
464 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. IO, NO. 4, APRIL 1991

A Formal Approach to the Scheduling Problem in
High Level Synthesis

Cheng-Tsung Hwang, Jiahn-Humg Lee, and Yu-Chin Hsu, Member, IEEE

Abstract-This paper presents an integer linear programming (ILP)
model for the scheduling problem in high level synthesis. In addition
to time-constrained scheduling and resource-constrained scheduling, a
new scheduling problem called feasible scheduling is constructed, which
provides a paradigm for exploring the solution space. Extensive con-
sideration is given to the following applications:

scheduling with:
chaining;
multicycle operations by nonpipelined function units;
multicycle operations by pipelined function units;

functional pipelining;
loop folding;
mutually exclusive operations;
scheduling under bus constraint;
minimizing lifetimes of variables.

The complexity of the number of variables in the formulation is O(s
. n) where s and n are the number of control steps and operations,
respectively. Since we use the as soon as possible (ASAP), as late as
possible (ALAP), and list scheduling techniques to reduce the solution
space, the formulation becomes very efficient. A solution to a practical
problem, such as the fifth-order filter, can be found optimally in a few
seconds.

I. INTRODUCTION
ECENTLY, automatic data-path synthesis of a digital sys- R tem from a behavioral description has gained much atten-

tion in the CAD research community [1]-[25]. The synthesis
task starts with a behavioral description of a digital system and
a set of time and/or resource constraints. The goal is to produce
a structure of the digital system that satisfies the constraints. It
includes four subtasks. The first subtask is to describe the be-
havior of the digital system using a hardware description lan-
guage (HDL). This step is usually followed by a translation of
the description into a graph-based representation called the con-
trol data flow graph (CDFG). The next subtask is operation
scheduling, where each operation in the CDFG is assigned to a
control step. The third subtask allocates the resources for the
digital system. Here, function units are assigned to execute the
operations, storage units are assigned to store the values, and
wires are allocated to interconnect them using the data transfer
information derived from the CDFG. At this point, a data path
is completed. Finally, based on the schedule graph and the data
path, a control unit is synthesized to synchronize the executions
of the operations.

Among the above steps, operation scheduling and hardware
allocation are the two major subtasks. These two subtasks are

Manuscript received April 7, 1989; revised January 19, 1990. This work
was supported in part by the National Science Council, Republic of China,
under Grants NSC78-0404-E007-13 and NSC79-0404-E007-24. This paper
was recommended by Associate Editor R. K. Brayton.

The authors are with the Department of Computer Science, Tsing Hua
University, Hsin-Chu, Taiwan 30043, Republic of China.

IEEE Log Number 9042077.

interdependent. In order to have an optimal design, a system
should perform both subtasks simultaneously [l], [2]. How-
ever, due to the time complexity, many systems perform them
separately [4]-[13] or introduce iteration loops between the two
subtasks [3], [14]-[16].

Roughly speaking, operation scheduling determines the cost-
speed tradeoffs of the design. If the design is subject to a speed
constraint, the scheduling algorithm will attempt to parallelize
the operations to meet the timing constraint. Conversely, if there
is a limit on the cost (area or resources), the scheduler will se-
rialize operations to meet the resource constraint. Once the op-
erations are scheduled, the number and types of function units,
the lifetimes of variables, and the timing constraints are fixed.
Thus a good scheduler is very important to an automated data-
path synthesis system [3], [12], [14], [151, [171-[201. Accord-
ing to Gajski [171, it is “perhaps the most important step during
the structure synthesis.”

We address in this paper three scheduling problems, each with
different requirements.

(PI) Time-Constrained Scheduling: Given constraints on the
maximum number of time steps, find the cheapest schedule
which satisfies the constraints.

(P2) Resource-Constrained Scheduling: Given constraints
on the resources, find the fastest scheduling which satisfies the
constraints.

(P3) Feasible-Constrained Scheduling: Given constraints on
the resources and the time steps, decide if there exists a sched-
ule which satisfies the constraints. Output the solution if it ex-
ists.

Instead of giving heuristic algorithms to schedule the opera-
tions of the CDFG as most systems do, we begin with a math-
ematic description of the scheduling objectives and constraints
which can be translated easily into integer linear programming
(ILP) formulations.

We also extend the formulations to various requirements
which are encountered in the real world. The complexity of the
number of variables in our formulation is 0 (s n) where s is
the number of control steps and n is the number of operations.
While formulating the equations, we try to reduce the solution
space as much as possible. Experiments show that optimal so-
lutions for a practical example such as the fifth-order filter can
be obtained in a very short time.

This paper is organized as follows: Section I1 reviews pre-
vious work and related research. Section 111 gives the ap-
proaches and formulations of the three scheduling problems.
Various extensions are introduced in Section IV. Section V
shows the experimental results. Finally, concluding remarks are
made in Section VI.

0278-0070/91/0400-0464$01 .OO 0 1991 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:48 from IEEE Xplore. Restrictions apply.

HWANG et al.: APPROACH TO THE SCHEDULING PROBLEM IN HIGH LEVEL SYNTHESIS 465

11. PREVIOUS WORK AND RELATED RESEARCH

Many systems with different scheduling techniques have been
reported. McFarland et al. [2] give a good tutorial on the high
level synthesis problem, where they show how the synthesis
task can be decomposed into a number of distinct but not in-
dependent subtasks and give a survey on the techniques for
solving these subtasks. A recent survey of the synthesis task is
by Paulin [3], where the concentration is on scheduling tech-
niques.

In this section, some of the basic scheduling techniques are
discussed. We also address some considerations which are pe-
culiar to scheduling as a part of data-path synthesis. The integer
programming technique, which is the technique used in this pa-
per, is discussed in the last subsection.

2.1. Basic Scheduling Techniques

The simplest scheduling technique is as soon as possible
(ASAP) scheduling [4], [SI where the operations in the CDFG
are scheduled step by step from the first control step to the last.
An operation is called ready operation if all of its predecessors
are scheduled. This procedure repeatedly schedules ready op-
erations to the next control step until all the operations are
scheduled.

As late as possible (ALAP) scheduling [8] performs a very
similar procedure as ASAP. In contrast to ASAP, ALAP sched-
uling schedules the operations from the last control step toward
the first. An operation is scheduled to the next control step as
all its successors are scheduled. Fig. 1 gives an example of
ASAP and ALAP scheduling.

Since it is not practical to assign too many operations of the
same type into a control step due to the constraint on the number
of function units, a variation of ASAP is to delay the ready
operations when their number exceeds the number of function
units. Selection of the operations to be delayed is arbitrary. This
technique is called ASAP with conditional post-ponement [6]-
t81.

The list scheduling technique [9]-[131, which was originally
used in microcode compaction [9], has been adopted by many
high level synthesis systems. Similar to ASAP, the operations
in the CDFG are assigned to control steps from the first control
step to the last. The ready operations are given a priority ac-
cording to heuristic rules and are scheduled into the next control
step according to this predefined priority. When the number of
scheduled operations exceeds the number of resources, the re-
maining operations are delayed.

