
Efficient Encoding for Exact Symbolic

Automata-Based Scheduling
Steve Haynal Forrest Brewer

Department of Electrical and Computer Engineering
University of California, Santa Barbara, U.S.A.

haynal @umbra. ece.ucsb.edu, forrest@ece.ucsb. edu

1. MSTMCT
This paper presents an efficient encoding and
automaton construction which improves per-
formance of automata-based scheduling tech-
niques. The encoding preserves howledge of
what operations occurred previously but
excludes when they occurred, a~owing greater
sharing among schedutig traces. The tech-
nique inherits au of the features of BDD-based
control dominated schedu~g including sys-
tematic speculation. Without conventional
pruning, au schedties for several large samples
are quicMy constructed.

1.1 Keywords
High-level ~nthesis, scheduling, BDD, automata

2. ~TRODUCTION
me schduling problem occurs across diverse ara of application
from nehvorking to manufacturing to high-level synthesis of digital
systems (HLS). Scheduling which assigns operations to time-slots
in a synchronous system subject to data and control-flow depen-
dencies as well as reource constraints is a key component of many
HLS systems. Consequently solving this problem efficiently is a
direct way to enhance the abilities of such systems.

hfost solutions to the scheduling problem fall into two categori= i)
heuristics and ii) integer Iin= programming (ILP). Heuristic
schedulers (i.e.[1][9]) find good solutions for large problems
quickly but suffm with tightly constrained problems where ~rly
pruning decisions exclude mdidates lading to superior solutions.
lLP schedulers (i.e.[3][4]) exactly solve scheduling but have diff-
icultieswith time complexity and control constraint formulation.

Heuristic and ILP scheduling methods produce a single schedule at
a time. Finding this schedule, especially an optimal one, often
becomes incr=ingly difficult as more constraints are added to the
problem formulation. Symbolic methods, (i.e [2][6][7][8][1O])are

Pefission to tie di#hl or tid copies of d or pti of ti it~orkfor pemml or
&<sroom use k ~nted \titSrout fw pmtided tkt copies xe not =de or distib
uted for profit or comerdd adk.atsge nd tit copies b- tkis notice md the W
citation on tie fit paga To copy othatfie, to mpubhh, to pt.on semem or to
red~tibute to kts, rqti~ prior s@c -on red/or a fee.
ICC~9S. Sm Jose.CA USA
o 199sAChf l-5sii3&s-z9s/MI l.S5.m

often effective in finding exact solutions in highly constrained
problem formulations. Furthermore, since all solutions are enumer-
ated, post-process pruning can be used to apply additional con-
straints which may not have eticient formulation for general
schedula. Further, symbolic methods allow much more efficient
formulation of control dependencies and environmental timing
constraints. However, with symbolic methods, the key to success is
to reduce the representation size of the solution sets. Methods to
accomplish this include adding additional constraints to the prob
Iem, pruning suboptimal candidates early in the s~rch, and eti-
cient encoding techniques.

An exact symbolic scheduling technique was presented in [7][S].
~is method uses ROBDDS to dmcribe scheduling constraints and
compress solution sets. In this formulation, =ch operation in a
CDFG (Control Data Flow Graph) is assigned a bool=rr variable
for ach time-step in the schedule. ~is variable indicates whether
or not the operation is scheduled during that time-step. Constraints,
derivd from the CDFG and environment are added to the con-
struction. Guard variablm are employed to distinguish control
paths. Although this technique performed well, complexity prob
Iems arose for lengthy schedules. Worse, since every exact history
for all viable traces is kepg the encoding eficiency declines for
schedules with many complex alternative histories.

Symbolic ROBDD automata-based schedulers were described in
[2][6][1O]. In [6], an exact operand scheduling technique is pre-
sented for predefine datapaths. ~is technique allows opemnds to
be lost and later produced again in order to find optimal schedules
meeting tight memory constraints. In [2][10], system timing and
synchronization requirements are encapsulated in finite-state
machine (FSM) descriptions. All constraints are formulated as
automaton and product machines are built and traversed. ~is prod-
uct machine becomes prohibitively large for practical sized prob
Iems. Furthermore, causality (as checked for by causal validation in
Section 4.2) is not confirmed.

