
A Fast Algorithm for Finding Dominators
in a Flowgraph

THOMAS LENGAUER and ROBERT ENDRE TAR JAN

Stanford University

A fast algoritbm for finding dominators in a flowgraph is presented. The algorithm uses depth-first
search and an efficient method of computing functions defined on paths in trees. A simple implemen-
tation of the algorithm runs in O(m log n) time, where m is the number of edges and n is the number
of vertices in the problem graph. A more sophisticated implementation runs in O(ma(m, n)) time,
where a(m, n) is a functional inverse of Ackermann's function.

Both versions of the algorithm were implemented in Algol W, a Stanford University version of
Algol, and tested on an IBM 370/168. The programs were compared with an implementation by
Purdom and Moore of a straightforward O(mn)-time algorithm, and with ~a bit vector algorithm
described by Aho and Ullman. The fast algorithm beat the straightforward algorithm and the bit
vector algorithm on all but the smallest graphs tested.

Key Words and Phrases: depth-first search, dominators, global flow analysis, graph algorithm, path
compression
CR Categories: 4.12, 4.34, 5.25, 5.32

1. INTRODUCTION

T h e fo l lowing g r a p h p r o b l e m ar ises in t he s t u d y of g lobal f low ana lys i s and

p r o g r a m o p t i m i z a t i o n [2, 6]. L e t G = (V, E , r) be a f l owgraph 1 w i t h s t a r t v e r t e x

r. A v e r t e x v domina tes a n o t h e r v e r t e x w ~ v in G if e v e r y p a t h f r o m r to w

con ta ins v. V e r t e x v is t h e immedia te domina tor of w, d e n o t e d v ffi idom(w), if v
d o m i n a t e s w and e v e r y o t h e r d o m i n a t o r o f w d o m i n a t e s v.

THEOREM 1 [2, 6]. Every vertex o f a f lowgraph G = (V, E, r) except r has a
unique immedia te dominator . The edges { (idom(w), w) [w E V - {r}} form a
directed tree rooted at r, cal led the d o m i n a t o r t r ee of G, such that v domina tes
w i f a n d only i f v is a proper ancestor o f w in the domina tor tree. See Figures 1
and 2.

W e wish to c o n s t r u c t t h e d o m i n a t o r t r ee o f an a r b i t r a r y f l owgraph G. I f G

r e p r e s e n t s t h e f low of con t ro l of a c o m p u t e r p r o g r a m w h i c h we a re t ry ing to

Appendix A contains the graph-theoretic terminology used in this paper.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
The research of the first author was partly supported by the German Academic Exchange Service.
The research of the second author was partly supported by the National Science Foundation under
Grant MCS75-22870 and by the Office of Naval Research under Contract N00014-76-C-0688.
Authors' address: Computer Science Department, Stanford University, Stanford, CA 94305.
© 1979 ACM 0164-0925/79/0700-0121 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979, Pages 121-141.

122 T. Lengauerand R. E. Tadan

Fig. 1. A f lowgraph

I

Fig. 2. D o m i n a t o r tree of f lowgraph in Fig. 1

optimize, then the dominator t ree provides information about what kinds of code
motion are safe. For fur ther details see [2, 6].

Aho and Ullman [2] and Pu rdom and Moore [17] describe a s traightforward
algori thm for finding dominators. For each vertex v ~ r, we carry out the following
step.

General Step. Determine, by means of a search from r, the set S of vert ices
reachable f rom r by pa ths which avoid v. Th e vert ices in V - {v} - S are exactly
those which v dominates.

Knowing the set of vert ices dominated by each vertex, it is an easy ma t t e r to
construct the dominator tree.
ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

A Fast Algorithm for Finding Dominators in a Flowgraph 123

To analyze the running time of this algorithm, let us assume that G has m
edges and n vertices. Each execution of the general step requires O (rn) time, and
the algorithm performs n - 1 executions of the general step; thus the algorithm
requires O (rnn) time total.

Aho and Ullman [3] describe another simple algorithm for computing domi-
nators. This algorithm manipulates bit vectors of length n. Each vertex v has a
bit vector which encodes a superset of the dominators of v. The algorithm makes
several passes over the graph, updating the bit vectors during each pass, until no
further changes to the bit vectors occur. The bit vector for each vertex v then
encodes the dominators of v .

This algorithm requires O (m) bit vector operations per pass for O (n) passes, or
0 (nm) bit vector operations total. Since each bit vector operation requires O (n)
time, the running time of the algorithm is O(n2m). This bound is pessimistic,
however; the constant factor associated with the bit vector operations is very
small, and on typical graphs representing real programs the number of passes is
small (on reducible flowgraphs [3] only two passes are required [4]).

In this paper we shall describe a faster algorithm for solving the dominators
problem. The algorithm uses depth-first search [9] in combination with a data
structure for evaluating functions defined on paths in trees [14]. We present a
simple implementation of the algorithm which runs in O (m log n) time and a
more sophisticated implementation which runs in O(rna(m, n)) time, where
a(rn, n) is a functional inverse of Ackermann's function [1], defined as follows.
For integers i , j >_ 0, let A(i , 0) ffi 0 if i _> 0, A(0,j) = 2 y i f j _> 1, A(i , 1) = A(i -
1, 2) if i _> 1, and A (i , j) ffi A (i - 1, A (i , j - 1)) if i __ 1, j_> 2. Then a(m, n) =
min{i _> 1 [A(i, I 2rn/n J) > log2n}.