The third type of scheduling is “global” in the way it selects
the next operation to be scheduled and in the way it decides the
control step in which to put it. There are two variations-free-
dom-based scheduling and force-directed scheduling. In free-
dom-based scheduling [121, [141, [151, the operations on the
critical path are scheduled first. The operations not on the crit-
ical path are assigned one at a time according to their degree of
freedom. In force-directed scheduling [3], [21], “force” values
are calculated for all operations at all feasible control steps. The
pairing of operation and control step that has the most attractive
force is selected and assigned. After the assignment, the forces
of the unscheduled operations are re-evaluated. Assignment and
evaluation are iterated until all the operations are assigned.

Among the above scheduling techniques, list scheduling re-
quires that the number of function units be specified, while
force-directed scheduling requires that the maximum number of

step 4 0 5

(C)

Fig. 1 . (a) A S A P scheduling. (b) A L A P scheduling. (c) Result.

control steps be specified. They correspond to resource-con-
strained and time-constrained scheduling, respectively.

2.2 Considerations in Data-Path Synthesis
In the real world, many variations on how the operations are

implemented and the different structures of the data flow graph
have to be considered during the scheduling phase. We can join
several operations with data dependencies in one cycle (chain-
ing) [3], [4], [12], [15] or execute an operation which crosses
more than one cycle (multicycle operation). A multicycle op-
eration can be performed by either a pipelined [121 or nonpipe-
lined function unit.

The data flow graph may contain mutually exclusive opera-
tions. Mutually exclusive operations occur when there are mul-
tiple branches in the CDFG and only one branch occurs at a
time. In this case, we want to find a schedule in which the re-
sources are efficiently utilized.

With very little additional hardware, the throughput of a data
can be improved by pipelining the path 1143, [22]. A pipelined
data path (also called functional pipelining) is a data path in
which operations of different instances can be performed con-
currently. Sehwa 1221 was the first system for synthesizing a
pipelined data path. It uses a modified list scheduling technique
to schedule the operations. A graph partitioning technique for
scheduling a pipelined data path was presented in [23]. The
force-directed scheduling algorithm has also been adapted to
solve the same problem in [3], [21].

Spaid [25] incorporates structure transformations and retim-
ing to modify the CDFG in order to reduce the critical path.
After reducing the critical path of the CDFG, a greedy sched-
uling technique is used to schedule the operations. A better re-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:48 from IEEE Xplore. Restrictions apply.

466 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. IO, NO. 4, APRIL 1991

sult can be obtained if retiming and scheduling are performed
at the same time.

The idea of loop folding was proposed in [24]. The goal of
loop folding is to reduce the running time of a loop by overlap-
ping the execution of different loop iterations. In that paper,
operations in one loop iteration are folded to the next loop it-
eration iteratively until the loop length is unlikely to be re-
duced. The list scheduling technique is used to schedule the
overlapped loop iterations.

2.3. ILP Approaches

Since the above scheduling methods assign operations to con-
trol steps one at a time, their results depend strongly on the
order of the assignments. We state the scheduling problem by
a mathematic description and then solve it using an ILP method.
Although, strictly speaking, it is not new, it is the first one with
a realistic approach. In the following paragraphs, we survey
some similar approaches which were used to describe or solve
the synthesis of digital logic systems.

An integer programming model for synthesizing a digital logic
at the register-transfer level (RTL) was formulated in [l]. The
model gives detailed specifications for a data-path synthesis.
All of the characteristics such as variable storage, operation
precedence, resource sharing, and control structures are in-
cluded in this model. Due to the complexity of the formulation,
only a small problem can be solved.

An integer programming approach was proposed for micro-
code scheduling in CATHEDRAL-I1 [131, which is a synthesis
system for multiprocessor DSP systems. After a customized data
path has been synthesized and the high level operations are
mapped onto a set of RTL operations, the microcode scheduling
is performed. The model contains data precedence, resource
conflict, and controller pipelining constraints. Since excessive
CPU time is required to solve large problems, the model is re-
placed by a graph-based heuristic scheduling algorithm.

After extensively studying these two papers, we have found
there are places where we can reduce the solution space of the
scheduling problem. First, a formulation with linear cost func-
tion can be solved much more easily than that of a nonlinear
cost function. By carefully arranging the data dependency re-
lationships in the formulation, we found it is possible to for-
mulate the cost function as linear. Second, the search space for
each operation can be reduced by restricting the range of control
steps for each operation. This can be done by using both ASAP
and ALAP scheduling. Third, by introducing a lower limit and
an upper limit on the number of function units of each type, we
can prevent many unnecessary searches.

By taking these considerations into our formulation and using
an ILP package, optimal solutions for a practical sized problem
like the fifth-order filter can be achieved within a few seconds.
Moreover, we believe that the detailed formulations of the
scheduling problem will lead to a deeper understanding of the
problem. Better algorithms or heuristics for near optimal solu-
tions can be expected.

111. ILP FORMULATIONS FOR THE SCHEDULING
PROBLEMS

In this section, we will present ILP formulations for time-
constrained scheduling, resource-constrained scheduling, and
feasible scheduling problems. For simplicity of explanation, two
assumptions are made.

1) Each operation is assumed to have a one-cycle propaga-
tion delay.

2) Only nonpipelined data paths are considered.
Other general considerations will be discussed in the next

section.
ASAP, ALAP, and list scheduling are used to trim the solu-

tion space in our formulation. ASAP and ALAP determine, re-
spectively, the earliest possible time and latest possible time of
an operation. List scheduling sets an upper limit on the number
of control steps for resource-constrained scheduling.

The notations used in our formulations are defined as fol-
lows: suppose the data flow graph, G (V , E), contains n (I V I)
operations, e (1 E I) data dependencies, and is going to be
scheduled into s steps. Each of the operations is labeled as o,,
where 1 I i I n. A precedence relation between two opera-
tions o, and oJ is denoted by of -+ oJ, where 0, is the immediate
predecessor of oJ. The earliest possible time (ASAP) and the
latest possible time (ALAP) of of are S, and L,, respectively.
The cost of a function unit of type t k (F U ,) is c4, and there are
m types of function units available. A relation between an op-
eration o, and a function unit F U,, is denoted by of E F U,, if
F U,, can perform the function of 0,.

3.1. Time-Cbnstrained Scheduling

A time-constrained scheduling problem can be defined as fol-
lows. Given the maximum number of control steps, find a min-
imal cost schedule that satisfies the given set of constraints.
Here the cost of a data path may be the costs of function units,
interconnections, and registers. For simplicity of the formula-
tion, only the cost of function units is considered. The others
are considered in the next section.

It is obvious that the cost of function units is minimized if all
the function units arefully utilized in a system. In other words,
operations of the same type should be evenly distributed among
all control steps. This is achieved in our model by minimizing
the maximal number of operations of the same type in each con-
trol step.

