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A New Symbolic Technique for 
Control-Dependent Scheduling 

Ivan RadivojeviC and Forrest Brewer 

Abstract-This paper describes an exact symbolic formulation 
of control-dependent, resource-constrained scheduling. The tech- 
nique provides a closed-form solution set in which all satisfying 
schedules are encapsulated in a compressed OBDD-based rep- 
resentation. This solution format greatly increases the flexibility 
of the synthesis task by enabling incremental incorporation of 
additional constraints and by supporting solution space explo- 
ration without the need for rescheduling. The technique provides 
a systematic treatment of speculative operation execution in 
arbitrary forward-branching controVdata paths. An iterative 
construction method is presented along with benchmark results. 
The experiments demonstrate the ability of the proposed tech- 
nique to efficiently exploit parallelism not explicitly specified in 
the input description. 

I. INTRODUCTION 

ESOURCE-CONSTRAINED operation scheduling is the R process of determining the assignment of operations to 
time slots of a synchronous system, subject to datdcontrol- 
flow dependencies and resource (e.g., functional units, buses, 
registers) availability. We say that scheduling is control- 
dependent if some operations from the controlldata flow graph 
(CDFG) are executed conditionally due to the presence of 
control-flow constructs such as if-then-else, goto, case, exit, 
etc. Such scheduling plays an important role in high-level 
synthesis (HLS) of digital systems [7], [24]. There are two 
difficult issues in a formal treatment of control-dependent, 
resource-constrained scheduling: i) concise formulation of 
the conditional behavior and ii) treatment of resources. An 
efficient formulation should not generate an excessive number 
of constraints and formulation variables. Moreover, a formal 
evaluation of resource availability in the face of conditional 
execution is required. This is particularly difficult when move- 
ment of operations across basic code block boundaries is not 
prohibited. It has been demonstrated that the ability to perform 
speculative operation execution leads to superior schedules 
W I ,  1381, 1431. 

Current practical methods for solving this NP-complete 
problem involve two basic approaches: i) heuristics and ii) 
integer linear programming (ILP). Priority-based heuristic 
scheduling (e.g., [5], [26], [28]) can accommodate a variety 
of control-dependent behaviors but may fail to find an optimal 
solution in tightly constrained problems. The reason for this is 
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that heuristic schedulers cannot recuperate from early subop- 
timal decisions that typically preserve only one representative 
from a possibly very large pool of qualified candidates. Con- 
ventional ILP methods 1151 can solve scheduling exactly but 
suffer from exponential time complexity and the inability to 
efficiently formulate control constraints. General applicability 
of these ILP methods has been improved by remapping the 
constraints [ll],  [12], a mixed ILPBDD method [47], and 
heuristic approaches based on ILP [14], [18]. However, with 
the exception of [6] (discussed below), no ILP-based technique 
provides support for conditional behavior. Similarly, a recent 
branch-and-bound technique [42] based on execution interval 
analysis [41] has been applied only to acyclic DFG’s. 

Many HLS systems prohibit code motion in order to avoid 
problems related to evaluation of resource availability and 
causality of the solutions. An alternative strategy is to explicitly 
write constraints describing global movement of operations, 
but such approaches reduce to exhaustive enumeration of 
potential execution scenarios. In the formulation described in 
this paper, code motion is allowed implicitly-there is no need 
to describe freedom already available (although implicit) in a 
CDFG. 

As an example, we consider the formal approach based on 
algebra of control-flow expressions (CFE’s) [6]. In that work, 
the timing and synchronization requirements for comqunicat- 
ing machines are encapsulated in finite-state machine (FSM) 
description. From this, scheduling constraints are derived and 
subsequently solved using a BDD-based 0 /1  ILP solver. 
The FSM description is constructed from an algebraic CFE 
specification that implicitly restricts code motion. Consider, for 
example, the code segment shown in Fig. 1. A possible CFE 
specification for this fragment is p(c:r + C:s). This requires 
that p be executed before c and c before either r or s. An 
alternative specification is c:pr + C:ps, which allows c to be 
executed before p .  If c depends on p ,  only the first statement 
is correct. However, if c and p are independent, then both 
behaviors are legal. It is possible to create a specijkation that 
lists all correct execution scenarios, but the number of such 
scenarios and the size of the specification grow dramatically as 
the program complexity increases. In contrast, in our approach, 
only data dependencies are used to impose the execution order 
of p and c. In fact, if the data dependencies allow such motion, 
r andor s may be executed before c and potentially before p as 
well. Thus, these potential execution scenarios are implicitly 
supported by the formulation. 

Since operation level parallelism may not be explicit in the 
input description, some heuristic schedulers focus on detection 

0278-0070/96$05.00 0 1996 IEEE 

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:37 from IEEE Xplore.  Restrictions apply.



4 6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO I ,  JANUARY 1996 

P ;  
if (c) r; 
else s; 

Fig. 1 .  Conditional behavior. 

of mutual exclusiveness in CDFG’s. Tree scheduling (TS) [ 131 
uses a tree-representation of the execution paths to enable 
movement of operations. Conditional vector list scheduling 
(CVLS) [43] uses condition vectors [44] to dynamically track 
mutual exclusiveness of the operations that can be executed in 
a speculative fashion (i.e., pre-executed). Transformation of a 
CDFG with conditional branches into one without conditional 
branches is performed in 1171, but there is no support for spec- 
ulative execution. Furthermore, these heuristics are restricted 
to nested conditional branches (conditional tree control struc- 
ture). Multiple conditional trees are addressed by Wakabayashi 
[43], but the trees are either scheduled sequentially (using a 
priority scheme), or conditional tree duplication is performed. 

Some synthesis systems emphasize treatment of behavioral 
level timing specifications. However, either a predefined or- 
der of operation is enforced before the scheduling [5], or 
the treatment of resource constraints is not fully considered 
[19]. The PUBSS system [45] forms a product machine of 
individual behavior FSM’s (BFSM’s) to statically schedule I/O 
communication between the components. PUBSS supports a 
variety of timing Constraints. However, parallelism increasing 
techniques [9] are applied in a static fashion (before BFSM 
collapsing and scheduling). The issue of resource constraints 
is either not formally discussed [40], [48], or the formulation 
of exclusivity constraints requires an excessive number of 0/1 
ILP variables [39]. 

