
operations (jl . I . j n) are immediate predecessors of the sink
node in the CDFG

9

where c
1=1 k = (A S A P) ,

(3)

Function Rs,, is true if operation j , is scheduled prior to or
at step s. The fact that execution of j , is mandatory only on
paths covered by rj, is reflected by (3) .

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

50 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 1, JANUARY 1996

4) Resource constraints: If kl resources of a certain type
TI (e.g., multipliers, adders, ALU’s, registers, buses) are avail-
able, we formulate a “generalized resource bound” (4)

l S (l P # b) 5 % L

F,l is a Boolean function stating that resource T Z is needed
during time step s. Equation (4) is applied at each step
s for each resource T Z . It ensures that at least (nSl - kl)
resources (among nsl potential candidates at step s) will not
be scheduled. For functional units, F,l functions are simply
the operation variables. For example, if at step s operation
instances Csm1, C,,, , CSm3 and C,,, are candidate multipli-
cations and there are only k , = 2 multipliers available, (4)
becomes
-- ~- -~ __-
Csm, Csm, + Csm, Csm, + Csm, Csm4 + Csm, Csm,
-~ ~- + Csm, Csm, + Csm3 Csm4 = 1.

Equation (4) applies the resource constraint to all traces
simultaneously. Trace validation (Section III.3) ensures that
there are no resource violations in any ensemble schedule.
Bus and register constraints are generated for linear schedules
by suitable choice of Fsi [31].

5) Removal of RedundantlyScheduled Operations: Assume
that a conditional has executed, and the ‘‘me” branch is
selected. Operations from the “false” branch may still be
scheduled on the trace corresponding to the “true” branch if
there are available resources. Such traces are identified and
removed. Assume conditional CI, (whose corresponding guard
is GI,) is resolved prior to time step s. Then all the variables
that correspond to operation j ’ s instances scheduled for time
steps >s have to assume value “0” on traces where Gk is
true if

FjGk = 0. (5 4

Similarly, on traces where Gk is false, all the variables that
correspond to operation g’s instances scheduled for time steps
>s have to assume value “0” if

r,K = 0. (5b)

6) Timing Constraints: Since C,, denotes operation j’s
instance at time step s , it is possible to describe a variety
of timing constraints using Boolean functions. For example,
assume that operation z precedes operation j and that both
of them execute in a single cycle. Furthermore, assume that
operation a can be scheduled at steps 1,2, and 3 (corresponding
variables are Cl%, C2%, and C3%), and that j can be scheduled
at steps 2, 3, and 4 (C2,, C3,, and C4,). Then, a constraint “1
has to be scheduled exactly one cycle after a” can be written as

ClZC2, + C2ZC3j + C32C43 = 1. (6)

Minimudmaximum constraints can be represented simi-
larly For example, a constraint “ j has to be scheduled at least
two cycles after 2’’ amounts to a Boolean function

Cltc33 f Clzc4j + c 2 z c 4 ~ = 1. (7)

An iterative formulation of the constraints is possible as
well. For example, (6) can be applied at step s (s = 2 ,3 ,4)
using

Together with the uniqueness constraint (I), (8) enforces
the timing constraint implicitly (by construction). If a timing
constraint has to be conditionally enforced, a modification
similar to that in (2b) is necessary. Since we use arbitrary
Boolean functions to represent constraints, more complex
timing behavior can also be conveniently described.

The formulation described throughout Section I11 is also ap-
plicable to scheduling without speculative operation execution.
Essentially, a control dependency between the conditional and
fork node in the CDFG can be enforced as a hard precedence
relation. However, a slightly modified set of the constraints is
used to improve efficiency 1321. In addition, timing constraints
can be used to enforce precedence between the operations
and prohibit speculative execution on individual basis. This is
because, in our formulation, precedence constraints are simply
a special case of timing constraints.

3.3. Trace Validation

A trace satisfying all of the constraints introduced in Section
m.2 may still not be valid in the sense that it cannot be a
member of any set of traces forming an ensemble schedule.
The example CDFG in Fig. 6 demonstrates that resource-
constrained scheduling of all individual control paths is not
sufficient for a proper treatment of control-dependent behavior.
Both the “True” and “False” control paths can be scheduled
individually in two time steps assuming one single-cycle re-
source of each type (“white,” “black,” comparator). However,
observe that the execution traces shown in the figure cannot
be combined into an executable schedule meeting the stated
resource constraints. Since the decision regarding which path
to execute is not known until the end of the first step, the
“True” and “False” paths are indistinguishable during that
cycle. This means that both op-1 and op-5 as well as op-3 and
op-6 must be executed simultaneously, violating the resource
constraint. (A decision to exclusively execute op-l and op-5
or op-3 and op-6 depends on knowledge not available until
the end of the first cycle!) In fact, no two-cycle schedule
is possible, although both control paths can be individually
scheduled in two time steps.