Our approach to time-constrained scheduling includes three
substeps:

1) ASAP: determine the earliest possible time for each op-
eration;

2) ALAP: determine the latest possible time for each oper-
ation;

3) ILP: minimize the cost of resources.

The variables used in the formulation are the following.

tion units of type t k needed.

if 0, is scheduled into stepj; otherwise, x , , ~ = 0.

1) MI, are integer variables which denote the number of func-

2) x , , ~ are 0-1 integer variables associated with 0,. xf,, = 1

Now the problem can be formulated as minimizing
m

(C l , * 4,)
k = I

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:48 from IEEE Xplore. Restrictions apply.

HWANG et al. : APPROACH TO THE SCHEDULING PROBLEM IN HIGH LEVEL SYNTHESIS

-

461

TABLE I
VARIABLES DISTRIBUTION OF THE SCHEDULING EXAMPLE

FU Type Multiplier (*) A L U (+ , -, <)

Operation 0, o2 o3 o6 0, o8 o4 o5 oq ol0 oil

Step1 X1.I X 2 . I Xb.l Xa. I XIO. I

Step 2 x 3 . 2 Xb .2 X7.2 XR,2 XY.2 XIO.2 X I I . 2

Step 3 x 7 . 3 xs.3 X4.3 XY.3 XIO.3 Xl1.3

Step 4 X5.4 19.4 X11.4

The objective function in (1) states that we are going to min-
imize the total cost of function units. Constraint (2) states that
no schedule should have a control step containing more than
M,, function units of type tk. It is clear that U, can only be sched-
uled into a step between S, and L,, which is reflected in (3).
Constraint (4) ensures that the precedence relations of the data
flow graph (DFG) will be preserved. Let us illustrate the above
formulation using the example below.

Consider the data flow graph in Fig. 1, which is going to be
scheduled into four control steps. The ASAP and ALAP sched-
ules are shown in Fig. l(a) and (b), respectively. The distri-
bution of variables is shown in Table I. Here, the horizontal
rows represent the control steps, and each column represents an
operation. A variable in the table means that the operation could
be assigned to the step. The available function units are multi-
pliers (FU, ,) and ALU’s (FU,,) which are capable of perform-
ing addition, subtraction, and comparison. A multiplier costs 5
(c,, = 5) while an ALU costs 1 (c,, = 1). The following are
the integer programming formulations

Minimize 5 * M,, + M,, subject to

x l . l + x2,1 + x6,1 + x8,1

x3,2 + x6,2 + x J , 2 + x 8 , 2

x7,3 + x8,3

XIO, 1

x9,2 + x10,2 + x11,2

x4,3 + x9 ,3 + x10,3 + x11,3

x5,4 + x9,4 + x11,4

XI , I

x 2 I

x3,2

x 4 . 3

x5.4

x6, I + %.2

- M,, s 0 ;

- M,, 5 0;

- M,, 5 0;

- M,, 5 0 ;

- M,2 5 0 ;

- M,, 5 0;

- M,, 5 0;

= 1;

= 1;

= 1;

= 1;

= 1;

= I :

The solution obtained by this formulation is optimal when the
x 3 , 2 , ~ 4 . 3 , X S , ~ , x6 .2 , x 7 , 3 , xn,3, ~ 9 . 4 , x10.1,

and x 1 1 , 2 are set to 1. In this case, two multipliers and two
ALU’s are used. The scheduling result is shown in Fig. l(c).

variables, x ~ , ~ ,

3.2. Resource-Constrained Scheduling
A resource-constrained scheduling problem can be formally

stated as follows: given the maximum number of resources, find
the fastest schedule that satisjies the given set of constraints. In
general, the resources given are the number of function units,
such as adders, multipliers, ALU’s, and buses. Although reg-
isters and interconnections also contribute to the total area, they
are difficult to specify as resource constraints.

Resource-constrained scheduling includes four substeps:

1) list scheduling: determine the upper limit on the number
of control steps;

2) modified ASAP: determine the earliest possible time for
each operation;

3) modified ALAP: determine the latest possible time for
each operation;

4) ILP: minimize the number of control steps needed for the
data path.

ASAP and ALAP scheduling can be modified so that a tighter
range for each operation is obtained by taking the resource con-
straints into account. Assume there are p i operations which are
executed by the same type of function unit as oi and proceed to
oi, and the available number of function units for oi is n,. Then,
oi cannot be scheduled before step r p i / n i l . It also follows
that any successor of 0, cannot be scheduled before r p i / n , l
+ 1. Modified ASAP and ALAP are particularly useful when
the number of function units or buses is small.

The variables used in the formulation are the following.

1) C,,,, is an integer variable which is the total number of

2) x i , j are 0-1 integer variables associated with o,, x i , j = 1,

A resource-constrained scheduling problem is formulated as

control steps required.

if oi is scheduled into step j ; otherwise, = 0.

minimizing

Cstep (1.1)

subject to

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:48 from IEEE Xplore. Restrictions apply.

468 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10, NO. 4, APRIL 1991

L,

C x,, = 1, for 1 I i I n; (3)

L, LA

C (j * ~ ~ , ~ > - C (j * x ~ , ~) 5 -1, forallo, --t ok
J = s, J = sk

(4)
h

E (j * xfJ) - cstep 5 0, for all 0, without successors.
J = s,

(5)
The objective function in (1.1) states that we are going to

minimize the total number of control steps. Constraint (2.1)
states that no schedule should have a control step containing
more than kf,k function units of type tk. Note that the M,, in (2.1)
is a constant. Constraints (3) and (4) are the same as those in
time-constrained scheduling. No operations should be sched-
uled after Cstep, as described in constraint (5).

Once again, we use the data flow in Fig. 1 to demonstrate
this formulation. Assume the maximum number of multipliers
and ALU’s are all set at 2. Under these constraints, list sched-
uling is first used to decide the upper limit on the number of
time steps (which is 4). Applying this limit, we then use ASAP
and ALAP scheduling to obtain the range for each operation.
Our formulation is to minimize Cnep under certain constraints.
Since the constraints for (3) and (4) are the same as in the pre-
vious example, we list only the constraints (2.1) and (5):

x I , I + x2.1 + x6,1 + % , I I 2;

x3,2 + x6.2 + x7.2 + %,2 5 2;

x7.3 + x8.3 5 2;

X l 0 . I 5 2;

x9,2 + x10,2 + x11,2

x4,3 + x9,3 + x10,3 + x11,3

2;

2;

x5,4 + x9,4 -k xlI ,4 I 2;

4~5.4 - Cstep 5 0;

2xgS2 + 3x9,3 + 4x9,4 - CSlep I 0; and

This formulation will obtain the same result as previous ex-
ample, At the mean time, the minimum number of control steps
(Cstep = 4) is obtained.

3.3. Feasible Scheduling

In this subsection, we combine the previous two formulations
into a third scheduling problem. This problem does not ask for
an optimum but asks whether a feasible solution exists. The
formal definition of a feasible scheduling problem is as follows:
given a frxed amount of resources and a specijied number of
time steps, decide ifthere is a schedule which satisjies all the
constraints. Output the solution if it exists.