In this paper we present an exact symbolic automata-based sched-
uler. Our immediate innovation is an efficient encoding and autom-
aton construction which improves performance of exact symbolic
scheduling techniques. Fundamentally, this technique groups
together schedules with common although not necessarily identical
historia when exploring the schedule solution space. ~is is
accomplished using an encoding which only preserves whether or
not an operation has been scheduled but not precisely when. In this
way, we minimize the problems of [7] for long schedules and of
[2][1O]with regards to automata size.

We pursue an automata-based representation since it provides clear
potential [2][1O] for describing control and protocol-intensive
cycle-varying systems. ~is ability is a key part of our long-term
HLS goal. Fufiher, we utilize exact symbolic ROBDD techniques
because of their demonstrated success in finding all optimal con-

477

_... . . . -

strained solutions [7][S]. JVe wish to apply these techniqu= to
constrairrd critical portions of large scaIe system designs. Such
systems are fiiled with complex subsystem interactions lvhich
may be amenable to Bool=n automata representation.

3. CDFG BOOLEAN FOWULATION
\Ve define a CDFG as a directed graph where nodti denote opera-
tions, forks or joins and arcs represent dependencies. Fig. 1shows
a simple CDFG. In this example, the directed arcs from operation
1 to the fork and join denotes a control dependency. Consequently,
the resolution of the fork and join remains unknown until after
operation 1 has been scheduled. It is important to note that opera-
tions 3 and 4 can be speculatively executed before the fork is
resolved. In this everr6 operations 3 and 4 must both be scheduled
regardless of the control resolution. The right-hand side of Fig. 1
shows this speculative tmnsfomation. Finally, the directed arc
horn operation 1 to operation 2 represents a data dependency.
Hence operation 2 can only be scheduled afier operation 1.

Figure 1. Simple CDFG before and after speculation.

In our formulation, data and control constraints are extracted from
a user supplied acyclic CDFG. These constraints along with user
supplied resource resti.ctions are used to construct a BDD-based
boolean relation. Implicit state-traversal techniques are used to
determine a valid schedule.

3.1 Encodtig
%ch operation j in the CDFG (excluding forks and joins) is
encoded with exactly two (P} N.) boolerm variables. Table 1

&describes the meaning of this enco mg.

TABLE 1: P and N Variables

Meaning.,, t

0[0 I j notscheduledpreviouslyand~villnotbe bynextcycle.

~

j notscheduledpreviouslybut willbe bynextcycle.

j scheduledpreviouslybutresultwillbe lost

j scheduled previouslyandresultremainsavailable.

This encoding is efficient since =ch minterrn in the relation only
contains information regarding what has been scheduled and what
may or may not be scheduled in the immediate cycle. For instance,
Fig. 2 sho~~’spossible valid histories which would allow operation
3 to be scheduled in cycle 4. Instead of enumerating all three pos-
sible histories when scheduling operation 3, we simply represent
the commonality of these histori~ (operations 1 and 2 have beers
scheduled) in one term, P, N,PzNzP~N3 .

cl C2 C3 C4

Figure 2. Some possible scheduling historim at cycle C4.

Control values to determine which side of a fork orjoin is used are
produced by specific operations in the CDFG. These operations
are encodd as described previously but have an additional pair of
varjabl~ (pGj,NGj)associated with them. These guard variables
indicate whether the producd control value is true or false.

3.2 Constrakts
Six constraints, described below, are identified from the CDFG or
supplied by the user and constructed as ROBDDS. These con-
straints are constructed in the complemented sense each con-
straint describes situations which would not exist in a valid
schedule given the encoding of Section 3.1. Once constructed, the
product of the complement of all six constraints forms the desired
scheduling transition relation.

3.2.1 Dependency Constraints
Dependency constraints impose an ordering of operation execu-
tion. To ilhrstrate, if operation 2 requires a result produced by
operation 1, it can only be scheduled after operation 1. In this
case, it ~vouldbe illegal to have any minterm in the relation con-
taining PINZ. Furthermore, an operation may have more than one
dependency. In this case, aIl dependencies must be resolved before
this operation can potentially be scheduled. In general, illegal
dependency minterms are enumeratd by,

~ ;i~ where i+j is a dependency arc in the CDFG. (1)
i +j

A dependency arc in a CDFG may pass through one or more joins.
This dependency only applies if the control is unresolved or the
control has resolved in its favor. In general, illegal dependencies
through joins are,

(2)
I* I ‘kc a)

where a is the set of all operations producing control values for
joins through which the arc i+j passes. Furthermore, the value of
the guard PGk is assigned the complement value of the join resolu-
tion for arc i+j. For example, if i+j is a dependency arc passing
through the true side of a join resolved by operation k, then Pck
must be false. Fig. 3 illustrates this si~ation.