To our knowledge, the first attempt to address the sched- 
uling problem using symbolic computations was made by 
Kam in [16]. There, several CAD applications of MDD’s 
(multivalued decision diagrams) were described. Scheduling of 
acyclic DFG’s with function unit constraints was formulated 
using multivalued variables, but the approach seemed to 
be practicable only for tightly constrained problems. Un- 
fortunately, too few experimental results were left docu- 
mented to make a critical assessment of that approach. An 
exact symbolic formulation of the control-dependent, resource- 
constrained scheduling problem was introduced in [3 11. Unlike 
other approaches in which a single representative solution 
is generated, in this technique, all feasible schedules are 
encapsulated in a compressed Ordered Binary Decision Di- 
agram [4] (OBDD) form. This is advantageous since the 
exact effect of additional constraints derived during subsequent 
synthesis steps is incrementally computable. Also, there is 
the additional benefit of being able to explore the solution 
space without the need to reschedule the problem instance. An 
alternative symbolic formulation [46] uses finite automata to 
capture resource/timing/synchronization constraints. A product 
automaton is built that satisfies the specified behavior. Its 
OBDD representation is then traversed to find a minimum- 
latency schedule. However, similar to [6], the technique lacks 

support for various forms of a parallelism extraction to be 
described in Section 11. 

In this paper, we describe a symbolic technique for 
exact resource-<:onstrained scheduling of arbitrary forward- 
branching contrjol structures. Scheduling is performed with 
the assumption that the allocation of resources is known. 
The technique supports speculative operation execution and 
global treatment of parallel control structures. To allow 
a systematic treatment of the problem, a flexible control 
representation based on guard variables, guard functions, and 
traces is introduced. A trace validation algorithm is proposed 
to enforce causality and completeness of the set of all feasible 
solutions. The scheduling technique presented in this paper 
supports arbitrary Boolean constraints as well as conventional 
timing constraints. Scheduling of multirate interacting FSM’s 
is not addressed1 in this paper. Similarly, we do not discuss 
optimizations based on algebraic transformations [30]. 

The paper is organized as follows. In Section 11, we describe 
several approaches to resource-constrained control-dependent 
scheduling, as well as some features desirable to improve 
scheduling quality. The formulation is presented in Section 
111. Aspects related to the OBDD construction process are 
considered in Section IV. Experimental results are discussed 
in Section V. Finally, in Section VI, we present conclusions 
as well as the questions to be addressed in the future. 

11. HIGH-PERFORMANCE SCHEDULING ISSUES 

Our scheduling technique assumes an input in the form of a 
CDFG specification. The CDFG describes both dataflow and 
control dependencies between the operations and is similar 
to the one used by Wakabayashi [44]. Fig. 2 contains an 
pseudocode exaimple and its CDFG representation. Operation 
nodes are atomic actions potentially requiring use of hard- 
ware resources i(e.g., arithmeticAogica1 operations, readwrite 
cycles). Conditional behavior is specified by means of fork and 
join nodes. An operation node generating a control signal for a 
fork/join pair is called a conditional. Directed arcs establish a 
link between the conditional and a related fork/join pair. In Fig. 
2, the conditional labeled op-2 tests the result of the addition 
(op-1) and determines the flow of control (i.e., whether “true” 
(T) or “false” (F) branches should provide operands for op-6). 

Fig. 2(a)-(c) shows three different ways to schedule the 
example assuming that only one resource of each type is 
available. The schedule in Fig. 2(a) uses the knowledge that 
after a conditional (op-2) is executed, operations belonging to 
“T” and “F” branch arcs are mutually exclusive. However, the 
join node is treated as a synchronization point: op-6 cannot 
be scheduled until both the “T” and “F” branch are executed. 
This leads to inefficient schedules, since the execution times 
for alternative branch arcs may differ widely. Consequently, 
in this example, it takes five cycles to execute the schedule no 
matter what decision is made by the conditional. This approach 
corresponds to that used by traditional ILP schedulers (e.g., 

The schedule shown in Fig. 2(b) improves the “average” 
execution time io 4.5 cycles by scheduling op-G on the fourth 
cycle at the “F”’ branch. Note that the operation execution 

~ 5 1 ) .  
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in x, y; 
out 2;  

if ((X+Y)>~) { 
x = x + 3 ;  
y = y + 5 ;  

x=x+4; 
) else 

z = x * y ;  

OP-2- 

CDFG source 

O P  

OP- 

CDFG sink 

Fig. 2. Example CDFG and its schedules. 

resources: 
- 2 adders (white) 
- 1 subtracter (black) 
- 1 comparator 

execution time: - 3 cycles (2 before I )  
4 cycles ( I  before 2)  

Fig. 3. Speculative operation execution. 

order is predetermined before scheduling (e.g., op-2 before 
op-3, although no data dependency exists between these two 
operations in the CDFG). This approach is supported by a 
number of heuristic schedulers (e.g., [5] )  and by one recent 
exact technique [6]. 

The schedule from Fig. 2(c) not only further improves 
the average execution time but reduces the longest execution 
path to four cycles as well. This is done by scheduling op-3 
on the second cycle in a speculative fashion (i.e., before 
the corresponding conditional op-2 is resolved). Note that 
the resource requirements cannot be predicted in a static 
fashion. For example, if more adders are available, op-4 can be 
executed in a speculative fashion as well. The mutual exclusion 
of op-3 and op-4 must be evaluated dynamically by taking 
into account when the corresponding conditional (op-2) is 
scheduled. This kind of scheduling is supported by several 
heuristics ([13], [29], [37], [43]). 

There are several ways to improve the scheduling quality 
by exploiting parallelism implicit in the CDFG representation. 

Speculative Operation Execution: It is often beneficial to 
determine the control value simultaneously with branch execu- 
tion. Operations from branch arcs that are executed before the 
corresponding conditional value is evaluated are said to be pre- 
executed. Such speculative operation execution allows more 
flexibility in using given hardware resources. A conditional 
is a scheduled operation that generates a control value. Fig. 
3(a) shows a CDPG where the control dependencies between 
the conditionals (comparators 1 and 2)  and the corresponding 
fork/join pairs are explicitly indicated. Speculative operation 
execution is not possible if the control precedence between the 
conditional and the fork node is enforced. In this case, at least 
six time steps are necessary to execute the CDFG, since the 
longest controlldata dependency chain includes six operations. 
However, if precedence between the conditional and the fork 
node is removed, operations from the branch arcs can be 
preexecuted. Fig. 3(b) shows a schedule executing in three 
cycles using the indicated resources. In general, precedence 
between a conditional and join node need not be enforced 
either. In this case, the execution time is bounded only by 
data dependencies (given sufficient resources). 

Out-of-Order Execution of Conditionals: It can happen that 
a faster schedule is obtained if the top-level conditional (in 
the input specification) is evaluated after some other nested 
conditional. A simple example of this behavior is shown in Fig. 
3(b). The schedule executes in three cycles with the conditional 
1 left unresolved until the end of the very last cycle. The 
knowledge that conditional 2 is resolved during the first cycle 
is essential to properly interpret resource usage. Both TS [13] 
and CVLS [43] rely on a conditional-tree representation of 
the control and cannot accommodate out-of-order execution 
of the conditionals without dynamically modifying the tree 
structure. 

Irredundant Operation Scheduling: Another way to improve 
scheduling quality is to identify operations that are not re- 
dundant in the input description but are redundant for certain 
control paths. The importance of such information has been 
observed, and the algorithms to detect such operations have 
been discussed in the literature [131, [44]. 