The formulation for the problem includes no objective func-
tion but does have a set of constraints:

(2.1) xf , , 5 M,, for 1 5 j 5 s, 1 5 k I m;
0, E FUrk

L,

C x , ,~ = I , for 1 I i I n;
J = st

(3)

(4)

By solving feasible scheduling problems, the solution for pre-
vious scheduling problems can be constructed. The advantages
of using this approach are the following.

1) The formulation is a 0-1 ILP problem, and good heuris-
tics exist to solve this type of problem. Also, the time required
to find a solution by feasible scheduling is a lot less than by
optimizing scheduling since we only need to search part of the
solution space.

2) The number of function units and the number of time steps
can be estimated by other fast heuristics.

3) Since we are, in fact, deciding a set of values for all vari-
ables in solving an ILP formulation, the time complexity is in-
creased with the number of variables in the formulation. From
this point of view, the range for each operation is smaller, due
to the constraints on the number of function units and the time.
This corresponds to a smaller solution space.

4) This approach allows a user or an expert system to control
the speed-time tradeoff. Thus we can generate a set of optimal
solutions and leave the selection of the best time/area imple-
mentation to the user.

Based on the above arguments, feasible scheduling seems to
provide a general paradigm for solving a scheduling problem.
Therefore, in the following section, we will not specify the kind
of scheduling problem unless it is necessary.

3.4. Complexity of the Scheduling Problem

The complexity of feasible scheduling is analyzed in terms
of the number of variables and equations. In feasible schedul-
ing, the number of resources and the number of control steps
have been fixed. Thus the only unknowns are 0-1 variables x,,,.
The exact number ofx,,, is E:= (Lz - SI + 1) which is bounded
by s - n . Note that, due to constraint (3), only n variables will
have a value of 1. Thus once a x , , ~ is decided to be 1, the re-
maitling L, - S, variables are implicitly set at 0. Therefore, the
problem is easier to solve than it might appear.

The number of equations required for constraints (2.1), (3),
and (4) is (s * m) , n and e respectively, where e is the number
of edges in the DFG.

In all, the number of variables in our formulation grows as
O (s n) , and the number of equations is as O(s . m + n +
e) .

Iv . GENERALIZATIONS AND COMPLEXlTY ANALYSIS

For practical applications, we have generalized the ILP for-
mulations along with the complexity in the number of equations
and variables to the following variations:

I) scheduling with:
a) chaining,
b) multicycle operations by nonpipelined function units,
c) multicycle operations by pipelined function units,

2) functional pipelining;
3) loop folding,

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:48 from IEEE Xplore. Restrictions apply.

HWANG er al.: APPROACH TO THE SCHEDULING PROBLEM I N HIGH LEVEL SYNTHESIS

time + *
Regular 24011s 1 1

469

control

2

4) mutually exclusive operations;
5) scheduling under bus constraint,
6) minimizing lifetimes of variables.

For the sake of notational convenience, we define a new in-
teger variable-time variable (T,)-which is the control step by
which operation 0, is scheduled. It is easy to verify that T, is
equal to (j . x,, /) . By using this notation, constraint (4)
is simplified to T, - T, 5 - 1.

4.1. Chaining and Multicycle Operations
Fig. 2 shows a DFG where a multiplication (*) requires 100

ns and an additional (+) requires 40 ns. Let the cycle time be
120 ns. For a regular design, the graph must be scheduled into
two control steps as shown in Fig. 2(a). By chaining two ad-
ditions in one cycle, the graph can be scheduled in one 120-ns
cycle (Fig. 2(b)).

If we reduce the clock cycle time to 60 ns, then a multipli-
cation has to cross two cycles. In this cse, the multiplication is
a multicycle operation. In Fig. 2(c), we need only one adder,
one multiplier, and two 60-ns cycles to implement the graph.
The multiplication can be executed by either a pipelined func-
tion unit or a nonpipelined function unit. The first and third
examples need 2 control words, and the second needs only one.
The time, resources, and control words required by the three
examples are summarized in Fig. 2(d).

4.1.1) Chaining: In some cases, we can chain several op-
erations in one cycle if their total running time is less than the
cycle time. We call it scheduling with chaining. To formulate
a chaining problem, we define a new precedence relation, * ,
between two operations. There exists a relation =) between 0,
and o,, denoted by oi * oJ, if oj is the nearest successor of o,
such that the running time from oi to the end of oj is greater than
the cycle time. For example, assume all the operations in the
DFG of Fig. 3 require 40 ns and the cycle time is 100 ns. We
have the following relations: o, - 03, o, * 06, o2 =) 04, o2 3

0,. and o3 =) os.
To perform a scheduling with chaining, constraint (4) is mod-

ified as

7; - 5 0, foro, -+ 0, (4.1)

7; - T, 5 1, for oi oj. (6)

and additional constraints are included in the formulation

Constraint (4.1) states that if oi immediately precedes o, in the
DFG, then oi should be scheduled before or at the same step as
oJ. Constraint (6) states if oi * oJ, then oi should be scheduled
before 0,.

a) Complexity analysis: Suppose that, at most, c opera-
tions are chained into a control step and the number of fan ins
for an operation is k . Given an operation oJ, there are, at most,
&"-operations which satisfy the relation oi =) oJ. Thus the total
number of equations introduced by (6) is determined by k" . n .
In practical examples, k is smaller than 2 and c is a small num-
ber, so the constraint has O (n) complexity.

4. I . 2) Multicycle Operations with Nonpipelined Implemen-
tation: A multicycle operation can be performed either by a
nonpipelined or a pipelined function unit. The difference be-
tween them is the existence of latches between the cycles. For
nonpipelined implementation, once the operation is assigned,
the function unit cannot be shared by other operations until the
operation is completed.

...

.... 4 f.. 6oml J

.............. p +
(c)

(d)

Fig. 2. (a) Regular clock cycle. (b) Chaining. (c) Multicycling. (d) Com-
parison.

0 0 6

+ 0 4 + 0 7

0 0 5

Fig. 3 . Example of chaining.

Let Yk,J be the number of initiations of type t , operations at
step j , i.e., Yk,J = .EolEFLI, x , ,~ . For a set of operations executed
by a nonpipelined function unit (i .e. , 0, E FU,L) with propaga-
tion delay d,, the number of function units used in control step
j includes all the initiations between s t e p j - d, + 1 and step
j . In other words, the number of function units used at step j is

dA- 1
Y k , J - p . Therefore, constraint (2) is modified as

dx- I

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:48 from IEEE Xplore. Restrictions apply.