(
_

) — -
(P4P<,4) n ;,N3 + ((P4PG4) n P2N3) is illegal.

Figure 3. Dependency arcs passing through a join.

3.2.2 Resource Constraints
In practical digital system designs, there are only a fixed number
of function unit resources available to perform a given task. Con-
sequently, only limit operations of a given resource maybe sched-
uled in any cycle. For example, if ordy one ALU is available and
operations 1,2 and 3 each require an ALU, it would be illegal to
schedule any two or more of these operations in a single cycle.
Hence, for every combination of Iimifil operations i...k from the
set p of all type raotlrce operations,

~ FjNi...~LNk is illegal. (3)
i...ke p

478

3.2.3 Histo~ Constraints
As an initial simplification, we require that once an operation has
been scheduled, its result will always be available in the future.
This excludes encodings shown in row 3 of Table 1. In general,

~ P,ii is illegal. (4)

i c operations

3.2.4 Fork Constraints
Once a control value is resolvq a complete schedule must bifur-
cate into two traces with one trace scheduling a tme control reso-
lution and the other a false resolution. To ensure this bifurcation,
we impose the constraint,

~ ~, (P~i~Ci +~CiNGi) is illegal. (5)
Ie control

3.2.5 Exclwion Constraints
If a conhol value has been resolved, it is unnecessary to schedule
any operations unreachable under the resolved control for a partic-
ular trace. For instance, in Fig. 4, if operation 1 has been sched-
uled, then it is no longer necessary to schedule operations 2 or 4 in
any trace with a false control resolution. Alternatively, any trace
with a true con~ol resolution must still schedule operations 2 and
4 but not operation 3. It is important to note that to support specu-
lative execution, we must not exclude operation 2 or 4 entirely
horn any trace with a false control resolution but only exclude
them from being scheduld in any false control resolution trace
that hasn’t yet scheduled them. In general, illegal minterrns are,

~ ~i;Gin~~~j)+pipGin(~~k)) ‘hme (6)

iea

a is the set of all control value producing operations, ~ is the set of
all operations unr=chable in the CDFG if condition i is false and
o is the set of all operations unreachable in the CDFG if condition
i is true.

=

1

T 4

figure 4. Exclusive operations once control is known.

3.2,6 Immediaq Constraints
Itis desirable to have a constraint which implies an operation must
be schduled in the immolate cycle after another operation. This
allows for multicycle and pipelined unit. %ch stage of this type of
unit is represented by a (Pi, Ni) pair. For mukicycle units all
stages are classified under the same resource constraint. For pipe-
Iinti units each stage is classified under i~ own resource con-
straint. The general illegal form of this constraint is,

~ Pi% where i+j is an immediate dependency. (7)
i *j

4. ENSEMBLE SC~DULES
The final relation of Section 3.2 can be viewed as 5 in an automata
defined by the four-tuple (V, 3, Si~)$ S{V~) where V is the
finite, non-empty set of states, & V+V’ is the next-state function
and Si(~ and S{V~ are sets of initial and final states respectively.
This viewpoint allows symbolic reachable state analysis tech-
niques to be employed to determine exact valid ensemble sched-
ules. A present state consists of a Pi vector and a next state

consists of a Ni vector. Although we leverage symbolic reachable
state analysis techniques, we are not bound to r=chable state anal-
ysis in the sense that construction of schedulw implies finding
shortest paths behvccn paim of initial and final states. JVeneed not
filly explore the state space, and may use generated results to
modi~ the transition relation during the scheduling process.

}Ve define an ensemble to be a cycle-ordered set of set
{soW,s](V,sj(v)}. Let Sow) be assigned the state with no
knowledge of any schcduld operation (all Pi = O). The set of
reachable states on the jth iteration of the clock may be
determined from this starting point by iteratively computing,

Sj(v’) = ,jv[sj_, (v) na(v, v’)] (s)

4.1 Completeness
Completeness is achieved when at some cycle j, there is a set
TGSj(~ such that each t= T has scheduled the termination opera-
tion. (A termination operation, Pf which depends on all paths exit-
ing the CDFG, is added for convenience.) Furthermore, all CDFG-
imposed control paths must be scheduled by at l-t one t=T.
Although completeness is necessary for the existence of an
ensemble schedule, it is not sufficient. A complete ensemble must
contain a set of traces which are both complete and form a causal
(deterministic) schedule. Note that given resource limits, even a
complete set of tra= on some cycle does not guarantee that any
ensemble schedule is causal and can terminate on that cycle.