Applications to Parallel Control Structures: Control struc- 
tures that are either fully parallel or have correlated control 
introduce additional scheduling challenges. As the number of 
control paths increases, it becomes difficult to keep track of 
the mutual exclusiveness among the operations. Ideally, the 
scheduler should evaluate and maintain this information for all 
control paths. In Fig. 4, a CDFG is shown in which two parallel 
trees have a correlated control (shaded comparator). The reader 
can verify that, given one adder (“white” operation), one 
subtracter (“black” operation) and one comparator (single- 
cycle units assumed), a six-cycle schedule can be found only 
if the control correlation is properly interpreted (i.e., “false” 
paths are not scheduled). As indicated in Fig. 4, speculative 
execution (and additional or more versatile resources) can 
further improve the execution time. Although not typical for 
conventional structured programs, parallel control structures 
are likely to result from program transformations performed 
by parallelizing compilers (e.g., loop unrolling where a con- 
ditional behavior is present within the loop body) [35]. 
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no speculative execution: 
- 6 cycles (3ALU or ladd/lsub/lcomp) 
speculative execution: 
- 5 cycles (3ALU or 2add/l sub/l comp) 
- 4 cycles (SALU or 3add/2sub/2comp) 

I I 
sink 

Guards: G1 (corresponding to C1 decisions) 
G2 (corresponding to C2 decisions) 

Fig. 4. CDFG with correlated control. Fig. 5. Kim’s example. 

The formulation presented in this paper supports all of the 
advanced scheduling features discussed above. The execution 
delay of the longest path of a scheduled CDFG is frequently 
referred to as the minimum latency of the schedule. Our goal 
is to find all minimum-latency schedules, given a CDFG 
specification and resource constraints. By using OBDD’s, 
we can encode all feasible solutions to a particular problem 
instance. 

111. FORMULATION 

In this formulation, all scheduling constraints are repre- 
sented as Boolean functions, and an OBDD corresponding to 
the intersection is built. Each variable C,, describes operation 
j occurring at time step s. C,, is true iff operation j is 
scheduled at time step s in a particular solution. We assume a 
unique mapping from operation type to function unit type. To 
represent control-dependent behavior, a set of guard variables 
is introduced. Each guard G represents a control-flow decision 
by a particular conditional-the guard is true for one branch 
and false for the other. Every control path through an arbitrary 
combination of forkljoin pairs is described by a product of the 
corresponding guard variables. For each operation j, a Boolean 
guard function I?, (defined on the guard variables) encodes all 
the control paths on which j must be scheduled. 

Computation of I? Functions: Assume that operation i has 
n successors ( j l ,  j,, . . . , j n )  and that none of the successors 
is a join node. Then a guard function rz can be simply 
computed as a Boolean Or of the successors’ guard functions 
r j k  ( I C  = 1 , 2 ,  . . . , n).  This means that operation i has to 
provide operands to all of its successors. If a successor of i 
is a join node, then its contribution to is equal to FjoznGk 
or rJOtnGk (depending whether i belongs to the “T” or “F” 
branch). Guard functions corresponding to all of the nodes can 
be computed by a one-pass traversal of the CDFG that starts 

- 

from a sink node whose guard function is initialized to “1” 
(tautology). 

Shown in Fig. 5 is a CDFG fragment of Kim’s example [17] 
in which two guards ( Gl , G2) encode the conditional behavior. 
There are three possible execution paths: ( G I  G2, G I  G2, G I ) .  
Indicated blocks (1, GI ,  GIG,,   GIG^, G I )  correspond to op- 
erations that share the same guard function r. Operations that 
must be scheduled on all control paths have r = 1. Note that 
the number of guard variables is not proportional to the number 
of control paths. (In Fig. 4, only five guard variables encode 
18 control paths). Furthermore, we observe that r ’s  are not 
restricted to product terms (thus, they can handle constructs 
such as: goto, exit, case). A more detailed discussion of the 
guard-based model is available in [34]. 

In many aspects, the guard-based model is similar to ex- 
ecution conditions from path analysis [2]. In that approach, 
however, Boolean conditions are used in the hardware alloca- 
tion phase (after AFAP scheduling is performed). Nevertheless, 
that research demonstrated that OBDD’ s efficiently represent 
control signals in large scale problems. In fact, similar guard- 
based representations have been used in areas other than 
HLS-for example, to perform “if-conversion’’ in experimen- 
tal vectorizing compilers [ 11 and simplify code generation 
for VLIW and superscalar machines supporting predicated 
execution [8], [22], [36]. A fundamental difference in our 
approach is that we dynamically consider when the guard 
becomes known, not just what its value is on a particular 
control path. 

The technique presented in this paper generates a solution 
in the form of a collection of traces. A trace is a possible 
execution instance for a particular control path. In OBDD 
form, traces correspond to product terms of the Boolean 
function. Each trace includes the guard variables (identifying 
a control path) and operation variables (indicating a schedule 
for the path). For example, in Fig. 5,  each trace corresponding 
to the “false” branch of conditional C1 contains q, as well 

_ _  
_ _  
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as 0/1 assignment of C,j variables. Operations with r = 
or I’ = 1 must be scheduled on that trace. If other operations 
are scheduled on this trace, they are preexecuted. 

The ensemble schedule is a set of traces forming a complete 
deterministic schedule. Conditions for the existence of such a 
schedule are discussed in Section 111.3. The solution OBDD 
includes only traces belonging to at least one ensemble sched- 
ule and implicitly incorporates all feasible ensemble schedules. 
Note that the number of ensemble schedules can be much 
larger than the number of traces. 

3.1. Speculative Execution Model 
In our speculative execution model, only the control prece- 

dence between the conditional and join node is enforced. 
CDFG operations can be scheduled at different time steps on 
distinct control paths but cannot be scheduled more than once 
per trace. Each operation from the CDFG is executed at most 
once regardless of the actual control decisions made when 
the schedule is executed. For example, this means that in the 
current model the following scenario is prohibited: i) operation 
j executes in a speculative fashion using operands A and B 
and generates result R, ii) a control decision is made and R 
is discarded, and iii) operation j executes using a different set 
of input operands (e.g., C and D )  and a correct value of R 
is recomputed. 

Fig. 3(b) shows an example where precedences between the 
conditionals and forks are removed. The critical path length of 
6 in the original CDFG is reduced to just 3. All four possible 
control paths may start executing simultaneously. 