470 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. IO, NO. 4, APRIL 1991

and constraints (4) and (5) are changed to

T, - TJ I -do<, for 0, .+ oJ, and (4.2)

T, - C,,, I 1 - do,, (5.1)

where do, is the delay time of 0, (del, = dk).
Constraint (2.2) states that the number of scheduled type tk

operations between control s t ep j - dk + 1 and s t ep j shall not
exceed Mlk. Constraint (4.2) ensures the data dependencies.
Constraint (5.1) requires that the initiations of 0, be do, - 1
cycles earlier than the total execution time.

a) Complexity analysis: Since there is a one to one cor-
respondence between the new constraints and the original, the
complexity is the same as that of the basic scheduling problem.
The complexities of the number of variables and equations are
O(s

4.1.3) Multicycle Operations with Pipelined Implementa-
tion: For a pipelined functional unit, new input data can be ini-
tiated while previous data are still computed in the function unit.
The time between two successive initiations is called latency.
A pipelined function unit with a delay d and a fixed latency 1
can perform a new operation every 1 cycles, where 1 I d .

Before the derivation of the formulation, we begin with an
example in which 12 operations are scheduled into 8 steps (Fig.
4(a)). Suppose that the 12 operations are to be performed by the
same type function unit with d = 8 and 1 = 3. Since a pipelined
function unit can be shared by the operations of any two steps
s,, sJ, where 1 s, - sJ I is an integer multiple of 1, we can group
the 8 control steps into 3 clusters, c1 = { s8, s5, s2}, c2 = { s7,
s4, sI } and c3 = { s67 s3 }. Here, a function unit can be shared
by the operations in different steps within a cluster but cannot
be shared by those in different clusters. Therefore, the number
of function units needed is the total of the function units re-
quired by the three clusters; the number of function units re-
quired by a cluster is the maximum number of function units of
the steps within this cluster. For the example in Fig. 4(a), the
number of function units used at s8 equals max (3 , 0 , 1) + max
(0 , 3 , 1) + max (3, 1) = 9. A better schedule (Fig. 4(b)) needs
only 4 function units (max (3, 3, 3) + max (1, 1, 1) + max
(0,O) = 4) .

Therefore, for a pipelined function unit of type t,, with a
propagation delay dk and a fixed latency l,, constraint (2) is
modified as

for all 0, without successors

n) and O(s . m + n + e) , respectively.

f o r l I j s s , l I k s m . (2.3)

The number of function units required by all the clusters is de-
termined by the outer summation, while the maximum function
and the inner summation determine the function units required
by each cluster.

Since a constraint with a maximum function is not linear, it
can be replaced by the following constraints:

c xi,j-p'lk - Z k , j I O ,
0, E FUu

for 1 5 j 5 s, 1 1 k I m , O ~ p ' I

and
I t - I

c Zk, j -p I M,,, for 1 I j I s, 1 I k
p = o

(2.3a)
l k

5 m. (2.3b)

1 0 1 1 0 1
2 02 2 0 2 03 04
3 0 3 3
4 0 4 0 5 06 4 0 5
5 5 06 07 0 8
6 07 0 8 09 6
7 7 n o
8 010 011 012

, v,

8 010 011 012

(a7 (b)

Fig. 4. (a) A bad schedule. (b) A better schedule.

Constraint (2.3a) gives the maximum number of function units
required by each cluster, while constraint (2.3b) asserts that the
total of all the function units used at nonsharable control steps
will not exceed Mlk.

a) Complexity analysis: In (2.3a) we have introduced an
integer variable (Z,,,) and a group of equations for each control
step and each type of pipelined function unit. Suppose there are
m' among the m types of function units which are pipelined,
and the delay time and latency for F U, are dk and lk, respec-
tively. Constraint (2.3a) requires s . m' integer variables and s
* (d k / l k) equations; both are bounded by O(s * m) .

4.2. Functional Pipelining (Pipelined Data Path)

A pipelined data path allows the execution of multiple tasks
concurrently. Two consecutive tasks can be initiated with a cer-
tain interval, which is called the latency of the pipelined data
path.

For a given latency 1, the operations in control steps j + pl
(p = 0, 1, 2, - . .) are executed simultaneously and cannot
share the same function units. Consequently, constraint (2) is
modified as

L (s - j) / l J

c x ; , ~ + ~ , I M,, for 1 I j I 1, 1 I k I m
p = O o,EFU,,

In [22], a theorem for pipelined data path is available, stated
as the following.

Theorem 1: Given a DFG, the necessary and sufficient num-
ber of function units of each type (M , k) to realize a pipelined
data path with a fixed latency 1 is r N l k / l] , where NIA is the
maximum number of operations which must be performed by

U

We can state the theorem in other words, omitting the proof.

meorem 2: Given a DFG and the number of function units
available for each type (M l k) , we can realize an optimal pipe-

0

The above theorems are very valuable for exploring the so-
lution space. Suppose we are going to generate a table of opti-
mal implementations. We can start with a minimum latency 1
= 1 and work towards a large one. For each latency I , we cal-
culate the minimum number of resources for each type (M,)
according to theorem 1 . If the number of resources for latency
1 is equal to those for latency 1 - 1, the solution for latency 1
- 1 is also the optimal solution for latency 1. If the delay time
is important in the design, the latency 1 and the number of re-
sources M,, can be used to generate an ILP formulation which
aims at minimizing the delay time. Thus we can obtain a set of
implementations that are all optimal in terms of latency, number
of resources, and delay time.

type t k function units during a single iteration.

lined data path with latency 1 = maxy=, r N l k / M , , l .

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:48 from IEEE Xplore. Restrictions apply.

HWANG er uf.: APPROACH TO THE SCHEDULING PROBLEM IN HIGH LEVEL SYNTHESIS 47 1

a) Complexity analysis: The number of equations required
for constraint (2.4) is 1 . m, which is less than that in constraint
(2) of the basic scheduling problem (= s . m), while the num-
ber of variables does not change in the formulation.

4.3. Loop Folding
The concept of loop folding is very similar to that of func-

tional pipelining. The difference is that in loop folding, there
are data dependencies between loop iterations, while in func-
tion pipelining, there is no data dependency between different
instances. Thus the latency of a pipelined data path can be ar-
bitrarily small, provided that the resources are unlimited. In the
case of loop folding, the latency (or loop length [24]) depends
on the number of resources given and the structure of DFG.

In the example of Fig. 5(a), suppose there exists a I-deg 1241
data dependency between oi and 0,. In other words, the value
generated by 0, will be used by 0, in the next iteration. If there
is a path of length L from 0, to oi in the DFG (Fig. 5(b)), the
lower bound of the loop length would be L + 1, i.e., it is im-
possible to fold the loop into a schedule with a loop length less
than L + 1.

Let oi --+ 0, denote a d-deg [24] data dependency between
oi (oi E F U,k) and oj and T;’ be the time where 0, is executed at
d iterations later. Suppose the loop length after folding is known
to be I ; we have T; = + d . 1. Therefore, a new constraint

deg = d

or equivalently
deg = n

T, - i d . I - d<>,, for all 0, --j 0, (8)

is introduced into the previous formulations to enforce the data
dependency between different loop iterations. The remaining
constraints are the same as those for functional pipelining.