4.2 Causal VaHdation
Trace validation ensures that each trace is part of some ensemble
schedule. Consider the CDFG of Fig. 5 with a one adder (solid cir-
cle) constrain It is possible to hoist the addition operation 2 past
the true fork and schdule it and operation 1 in one cycle. Like-
wise, another trace could hoist the false add (operation 3) past the
fork and schedule it and operation 1 in one cycle. Together at
cyclej=l, both these traces form a set T satisfying the conditions
for completeness. It should be cI= that this r~ulting ensemble
schedule is not causal since two additions cannot be scheduled
speculatively in the same cycle given a single adder constraint.
Unfortunately, afier removal of such traces, ensemble scheduling
sets may no longer be complete. Thus, validation must continue
until a fixed point is reached and all traces belong to some valid
ensemble schedule.

@

I

T

Hgure 5. Trace validation ensures causal solution sets.

An ensemble is trace validatd using the algorithm of Fig. 6. This
algorithm explicitly describes trace validation only progressing
backward through time although there is an additional symmetric
portion for forward validation. Intuitively, this algorithm ensures
that at =ch time-step, there is a modified transition relation which
a[lows condition producing operations to be scheduled if and only
if there are transitions with matching common histori= for both
true and false resolutions of the condition. Thus to be causal, oper-
ations speculatively executd assuming a true outcome must also
have been speculatively executed assuming a false outcome. For-
ward and backward validation is performed on the entire ensemble
set until a complete pass with no pruning of that time-step’s transi-
tion relation occurs. This algorithm originated in [7] and is shown
here modified for an automata formulation.

479

S;{V9=T
do{

incomplet-FALS~

for each time-stepj to O {

Y(Sj-l(V), S>(V’)) = Sj_l(V) n~(V, V’) nS\(V’)

for each conditional k {

Sio{ida,e; (Sj- , (v) , s; (v’)) = s’FkNk+v,vGINFLNk

if Sra,idale~’is empty then exi~

I
J

if s,d,ida,e~~ then incomplet-TRU~

s;-, (v) = ~~v,[sj-, (v) ns,.a,idatein sj(v’)l
,
j

if incomplete=FALSE then exi~

(Symmetric Forward Portion for time-steps Oto j)

} while (incomplet-TRUE);

Figure 6. Trace validation algorithm.

4.3 Schedfig Instances
A complete and validated ensemble implicitly contains every
schdule of cycle Iengthj. It is possible to greedily pick a single
schedule from this set. Beginning with SO(V),we choose a state at
random. This present state maps to next statm in S,(V) via a vali-
dated transition relation S for that time-step. We greedily pick a
valid next state with maximum P,=l implying pwk utility. This
process continues until the termination operation has been sched-
uled at time-stepj. If the picked present state-next state mapping
implies that a condition is resolved, then two traces, one for a tme
resolution and one for a false resolution, must be propagated for-
ward from this point. Trace validation ensures that there will
always be two such traces with opposite r~ohrtion to choose
when a condition is resolved.

Greedy schedule selection is not the only possible selection
method. Since a complete and validated ensemble implicitly con-
tains every schedule of cycle length j, it is possible to pick a
schedule that better suits the designers needs. For example, sched-
ule selection methods which simpli@ control or minimize power
could be applied at this poin~ Furthermore, there is no need to
stop at cyclej once completeness and trace validation have bwn
verified. Additional SJ~ may be added to the ensemble without
the need to recheck completeness and trace validation. In this way,
a schedule of specific length and exact construction can be found
to suit a designer’s requirements.

4.4 Schedules tith Cycle-Length Constiatits
The scheduling technique described in Swtion 4.3 us= no cycle-
Iength constraint If a cycle-length constraint is added, then ALAP
bounds can be applied. ~ese ALAP constraints prone the number
of traces in S,{~ sets near the end by removing traces failing
ALAP bounds. Furthermore, since traces have been pruned, it is
possible to apply trace validation early for additional pruning.

Several other kinds of constraints including heuristic constraints
are also applicable. However, the goal is to keep the smallest
ROBDD sizes for the problem. With the various constraints exper-
imentally tri~ including ALAP, it turns out that since the initial
encoding is relatively efficienL such pruning often reduces the

eficiency of the scheduler by incr-ing the complexity of the
representation even though the number of traces is reduced.
Future work will be n~ed to sensibly apply appropriate con-
straints.