The algorithm is a refinement of earlier versions appearing in [10-12]. Although
proving its correctness and verifying its running time require rather complicated
analysis, the algorithm is quite simple to program and is very fast in practice. We
programmed both versions of the algorithm in Algol W, a Stanford University
version of Algol, and tested the programs on an IBM 370/168. We compared the
programs with a transcription into Algol W of the Purdom-Moore algorithm and
with an implementation of the bit vector algorithm. On all but the smallest graphs
tested our algorithm beat the other methods.

This paper consists of five sections. Section 2 describes the properties of depth-
first search used by the algorithm and proves several theorems which imply the
correctness of the algorithm. Some knowledge of depth-first search as described
in [9] and [10, sec. 2] is useful for understanding this section. Section 3 develops
the algorithm, using as primitives two procedures that manipulate trees. Section
4 discusses two implementations, simple and sophisticated, of these tree manip-
ulation primitives. Some knowledge of [14, secs. 1, 2, and 5] is useful for
understanding this section. Section 5 presents our experimental results and
conclusions.

2. DEPTH-FIRST SEARCH AND DOMINATORS

The fast dominators algorithm consists of three parts. First, we perform a depth-
first search on the input flowgraph G = (V, E, r), starting from vertex r, and
numbering the vertices of G from 1 to n in the order they are reached during the
search. The search generates a spanning tree T rooted at r, with vertices

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

124 T. Lengauer and R. E. Tarjan

/
l

/
/
/

I
I
I
I
\
\
\

/
/

/
/

/

(

(4,R) i

. - / \ \\

16,C)

/ I f \
. / I ! \

\
\

\

)(11,R)

r

(12,B)

(13,D)

Fig. 3. Depth-first search of flowgraph in Fig. 1. Solid edges are spanning tree edges; dashed edges
are nontree edges. Number in parentheses is vertex number; letter is semidominator

n u m b e r e d in preorder [5]. See Figure 3. For convenience in s ta t ing our results,
we shall a ssume in this section t ha t all vert ices are identified by number .

T h e following p a t h s l emma is an impor t an t p roper ty of depth-f i rs t search and
is crucial to the correctness of the domina tors algori thm.

LEMMA 1 [9]. I f v and w are vertices o f G such that v <_ w, then any p a t h from
v to w mus t contain a common ancestor o f v and w in T.

Second, we compute a value for each ver tex w ~ r called its semidominator ,
denoted by sdom(w) and defined by

sdom(w) = min{v I there is a pa th v = Vo, v~ vk = w such tha t (1)
v i > w f o r 1 <_ i<_ k - 1}.

See Figure 3. Third , we use the semidomina tors to compute the immedia te
domina tors of all vertices.

T h e semidomina to r s have several proper t ies which make their computa t ion a
convenient in te rmedia te s tep in the domina tors calculation. I f w ~ r is any vertex,
then sdom(w) is a p roper ances tor of w in T, and idom(w) is a (not necessari ly
proper} ances tor of sdom(w). I f we replace the set of nont ree edges of G by the
set of edges { (sdom(w), w) I w E V and w ~ r}, then the domina tors of vert ices in
G are unchanged. T h u s if we know the spanning tree and the semidominators , we
can compute the dominators .

In the r ema inde r of this section we prove the proper t ies of semidomina to r s and
immedia te domina to r s which just ify the algori thm. T h e following three l e m m a s
give basic re la t ionships among the spanning tree, the semidominators , and the
immedia te dominators .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

A Fast Algorithm for Finding Dominators in a Flowgraph 125

LEMMA 2. For any vertex w # r, idom(w) -~ w. 2

PROOF. Any domina to r of w mus t be on the pa th in T from r to w. []

LEMMA 3. For any vertex w ~ r, sdom(w) -2* w.
PROOF. L e t p a r e n t (w) be the pa ren t of w in T. Since {parent(w), w) is an edge

of G, by (1) sdom(w) <_parent(w) < w. Also by (1), the re is a p a t h sdorn(w) = v0,

vl, ... , vk = w such t h a t vi > w for 1 _ i _< k - 1. By L e m m a 1, some ver tex vi on
the pa th is a common ances tor of sdom(w) and w. But such a common ances tor
vi must sat isfy vi <- sdom(w). This means i -- 0, i.e. vi = sdom(w), and sdom(w) is
a p roper ances tor of w. []

LEMMA 4. For any vertex w ~ r, idom(w) --~ sdom(w).
PROOF. By L e m m a s 2 and 3, idorn(w) and sdom(w) are proper ances tors of w.

The pa th consist ing of the t ree pa th f rom r to sdom(w) followed by a p a t h
sdom(w) = Vo, Vl, . . , vk = w such t ha t vi > w for 1 _ i _< k - 1 (which mus t exist
by (1)) avoids all p rope r descendan ts of sdom(w) which are also p rope r ances tors

of w. I t follows t h a t idom(w) is an ances tor of sdom(w). []

LEMMA 5. Let vertices v, w satisfy v--~ w. Then v-:* idom(w) or idom(w)--~
idom(v).

PROOF. Let x be any p roper descendan t of idom(v) which is also a p rope r
ances tor of v. By T h e o r e m 1 and Corol lary 1, there is a pa th from r to v which
avoids x. By conca tena t ing this pa th wi th the t ree pa th from v to w, we ob ta in a
pa th f rom r to w which avoids x. Thus idom(w) mus t be e i ther a descendan t of
v or an ances tor of idom(v). F,

Using L e m m a s 1-5, we obta in two resul ts which provide a way to compu te
immed ia t e domina to r s f rom semidomina tors .

THEOREM 2. Let w ~ r. Suppose every u for which sdom(w) -~ u -~ w satisfies
sdom(u) >_ sdom(w). Then idom(w) = sdom(w).