3.2. Derivation of Constraints 

For brevity, we assume nonpipelined, unit-time operations. 
Pipelined and multicycle functional units can be accommo- 
dated by incorporating execution delay in the equations pre- 
sented in Sections 111.2 and 111.3 [31]. To model operation 
chaining, a precedence relation can be added between op- 
erations that cannot be chained [15]. ( A S A P ) ,  (as soon as 
possible) and ( A L A P ) ,  (as late as possible) bounds are con- 
structed to limit the time spans over which an operation j can 
be scheduled. These bounds are not required for correctness 
but improve the efficiency of the construction. C,, denotes 
operation j ’ s  instance at time step s. Fork (join) nodes are not 
explicitly used in the formulation. Precedences to fork (join) 
nodes are translated in a transitive fashion to the successor 
nodes of the fork (join). Symbols ‘‘E” and “+” correspond 
to Boolean Or function, and “II” stands for Boolean And. 
Product “ab” implies “a And b.” 

1) Uniqueness: Equations 1 enforce unique scheduling of 
operations from the CDFG at time step s. If (ASAP),  5 
s < (ALAP), : 

where R,? is the range [ ( A S A P ) j  + . s] .  If time step s = 

( ALAP)? : 

Equation (la) states that prior to step (ALAP)?  , operation 
j is not scheduled more than once. On step (ALAP) , ,  (lb) 
ensures that operation j has been executed on all paths covered 
by rj. On paths not covered by I?,, operation j can be either 
uniquely scheduled (preexecuted) or not scheduled at all. 

The constraint formulated in (la) can be simplified. An 
iterative form of (la) that enforces uniqueness implicitly (by 
construction) is formulated in the following equation: 

where R(s-l)j is the range [ ( A S A P ) ?  . . .  (s - l)]. 
2)  Precedence Relations: If operation i precedes operation 

j (i.e., there is a dependency arc from i to j in the CDFG) 
and Pi 2 rj (Ti covers F?) then for every step s in the range 
[ ( A S A P ) ?  * - . (ALAP) , ]  the following must hold: 

(G+ Cl,) = 1. 
A S  A P, 5 1 < s 

Equation (2a) states that either operation i has to be sched- 
uled before step s, or operation j cannot be scheduled at step s. 
The case ‘‘I?( covers (but is not equal to) rj” (I?, 3 rj) occurs 
when the dependency from i to j goes through a fork node. 
When I?; 2 rj (rj not contained in ri--e.g., the dependency 
from i to j goes through a join node), the precedence relation 
is enforced only on the paths covered by I?,: 

Effectively, (2a) ensures that the operation can be preexe- 
cuted only if all of its predecessors have already been executed. 
An operation after the join node cannot be preexecuted in our 
model. Thus (2b), the dependencies to its predecessors are 
enforced only conditionally. 

3) Termination: A single sink variable is used in the OBDD 
representation to indicate that a particular trace has concluded. 
It is initialized to “0” and is set to “1” when the terminating 
condition for the trace is met. Equation (3) is used as a 
terminating condition for all traces in parallel. The scheduling 
process can be terminated when sink assumes the value “1” 
on all paths of an ensemble schedule. In these equations, 
operations (jl . I . j n )  are immediate predecessors of the sink 
node in the CDFG 

9 

where c 
1=1 k = ( A S A P ) ,  

( 3 )  

Function Rs,, is true if operation j ,  is scheduled prior to or 
at step s. The fact that execution of j ,  is mandatory only on 
paths covered by rj, is reflected by (3 ) .  
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4)  Resource constraints: If kl resources of a certain type 
TI  (e.g., multipliers, adders, ALU’s, registers, buses) are avail- 
able, we formulate a “generalized resource bound” (4) 

l S ( l P # b ) 5 % L  

F,l is a Boolean function stating that resource T Z  is needed 
during time step s.  Equation (4) is applied at each step 
s for each resource T Z .  It ensures that at least (nSl - kl) 
resources (among nsl potential candidates at step s) will not 
be scheduled. For functional units, F,l functions are simply 
the operation variables. For example, if at step s operation 
instances Csm1, C,,, , CSm3 and C,,, are candidate multipli- 
cations and there are only k ,  = 2 multipliers available, (4) 
becomes 
-- ~- -~ __- 
Csm, Csm, + Csm, Csm, + Csm, Csm4 + Csm, Csm, 
-~ ~- + Csm, Csm, + Csm3 Csm4 = 1. 

Equation (4) applies the resource constraint to all traces 
simultaneously. Trace validation (Section III.3) ensures that 
there are no resource violations in any ensemble schedule. 
Bus and register constraints are generated for linear schedules 
by suitable choice of Fsi [31]. 

5) Removal of RedundantlyScheduled Operations: Assume 
that a conditional has executed, and the ‘‘me” branch is 
selected. Operations from the “false” branch may still be 
scheduled on the trace corresponding to the “true” branch if 
there are available resources. Such traces are identified and 
removed. Assume conditional CI,  (whose corresponding guard 
is GI,) is resolved prior to time step s. Then all the variables 
that correspond to operation j ’ s  instances scheduled for time 
steps >s have to assume value “0” on traces where Gk is 
true if 

FjGk = 0. ( 5 4  

Similarly, on traces where Gk is false, all the variables that 
correspond to operation g’s instances scheduled for time steps 
>s have to assume value “0” if 

r,K = 0. (5b) 

6) Timing Constraints: Since C,, denotes operation j’s 
instance at time step s ,  it is possible to describe a variety 
of timing constraints using Boolean functions. For example, 
assume that operation z precedes operation j and that both 
of them execute in a single cycle. Furthermore, assume that 
operation a can be scheduled at steps 1,2, and 3 (corresponding 
variables are Cl%, C2%, and C3%), and that j can be scheduled 
at steps 2, 3, and 4 (C2,, C3,, and C4,). Then, a constraint “1 
has to be scheduled exactly one cycle after a” can be written as 

ClZC2, + C2ZC3j + C32C43 = 1. (6)  

Minimudmaximum constraints can be represented simi- 
larly For example, a constraint “ j  has to be scheduled at least 
two cycles after 2’’ amounts to a Boolean function 

Cltc33 f Clzc4j + c 2 z c 4 ~  = 1. (7) 

An iterative formulation of the constraints is possible as 
well. For example, (6) can be applied at step s (s = 2 ,3 ,4 )  
using 

Together with the uniqueness constraint (I), (8) enforces 
the timing constraint implicitly (by construction). If a timing 
constraint has to be conditionally enforced, a modification 
similar to that in (2b) is necessary. Since we use arbitrary 
Boolean functions to represent constraints, more complex 
timing behavior can also be conveniently described. 

The formulation described throughout Section I11 is also ap- 
plicable to scheduling without speculative operation execution. 
Essentially, a control dependency between the conditional and 
fork node in the CDFG can be enforced as a hard precedence 
relation. However, a slightly modified set of the constraints is 
used to improve efficiency 1321. In addition, timing constraints 
can be used to enforce precedence between the operations 
and prohibit speculative execution on individual basis. This is 
because, in our formulation, precedence constraints are simply 
a special case of timing constraints. 