5. ~SULTS
A tool was developed to demonstrate the feasibility of our sched-
uling technique. This tool utilized an in-house BDD package [5]
and was run on a 141MHz SPARC Ultra with 416MB of memory.
Results are described for several DFGs and CDFGS found in the
literature. In all cases we are only applying the constraints
described in Swtion 3.2 -no additional pinning strategies, heuris-
tic or otherwise have been included. Furthermore, no prior knowl-
edge of the cycle-length is resumed and hence no ALAP bounds
are applied. In most cases, the eficiency of our encoding alone
allows us to outperfom similar symbolic techniques. All times are
reported in seconds with the lower time indicating runtime with-
out BDD ordering (preordered) and the higher time indicating
runtime with BDD ordering (sifting). These times are inclusive of
our entire scheduling process. (Constraint construction and other
problem setup costs are not left out.) All operations are single
cycle except for multipliers which are two-cycle and in some
cases tw~cycle pipelined.

5.1 DFG Results
The elliptic wave filter (EW~ and fat discrete cosine transform
(FD~ are widely accepted DFG benchmarks. Table 2 presents
our r=ults for various configumtions of th~e benchmarks. EWF-
1 is the standard 34 operation single iteration of the elliptic wave
filter. EWF-3 is three and EWF-6 is six iterations of the elliptic
wave filter unrolled. Here the eticiency of our encoding becomes
apparent. Even though there are now as many as 204 operations
and schedule lengths of up to 104 cycles, we are still able to pr~
duce all exact solutions to this problem in reasonable time. The
small cycle-length gain achieved by loop unrolling suggests that
this benchmark is tightly constrained with many schduling traces
sharing common histories and hence well suited for our encoding.
A more challenging case is EWF-2X2 (136 operations) with two
copi~ of the elliptic wave filter in parallel each unrolled twice.
FDCT-1 (42 operations) is also a formidable benchmark with its
inherent parallelism. FDCT-1x2 (S4 operations) adds an even
higher degree of parallelism by requiring two copies of FDCT be $

scheduled under the same resource constraints.

Our results compared to other symbolic techniques [10][8] show a
-100 speedup for frquently reported benchmarks EWF-1 and
FD~-1. Although [S] reports some exact solutions for EWF-3,
we are unaware of any reports for exact solutions to EWF-6,
EWF-2X2 or FDCT-1x2. Our formulation uerforrns sumnsinzlv-.
well on DFGs. We attribute this to the fact that no valida-tionstep
must be done since a DFG schedule consists of a single execution
trace. Furthermore, thr benchmarks indicate that our method
works better under highly resource constrained situations which
limit the possible combinations of common histories for schedul-
ing traces. For example, FDCT-1 with a 1 ALU and 1 multiplier
constraint finds a rmult in less time than when run with a 1 ALU
and 2 multiplier constraint even though the final schedule is
longer.

5.2 CDFG Results
Table 3 shows results for commonly referenced CDFGS KIM (24
operations, 2 conditions) and MAHA (1S operations, 6 condi-
tions). All schedules for these benchmarks are found in just a few
seconds. More challenging CDFGS, ROTOR and S2R horn [7],

480

.

are shown in Table 4. The ROTOR (25 operations, 3 conditions)
example performs a rotation of coordinate axes by angle 9. The
interesting aspect of ROTOR is its constraint on trigonometric
function lookup. Only one single-port memory lookup table con-
taining sine values for arguments 0~9~90 is available. Conse-
quently, three conditionals and up to eight control paths are
required to generate all required trigonometric values for rotation.
The S2R (42 operations, 6 conditions) example translates spheri-
cal coordinates into Cartesian coordinates and basically consists
of hvo modified ROTORS in parallel. Again, a resource constraint
of one single-port memory lookup table is enforced. Our results
are directly comparable to those in [7]. Our formulation shows the
best improvement in cases with longer schedulm. For example,
the 12 cycle ROTOR result is achieved -10 times faster (on iden-
tical computers) with our formulation.