PROOF. By L e m m a 4, it suffices to show tha t sdom(w) domina te s w. Consider
any p a t h p f rom r to w. Le t x be the las t ver tex on this pa th such t h a t
x < sdom(w). If there is no such x, then sdom(w) = r domina tes w. Otherwise, let
y be the first ver tex following x on the p a t h and sat isfying sdom(w)-:* y -~ w. Let
q = (x = v0, vl, v2, . . . , vk = y) be the pa r t of p f rom x to y. We cla im vi > y for
1 _ i _< k - 1. Suppose to the con t ra ry t h a t some vi sat isfies v~ < y. By L e m m a 1,
some v i wi th i _ j _ k - 1 is an ances tor o fy . By the choice of x, vj >_ sdom(w),
which means sdom(w) -:* vj--~ y ~ w, cont rad ic t ing the choice o fy . Th is proves

the claim.
The c la im toge ther wi th the def ini t ion of s emidomina to r s impl ies t h a t

sdom(y) <_ x < sdom(w). By the hypo thes i s of the theorem, y canno t be a p rope r
descendan t of sdom(w). Thus y = sdom(w) and sdom(w) lies on the p a t h p. Since
the pa th se lec ted was a rb i t ra ry , sdom(w) domina tes w. []

THEOREM 3. Let w # r and let u be a vertex for which sdom(u) is m i n i m u m
among vertices u satisfying sdom(w) -~ u -~ w. Then sdom(u) <_ sdom(w) a n d
idom(u) = idom(w).

2 Throughou t th is paper the no ta t ion "x -~, y" means t h a t x is an ancestor of y in the spanning t ree

T genera ted by the depth-f i rs t search, and " ' x --~ y means x -:-, y and x ~ y.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

126 T. Lengauer and R. E. Tarjan

PROOF. Let z be the vertex such that s d o m (w) --~ z -% w. T h e n s d o m (u) <_
s d o m (z) <_ s d o m (w) .

By Lemma 4, i d o m (w) is an ancestor of s d o m (w) and thus a proper ancestor of
u. Thus by Lemma 5 i d o m (w) -% idom(u) . To prove i d o m (u) = i d o m (w) , it
suffices to prove that i dom(u) dominates w.

Consider any p a t h p from r to w. Let x be the last vertex on this pa th satisfying
x < idom(u) . If there is no such x, then i dom (u) = r dominates w. Otherwise, let
y be the first vertex following x on the path and satisfying i d o m (u) -% y -% w. Let
q = (x = v0, Vl, v2 , vk - y) be the par t o f p from x to y. As in the proof of
Theorem 2, the choice of x and y implies tha t v~ > y for 1 ___ i _ k - 1. Thus
s d o m (y) <_ x. Since i dom(u) <_ s d o m (u) by L e m m a 4, we have s d o m (y) <_ x <
i dom(u) <_ s d o m (u) .

Since u has the smallest semidominator among vertices on the tree pa th from
z to w, y cannot be proper descendant of s d o m (w) . Furthermore, y cannot be
both a proper descendant of i dom(u) and an ancestor of u, for if this were the
case the pa th consisting of the tree pa th from r to s d o m (y) followed by a path
s d o m (y) = Vo, v~, . . . , vk --- y such tha t vi > y for I _< i _< k - 1 followed by the tree
path from y to u would avoid idom(u) ; but no pa th from r to u avoids i dom(u) .

Since i dom(u) - ~ v -~ u -% w and i d o m (u) -% y -% w, the only remaining pos-
sibility is tha t i d o m (u) = y. Thus i dom(u) lies on the pa th from r to w. Since the
path selected was arbitrary, i d o m (u) dominates w. []

COROLLARY 1. L e t w ~ r a n d le t u be a v e r t e x f o r w h i c h s d o m (u) is m i n i m u m

a m o n g ver t i ce s u s a t i s f y i n g s d o m (w) - ~ u -% w. T h e n

(s d o m (w) i f s d o m (w) = s d o m (u) ,
i d o m (w) = [i dom(u) o the rw i se .

PROOF. Immedia te from Theorems 2 and 3. []

The following theorem provides a way to compute semidominators.
THEOREM 4. F o r a n y v e r t e x w ~ r,

(2)

s d o m (w) = m i n ({ v I (v, w) E E a n d v < w} U { s d o m (u) l u > w a n d
t h e r e is a n edge (v, w) such t h a t u -% v}).

PROOF. Let x equal the r ight-hand side of (3). We shall first prove tha t s d o m (w)
< x. Suppose x is a vertex such tha t (x, w) E E and x < w. By (1), s d o m (w) < x.

Suppose on the other hand x --- s d o m (u) for some vertex u such tha t u > w and
there is an edge (v, w) such tha t u -% v. By (1) there is a pa th x = Vo, vl vj --
u such tha t vi > u > w for 1 _ i _ j - 1. The tree pa th u --- vj--* vj+~ --* ... --* vk-1
= v satisfies vi - u > w f o r j _ i _ k - 1. Thus the pa th x = v0, vl , vk-~ = v, vk
= w, satisfies vi > w for 1 _< i _ k - 1. By (1), s d o m (w) <_ x.

I t remains for us to prove tha t s d o m (w) >_ x. Let s d o m (w) -- Vo, Vx vk = w

be a simple pa th such tha t vi > w for 1 ___ i _ k - 1. I f k = 1, (s d o m (w) , w) ~ E ,
and s d o m (w) < w by L e m m a 3. Thus s d o m (w) >_ x. Suppose on the other hand
that k > 1. L e t j be min imum such t h a t j _> 1 and v/-% Vk-~. Such a j exists since
k - 1 is a candidate for j.