A valid ensemble schedule is a minimal set of traces that is
both causal and complete. The causality requirement dictates
that the schedule cannot use knowledge of the value of a
conditional prior to the time when the conditional is executed
(resolved). Completeness requires that a trace must exist for
every possible control combination. An ensemble schedule is a
minimal set in the sense that if any trace is removed, the set is
no longer complete. Assume that the conditional ck is resolved
at step j . Causality requires that the traces corresponding to
guard values GI, and must be identical (match) for all time
steps prior to and including j . Completeness ensures that the
ensemble schedule includes traces for both GI, and GI,.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

RADIVOJEVIC AND BREWER: A NEW SYMBOLIC TECHNIQUE FOR CONTROL-DEPENDENT SCHEDULING 5 1

Fig. 6. Ensemble schedule counterexample.

i=O;
do {

i++;
S(i) = S(i-1);
for each time stepj (

s ’ = 3 (V- V (j)) S (i)
for each conditional ck (

__
s’ = S’Rk 0’) -k vGk (S’Ak 0’))
if (S’==O) (S(i)=O; exit; }

1
S(i) = S(i)S’;

1
) while (S(i)!=S(i-1));

Fig. 7. Trace validation algorithm.

Trace validation ensures that each validated trace is part
of some ensemble schedule. The validation is efficiently pre-
formed by the iterative algorithm shown in Fig. 7. The
following notation is used:

f x (fz) positive (negative) cofactor of a Boolean
function f with respect to a variable 2,

3, f = f x + fE existential abstraction is ‘dx f = f x fz is
universal abstraction,

S set of all traces; S(0)-initial set of non-
validated traces; S(i)-set of traces at iter-
ation i ,
set of all variables not including guard
variables-,
subset of V corresponding to time steps
<j,
set of traces from which all variables (V -
V’(j)) are removed: SI = 3 (v - ~ , (j)) S (i) ,
= [cl, e2 . . e c,]is the set of all conditionals,
= [GI, G2 9 . . G,] is the set of guards
corresponding to the conditionals,
= [RI (j) , R2 (j) . . . R, (j)] is the resolu-
tion vector.

V

V’(j)

S’

C
G

W)

The resolution vector R (j) is a set of n Boolean functions (one
for each conditional), where each function R k (j) indicates
whether a conditional c k was scheduled prior to time step
j : R k (j) = C C l k , for (Z<j) . S’ is partitioned by R(j)
into a disjoint set of as many as 2, families, corresponding
to the subset of guards that are resolved prior to time step
j (GTes). The guards from (G - GTes) (i.e., the unresolved
guards) have to be don’t cares within the family since at
time step j there is no knowledge about the future values
of the unresolved guards. Traces must both match and exist
for all possible combinations from (G - G T ~ s) , to ensure
causality and completeness of the ensemble schedule. The
algorithm checks for partial matching up to step j for all
traces in parallel. However, it is possible that a trace that
matched up to time step j is invalidated in subsequent steps.
Thus, its set of matching traces may no longer be complete.
The trace validation algorithm iterates until a fixed point is
reached. The nurnber of iterations cannot exceed the number
of conditionals. Thus, the algorithm generates a polynomial
number of constraints regardless of the number of traces.

The intuition behind the trace validation algorithm can
be provided by means of the schedule from Fig. 3(b). As-
sume that the guards G1 and G2 correspond to the con-
ditionals 1 and 2. There are four possible control paths:
(G I G ~ , G I G ~ , G I G ~ , GI G2).At the first step resolution vec-
tor components Rl(1) and R2(1) are both zero since neither
conditional is scheduled prior to step 1. To have a causal
ensemble schedule, traces for all four control paths must
match at the first step. At the next step, Rl(2) is still zero
since conditional 1 is not scheduled prior to step 2. However,
R2(2) = c12 = 1 since conditional 2 is scheduled at step 1.
Thus, the matching of traces has to be performed only with
respect to conditional 1 (i.e., traces for paths (GlG2,GG2)
must match for the first two steps, as well as the traces for
(G1G2, GI G2)). The same argument holds for step 3.

Trace validation implicitly verifies that the ensemble sched-
ules do not violate resource constraints. We indicated in
Section 111.2 that (4) prevents such violations from occurring
on individual traces. Since traces match before the conditional
is resolved, resource bounds are met. After the conditional is
resolved, the traces are mutually exclusive with respect to that
particular conditional, and no verification is necessary.

--

-

3.4. Treatment of Loops
If a loop body does not contain conditional behavior, our

formulation can be extended (similar to the ILP technique
described in [151) to incorporate loop optimization techniques
such as loop winding and functional pipelining. The resource
constraint procedure has to be modified to capture the fact
that operations at time steps s , s + 1, s + 21 . . . share resources.
Variable 1 represents the latency (iteration interval). In the case
of loop winding, additional care has to be taken to preserve
inter-iteration data dependencies.

The technique can also accommodate the approach to cyclic
control adopted in path-based scheduling (i.e., loop cycles
are broken, execution is trapped in the last operation of a
loop body and, after the scheduling is completed, transitions

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

52 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTkGRATED CIRCUITS AND SYSTEMS, VOL 15, NO I, JANUARY 1996

‘ f

TABLE I
RELATION TO ILP

consfrainf 11 hlnP 1 #solutions I #variables

#cycles ~ number of steps, #ops - number of operations. #cond - number of conditionals

are added in the control finite state machine). However,
the systematic treatment of speculative execution for parallel
branching control with cycles is an open research problem.