3.3. Trace Validation 

A trace satisfying all of the constraints introduced in Section 
m.2 may still not be valid in the sense that it cannot be a 
member of any set of traces forming an ensemble schedule. 
The example CDFG in Fig. 6 demonstrates that resource- 
constrained scheduling of all individual control paths is not 
sufficient for a proper treatment of control-dependent behavior. 
Both the “True” and “False” control paths can be scheduled 
individually in two time steps assuming one single-cycle re- 
source of each type (“white,” “black,” comparator). However, 
observe that the execution traces shown in the figure cannot 
be combined into an executable schedule meeting the stated 
resource constraints. Since the decision regarding which path 
to execute is not known until the end of the first step, the 
“True” and “False” paths are indistinguishable during that 
cycle. This means that both op-1 and op-5 as well as op-3 and 
op-6 must be executed simultaneously, violating the resource 
constraint. (A decision to exclusively execute op-l and op-5 
or op-3 and op-6 depends on knowledge not available until 
the end of the first cycle!) In fact, no two-cycle schedule 
is possible, although both control paths can be individually 
scheduled in two time steps. 

A valid ensemble schedule is a minimal set of traces that is 
both causal and complete. The causality requirement dictates 
that the schedule cannot use knowledge of the value of a 
conditional prior to the time when the conditional is executed 
(resolved). Completeness requires that a trace must exist for 
every possible control combination. An ensemble schedule is a 
minimal set in the sense that if any trace is removed, the set is 
no longer complete. Assume that the conditional ck  is resolved 
at step j .  Causality requires that the traces corresponding to 
guard values GI, and must be identical (match) for all time 
steps prior to and including j .  Completeness ensures that the 
ensemble schedule includes traces for both GI, and GI,. 
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Fig. 6. Ensemble schedule counterexample. 

i=O; 
do { 

i++; 
S(i) = S(i-1); 
for each time stepj ( 

s ’ = 3  (V- V ( j ) ) S ( i )  
for each conditional ck ( 

__ 
s’ = S’Rk 0’) -k vGk (S’Ak 0’) ) 
if (S’==O) ( S(i)=O; exit; } 

1 
S(i) = S(i)S’; 

1 
) while (S(i)!=S(i-1)); 

Fig. 7. Trace validation algorithm. 

Trace validation ensures that each validated trace is part 
of some ensemble schedule. The validation is efficiently pre- 
formed by the iterative algorithm shown in Fig. 7. The 
following notation is used: 

f x  ( fz)  positive (negative) cofactor of a Boolean 
function f with respect to a variable 2, 

3, f = f x  + fE existential abstraction is ‘dx f = f x  fz is 
universal abstraction, 

S set of all traces; S(0)-initial set of non- 
validated traces; S(i)-set of traces at iter- 
ation i ,  
set of all variables not including guard 
variables-, 
subset of V corresponding to time steps 
<j, 
set of traces from which all variables (V - 
V’( j ) )  are removed: SI = 3 ( v - ~ , ( j ) ) S ( i ) ,  
= [cl, e2 . . e c,]is the set of all conditionals, 
= [GI, G2 9 . . G,] is the set of guards 
corresponding to the conditionals, 
= [RI ( j ) ,  R2 (j) . . . R, ( j ) ]  is the resolu- 
tion vector. 

V 

V’(j) 

S’ 

C 
G 

W )  

The resolution vector R ( j )  is a set of n Boolean functions (one 
for each conditional), where each function R k  (j) indicates 
whether a conditional c k  was scheduled prior to time step 
j : R k ( j )  = C C l k ,  for (Z<j) .  S’ is partitioned by R( j )  
into a disjoint set of as many as 2, families, corresponding 
to the subset of guards that are resolved prior to time step 
j (GTes). The guards from (G - GTes) (i.e., the unresolved 
guards) have to be don’t cares within the family since at 
time step j there is no knowledge about the future values 
of the unresolved guards. Traces must both match and exist 
for all possible combinations from (G - G T ~ s ) ,  to ensure 
causality and completeness of the ensemble schedule. The 
algorithm checks for partial matching up to step j for all 
traces in parallel. However, it is possible that a trace that 
matched up to time step j is invalidated in subsequent steps. 
Thus, its set of matching traces may no longer be complete. 
The trace validation algorithm iterates until a fixed point is 
reached. The nurnber of iterations cannot exceed the number 
of conditionals. Thus, the algorithm generates a polynomial 
number of constraints regardless of the number of traces. 

The intuition behind the trace validation algorithm can 
be provided by means of the schedule from Fig. 3(b). As- 
sume that the guards G1 and G2 correspond to the con- 
ditionals 1 and 2. There are four possible control paths: 
( G I G ~ ,  G I G ~ ,  G I G ~ ,  GI G2).At the first step resolution vec- 
tor components Rl(1) and R2( 1) are both zero since neither 
conditional is scheduled prior to step 1. To have a causal 
ensemble schedule, traces for all four control paths must 
match at the first step. At the next step, Rl(2) is still zero 
since conditional 1 is not scheduled prior to step 2. However, 
R2(2) = c12 = 1 since conditional 2 is scheduled at step 1. 
Thus, the matching of traces has to be performed only with 
respect to conditional 1 (i.e., traces for paths (GlG2,GG2) 
must match for the first two steps, as well as the traces for 
(G1G2, GI G2)). The same argument holds for step 3. 

Trace validation implicitly verifies that the ensemble sched- 
ules do not violate resource constraints. We indicated in 
Section 111.2 that (4) prevents such violations from occurring 
on individual traces. Since traces match before the conditional 
is resolved, resource bounds are met. After the conditional is 
resolved, the traces are mutually exclusive with respect to that 
particular conditional, and no verification is necessary. 

-- 

_-_  

3.4. Treatment of Loops 
If a loop body does not contain conditional behavior, our 

formulation can be extended (similar to the ILP technique 
described in [ 151) to incorporate loop optimization techniques 
such as loop winding and functional pipelining. The resource 
constraint procedure has to be modified to capture the fact 
that operations at time steps s ,  s + 1, s + 21 . . . share resources. 
Variable 1 represents the latency (iteration interval). In the case 
of loop winding, additional care has to be taken to preserve 
inter-iteration data dependencies. 

The technique can also accommodate the approach to cyclic 
control adopted in path-based scheduling (i.e., loop cycles 
are broken, execution is trapped in the last operation of a 
loop body and, after the scheduling is completed, transitions 
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‘ f  

TABLE I 
RELATION TO ILP 

consfrainf 11 hlnP 1 #solutions I #variables 

#cycles ~ number of steps, #ops - number of operations. #cond - number of conditionals 

are added in the control finite state machine). However, 
the systematic treatment of speculative execution for parallel 
branching control with cycles is an open research problem. 