We claim vi > vj for 1 _ i _ j - 1. Suppose to the contrary tha t vi <- vj for some
i i n the range 1_< i _ < j - 1. Choose the i s u c h tha t 1 _ i _ j - l a n d v i i s

ACM Transactions on Programming Languages and Systems, Vol. I, No. I, July 1979.

A Fast Algorithm for Finding Dominators in a Flowgraph 127

minimum. By Lemma 1, vi --~ vj, which contradicts the choice o f j . This proves
the claim.

T h e claim implies sdom(w) >_ sdom(vj) >_ x. Th u s whether k = 1 or k > 1, we
have sdom(w) >_ x, and the theorem is true. []

3. A FAST DOMINATORS ALGORITHM

In this section we develop an algorithm which uses the results in Section 2 to find
dominators. Earlier versions of the algorithm appear in [10-12]; the version we
present is refined to the point where it is as simple to program as the straightfor-
ward algorithm [2, 7] or the bit vector algorithm [3, 4], similar in speed on small
graphs, and much faster on large graphs.

The algorithm consists of the following four steps.

Step 1.

Step 2.

Step 3.
Step 4.

Carry out a depth-first search of the problem graph. Number the vertices from 1 to n as they
are reached during the search. Initialize the variables used in succeeding steps.
Compute the semidominators of all vertices by applying Theorem 4. Carry out the compu-
tation vertex by vertex in decreasing order by number.
Implicitly define the immediate dominator of each vertex by applying Corollary 1.
Explicitly define the immediate dominator of each vertex, carrying out the computation
vertex by vertex in increasing order by number.

Our implementa t ion of this algori thm uses the following arrays.

Input

succ(v):

Computed

parent(w):
pred(w):
semi(w):

vertex (i):
bucket(w):
dom(w):

The set of vertices w such that (v, w) is an edge of the graph.

The vertex which is the parent of vertex w in the spanning tree generated by the search.
The set of vertices v such that (v, w) is an edge of the graph.
A number defmed as follows:
(i) Before vertex w is numbered, semi(v) = O.
(ii) After w is numbered but before its semidominator is computed, semi(w) is the

number of w.
(iii) After the semidominator of w is computed, semi(w) is the number of the semidom-

inator of w.
The vertex whose number is i.
A set of vertices whose semidominator is w.
A vertex defined as follows:
(i) After step 3, if the semidominator of w is its immediate dominator, then dom(w) is

the immediate dominator of w. Otherwise dom(w) is a vertex v whose number is
smaller than w and whose immediate dominator is also w's immediate dominator.

(ii) After step 4, dom(w) is the immediate dominator of w.

Rathe r than convert ing vertex names to numbers during step 1 and convert ing
numbers back to names at the end of the computat ion, we have chosen to refer
to vertices as much as possible by name. Arrays semi and vertex incorporate all
tha t we need to know about vertex numbers. Array semi serves a dual purpose,
represent ing (though not simultaneously) bo th the number of a ver tex and the
number of its semidominator . As well as saving storage space, this device allows
us to simplify the computa t ion of semidominators by combining the two cases of
T h e o r e m 4 into one.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

128 T. Lengauer and R. E. Tarjan

Here is an Algol-like version of s tep 1.

s t ep l : n :-- 0;
for each v E Vdopred(v) :ffi (D; semi(v) :ffi 0 od;
DFS(r);

S tep 1 uses the recursive procedure DFS, defined below, to carry out the depth-
first search. When a ver tex v receives a n u m b e r i, the procedure assigns
semi(v) := i and ver tex(i) :ffi v.

procedure DFS(vertex);
begin

semi(v) := n :ffi n + 1;
vertex(n) := v;
c o m m e n t initialize variables for steps 2, 3, and 4;
for each w ~ succ(v) d o

i f semi(w) = 0 t h e n parent(w) := v; DFS(w) fi;
add v to pred(w) o d

e n d DFS;

After carrying out s tep 1, the a lgor i thm carries out s teps 2 and 3 s imultaneously,
processing the vert ices w ~ r in decreasing order by number . During this
computa t ion the a lgor i thm main ta ins an auxil iary da ta s t ruc ture which represents
a forest conta ined in the depth-f i rs t spanning tree. More precisely, the forest
consists of ver tex set V and edge set ((paren t (w) , w) [ver tex w has been proc-
essed). T h e a lgor i thm uses one procedure to cons t ruc t the forest and ano the r to
ex t rac t informat ion f rom it:

LINK(v, w): Add edge (v, w) to the forest.
EVAL(v): If v is the root of a t ree in the forest, re turn v. Otherwise, let r be the root of the t ree

in the forest which conta ins v. Re tu rn any ver tex u ~ r of m i n i m u m semi(u) on the
pa th r ~ v.

T o process a ver tex w, the a lgor i thm computes the semidomina to r of w by
applying T h e o r e m 4. T h e a lgor i thm assigns s emi (w) := m i n { s e m i (E V A L (v)) [
(v, w) E E}. After this ass ignment , semi (w) is the n u m b e r of the semidomina to r
of w. To verify this claim, consider any edge (v, w) ~ E. I f v is numbered less
than w, then v is unprocessed, which means v is the root of a t ree in the forest
and semi(v) is the n u m b e r of v. T h u s s e m i (E V A L (v)) is the n u m b e r of v. I f v is
numbered grea ter t han w, then v has been processed and is not a root. T h u s
EVAL(v) re turns a ver tex u among vert ices numbered grea ter t han w satisfying
u - ~ v whose semidomina to r has the m i n i m u m number , and s e m i (E V A L (v)) is
the n u m b e r of u 's semidominator . Th is means tha t the a lgor i thm per forms exact ly
the minimizat ion specified in T h e o r e m 4.