3.5. Relation to ILP

Table I illustrates some differences between our technique
and ILP formulations of resource-constrained control-
dependent scheduling. In the symbolic approach, any Boolean
function can be used as a constraint. Unlike ILP techniques,
we can efficiently generate and store all feasible solutions to
a particular problem instance. More importantly, this requires
a very little overhead in terms of formulation variables when
compared to the formulation of nonbranching scheduling. In
the worst case, the number of variables in our formulation is
proportional to the product of the number of time steps and the
number of operations in the CDFG. In contrast, an identical
problem instance formulated using ILP [6] requires, in the
worst case, an exponentially larger number of variables. We
observe that conventional ILP techniques [I 11, [151 essentially
do not provide support for control-dependent scheduling. In
such approaches, a CDFG operation has to be scheduled on
the same cycle on all appropriate control paths.

IV. CONSTRUCTION
The constraints described in Section 111 have a simple and

regular structure [31]. This allows OBDD representations to
be constructed directly from the CDFG without reference
to an intermediate equation form. Shown in Fig. 8 is the
OBDD representation of (4). It is used as a general con-
struction template for all of the typed resource constraints.
Note that the number of product terms in a sum-of-products
representation of (4) is (!). However, its OBDD form is
compact (O(nk) nodes) and can be built efficiently using ite,
[3] (if-then-else) calls. Vertices in this if-then-else template
are not restricted to Boolean variables-complex Boolean
functions (fl, f2, . . . f n) can be inserted into the template (e.g.,
budregister constraints, formulated in [3 11).

However, even when (f l , f 2 , . . . f n) are rather simple, the
overall constraint may become extremely large. Consequently,
it can happen that the partial scheduling solution is of moderate
size, but the constraint to be applied is prohibitively large.
However, the scheduling constraint need not be explicitly built
[33]. The following can be done instead:

1) Introduce a new set of auxiliary variables (yl, y2,. . . yn)
corresponding to the set of functions (fl, f 2 , . . . fn).

Fig. 8. At-rnost-k-of--n constraint (I C = 4, n = 7).

‘sharing’ between T
the solution sets guard variables

increasing
time step

operation variables

4
guard variables

\ -L
4:

I .ylreasing
2 step

Fig. 9. OBDD representation

2) Build the lemplate function T (shown in Fig. 8) using

3) Compute Po = And(P’, T) , where P’ is a partial

4) Clearly, a new partial solution PI’ can be obtained using

only (Ylr5’2,...Yn).

solution to which the constraint is applied.

the recursive formula

Pz = 3y,[And(P(’-’), Xnor(y,, f,))]

where 3,JF = fz + fz. This amounts to the standard
BDD substitution operation

P(z) = P(l-1) l Y t E f , . (9)

Using this approach, in the benchmarks {discussed in Section
V.l, we were able to apply register constraints that could not
be built explicitly because of memory limitation.

Although indiividual equations have efficient orderings, op-
timal orderings for different equations frequently contradict.
(In fact, optimal OBDD variable ordering problem is known
to be NP-complete [4], [IO], [21].) However, experimental
results indicate that typical instances do have good orderings.
The results presented in this paper are generated using the
variable ordering shown in Fig. 9, where nonguard variables
are ordered by increasing time step, and guard variables are
placed on top (i e., closest to the root of OBDD). This ordering
typically results in small OBDD’s and accommodates iterative
construction.

Using iterative construction, the solution is built on a time-
step by time-sLep basis; only those constraints relevant to
a particular tirne step s are generated and applied to the

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

TABLE I1
EWF EXPERIMENTS

#multipliers
#adders
latency
delay
#variables
#nodes
#schedules
CPU~SI

non-pipelined multiplier pipelined multiplier
3 2 2 1 3 2 2 1 1
3 3 2 2 3 3 2 3 2

16 16 17 19 16 16 17 16 17
18 18 19 21 18 18 19 18 19
97 97 131 199 97 97 131 97 131

776 465 689 1,788 799 776 878 258 189
2,055 674 108 19,498 2,160 2,055 144 77 19

4.0 1.2 9.2 7.1 4.4 4.0 9.4 0.5 3.5

#cycles
#adders

#buses

#variables
#nodes 82
#schedules

longest:
average:

#cycles(spec)

CPUtimerslll 0.21 0.21 0.51 0.61 3.41 14.01 12.51 3.51624.71391.5

5 4 4 6 7 3
3.31 2.25 2.13 5.75 5.0 3.0

.. I I I I I ,

2-cycle multiplier and single-cycle adder excepl (*) 2-cycle p~pel~ned multiplicr

#cycles(non-s&c)
#adders
#subtracters
#comparators
#variables
#nodes
#traces
CPU time [SI

OBDD representing a valid partial solution for the previous
(s - 1) steps. This prevents the construction of large sets of
spurious intermediate solutions. It also has the advantage that
schedule completion can be easily detected, obviating the need
to accurately prespecify a bound on the number of control
steps.