A loop folding problem is closely related to a retiming prob-
lem in synchronous circuits [26]. Retiming relocates the posi-
tions of the separating registers in the CDFG to obtain a shorter
critical path, and hence, higher throughput. Algorithms [26] for
retiming have been proposed to optimize synchronous circuits.
In [25], after retiming on the CDFG, scheduling is performed
on the modified DFG. The separation of retiming and schedul-
ing will produce suboptimal design. Our formulation for loop
folding performs both retiming and scheduling at the same time.

Complexity analysis: For a single ILP formulation, the
number of equations added is equal to the number of d-deg data
dependencies, which has worst-case complexity O(e) . There
are no additional variables.

4.4. Mutualljl Exclusive Operations
As in the case of structured programming, the relationships

among a set of operations,O, can be represented as a tree where
the intemal nodes are of two types, XOR and AND, and the leaves
are the operations. Let a node have n subtrees and the number
of function units needed for each subtree be N:.,, N:”, . . * ,
N;,, respectively. NFU can be defined as follows:

if the node is a leaf.

LOOPi=I to 10

Oj: x = y * c ;

Oi: y = b * d ;

END.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
(a) (b)

Fig. 5 . (a) 1-deg data dependency between p , and 0,. (b) The longest path
from 0, to 0, is L.

Result:al.b2,cl.d2,el.f2: 1

c2. d l , e2, f l : 0

Fig. 6 . (a) DFG. (b) A tree representation. (c) Distribution graph. (d) Part
of the constraint. (e) Result and scheduled DFG.

Let NFU(, , (0) be the number of function units of type t,
required at control step j , which is defined in the above func-
tion. Constraint (2) is changed to

(2.5)

As an example, the DFG in Fig. 6(a) can be represented as
a tree in Fig. 6(b). Suppose that two function units are given
and the upper limit of the number of control steps is 2. The
distribution graph is shown in Fig. 6(c). Fig. 6(d) shows part
of the constraints. Here, y 1 and y 2 are introduced to satisfy y 1
r m a x (c 1 + d l , e l + f l) a n d y 2 > m a x (c 2 + d 2 , e 2 +

f 2) . By solving the ILP formulation, an optimal schedule is
obtained as shown in Fig. 6(e).

a) Complexity analysis: Suppose that there are N,,, , nodes
in the execution tree and each node has N, branches. In consid-
ering any control step of the DFG, we need to introduce N,,,,

NF,,i,,(0) i M,,, for 1 5 j 5 s, 1 5 k 5 m .

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:48 from IEEE Xplore. Restrictions apply.

412 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10, NO. 4, APRIL 1991

integer variables for each XOR node and Cy2y Ni equations for
each branch. In the worst case, N,,,, = Cy'? n, = n. Thus the
complexity of constraint (2.5) is O(s . n) for both variables
and equations.

4.5. Scheduling Under Bus Constraint

In the previous sections, we have focused on the minimiza-
tion of the cost of function units. However, as the complexity
of VLSI grows, the area for routing becomes important. Inter-
connection cost becomes a dominant factor of the cost function.
In this subsection, we extend the formulation to minimize the
cost of connections. Two models are considered for minimizing
the number of buses. In the first model, the number of buses is
calculated as twice the maximum number of operations among
all the control steps. The second model makes a more sophis-
ticated calculation by considering the broadcasting capability of
a bus.

4.5.1) A Simple Model f o r Bus Minimization: Consider the
example in Fig. 7. Although the number of function units re-
quired in Fig. 7(a) and (b) is the same, the latter needs 4 buses
while the former needs 6 buses to connect the data path. There-
fore, we prefer a Fig. 7(b) schedule. Since each function unit
has two input buses, the number of buses can be estimated by
multiplying the maximum number of operations among all the
control steps by 2 :

n

2 C 5 N,,,,~, for 1 5 j 5 s. (9)
, = I

a) Complexity analysis: Constraint (9) generates s equa-
tions, and no additional variables are introduced.

4.5.2) Bus with Broadcasting: In a bused architecture, when
more than one operation which share a common input variable
are scheduled into the same control step, the number of buses
needed for that variable is only one (via broadcasting). Thus
the number of buses required at a control step equals the number
of distinct input variables of all the operations assigned to this
step. Suppose the input variables at control step j are U , , v2,

. , vI We introduce a 0-1 integer variable for U , (1
I r I I U () at step j , where yr , is 1 if U , is accessed at this
step; otherwise, 0. We have the constraint that the number of

which are assigned to be 1 is less than the number of buses,
i.e.,

Since the transfer of variables during a control step (is
directly related to the assignment of operations to a control step
(x , ,~) , we have to define the relationship between them. Let U ,

be a shared input of a group of r, operations, or], o,, * 9 , and
or,. The value of
= x , , = 0, then yr.J is given a value 0; otherwise, 1 : i.e., yr.,
- - OR (xrt ,J? xr2,J . . , x,,,~). The following constraint is in-
cluded to satisfy the definition of

is defined as follows: if x r I J = x ~ , ~ = * .

r, ,zl rr,,, - r, . 5 0, for 1 I r I I u I , 1 I j I s.

(11)

Lifetimes
and

Registers

Note that when r, = 1, in (10) can be directly replaced by
x i , j . The correspondent equation in (1 1) is omitted.

a) Complexity analysis: Constraint (11) requires a 0-1
variable and an equation for each variable at each control step.
Thus the number of equations and variables is bounded by s *

1 U 1 where 1 U I is the number of variables in DFG. Since I U I is
less than 2 n in a DFG, the complexity is O(s . n) .

4.6. Minimizing Lifetimes of Variables

The lifetime of a variable is defined as the duration from the
control step where it is defined to the step where it is last used.
A variable must be assigned to a register during its lifetime;
several variables can share the same register, provided that their
lifetimes do not overlap. Thus a reduction in the lifetimes of
variables has the potential of reducing the number of registers
required. For example, both the two scheduled DFG's in Fig.
7 need the same number of operators and control steps; how-
ever, the schedule in Fig. 7(a) needs one more register than that
in Fig. 7(b).

In addition to minimizing the function unit cost and the total
number of steps, we can also take the lifetimes of variables into
consideration. Let SLK, be the longest duration that the output
of 0, must be kept, i.e., SLK, = max, , , (T , - T, - do,). In
other words, SL K, is the lifetime interval of the value computed
by 0,. The cost function is modified so as to minimize

n

c I * f i + c2 * c (SLK,) (1.2)
i = I

where f l may be the objective functions in time-constraint, re-
source-constraint or feasible scheduling (fl = 0). Since f i is
our primary objective, c I is given a higher weight than c2 .

Finally, the lifetime of a variable is defined by including the
following constraint:

T, - - do, - SLK, 5 0 , for all oi + oj. (12)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:48 from IEEE Xplore. Restrictions apply.