After comput ing semi (w) , the a lgor i thm adds w to bucke t (ve r t ex (semi (w))) and
adds a new edge to the forest using L I N K (p a r e n t (w) , w). This comple tes s tep 2
for w. T h e a lgor i thm then empt ies bucke t (paren t (w)) , carrying out s tep 3 for each
ver tex in the bucket . Le t v be such a vertex. T h e a lgor i thm implicit ly computes
the immed ia t e domina to r of v by applying Corollary 1. Le t u ffi EVAL(v). T h e n

u is the ver tex s a t i s f y i n g p a r e n t (w) -~ u -~ v whose semidomina to r has m i n i m u m
number . I f semi (u) ffi semi(v) , then p a r e n t (w) is the immedia te domina to r of v
and the a lgor i thm assigns dora(v) := p a r e n t (w) . Otherwise u and v have the same

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

A Fast Algorithm for Finding Dominators in a Flowgraph 129

dominator and the algorithm assigns dora(v) = u. This completes step 3 for v.
Here is an Algol-like version of steps 2 and 3 which uses LINK and EVAL.

comment initialize variables;
f o r i := n b y - 1 un t i l 2 do

w := vertex(i);
step2: fo r e a c h v E pred(w) do

u := EVAL(v); i f semi(u} < semi(w) t h e n semi(w) := semi(u) fi od;
a d d w to bucket(vertex(semi(w)));
L I N K (p a r e n t (w) , w);

step3: fo r each v E bucke t (parent (w)) do
delete v f rom bucket(parent(w));
u := EVAL(v);
dora(v) := i f semi(u) < semi(v) t h e n u

e l se paren t (w) fi od od;

Step 4 examines vertices in increasing order by number, filling in the immediate
dominators not explicitly computed by step 3. Here is an Algol-like version of
step 4.

step4: fo r i := 2 un t i l n do
w := vertex(i);
i f dora(w) ~ vertex(semi(w)) t h e n dora(w) := dora(dora(w)) fi od;

dora(r) := 0;

This completes our presentation of the algorithm except for the implementation
of LINK and EVAL. Figure 4 illustrates how the algorithm works.

Figure 4(a) is a snapshot of the graph just before vertex A is processed. Two
edges (B, A) and (R, A) enter vertex A, giving 8 (the number of B) and 1 (the
number of R) as candidates for semi(A). The algorithm assigns semi(A) := 1,
places A in bucket(R), and adds edge (B, A) to the forest. Then the algorithm
empties bucket(B), which contains only D. EVAL(D) produces A as the vertex

on the path B + A - ~ D with minimum semi. Since semi(A) = 1 < 8 =
semi(D), idom(A) = idom(D) and the algorithm assigns dora(D) = A.

Figure 4(b) is a snapshot of the graph just before vertex I is processed. Four
edges (F, I), (G, I), (J, I), and (K, I) enter vertex I, giving 3 (the number of F), 2
(semi(G)), 2 (semi(G)), and 1 (semi(K)), respectively, as candidates for semi(I).
The algorithm assigns semi(I) = 1, places I in bucket(R), and adds edge (F, I) to
the forest. Then the algorithm empties bucket(F), which contains nothing.

Appendix B contains a complete Algol-like version of the algorithm, including
variable declarations and initialization. Using Theorem 4 and Corollary 1, it is
not hard to prove that after execution of the algorithm, dom(v) = idom(v) for
each vertex v ~ r, assuming that LINK and EVAL perform as claimed. The
running time of the algorithm is O(m + n) plus time for n - 1 LINK and m + n
- 1 EVAL instructions.

4. IMPLEMENTATION OF LINK AND EVAL

Two ways to implement LINK and EVAL, one simple and one sophisticated, are
provided in [14]. We shall not discuss the details of these methods here, but
merely provide Algol-like implementations of LINK and EVAL which are adapted
from [14].

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

130 T. Lengauer and R. E. Tarjan

~- _ (1 , -)

iii \\
/ ~¢);i/////(..~)(6.--) ~ ,(9.--) ~ (11.-) / (3)(9,-)

I
I \

, ~o ._) I p,,.-,
\ \,, \ ~ / / / / ' ~ " \ \

15,__1\(112,D1
(a)

Fig. 4(a). Snapshot just before processing vertex A. Doub]e]ines denote edges in forest. Number in
parentheses is semi; letter in parentheses is dora

J /
/

/
/

/
/

/
' ¢ !

I
I
I
I

\ 14,-) (

I

(3,-)

/ J
/

/
/

/

) (2,C)

(1,-)
\

\
\

\\\\

~ (1,R) \ ~(1,R)

t \

'

16,G) r(1,R) • [g~ (8,A)
f , %

1 \
/ \

~ , t I \
f \

\
\

(b)
Fig. 4(b). Snapshot just before processing vertex I

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

(12,D)

A Fast Algorithm for Finding Dominators in a Flowgraph 131

The simple method uses p a t h c o m p r e s s i o n to carry out EVAL. To represent
the forest built by the L I N K instructions {henceforth called the fores t} , the
algorithm uses two arrays, a n c e s t o r and label . Initially ances tor (v} = 0 and
label (v) = v for each vertex v. In general ances tor{v) = 0 only if v is a tree root
in the forest; otherwise ances tor (v) is an ancestor of v in the forest.