To verify the existence of an ensemble schedule, trace
validation must be done when a termination test is performed
on a set of traces that have concluded execution. Note that this
set is typically significantly smaller than the set of all traces
in the intermediate solution. To reduce the number of traces
(and thus, potentially reduce the intermediate OBDD size),
it is possible to perform trace validation at the end of every
iteration. This can, however, lead to somewhat increased CPU
time and more intensive garbage collection. We enforced trace
validation only when the intermediate OBDD size exceeded
a prespecified threshold. Similarly, the uniqueness constraint
for operation j can be applied just at step (A M P) , (i.e.,
application of only (lb) is sufficient). This diminishes the
number of constraints that have to be applied and typically
increases the speed of con’struction. However, note that the
speed-up techniques described in this paragraph may produce
intermediate solutions that temporarily contain invalid traces.

8 8 8 8 7 4
1 2 2 2 1 2
1 3 3 1 1 1

- 1 2 1
65 49 49 71 55 26

428 325 220 543 271 116
15 43 12 124 21 15

5.9 3.6 4.7 4.1 2.0 3.3

V. EXPERIMENTAL RESULTS

The technique described in the paper was implemented
in C++ and executed on a Sun SPARCstationlO. Reported
CPU times correspond to the complete procedure: CDFG
analysis, constraint construction, and all OBDD manipulations
leading to the reported results. We apply the technique to three
typical problem types. Table I1 is an application to scheduling
of acyclic DFG’s. Table I11 demonstrates the ability of our
technique to perform loop winding on cyclic DFG’s. Finally,
Tables IV-VI discuss the scheduling of acyclic CDFG’s. The
results are compared to the optimal or best known results. No
other work reports competitive results for all three problem
types.

Maha

(4)

(4)

TS [I31 3.31 (5) -

5.1. Acyclic DFG’s
Table I1 summarizes the elliptic wave Jilter (EWF) bench-

mark experiments. We found all optimal solutions of each
instance using OBDD’s whose size was significantly smaller
than (#variables)’. To reduce the size of partial solutions, an
auxiliary set of “interior constraints” was generated [33]. The
basic strategy is as follows: Assume that at the beginning of

Parker Kim Waka MulT

2.13 (4) 5.75 (6) 5 (7) 3 (3)
- 4.75 (7) -

2.38 (4) 5.75 (6) - 2.88 (4)
- 6.25 (7) 4.75 (7) -

TABLE IV
BENCHMARKS WITH BRANCHING

11 Maha 1 Parker1 Kim I Waka I MulT

parallel
speculative

serial

non-speculative parallel
serial

8 108.8
10 177.9
11a 56.2
1 Sb 13.5

TABLE VI
S2R EXPERIMENTS

execution-qpe 11 #cycles I CPU-time [SI

I I1 I

- memory constraint: 1 single-port look-up table
- pipelied control delay = 2 cycles
- resource constraints: 3 single-cycle ALUs (+,-), 2 two-cycle pipelined multipliers

a. can be achieved with 2 single-cycle ALUs as welt (55.2 s)
b. can be achieved with 1 single-cycle ALU as well (12.4 s)

step s there are a addition operations that have ALAP bounds
in the range [s . . . (s + k - l)] and that there are only m
single-cycle adders available. Clearly, at least (n - k m) of
these addition operations must be completed prior to step s in
a feasible solution. This observation enables early detection of
many (not necessarily all) partial schedules that are destined to
be discarded within the next IC steps. Similar constraints can be
applied for each functional unit type including multicycle and

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

54 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 1, JANUARY 1996

pipelined units. A further improvement in runtime efficiency
is possible if execution interval analysis [41], [42] is used for
search space reduction. Interior constraints can be viewed as
a subset of such analysis.

Some problems may have extremely large solution sets,
decreasing the efficiency of OBDD manipulations. Neverthe-
less, since valid partial schedules are available after each
construction step, runtime-efficient heuristics bused on sets can
be devised. For example, we can propagate only the subset of
schedules with maximum utilization of resources at each step
(utility-based heuristic [32], [33]). Since all such schedules are
propagated, this heuristic has good behavior and is applicable
to problems with thousands of formulation variables. Using
this technique, problems with 102 operations in DFG, 5919
formulation variables, and 105 cycles have been solved. The
largest benchmark instances in Table U (28-cycle EWF’s)
run in less than 15 CPU s, while still finding minimum-
latency schedules. Moreover, if the exact scheduler is based
on Zero-Suppressed BDD’s [25], significant improvements in
terms of both CPU time and memory usage are observed. The
interested reader is referred to the recent experimental study
[33] where larger DFG’s (EWF unfolded two and three times,
FDCT [23]) are scheduled. An FDCT instance with one adder,
one subtracter, one pipelined two-cycle multiplier, and four
buses is frequently used to evaluate schedulers. We are able to
solve this problem that includes 565 formulation variables both
heuristically (60 CPU s) and exactly (523 CPU s). A randomly
selected optimal nineteen-cycle schedule (using nine registers)
is shown in Fig. 10. To our knowledge, no exact technique
has reported a solution to this problem instance, and the best
heuristic results so far required latency (iteration interval) of
twenty cycles [20]. Furthermore, it took us less than 100 CPU
s to verify infeasibility of a ten-cycle FDCT instance with five
two-cycle nonpipelined multipliers and three ALU’s. Due to
its very large symmetric search space, this FDCT instance is
reported to be an extremely hard problem [42]-both ILP and
branch-and-bound techniques take more than two CPU h to
reach the infeasibility conclusion.