TABLE 2: DFG Results

Benchmark Cycla ALUS Multipliers CPU Eme

EWF-1 28 1 I 0.9/2.8

I EWF-I I 17 1 3 I 3 I 0.5/1.9 I
I I t ,

I EWF-1 2s 1 I* 1.1/3.5

I EWF-1 I 17 I 3 I 2* I 0.5/2.4 I

I EWF-3 I S2 I 1 I 1 I 15.5/53.s I

I EWF-3 I 49 I 3 I 3 I 11.1/45.5

EWF-3 52 2 2* 12.2f55.l

EWF-3 53 2 I* 12.4/63.4

EWF-6 163 1 1 7S.0/362

EWF-6 97 3 3 60.51326
1 I ,

t
EWF-6 103 2 2. 64.3/364

I EWF-6 1 104 I 2 I I* I 64.7/397

I EWF-2X2 I 104 I 1 I 1 I 230/W I

EWF-2X2 3s 3 3 150/364

FM-1 34 1 1 S.5J22.7

m-l 26 1 2 20.3/34.5

F~-I Is 2 2 9.0/23.2
1 , ,

t
FDCT-1X2 66 1 1 957/1067

I F~-Ix2 I 52 I I I 2 I 1343/1446 I

qwwycle pipelinedmultiplier.

TABLE 3: CDFG Results

Benchmark Cyclm Add. Sub. Comp. CPU Eme

Mhl 6 2 1 1 0.9/3.3

KIhl s 1 1 1 1.5/3.5

hlAHA 4 2 3 - 2.0/3.S

hlAHA 5 1 1 - 1.5/2.4

TABLE 4: Rotor and S2R CDFG Results

Benchmark Cycles ALUS Multipliers CPU ~me

ROTOR 12 I (ALU)** 3.2f6.6

ROTOR 7 2 (ALU** 3,4f6.S

ROTOR 10 1 2. 3.0/6. 1

ROTOR s 2 2. 3.Sf6.9

S2R 14 1 (ALU)** 147/176

*T\vo+yclepipelinedmultiplier.
**ALU~=owceusedformultiplication.

6. CONCLUSIONS
This paper presented and demonstrated an eficient encoding for
exact symbolic automata-based scheduling. The encoding pre-
serves knowledge of what operations occurrd previously but
excludes when they occurred, allowing greater sharing among
scheduling traces. This encoding, along with a novel automaton
representation, allows us to use symbolic state traversal tech-
niques to find all exact solutions to DFG and CDFG benchmarks
found in the literature.

7. ~~MNCES
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

R Camposano, “Path-Based Scheduling for Synthesis”, IEEE
Trans. CAD/ICAS, vol. 10, no. 1,pp. 85-93, Jan. 1991.

C. N. Coelho Jr, G. De Micheli, “Dynamic Scheduling and
Synchronization Synth~is of Concurrent Digital Systems
under System-Level Constraints”, Proc. IEEE Int. Con$
Computer-Aided Daign, pp. 175-1S1, 1994.

C. H. Gebotys and M. L Elmasry, “Global Optimization
Approach for Architectural Synthesis”, IEEE Trans. CAD!
ICAS, vol. 12, no. 9, pp. 1266-127S, Sep. 1993.

C.-T. Hwang and Y.-C. Hsu, “A Fomal Approach to the
Scheduling Problem in High Level Synthesis”, IEEE Trans.
CADIICAS, vol. 10, no. 4, pp. 46U75, Apr. 1991.

HomeBrew C++ BDD package
Um b :/bears. ece.ucsb.edufvub/HomeBrew.tar. =.

C. Monahan, F. Brewer, “Scheduling and Binding Bounds
for RT-Level Symbolic Execution”, Proc. IEEE Int. Con$
Computer-Aided Deign, pp. 230-235, 1997.

I. Radivojevic and F. Brewer, “A New Symbolic Technique
for Control-Dependent Scheduling”, IEEE Trans. CAD[
ICAS, vol. 15, no. 1, pp. 45-57, Jan. 1996.

I. Radivojevic and F. Brewer, “On Applicability of Symbolic
Techniques to Larger Scheduling Problems”, Proc. Euro-
pean Daign and %st Con$, pp. 4S-53, 1995.

K. Wakabayashi and H. Tanaka “Global Scheduling Inde-
pendent of Control Dependencies Based on Condition Vec-
tors”, Proc. 29th ACM/IEEE Design Automation Con$, pp.
112-115, 1992.

J. C.-Y.Yang, G. De Micheli, and M. Damiani, “Scheduling
and Control Generation with Environmental Constraints
based on Automata Representations”, IEEE Trans. CADI
ICAS, vol. 15, no. 2, pp. 166-1S3, Feb. 1996.

481