3.5. Relation to ILP 

Table I illustrates some differences between our technique 
and ILP formulations of resource-constrained control- 
dependent scheduling. In the symbolic approach, any Boolean 
function can be used as a constraint. Unlike ILP techniques, 
we can efficiently generate and store all feasible solutions to 
a particular problem instance. More importantly, this requires 
a very little overhead in terms of formulation variables when 
compared to the formulation of nonbranching scheduling. In 
the worst case, the number of variables in our formulation is 
proportional to the product of the number of time steps and the 
number of operations in the CDFG. In contrast, an identical 
problem instance formulated using ILP [6] requires, in the 
worst case, an exponentially larger number of variables. We 
observe that conventional ILP techniques [I 11, [ 151 essentially 
do not provide support for control-dependent scheduling. In 
such approaches, a CDFG operation has to be scheduled on 
the same cycle on all appropriate control paths. 

IV. CONSTRUCTION 
The constraints described in Section 111 have a simple and 

regular structure [31]. This allows OBDD representations to 
be constructed directly from the CDFG without reference 
to an intermediate equation form. Shown in Fig. 8 is the 
OBDD representation of (4). It is used as a general con- 
struction template for all of the typed resource constraints. 
Note that the number of product terms in a sum-of-products 
representation of (4) is (!). However, its OBDD form is 
compact (O(nk) nodes) and can be built efficiently using ite, 
[3] (if-then-else) calls. Vertices in this if-then-else template 
are not restricted to Boolean variables-complex Boolean 
functions (fl, f2, . . . f n )  can be inserted into the template (e.g., 
budregister constraints, formulated in [3 11). 

However, even when ( f l ,  f 2 ,  . . . f n )  are rather simple, the 
overall constraint may become extremely large. Consequently, 
it can happen that the partial scheduling solution is of moderate 
size, but the constraint to be applied is prohibitively large. 
However, the scheduling constraint need not be explicitly built 
[33]. The following can be done instead: 

1) Introduce a new set of auxiliary variables (yl, y2,. . . yn) 
corresponding to the set of functions (fl, f 2 ,  . . . fn). 

Fig. 8. At-rnost-k-of--n constraint ( I C  = 4, n = 7). 

‘sharing’ between T 
the solution sets guard variables 

increasing 
time step 

operation variables 

4 
guard variables 

\ -L 
4: 

I .ylreasing 
2 step 

Fig. 9. OBDD representation 

2) Build the lemplate function T (shown in Fig. 8) using 

3 )  Compute Po = And(P’, T ) ,  where P’ is a partial 

4) Clearly, a new partial solution PI’ can be obtained using 

only (Ylr5’2,...Yn). 

solution to which the constraint is applied. 

the recursive formula 

Pz = 3y,[And(P(’-’), Xnor(y,, f,))] 

where 3,JF = fz + fz. This amounts to the standard 
BDD substitution operation 

P(z )  = P(l-1) l Y t E f , .  (9) 

Using this approach, in the benchmarks {discussed in Section 
V.l, we were able to apply register constraints that could not 
be built explicitly because of memory limitation. 

Although indiividual equations have efficient orderings, op- 
timal orderings for different equations frequently contradict. 
(In fact, optimal OBDD variable ordering problem is known 
to be NP-complete [4], [IO], [21].) However, experimental 
results indicate that typical instances do have good orderings. 
The results presented in this paper are generated using the 
variable ordering shown in Fig. 9, where nonguard variables 
are ordered by increasing time step, and guard variables are 
placed on top (i e., closest to the root of OBDD). This ordering 
typically results in small OBDD’s and accommodates iterative 
construction. 

Using iterative construction, the solution is built on a time- 
step by time-sLep basis; only those constraints relevant to 
a particular tirne step s are generated and applied to the 
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TABLE I1 
EWF EXPERIMENTS 

#multipliers 
#adders 
latency 
delay 
#variables 
#nodes 
#schedules 
CPU~SI 

non-pipelined multiplier pipelined multiplier 
3 2 2 1 3 2 2 1 1 
3 3 2 2 3 3 2 3 2  

16 16 17 19 16 16 17 16 17 
18 18 19 21 18 18 19 18 19 
97 97 131 199 97 97 131 97 131 

776 465 689 1,788 799 776 878 258 189 
2,055 674 108 19,498 2,160 2,055 144 77 19 

4.0 1.2 9.2 7.1 4.4 4.0 9.4 0.5 3.5 

#cycles 
#adders 

#buses 

#variables 
#nodes 82 
#schedules 

longest: 
average: 

#cycles(spec) 

CPUtimerslll 0.21 0.21 0.51 0.61 3.41 14.01 12.51 3.51624.71391.5 

5 4 4 6 7 3 
3.31 2.25 2.13 5.75 5.0 3.0 

.. I I I I I ,  

2-cycle multiplier and single-cycle adder excepl (*) 2-cycle p~pel~ned multiplicr 

#cycles(non-s&c) 
#adders 
#subtracters 
#comparators 
#variables 
#nodes 
#traces 
CPU time [SI 

OBDD representing a valid partial solution for the previous 
( s  - 1) steps. This prevents the construction of large sets of 
spurious intermediate solutions. It also has the advantage that 
schedule completion can be easily detected, obviating the need 
to accurately prespecify a bound on the number of control 
steps. 

To verify the existence of an ensemble schedule, trace 
validation must be done when a termination test is performed 
on a set of traces that have concluded execution. Note that this 
set is typically significantly smaller than the set of all traces 
in the intermediate solution. To reduce the number of traces 
(and thus, potentially reduce the intermediate OBDD size), 
it is possible to perform trace validation at the end of every 
iteration. This can, however, lead to somewhat increased CPU 
time and more intensive garbage collection. We enforced trace 
validation only when the intermediate OBDD size exceeded 
a prespecified threshold. Similarly, the uniqueness constraint 
for operation j can be applied just at step ( A M P ) ,  (i.e., 
application of only (lb) is sufficient). This diminishes the 
number of constraints that have to be applied and typically 
increases the speed of con’struction. However, note that the 
speed-up techniques described in this paragraph may produce 
intermediate solutions that temporarily contain invalid traces. 

8 8 8 8 7 4  
1 2 2 2 1 2  
1 3 3 1 1 1  

- 1 2 1  
65 49 49 71 55 26 

428 325 220 543 271 116 
15 43 12 124 21 15 

5.9 3.6 4.7 4.1 2.0 3.3 

V. EXPERIMENTAL RESULTS 

The technique described in the paper was implemented 
in C++ and executed on a Sun SPARCstationlO. Reported 
CPU times correspond to the complete procedure: CDFG 
analysis, constraint construction, and all OBDD manipulations 
leading to the reported results. We apply the technique to three 
typical problem types. Table I1 is an application to scheduling 
of acyclic DFG’s. Table I11 demonstrates the ability of our 
technique to perform loop winding on cyclic DFG’s. Finally, 
Tables IV-VI discuss the scheduling of acyclic CDFG’s. The 
results are compared to the optimal or best known results. No 
other work reports competitive results for all three problem 
types. 