5.2. Cyclic DFG’s

Loop winding results for EWF are indicated in Table III. All
optimal schedules, both in terms of latency (iteration interval)
and delay (iteration time), are constructed using very moderate
computing resources. Several ILP techniques (e.g., [121 and
[151) report results equivalent to those presented in Tables
I1 and 111, with the difference that we provide all optimal
schedules.

Direct comparison of CPU times is misleading due to
machine differences and to the fact that only ILP execution
times without preprocessing are typically reported. Similarly,
the efficient branch-and-bound technique [42] does not report
the time for execution interval analysis.

5.3. Acyclic CDFG’s
Tables IV and V show experimental results for benchmarks

exhibiting conditional behavior. The rows #cycles(spec) and
#cycles(nonspec) correspond to scheduling with and without

Fig. 10. Nineteen-cycle FDCT with pipelined multiplier.

speculative execution using the same set of resources and
demonstrate the benefits of performing such code motion.
The scheduler terminates when all minimum-latency ensemble
schedules are found. The number of cycles for the longest
control path is indicated as ‘‘longest.’’ To compare our results
with schedulers that minimize average path length, a subset
of solutions with small average path length is generated in a
greedy fashion. Benchmarks Maha [27], Kim [17], and Waka
[44] are conditional trees, and MulT [43] has two parallel trees.
Parker is Mahu with addition A6 converted into a subtraction.
Our results are compared to the best published results. The
Maha solution with one adder and one subtracter is the same
as in [13] and [43]. Allowing more resources (two adders,
three subtracters), an improvement of 0.125 (average path
length) is made over the best previous result. In Parker, this
improvement was 0.25. In most previous work, it is assumed
that the comparators incur a small delay within a clock cycle
and that the operations following the branch on “true” and
“false” paths are mutually exclusive during the same cycle.
This treatment of the conditionals requires increased cycle
time, additional multiplexing, and restricts pipelining of the
control. Our results reflect this model in Maha and Parker
only, but this assumption completely eliminates the need for
speculative execution in the Kim and Wuka benchmarks. By
default, we assume that a single-cycle comparator is used
and that its output becomes available for control only in the
successive cycle. Even with this assumption, our technique still
derives the same result for Kim as in [43]. In Waku, one path is
a cycle longer than that reported in [131. In MuZT, a one cycle

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

RADIVOJEVIC AND BREWER: A NEW SYMBOLIC TECHNIQUE FOR CONTROL-DEPENDENT SCHEDULING

k

X

X’ X” -v X = mcos0 + y*sin0

Y = -x*sin0 + y*cose
uu
Y’ y”

a = 180-8;
if (a>=O) {

b = 90-8;
if (b>=O) {

sine = T(8);
cose = T(b);

sine = T(a);
cos0 = -T(-b);

} else {

1
c = 270-8;
if (c>=O) {

} else {

sine = -T(-a);
case = -T(c);

sine = -~(36o-e);
case = T(-c);

1
X = x*cose + y*sine;
Y = -x*sine + pcose;

} else {

1

Fig. 11. ROTOR example.

shorter minimum-latency solution was found by exploiting
dynamic scheduling of operations belonging to parallel trees.
There is no information on execution times for the results
reported in [13], [171, and [431.

The ROTOR example (Fig. 11) performs a rotation of coor-
dinate axes by angle 8. This transformation is used in many
applications (e.g., graphics applications and positional control
systems). The example requires computation of trigonometric
functions (sin 0 and cos e) . In high-performance applications,
a typical approach is to precompute the value of sine and
cosine functions and store the sampled values in corresponding
tables. However, if high numerical accuracy is required, the
size of the storage tends to become rather large. A compromise
approach amounts to storing values for only a quadrant of
one trigonometric function (e.g., sine values for arguments 0”
5 0 5 90”). It is straightforward to use such a look-up table
for obtaining values for both sine and cosine for all possible
input arguments (0” 5 0 5 360”).

A pseudocode description of the coordinate rotation using
only the first quadrant of the sine function is presented in
Fig. 11. “T(ang1e)” corresponds to a table read at a location
“angle.” Similarly, “-T(ang1e)” corresponds to a table read
followed by a negation. We assume that only one single-port
look-up table is available and that every “read table” takes one
cycle to complete. Although it is possible to simultaneously
perform subtraction and comparison of two operands, in the
example, we assume pipelined control, which introduces a
two-cycle delay. For example, if operation (a = 180 - 8)
is executed at step s, result a is available at the beginning of
step (s + l), but control flow is affected by the comparison at
the beginning of step (s + 2).

To simplify interpretation of the results, in Fig. 12(a),
we assume that the available ALU’s can perform all arith-
meticAogica1 operations (add, subtracthegate, multiply) in a

#cycles

(4
9

’![12.3 SI L22.8 SI
& ___._.____ ----*..

#cycles
11.9 SI [2.3 SI [2.3 SI 12.3 SI

178.3 SI

’...... 113.7 S] r19.5 S] F18.5 SI -----. * ------- *-- --__ ~ .__..-- * -____.