HWANG er al.: APPROACH TO THE SCHEDULING PROBLEM IN HIGH LEVEL SYNTHESIS

TABLE I1
NONPIPELINED DATA PATH WITH NONPIPELINED MULTIPLIER

System HAL (FDS) FDLS ALPS

Adders 3 3 2 2 3 2 2 3 2 2 2 1
Multipliers 3 2 2 1 3 2 1 3 2 2 1 1
Buses - - - - - - - 6 6 4 4 4
Cycles 17 18 19 21 17 18 21 17 18 20 21 28

TABLE I11
NONPIPELINED DATA PATH WITH PIPELINED MULTIPLIER

System FDS and FDLS ALPS

Adders 3 3 2 3 3 2 2 1
Multipliers 2 1 1 2 1 1 1 1
Buses _ - _ 6 6 6 4 4
Cycles 17 18 19 17 18 19 20 28

a) Complexity analysis: For a given DFG G (V , E),
where the nodes are operations and the edges are the data pre-
cedence between operations, the above formulations require n
integer variables each for an SLK,, 1 5 i c: n , and e equations
each for a data dependency.

V. EXPERIMENTAL RESULTS

The system called ALPS has been implemented and tested.
The programs for list scheduling, ASAP, ALAP, and ILP for-
mulations are written in C on a VAX 11/8550 running UL-
TRIX, and the ILP formulation is solved using the LINDO [27]
package on a VAX 11/8800 running VMS. LINDO starts with
an optimal linear programming solution and produces an opti-
mal integer solution using the branch-and-bound method. The
fifth-order wave filter which was borrowed from [8] is given to
illustrate various requirements. It contains 26 additions and 8
multiplications. As most systems do, we suppose a multiplica-
tion takes 2 cycles while an addition takes 1 cycle to complete.
The critical path length is 17 cycles. The runtime for the various
experiments of the example depends on the number of 0- 1 vari-
ables and is within tens of seconds.

5.1. Nonpipelined Data Path

Tables I1 and I11 show the results with a nonpipelined data
path. The multiplier can be nonpipelined (Table 11) or pipelined
(Table 111). We also take into account the cost of buses. All the
results are optimal.

5.2. Functional Pipelining (Pipelined Data Path)

The DFG of the fifth-order filter is used to test functional
pipelining. (We assume that there are no data dependencies be-
tween iterations; i.e., the outputs of the DFG will not feed back
into the inputs.) We have achieved the minimal number of re-
sources for each latency and we have also minimized the delay
time. The results are shown in the first and second parts of Ta-
ble IV for nonpipelined and pipelined multipliers; respectively.
The third part of Table IV shows the results of [21], where the

473

TABLE IV
FIFTH-ORDER FILTER WITH PIPELINED DATA P A T H

Nonpipelined Multiplier

Latency 1 2 3 4 5 6 7 8 9 13 16 26
Adders 26 13 9 7 6 5 4 4 3 2 2 1
Multipliers 16 8 6 4 4 3 3 2 2 2 1 1
Delay 17 17 17 18 19 19 18 20 21 23 21 33

Pipelined Multiplier
Latency 1 2 3 4 5 6 7 8 9 13 - 26
Adders 26 13 9 7 6 5 4 4 3 2 - 1
Multipliers 8 4 3 2 2 2 2 1 1 1 - 1
Delay 17 17 18 19 19 17 18 20 22 23 - 33

Result of [21]

Adders - 13 IO 7 6 5 5 6 4 4 - -
Latency - 2 3 4 5 6 7 8 9 1 0 - -

Multipliers - 4 4 2 3 2 2 2 2 2 - -

TABLE V
LOOP FOLDING WITH NONPIPELINED MULTIPLIER

System Spaid ALPS

2 2 Adders 3 2 3

Buses 6 6 6 6 6
Sample period 17 21 16 17 19

19 21 Delay

Multipliers 2 1 2(3)+ 2 1

18 - -

+If a self-timed design is required.

TABLE VI
LOOP FOLDING WITH PIPELINED MULTIPLIER

System Spaid ALPS

Adders 4 3 2 2 2 1 2 3 2 1 1
Multipliers 2 2 1 1 1 1 1 l (2) ' 1 1 1

6 4 2 Buses 7 6 6 5 4 4 2 6
Sampleperiod 16 17 18 19 21 29 39 16 17 28 34
Delay - - - - - - - 18 19 28 34

~ ~~

+If a self-timed design is required.

maximum delay is set at 10 cycles. Note that in their imple-
mentation, the cycle time is longer so that a multiplication or
two additions can be executed within a single control step.

5.3. Loop Folding
The critical path length of the fifth filter can be reduced to 16

cycles after loop folding or retiming [25], [26] while preserving
the interiteration data precedences. Tables V and VI show the
minimal sample period (= loop length) and delays using a non-
pipelined multiplier and a pipelined multiplier. Here, delay
means the number of control steps required for the entire DFG
to be executed. Although delay time is ignored by other sys-
tems, we are concemed with it and try to minimize it for two
reasons: first, with respect to the sample period, which corre-
sponds to the throughput of the system, the delay time is di-
rectly related to the tum around time, which is one of the most

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:48 from IEEE Xplore. Restrictions apply.

~

474

IN

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. IO, NO. 4, APRIL 1991

0 Nodes A and B are folded U) next iteration
Q Loop length = 17 m m l steps
0 Longest delay = 19 On -> g -> B)
0 IN --> OUT = 16 contml steps
Q Using 2 Adders. 1 Multiplier and 6 Busses

Fig. 8. A schedule after loop folding.

important performance criteria. Second, a longer delay in-
creases the lifetimes of the variables. Thus minimizing the de-
lay time will potentially reduce the register cost. Note that Spaid
first retimed the DFG, then, performed a scheduling to find the
loop length (called clock cycle in Spaid). Our loop folding tech-
nique performs retiming and scheduling simultaneously, which
makes a better solution possible. Our scheduler is also able to
make a scheduling under the self-timed [25] requirement. Fig.
8 shows the scheduled DFG of 1 multiplier and 2 adders under
the self-timed requirement.

VI. CONCLUSION

We have proposed an approach to the scneduling problems in
high level synthesis. Our approach includes list scheduling,
ASAP, ALAP, and ILP. The ILP formulation is very efficient,
and its complexity in the number of variables is O (s * n) where
s and n are the number of control steps and operations, respec-
tively. With the feasible scheduling formulation, we can ex-
plore the solution space more efficiently. For the problem of the
fifth-order filter, optimal solution is obtained in a few seconds.
We have also generalized the formulations to include practical
requirements such as chaining, multicycling operations, struc-
ture and functional pipelining, loop folding, mutually exclusive
operations, and the minimization of the cost of buses and reg-
isters.

ACKNOWLEDGMENT

for their helpful discussions on this work.
The authors wish to thank Professor Y . L. Lin and F. S. Tsai

REFERENCES

[l] L. Hafer and A. C. Parker, “A formal method for the specifica-
tion, analysis, and design of register-transfer level digital logic,”

IEEE Trans. Computer-Aided Design, vol. CAD-2, pp. 4-18,
Jan. 1983.