Maha 

(4) 

(4) 

TS [I31 3.31 (5) - 

5.1. Acyclic DFG’s 
Table I1 summarizes the elliptic wave Jilter (EWF) bench- 

mark experiments. We found all optimal solutions of each 
instance using OBDD’s whose size was significantly smaller 
than (#variables)’. To reduce the size of partial solutions, an 
auxiliary set of “interior constraints” was generated [33]. The 
basic strategy is as follows: Assume that at the beginning of 

Parker Kim Waka MulT 

2.13 (4) 5.75 (6) 5 (7) 3 (3) 
- 4.75 (7) - 

2.38 (4) 5.75 (6) - 2.88 (4) 
- 6.25 (7) 4.75 (7) - 

TABLE IV 
BENCHMARKS WITH BRANCHING 

11 Maha 1 Parker1 Kim I Waka I MulT 

parallel 
speculative 

serial 

non-speculative parallel 
serial 

8 108.8 
10 177.9 
11a 56.2 
1 Sb 13.5 

TABLE VI 
S2R EXPERIMENTS 

execution-qpe 11 #cycles I CPU-time [SI 

I I1 I 

- memory constraint: 1 single-port look-up table 
- pipelied control delay = 2 cycles 
- resource constraints: 3 single-cycle ALUs (+,-), 2 two-cycle pipelined multipliers 

a. can be achieved with 2 single-cycle ALUs as welt (55.2 s) 
b. can be achieved with 1 single-cycle ALU as well (12.4 s) 

step s there are a addition operations that have ALAP bounds 
in the range [ s . . . ( s  + k - l)] and that there are only m 
single-cycle adders available. Clearly, at least (n  - k m )  of 
these addition operations must be completed prior to step s in 
a feasible solution. This observation enables early detection of 
many (not necessarily all) partial schedules that are destined to 
be discarded within the next IC steps. Similar constraints can be 
applied for each functional unit type including multicycle and 
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pipelined units. A further improvement in runtime efficiency 
is possible if execution interval analysis [41], [42] is used for 
search space reduction. Interior constraints can be viewed as 
a subset of such analysis. 

Some problems may have extremely large solution sets, 
decreasing the efficiency of OBDD manipulations. Neverthe- 
less, since valid partial schedules are available after each 
construction step, runtime-efficient heuristics bused on sets can 
be devised. For example, we can propagate only the subset of 
schedules with maximum utilization of resources at each step 
(utility-based heuristic [32], [33]). Since all such schedules are 
propagated, this heuristic has good behavior and is applicable 
to problems with thousands of formulation variables. Using 
this technique, problems with 102 operations in DFG, 5919 
formulation variables, and 105 cycles have been solved. The 
largest benchmark instances in Table U (28-cycle EWF’s) 
run in less than 15 CPU s, while still finding minimum- 
latency schedules. Moreover, if the exact scheduler is based 
on Zero-Suppressed BDD’s [25], significant improvements in 
terms of both CPU time and memory usage are observed. The 
interested reader is referred to the recent experimental study 
[33] where larger DFG’s (EWF unfolded two and three times, 
FDCT [23]) are scheduled. An FDCT instance with one adder, 
one subtracter, one pipelined two-cycle multiplier, and four 
buses is frequently used to evaluate schedulers. We are able to 
solve this problem that includes 565 formulation variables both 
heuristically (60 CPU s) and exactly (523 CPU s). A randomly 
selected optimal nineteen-cycle schedule (using nine registers) 
is shown in Fig. 10. To our knowledge, no exact technique 
has reported a solution to this problem instance, and the best 
heuristic results so far required latency (iteration interval) of 
twenty cycles [20]. Furthermore, it took us less than 100 CPU 
s to verify infeasibility of a ten-cycle FDCT instance with five 
two-cycle nonpipelined multipliers and three ALU’s. Due to 
its very large symmetric search space, this FDCT instance is 
reported to be an extremely hard problem [42]-both ILP and 
branch-and-bound techniques take more than two CPU h to 
reach the infeasibility conclusion. 

5.2. Cyclic DFG’s 

Loop winding results for EWF are indicated in Table III. All 
optimal schedules, both in terms of latency (iteration interval) 
and delay (iteration time), are constructed using very moderate 
computing resources. Several ILP techniques (e.g., [121 and 
[ 151) report results equivalent to those presented in Tables 
I1 and 111, with the difference that we provide all optimal 
schedules. 

Direct comparison of CPU times is misleading due to 
machine differences and to the fact that only ILP execution 
times without preprocessing are typically reported. Similarly, 
the efficient branch-and-bound technique [42] does not report 
the time for execution interval analysis. 

5.3. Acyclic CDFG’s 
Tables IV and V show experimental results for benchmarks 

exhibiting conditional behavior. The rows #cycles(spec) and 
#cycles(nonspec) correspond to scheduling with and without 

Fig. 10. Nineteen-cycle FDCT with pipelined multiplier. 

speculative execution using the same set of resources and 
demonstrate the benefits of performing such code motion. 
The scheduler terminates when all minimum-latency ensemble 
schedules are found. The number of cycles for the longest 
control path is indicated as ‘‘longest.’’ To compare our results 
with schedulers that minimize average path length, a subset 
of solutions with small average path length is generated in a 
greedy fashion. Benchmarks Maha [27], Kim [17], and Waka 
[44] are conditional trees, and MulT [43] has two parallel trees. 
Parker is Mahu with addition A6 converted into a subtraction. 
Our results are compared to the best published results. The 
Maha solution with one adder and one subtracter is the same 
as in [13] and [43]. Allowing more resources (two adders, 
three subtracters), an improvement of 0.125 (average path 
length) is made over the best previous result. In Parker, this 
improvement was 0.25. In most previous work, it is assumed 
that the comparators incur a small delay within a clock cycle 
and that the operations following the branch on “true” and 
“false” paths are mutually exclusive during the same cycle. 
This treatment of the conditionals requires increased cycle 
time, additional multiplexing, and restricts pipelining of the 
control. Our results reflect this model in Maha and Parker 
only, but this assumption completely eliminates the need for 
speculative execution in the Kim and Wuka benchmarks. By 
default, we assume that a single-cycle comparator is used 
and that its output becomes available for control only in the 
successive cycle. Even with this assumption, our technique still 
derives the same result for Kim as in [43]. In Waku, one path is 
a cycle longer than that reported in [ 131. In MuZT, a one cycle 
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k 

X 

X’ X” -v X = mcos0 + y*sin0 

Y = -x*sin0 + y*cose 
uu 
Y’ y” 

a = 180-8; 
if (a>=O) { 

b = 90-8; 
if (b>=O) { 

sine = T(8); 
cose = T(b); 

sine = T(a); 
cos0 = -T(-b); 

} else { 

1 
c = 270-8; 
if (c>=O) { 

} else { 

sine = -T(-a); 
case = -T(c); 

sine = -~(36o-e); 
case = T(-c); 

1 
X = x*cose + y*sine; 
Y = -x*sine + pcose;  

} else { 

1 

Fig. 11. ROTOR example. 

shorter minimum-latency solution was found by exploiting 
dynamic scheduling of operations belonging to parallel trees. 
There is no information on execution times for the results 
reported in [13], [171, and [431. 