(b) l V . = g 8

7

I I I

6 1 2 3 # A h

- memory constraint: 1 single-port look-up table
- pipelined control delay = 2 cycles
- resource constraints:
(a) single-cycle ALU (+, -, *)
(b) single-cycle ALU (+, -), 2 two-cycle pipelined multipliers

Fig. 12. ROTOR experiments.

single cycle. The minimum number of cycles to execute the
schedule is presented for cases with and without speculative
execution. We observe that, given the same resource con-
straints, specula1 ive execution enables much faster schedules.
In Fig. 12(b), a more realistic assumption is made. Single-
cycle ALU’s perform addition and subtraction. Multiplication
is performed by two two-cycle pipelined multipliers. In this
case, adding more ALU’s cannot improve the performance
unless speculative execution is allowed. In Fig. 12, CPU
run-times are indicated in brackets. By allowing speculative
execution, an average improvement in minimum latency of
25% is achieved using the same resources.

Fig. 13 shows an eight-cycle ensemble schedule (two
ALU’s, Fig. 12(b)). Operations executed in a speculative
fashion are represented using thick lines. If the input angle
0 belongs to the first quadrant, the computation is performed
in seven cycles. However, since all ensemble schedules
are implicitly encapsulated in an OBDD, the user can
search for solutions having other properties. It is relatively
straightforward to look for similarities among the traces in
order to simplify the control. For example, if the first-quadrant
computation takes eight cycles as well, it is possible to have
the same schedule for operations X’, X”, Y’, Y’, X , and Y
for all control paths during the fifth, sixth, seventh, and eighth
cycles. This sort of design space exploration can be performed
without rescheduling the problem instance.

In Fig. 14, we introduce the S2R example that translates
spherical coordinates [R, 0, a] into the Cartesian (rectangular)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

56 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 1, JANUARY 1996

i w a
i +---

......

......... _.

.......................................

<

.............. ” .. ” i ”1 ... ” ” iI..____I._ .i _______I_

0<0190 j 90<0_<180 j 180<0<270 270<0<360

Fig. 13. Eight-cycle ROTOR schedule.

coordinate values [X , Y, 21. The problem includes computa-
tion of trigonometric functions (as described in the ROTOR
example) for two input angles (0, a). There are 42 operations
in the CDFG representation and, if executed in a speculative
fashion, as many as 64 execution paths. If a single-port look-up
table is used, the scheduling of parallel trees (corresponding to
computations for 0 and a) has to be done simultaneously. This
means that the schedule guarantees synchronization of the
memory accesses without busylwaiting hardware handshaking.

Shown in Table VI (#cycles) are S2R latencies using
one single-port look-up table, three ALLJ’S and two two-
cycle pipelined multipliers. All solutions are exact and corre-
spond to execution with and without speculative execution. In
each case, two values are included. An unconstrained version
(“parallel”) allows both trees to be scheduled and executed
in parallel. For comparison, we provide the latencies for a
“serial” version of the problem that imposes an execution
order (@tree executed before 0-tree). The results clearly
indicate the benefit from being able to schedule parallel
computations in a speculative fashion. None of the results can
be further improved by increasing hardware resources.

VI. CONCLUSIONS AND FUTURE WORK

We describe a symbolic formulation that allows speculative
operation execution and exact resource-constrained sched-
uling of arbitrary forward-branching controydata paths. To
our knowledge, no other work has been reported on exact
techniques supporting speculative execution. The presented
technique provides a closed-form solution set in which all
satisfying schedules are encapsulated in a compressed OBDD-
based representation. An advantage of the formulation is that
there is no need to explicitly describe freedom present in the
input CDFG description. The execution order of conditionals
is not predetermined and is dynamically resolved allowing
gains in scheduling quality. To allow a systematic treatment
of the problem, a flexible control representation based on
guard variables, guard functions, and traces is introduced. The
trace validation algorithm is proposed to enforce causality
and completeness of the solution set. An iterative construction
method is presented along with benchmark results. The results

I I I
t
z

It t
X Y

Fig. 14. S2R example.

demonstrate the ability of the technique to efficiently exploit
operation-level parallelism implicit in the input description.

In future work, several related synthesis issues are to be
addressed. These include incorporation of controllinterconnect
costs and extensions to allow a more complex mapping from
operation types to function units. Also, extensions to general
forms of cyclic control and an efficient approach to remove
the restriction from the current speculative execution model are
planned. Finally, to further improve the efficiency, additional
work is needed to identify tighter operation bounds for the
control-dominated case.

ACKNOWLEDGMENT

The authors would like to gratefully acknowledge contribu-
tions from Dr. A. Seawright who took part in early discussions
and developed the original C++ OBDD package extensively
used throughout this project. Their special thanks go to A.
Crews, C . Monahan, and A. Stornetta for recent efficiency
improvements while reimplementing the package. Finally, they
would hke to thank the reviewers for helping to clarify the
presentation of this paper.