The algorithm maintains the labels so that they satisfy the following property.
Let v be any vertex, let r be the root of the tree in the forest containing v, and let
v = vk, vk-i Vo = r be such that ances tor (v i) = vi-1 for 1 _< i __ k. Let x be a
vertex such tha t s emi (x) is minimum among vertices x ~ { l a b e l (v i) I1 <- i <_ k} .
Then

x is a vertex such tha t s e m i (x) is min imum among vertices x
(3)

satisfying r -2, x -~ v.

To carry out LINK(v, w), the algorithm assigns a n c e s t o r (w) := v. To carry out
EVAL(v), the algorithm follows ancestor pointers to determine the sequence v
= vk, vh-~, ., Vo= r s u c h t h a t ances tor (v i) = Vi-lfor l _ < i _ k . I f v = r, v i s
returned. Otherwise, the algorithm performs a p a t h c o m p r e s s i o n by assigning
ances tor (v i) := r for i from 2 to k, simultaneously updating labels to maintain (3)
as follows: If semi(label(vi_~)) < semi (labe l (v i)) , then label (v i) := l a b e l (v ,) .
Then label (v) is returned. Here is an Algol-like procedure for EVAL.

vertex procedure EVAL(v);
if ancestor(v) = 0 then EVAL := v

else COMPRESS(v); EVAL := label(v) fi;

Recursive procedure COMPRESS , which carries out the path compression, is
defined by

procedure COMPRESS(v);
comment this procedure assumes ancestor(v) ~ 0;
if ancestor(ancestor(v)) ~ 0 then

COMPRESS(ancestor(v));
if semi(label(ancestor(v))) < semi(label(v)) then

label(v) := label(ancestor(v)) fi;
ancestor(v) := ancestor(ancestor(v)) fi;

The time required for n - 1 L I N K s and m + n - 1 EVALs using this
implementat ion is O (m log n) [14]. Thus the simple version of the dominators
algorithm requires O (m log n) time.

The sophisticated method uses path compression to carry out the EVAL
instructions but implements the L I N K instruction so that pa th compression is
carried out only on b a l a n c e d trees. See [14]. The sophisticated method requires
two additional arrays, s i z e and chi ld . Initially s i ze (v) = 1 and ch i ld (v) = 0 for all
vertices v. Here are Algol-like implementat ions of EVAL and L I N K using the
sophisticated method. These procedures are adapted from [14].

vertex procedure EVAL(v);
comment procedure COMPRESS used here is identical to that in the

simple method.
if ancestor(v) = 0 then EVAL := label(v)

else COMPRESS(v);
EVAL := if semi(label(ancestor(v))) >_ semi(label(v))

then label(v) else label(ancestor(v)) fi fi;

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

132 T. Lengauer and R. E. Tarjan

procedure LINK(v, w);
b e g i n

comment this procedure assumes for convenience that
size(O) = label(O) = semi(O) = 0;

S: = W;
wh i l e s e m i (l a b e l (w)) < s e m i (l a b e l (c h i l d (s))) do

if s ize(s) + s i z e (c h i l d (c h i l d (s))) >_ 2*)s i ze (ch i ld (s)) t h e n
p a r e n t (c h i l d (s)) := s; ch i ld (s) := c h i l d (c h i l d (s))

else s i z e (ch i ld (s)) := size(s);

s := p a r e n t (s) := ch i ld (s) fi od;
labe l (s) := labe l (w) ;

s i ze(v) := s i ze (v) + s i ze (w);
i f s i ze (v) < 2*s i ze (w) then s, ch i ld (v) := ch i ld (v) , s fi;
w h i l e s ~ 0 d o p a r e n t (s) := v; s := ch i ld (s) od

e n d LINK;

With this implementat ion, the t ime required for n - 1 L INKs and rn + n - 1
EVALs is O(ma(m, n)), where a is the functional inverse of Ackerman's function
[1] defined in the Introduct ion. Thus the sophist icated version of the dominators
algori thm requires O(ma(m, n)) time.

5. EXPERIMENTAL RESULTS AND CONCLUSIONS

We performed extensive experiments in order to quali tat ively compare the actual
performance of our algori thm with tha t of the Purdom-Moore algori thm [7] and
tha t of the bit vector algorithm. We t ransla ted both versions of our algori thm as
contained in Appendix B into Algol W and ran the programs on a series of
randomly generated program flowgraphs.

Table I and Figures 5 and 6 il lustrate the results. T h e sophisticated version
beat the simple version on all graphs tested. Th e relative difference in speed was
between 5 and 25 percent increasing with increasing n. I t is impor tan t to note
tha t the running t imes of the algori thms are insensitive to the way the test graphs
are selected; for fixed m and n the running t imes vary very little on different
graphs, whether the graphs are chosen randomly or by some o ther method. This
is also t rue for the Purdom-Moore algorithm.

Table I. Running Times in 10 -3 Sec of the Simple and Sophisticated Versions of the Fast Algorithm
(Three Graphs for Each Value of n)

Simple Sophisticated Simple Sophisticated

n Min Max Min Max n Min Max Min Max

10 2.0 2.1 1.9 2.0 200 46.4 47.2 36.2 36.4
20 4.3 4.4 3.7 3.9 300 70.1 72.3 55.0 55.7
30 6.2 6.8 5.5 5.8 400 98.5 101 74.7 78.1
40 8.0 8.8 7.1 7.6 500 123 125 92.0 93.7
50 10.5 11.4 8.9 9.6 600 150 152 110 120
60 12.4 13.4 10.9 11.6 700 176 181 130 137
70 14.6 15.4 12.6 13.1 800 214 217 158 167
80 17.4 18.6 14.5 15.6 900 238 244 173 188
90 20.0 20.2 16.7 16.8 1000 263 268 192 206