[2] M. C. McFarland, A. C. Parker, and R. Camposano, “Tutorial
on high-level synthesis,” in Proc. 25th Design Automation Conf. ,
June 1988, pp. 330-336.

[3] P. G. Paulin and J. P. Knight, “Force-directed scheduling for
the behavioral synthesis of ASIC’s,’’ IEEE Trans. Computer-
Aided Design, vol. 8, pp. 661-679, June 1989.

[4] C. Tseng and D. P. Siewiorek, “Automated synthesis of data
paths in digital systems, ” IEEE Trans. Computer-Aided Design,

[5] C. H. Gebotys and M. I. Elmasry, “A VLSI methodology with
testability constraints,” in Proc. 1987 Canadian Conf. VLSI,
Winnipeg, Oct. 1987.

[6] P. Marwedel, “A new synthesis algorithm for the MIMOLA soft-
ware system,” in Proc. 23rd Design Automation Conf., July

[7] H. Trickey, “Flamel: A high-level hardware compiler,” IEEE
Trans. Computer-Aided Design, vol. CAD-6, pp. 259-269, Mar.
1987.

[8] S. Y. Kung, H. J. Whitehouse, and T. Kailath, VLSI and Modern
Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1985,

[9] S . Davidson et al . , “Some experiments in local microcode com-
paction for horizontal machines,” IEEE Trans. Comput., pp.

[lo] C. Y . Hitchcock and D. E. Thomas, “A method of automatic
data path synthesis,” in Proc. 20th Design Automation Conf. ,

[I l l J. Nestor and D. E. Thomas, “Behavioral synthesis with inter-
face,” in Proc. ICCAD-87, Nov. 1986, pp. 112-115.

[I21 B. M. Pangrle and D. D. Gajski, “State synthesis and connectiv-
ity binding for microarchitecture compilation,” in Proc. IC-

[I31 H. DeMan, J. Rabaey, P. Six, and L. Claesen, “Cathedral-11: A
silicon compiler for digital signal processing,” IEEE Design Test,
pp. 13-25, Dec. 1986.

[14] E. F. Girczyc and J. P. Knight, “An ADA to standard cell hard-
ware compiler based on graph grammers and scheduling,” in
Proc. IEEE Int. Con$ Computer Design, Oct. 1984, pp. 726-
731.

[15] A. C. Parker, J. Pizarro, and M. J. Mlinarr, “MAHA: A pro-
gram for data path synthesis,” in Proc. 23rd Design Automation
Con$, July 1986, pp. 461-466.

[I61 R. Camposano, “Structural synthesis in Yorktown silicon com-
piler,” in VLSI’87, C. H. Sequin, ed. New York: Elsevier,

[I71 D. D. Gajski, N. D. Dutt and B. M. Pangrle, “Silicon compi-
lation (tutorial),” in Proc. Custom Integrated Circuits Conf.,
Rochester, NY, May 1986, pp. 102-110.

[I81 N. Park and A. C. Parker, “Synthesis of optimal clocking
schemes,” in Proc. 22nd Design Automation Conf., July 1985,

[I91 G. Goosens et al . , “An efficient microcode compiler for custom
multiprocessor DSP systems,” in Proc. ICCAD-87, Nov. 1987,

[20] K. S. Hwang et al . , “Constrained conditional resource sharing
in pipeline synthesis,” in Proc. ICCAD-88, Nov. 1988, pp. 52-
55.

[21] K . S . Hwang, A. E. Casavant, C.-T. Chadg, and M. A. d’Abreu,
“Scheduling and hardware sharing in pipelined data paths,” in
Proc. ICCAD-89, Nov. 1989, pp. 24-27.

[22] N. Park and A. C. Parker, “Sehwa: A software package for syn-
thesis of pipelines from behavioral specifications,” IEEE Trans.
Computer-Aided Design, Mar. 1988, pp. 356-370.

[23] S . Devadas and A. R. Newton, “Data path synthesis from be-
havioral description: An algorithmic approach,” in Proc. Int.
Symp. on Circuits and Systems, Philadelphia, May 1987, pp. 398-
401.

[24] G. Goossens, J . Vandewalle, and H. De Man, “Loop optimiza-
tion in register-transfer scheduling for DSP-systems,” in Proc.
26th Design Automation Cont , June 1989, pp. 826-831.

[25] B. S. Haroun and M. I. Elmasry, “Architectural synthesis for
DSP silicon compiler,” IEEE Trans. Computer-Aided Design,

vol. CAD-5, pp. 379-395, July 1986.

1986, pp. 271-217.

pp. 258-264.

460-477, July 1981.

JUIY 1983, pp. 484-489.

CAD-86, NOV. 1986, pp. 210-213.

1988, pp. 61-72.

pp. 489-495.

pp. 24-27.

vol. 8, pp. 431-447, April 1989.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:48 from IEEE Xplore. Restrictions apply.

HWANG et a l . : APPROACH TO THE SCHEDULING PROBLEM IN HIGH LEVEL SYNTHESIS 415

[26] F. Rose, C. Leiserson, and J . Saxe, “Optimizing synthesis cir-
cuitry by retiming,” in Proc. Cultech Cor$ on VLSI, 1983, pp.

[27] “LINDO: Linear INteractive and discrete optimizer for linear,
integer, and quadratic programming problems,” LINDO Sys-
tems, Inc.

(281 C. Gebotys and M. I. Elmasry, “VLSI design synthesis with test-
ability,” in Proc. 25th Design Automation Conf., June 1988, pp.

41-67.

16-21.

Cheng-Tsung Hwang received the B . S . de-
gree in computer science from Tung-Hai Uni-
versity, Taichung, Taiwan, in 1987. He is cur-
rently working toward the Ph.D. degree in the
Department of Computer Science at Tsing Hua
University, Hsin-chu, Taiwan.

His research interests include silicon compi-
lation and optimization in VLSI design.

Jiahn-Hurng Lee received the B . S . degree in
computer science from Tung-Hai University,
Taichung, Taiwan, in 1987, and the M.S. de-
gree in computer science from Tsing Hua Uni-
versity, Hsin-chu, Taiwan, 1989.

His research interests include silicon compi-
lation and optimization in VLSI design.

Yu-Chin Hsu (S’85-M’87) received the B.S.
degree in computer science and information en-
gineering from Taiwan University, Taipei,
Taiwan, in 1981, and the M.S. and Ph.D. de-
grees in computer science from the University
of Illinois at Urbana-Champaign in 1986 and
1987, respectively.

He is currently an Associate Professor of
Computer Science at Tsing Hua University.
Hsin-chu, Taiwan. His research interests in-
clude most aspects of computer-aided design for

VLSI.

IEEE Circuits and Systems Society in 1990.
Dr. Hsu received the Outstanding Young Author Award from the

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27, 2008 at 12:48 from IEEE Xplore. Restrictions apply.