REFERENCES

[l] J R Allen, K Kennedy, C Porterfield, and J Warren, “Conversion
of control dependence to data dependence,” in Proc 10th Annual ACM

[2] R A Bergamaschi, R Camposano, and M Payer, “Allocation algo-
nthms based on path analysis,” Integration, the VLSZ J., vol 13, no 3,
pp 283-299, Sept 1992

[3] K S Brace, R L Rudell, and R E Bryant, “Efficient implementation of
a BDD package,” in Proc 27th ACMIZEEE Design Automation Conf,
pp 40-45, 1990

[4] R E Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans Comput, vol C-35, pp 677-691, Aug 1986

[5] R Camposano, “Path-based scheduling for synthesis,” ZEEE Trans
CAD/ICAS, vol 10, pp 85-93, Jan 1991

[6] C N Coelho, Jr and G De Micheh, “Dynamic scheduling and
synchronization synthesis of concurrent digital systems under system-
level constrams,” in Proc IEEE Int Conf Computer Aided Design, pp
175-181, 1994

New
York McGraw-Hill, 1994

Symp Pnnczples of Programming Languages, pp 177-189, Jan 1983

[7] G De Micheli, Synthesis and Optimization of Digital Circuits

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

RADIVOJEVIC AND BREWER A NEW SYMBOLIC TECHNIQUE FOR CONTROL-DEPENDENT SCHEDULING 51

J. C. Denhert and R. A. Towle, “Compiling for the Cydra 5,” J.
Supercomputing, vol. 7, pp. 181-227, Jan. 1993.
J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Programming Languages
and Syst., vol. 9, no. 3, pp. 319-349, July 1987.
S. J. Friedman and K. J. Supowit, “Finding the optimal variable ordering
for binary decision diagrams,” IEEE Truns. Comput., vol. 39, pp.
710-713, May 1990.
C. H. Gebotys and M. I. Elmasry, “Global optimization approach for ar-
chitectural synthesis,” IEEE Trans. CAD/ICAS, vol. 12, pp. 1266-1278,
Sep. 1993.
C. H. Gebotys, “Throughput optimized architectural synthesis,” IEEE
Trans. VLSI Syst., vol. 1, no. 3, pp. 254-261, Sept. 1993.
S. H. Huang et al., “A tree-based scheduling algorithm for control
dominated circuits,” in Proc. 30th ACM/IEEE Design Automation Con$,
pp. 578-582, 1993.
C.-T. Hwang and Y.-C. Hsu, “Zone scheduling,” IEEE Trans.
CAD/ICAS, vol. 12, pp. 926-934, July 1993.
C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach to the
scheduling problem in high level synthesis,” IEEE Trans. CADLCAS,
vol. 10, pp. 464475, Apr. 1991.
T. Y. K. Kam and R. K. Brayton, “Multi-valued decision diagrams,”
Univ. California, Berkeley, Memo UCBERL M90/125, Dec. 1990.
T. Kim, J. W. S . Liu, and C. L. Liu, “A scheduling algorithm for
conditional resource sharing,” in Proc. IEEE Int. Conj Computer-Aided
Design, pp. 84-87, 1991.
H. Komi, S . Yamada, and K. Fukunaga, “A scheduling method by
stepwise expansion in high-level synthesis,” in Proc. IEEE Int. Con$
Computer-Aided Design, pp. 234-237, 1992.
D. Ku and G. De Micheli, “Relative scheduling under timing con-
straints,” in Proc. 27th ACM/IEEE Design Automation Con$, pp. 59-64,
1990.
T-.F. Lee, A. C.-H. Wu, Y.-L. Lin, and D. D. Gajski, “An effective
methodology for functional pipelining,” IEEE Trans. CADLCAS, vol.
13, no. 34, pp. 439450, Apr. 1994.
H.-T. Liaw and C . 3 , Lin, “On OBDD-representation of general Boolean
functions,” IEEE Trans. Comput., vol. 41, pp. 661-664, June 1992.
S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W. W.
Hwu, “A comparison of full and partial predicated execution support
for ILP processors,” in Proc. 22th Int. Symp. Computer Architecture, pp.
138-150, June 1995.
D. J. Mallon and P. B. Denyer, “A new approach to pipeline op-
timization,” in Proc. European Design Automation Con$, pp. 83-87,
1990.
M. C. McFarland, A. C. Parker, and R. Camposano, “The high-level
synthesis of digital systems,” Proc. IEEE, vol. 78, pp. 301-318, Feb.
1990.
S.-I. Minato, “Zero-suppressed BDD’s for set manipulation in combi-
natorial problems,” in Proc. 30th ACMLEEE Design Automation Con$,
pp. 272-277, 1993.
B. M. Pangrle and D. D. Gajski, “Slicer: A state synthesizer for
intelligent compilation,” in Proc. IEEE Int. Con$ Comput. Design, pp.
4 2 4 5 , 1987.
A. C. Parker, J. T. Pizarro, and M. Mliner, “MAHA: A program for
datapath synthesis,” in Proc. 23th ACM/IEEE Design Automation Conf,
pp. 461465, 1986.
P. G. Paulin and J. P. Knight, “Force-directed scheduling for the
behavioral synthesis of ASIC’s,’’ IEEE Trans. CAD/ICAS, vol. 8, pp.
661-679, June 1989.
R. Potasman, J. Lis, A. Nicolau, and D. Gajski, “Percolation based
synthesis,” in Proc. 27th ACM/IEEE Design Automation Confi, pp.
444449, 1990.
M. Potkonjak and J. Rabaey, “Optimizing resource utilization using
transformations,” IEEE Trans. CAD/ICAS, vol. 13, no. 3, pp. 277-292,
Mar. 1994.
I. RadivojeviC and F. Brewer, “Symbolic techniques for optimal sched-
uling,” in Proc. 4th SASIMI Workshop, Nara, Japan, pp. 145-154, 1993.
- , “Ensemble representation and techniques for exact control-
dependent scheduling,” in Proc. 7th Int. Symp. High Level Synthesis,
pp. 60-65, 1994.
-, “On applicability of symbolic techniques to larger scheduling
problems,” in Proc. European Design and Test CO& pp. 48-53, 1995.
__, “Analysis of conditional resource sharing using a guard-based
control representation,” in Proc. IEEE Inr. Con$ Comput. Design, pp.
434-439, 1995.