100 22.4 22.7 18.0 19.3

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

A F a s t A l g o r i t h m f o r F i n d i n g D o m i n a t o r s in a F l o w g r a p h 1 3 3

30

25

20

15 -

T IME

10 S I M

5 f SOPHISTICATED

0 I I I I I I I I I t
20 40 60 80 100

n

Fig. 5. Running times in 10 -3 sec of the simple and sophisticated versions of the fast algorithm

300

25O

20O

150 -

T IME

100 -

50 ~ SOPHISTICATED

0 I I I I I I I I I I
0 200 400 600 800 1000

n

Fig. 6. Running times in 10 -3 sec of the simple and sophisticated versions of the fast algorithm

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

134 T. Lengauer and R. E. Tarjan

We transcribed the Purdom-Moore algorithm into Algol W and ran it and the
sophisticated version of our algorithm on another series of program flowgraphs.
Table II and Figure 7 show the results. Our algorithm was faster on all graphs
tested except those with n = 8. The Purdom-Moore algorithm rapidly became
noncompetitive as n increased. The tradeoff point was about n = 10.

We implemented the bit vector algorithm using a set of procedures for manip-
ulating multiprecision bit vectors. (Algol W allows bit vectors only of length 32 or
less.) Table III gives the running time of this algorithm on the second series of
test graphs, and Figure 8 compares the running times of the bit vector algorithm
and the sophisticated version of our algorithm. The speed of the bit vector
algorithm varied not only with m and n, but also with the number of passes
required (two, three, or four on our test graphs). However, the bit vector method
was always slower than our algorithm.

There are several ways in which the bit vector algorithm can be made more
competitive. First, the bit vector procedures can be inserted in-line to save the
overhead of procedure calls. We made this change and observed a 33-45-percent
speedup. The corresponding change in the fast algorithm, inserting LINK and
EVAL in-line, produced a 20-percent speedup. These changes made the bit vector
algorithm almost as fast as our algorithm on graphs of less than 32 vertices, but
on larger graphs the bit vector algorithm remained substantially slower than our
algorithm. See Tables I and IV and Figure 9.

Second, the bit vector procedures can be written in assembly language. To
provide a fair comparison with the fast algorithm, it would be necessary to write
LINK and EVAL in assembly language. We did not try this approach, but we

Table II. Running Times in 10 -a Sec of the Purdom-Moore Algorithm
and the Sophisticated Version of the Fast Algorithm (Three Graphs for

Each Value of n)

In-line
Sophisticated sophisticated Purdom-Moore

n Min Max Min Max Min Max

8 1.7 1.7 1.4 1.5
16 3.0 3.2 2.5 2.6
24 4.4 4.5 3.6 3.7
32 5.8 6.1 4.7 4.8
40 7.4 7.6 6.0 6.1
48 8.8 9.2 7.0 7.4
56 10 11 8.0 8.8
64 12 13 9.3 10.0
72 13.2 13.8 10.3 10.9
80 14.9 15.1 11.8 12.0
88 16.5 17.4 13.0 13.9
96 17.7 17.9 14.0 14.5

104 19.3 20.4 15.4 16.4
112 19.9 20.6 15.9 16.7
120 22.3 23.4 17.7 19.0
128 23.5 23.8 18.7 19.2

1.3 1.4
4.6 4.7

10.I 10.3
18.4 18.6
29.4 29.6
40.8 42.5
56.5 58.2
74.3 75.5

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

A Fast Algorithm for Finding Dominators in a Flowgraph 135

8 0

7 0 -

60 -

50

4O

TIME

30

20

10 -

SOPHISTICATED

0
0 10 20 30 40 50 60 70

n

Fig. 7. Running times in 10 -:~ sec of the Purdom-Moore algorithm and the sophisticated version of
the fast algorithm

Table III. Running Times in 10 -:~ Sec and Number of Passes of the Bit
Vector Algorithm (Three Graphs for Each Value of n)

Bit vector

n Time Passes Time Passes Time Passes

8 3.2 3 3.4 3 3.4 3
16 6.3 3 6.3 3 6.4 3
24 9.3 3 9.4 3 9.5 3
32 12.4 3 12.4 3 15.7 4
40 12.8 2 12.9 2 17.3 3
48 20.9 3 20.9 3 21.0 3
56 24.3 3 24.3 3 24.3 3
64 27.9 3 28.2 3 28.2 3
72 25.6 2 35.1 3 35.5 3
80 28.6 2 39.2 3 39.6 3
88 43.7 3 43.8 3 44.1 3
96 46.6 3 47.7 3 47.7 3

104 40.6 2 41.0 2 56.0 3
112 43.9 2 43.9 2 61.3 3
120 65.9 3 66.0 3 66.6 3
128 70.5 3 71.3 3 91.5 4

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

136 T. Lengauer and R. E. Tarjan

10o

TIME

90

80

70

60

50

40 -

30 -

4 PASSES

/
I I /

I

 PASS S
/

/

B I T V E C # ~ ,~'2PASSES f

2O
4 PASSES, /

J / . 2 P A S S E ~

lO - / / SOPHISTICATED

0 I I I I I I

0 20 40 60 80 100 120 140

n

Fig. 8. Running times in 10 -3 sec of the bit vector algorithm and the sophisticated version of the
fast algorithm

believe that the fast algorithm would still beat the bit vector algorithm on graphs
of moderate size.