The ROTOR example (Fig. 11) performs a rotation of coor- 
dinate axes by angle 8. This transformation is used in many 
applications (e.g., graphics applications and positional control 
systems). The example requires computation of trigonometric 
functions (sin 0 and cos e ) .  In high-performance applications, 
a typical approach is to precompute the value of sine and 
cosine functions and store the sampled values in corresponding 
tables. However, if high numerical accuracy is required, the 
size of the storage tends to become rather large. A compromise 
approach amounts to storing values for only a quadrant of 
one trigonometric function (e.g., sine values for arguments 0” 
5 0 5 90”). It is straightforward to use such a look-up table 
for obtaining values for both sine and cosine for all possible 
input arguments (0” 5 0 5 360”). 

A pseudocode description of the coordinate rotation using 
only the first quadrant of the sine function is presented in 
Fig. 11. “T(ang1e)” corresponds to a table read at a location 
“angle.” Similarly, “-T(ang1e)” corresponds to a table read 
followed by a negation. We assume that only one single-port 
look-up table is available and that every “read table” takes one 
cycle to complete. Although it is possible to simultaneously 
perform subtraction and comparison of two operands, in the 
example, we assume pipelined control, which introduces a 
two-cycle delay. For example, if operation (a = 180 - 8) 
is executed at step s, result a is available at the beginning of 
step (s + l), but control flow is affected by the comparison at 
the beginning of step (s + 2). 

To simplify interpretation of the results, in Fig. 12(a), 
we assume that the available ALU’s can perform all arith- 
meticAogica1 operations (add, subtracthegate, multiply) in a 

#cycles 

(4 
9 

’![12.3 SI L22.8 SI 
& ___._.____ ----*.. 

#cycles 
11.9 SI [2.3 SI [2.3 SI 12.3 SI 

178.3 SI 

’...... 113.7 S] r19.5 S] F18.5 SI -----. * ------- *-- --__ ~ .__..-- * -____. 

(b) l V . =  g 8 

7 

I I I 

6 1  2 3 # A h  

- memory constraint: 1 single-port look-up table 
- pipelined control delay = 2 cycles 
- resource constraints: 
(a) single-cycle ALU (+, -, *) 
(b) single-cycle ALU (+, -), 2 two-cycle pipelined multipliers 

Fig. 12. ROTOR experiments. 

single cycle. The minimum number of cycles to execute the 
schedule is presented for cases with and without speculative 
execution. We observe that, given the same resource con- 
straints, specula1 ive execution enables much faster schedules. 
In Fig. 12(b), a more realistic assumption is made. Single- 
cycle ALU’s perform addition and subtraction. Multiplication 
is performed by two two-cycle pipelined multipliers. In this 
case, adding more ALU’s cannot improve the performance 
unless speculative execution is allowed. In Fig. 12, CPU 
run-times are indicated in brackets. By allowing speculative 
execution, an average improvement in minimum latency of 
25% is achieved using the same resources. 

Fig. 13 shows an eight-cycle ensemble schedule (two 
ALU’s, Fig. 12(b)). Operations executed in a speculative 
fashion are represented using thick lines. If the input angle 
0 belongs to the first quadrant, the computation is performed 
in seven cycles. However, since all ensemble schedules 
are implicitly encapsulated in an OBDD, the user can 
search for solutions having other properties. It is relatively 
straightforward to look for similarities among the traces in 
order to simplify the control. For example, if the first-quadrant 
computation takes eight cycles as well, it is possible to have 
the same schedule for operations X’, X”, Y’, Y’, X ,  and Y 
for all control paths during the fifth, sixth, seventh, and eighth 
cycles. This sort of design space exploration can be performed 
without rescheduling the problem instance. 

In Fig. 14, we introduce the S2R example that translates 
spherical coordinates [R, 0, a] into the Cartesian (rectangular) 
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Fig. 13. Eight-cycle ROTOR schedule. 

coordinate values [ X ,  Y, 21. The problem includes computa- 
tion of trigonometric functions (as described in the ROTOR 
example) for two input angles (0, a). There are 42 operations 
in the CDFG representation and, if executed in a speculative 
fashion, as many as 64 execution paths. If a single-port look-up 
table is used, the scheduling of parallel trees (corresponding to 
computations for 0 and a) has to be done simultaneously. This 
means that the schedule guarantees synchronization of the 
memory accesses without busylwaiting hardware handshaking. 

Shown in Table VI (#cycles) are S2R latencies using 
one single-port look-up table, three ALLJ’S and two two- 
cycle pipelined multipliers. All solutions are exact and corre- 
spond to execution with and without speculative execution. In 
each case, two values are included. An unconstrained version 
(“parallel”) allows both trees to be scheduled and executed 
in parallel. For comparison, we provide the latencies for a 
“serial” version of the problem that imposes an execution 
order (@tree executed before 0-tree). The results clearly 
indicate the benefit from being able to schedule parallel 
computations in a speculative fashion. None of the results can 
be further improved by increasing hardware resources. 

VI. CONCLUSIONS AND FUTURE WORK 

We describe a symbolic formulation that allows speculative 
operation execution and exact resource-constrained sched- 
uling of arbitrary forward-branching controydata paths. To 
our knowledge, no other work has been reported on exact 
techniques supporting speculative execution. The presented 
technique provides a closed-form solution set in which all 
satisfying schedules are encapsulated in a compressed OBDD- 
based representation. An advantage of the formulation is that 
there is no need to explicitly describe freedom present in the 
input CDFG description. The execution order of conditionals 
is not predetermined and is dynamically resolved allowing 
gains in scheduling quality. To allow a systematic treatment 
of the problem, a flexible control representation based on 
guard variables, guard functions, and traces is introduced. The 
trace validation algorithm is proposed to enforce causality 
and completeness of the solution set. An iterative construction 
method is presented along with benchmark results. The results 
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Fig. 14. S2R example. 

demonstrate the ability of the technique to efficiently exploit 
operation-level parallelism implicit in the input description. 

In future work, several related synthesis issues are to be 
addressed. These include incorporation of controllinterconnect 
costs and extensions to allow a more complex mapping from 
operation types to function units. Also, extensions to general 
forms of cyclic control and an efficient approach to remove 
the restriction from the current speculative execution model are 
planned. Finally, to further improve the efficiency, additional 
work is needed to identify tighter operation bounds for the 
control-dominated case. 
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