[35] B. R. Rau and J. A. Fisher, “Instruction-level parallel processing:
History, overview, and perspective,” J. Supercomputing, vol. 7, pp.
9-50, Jan. 1993.

[36] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, “The Cydra 5
departmental computer: Design philosophies, decisions and trade-offs,”
IEEE Comput., vol. 22, pp. 12-34, Jan. 1989.

[37] M. Rim, Y. Fan, and R. Jain, “Global scheduling with code motions for
high-level synthesis applications,” IEEE Trans. VLSI, vol. 3, no. 3, pp.
379-392, Sept. 1995.

[38] E. Riseman and C. C. Foster, “The inhibition of potential parallelism by
conditional jumps,” IEEE Trans. Comput., pp. 1405-141 1, Dec. 1972.

[39] A. Takach and W. Wolf, “Scheduling constraint generation for com-
municating processes,” IEEE Trans. VLSI Systems, vol. 3, no. 2, pp.
215-230, June 1995.

[40] A. Takach, W. Wolf, and M. Leeser, “An automaton model for sched-
uling constraints in synchronous machines,” IEEE Trans. Comput., vol.
44, pp. 1-12, Jan. 1995.

[41] A. H. Timmer and J. A. G. Jess, “Execution interval analysis under
resource constraints,” in Proc. IEEE Int. Con$ Computer-Aided Design,

[42] -, “Exact scheduling strategies based on bipartite graph matching,”
in Proc. European Design and Test Conj, pp. 4 2 4 7 , 1995.

[43] K. Wakabayashi and H. Tanaka, “Global scheduling independent of con-
trol dependencies based on condition vectors,” in Proc. 29th ACMVEEE
Design Automation Con$, pp. 112-1 15, 1992.

[44] K. Wakabayashi and T. Yoshimura, “A resource sharing and control
synthesis method for conditional branches,” in Proc. 26th ACMLEEE
Design Automation Con$, pp. 62-65, 1989.

[45] W. Wolf, A. Takach, C.-Y. Huang, R. Manno, and E. Wu, “The Princeton
University behavioral synthesis system,” in Proc. 29th ACM/IEEE
Design Automation Con$, pp. 182-187, 1992.

[46] J. C.-Y. Yang, G. De Micheli, and M. Damiani, “Scheduling and
control generation with environmental constraints based on automata
representations,” IEEE Trans. CAD/ICAS, to appear.

[47] L. Yang and J. Gu, “A BDD model for scheduling,” in Proc. CCVLSI,
1991.

[48] T.-Y. Yen and W. Wolf, “Optimal scheduling of finite-state machines,”
in Proc. IEEE Int. Con$ Computer Design, pp. 266-369, 1993.

pp. 454-459, 1993.

Ivan P. RadivojeviC received the B.S.E.E. degree
from the University of Belgrade, Yugoslavia, in
1987 and the M.S.E.E. degree from Drexel Univer-
sity, Philadelphia, PA, in 1990.

From 1987 to 1989, he worked as a Research
Engineer at the University of Belgrade, where he
contributed to the design of numerous micropro-
cessor and DSP-based real-time systems. During
the 1990-91 academic year, he was a Teaching
Fellow at the ECE Department, Drexel University,
Philadelphia. Currently, he is a Ph.D. candidate at

the ECE Department, University -of California, Santa Barbara. His research
interests include high-level synthesis, logic design, and hardwarekoftware
issues in superscalar and VLIW architectures.

Forrest Brewer received the Bachelor of Science
degree with honors in physics from the California
Institute of Technology, Pasadena, in 1980 and the
M.S. and Ph.D. degrees in computer science in
1985 and 1988, respectively, from the University
of Illinois, Urbana-Champaign.

Since 1988, he has served as an Assistant Profes-
sor with the University of California, Santa Barbara.
From 1981 to 1983, he was a Senior Engineer
at Northrop Corporation and consulted there until
1985. He coauthored Chippe, which was the first

closed loop high level synthesis system. Recently,-bis research work has
been in the application of logic synthesis techniques to high level synthesis,
specification and scheduling of control-dominated designs.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore. Restrictions apply.