Third, use of the bit vector algorithm can be restricted to graphs known to be
reducible. On a reducible graph only one pass of the bit vector algorithm is
necessary, because the only purpose served by the second pass is to prove that
the bit vectors do not change, a fact guaranteed by the reducibility of the graph.
We believe that a one-pass in-line bit vector algorithm would be competitive with
the fast algorithm on reducible graphs of moderate size, but only if one ignores
the time needed to test reducibility.

The bit vector algorithm has two disadvantages not possessed by the fast
algorithm. First, it requires O(n 2) storage, which may be prohibitive for large
ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

A Fast A lgo r i t hm for F ind ing Domina to rs in a F l owg raph 137

Table IV. R u n n i n g T i m e s in 10 -3 Sec and N u m b e r of Passes of the In-
Line Bit Vector Algor i thm (Three Graphs for Each Value of n)

In-line bit vector

n T i me Passes T i m e Passes T i m e Passes

8 1.8 3 1.8 3 1.9 3
16 3.3 3 3.4 3 3.4 3
24 4.9 3 5.0 3 5.1 3
32 6.4 3 6.5 3 7.9 4
40 7.7 2 7.7 2 10.1 3
48 12.1 3 12.2 3 12.4 3
56 14.2 3 14.2 3 14.2 3
64 16.1 3 16.3 3 16.3 3
72 16.8 2 22.4 3 22.7 3
80 18.4 2 24.7 3 24.8 3
88 27.1 3 27.5 3 27.8 3
96 29.5 3 29.6 3 29.8 3

104 27.1 2 27.2 2 38.1 3
112 30.4 2 30.8 2 41.5 3
120 44.0 3 44.1 3 44.3 3
128 46.5 3 46.9 3 60.6 4

TIME

70

60

50

40

30

20

10

0
0

4 PASSES °

f
/

/
I

I ,,4PASSES

I N - L I N E B I T V E C T O R / , ~ 2 P A S S E S

4 PASSES.~ / ,
~ IN-L INE S O P H I S T I C A T E D

I I I I I I
20 40 60 80 100 120

n
140

Fig. 9. R u n n i n g t imes in 10 -3 sec of the in-line bit vector a lgor i thm and the in-line sophis t ica ted
version of t he fas t a lgor i thm

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

138 T. Lengauer and R. E. Tarjan

values of n. Second, the domina to r tree, not t he domina to r relation, is required
for m a n y kinds of global flow analysis [8, 13], bu t the bit vector a lgor i thm
computes only the domina to r relation. Comput ing the relat ion f rom the t ree is
easy, requiring constant t ime per e lement of the relat ion or O(n) bit vector
operat ions total. However , comput ing the t ree f rom bit vectors encoding the
relat ion requires O(n 2) t ime in the worst case.

We can summar ize the good and bad points of the three a lgor i thms as follows:
T h e P u r d o m - M o o r e a lgor i thm is easy to explain and easy to p rog ram but slow on
all bu t small graphs. T h e bit vector a lgor i thm is equally easy to explain and
program, fas ter than the P u r d o m - M o o r e algori thm, but not compet i t ive in speed
with the fast a lgor i thm unless it is run on small graphs which are reducible or
a lmost reducible. T h e fast a lgor i thm is m u c h ha rde r to prove correct but a lmos t
as easy to p rog ram as the o ther two algori thms, is compet i t ive in speed on small
graphs, and is much fas ter on large graphs. We favor some version of the fast
a lgor i thm for pract ical applications.

We conclude with a few c o m m e n t s on ways to improve the efficiency of the
fast algori thm. One can speed up the a lgor i thm by rewrit ing D F S and COM-
P R E S S as nonrecurs ive procedures which use explicit stacks. One can avoid
using an auxil iary s tack for C O M P R E S S by ins tead .using a t r ick of reversing
ancestor pointers; see [12]. A similar t r ick allows one to avoid the use of an
auxiliary s tack for DFS. One can save some addit ional s torage by combining
certain arrays, such as parent and ancestor. These modif icat ions save running
t ime and storage space, bu t only a t the expense of p rog ram clarity.

APPENDIX A. GRAPH-THEORETIC TERMINOLOGY

A directed graph G = (V, E) consists of a finite set V of vertices and a set E of
ordered pairs (v, w) of dist inct vertices, called edges. I f (v, w) is an edge, w is a
successor of v and v is apredecessor of w. A graph G1 = (V1, El) is a subgraph of
G if V~ ___ V and E~ ___ E. A path p of length k f rom v to w in G is a sequence of
v e r t i c e s p = (v = Vo, Vl, . . . , Vk = W) such tha t (vi, vi+~) E E for 0 _< i < k. T h e pa th
is simple if v0, ..., Vk are distinct (except possibly Vo = vk), and the p a t h is a cycle
if Vo = vk. By convent ion there is a p a t h of no edges f rom every ver tex to itself,
bu t a cycle mus t contain a t least two edges. A graph is acyclic if it contains no
cycles. I f p l = (u = Uo, Ul, ..., uk = v) is a p a t h f rom u to v a n d p = (v = v0, Vl,
..., v~ = w) is a p a t h f rom v to w, the p a t h p~ followed by p2 is p = (u = u0, Ul,
. . . , U k ~ V ~ Vo~ e l , • . . , V l ~ - W) .

A flowgraph G = (V, E, r) is a directed graph (V, E) with a dist inguished start
vertex r such tha t for any ver tex v E V there is a pa th f rom r to v. A program
flowgraph is a f lowgraph such tha t each ver tex has exact ly two successors. A
(directed, rooted) tree T = (V, E, r) is a f lowgraph such tha t I E [= [V[- 1. T h e
s ta r t ver tex r is the root of the tree. Any t ree is acyclic, and if v is any ver tex in
a t ree T, there is a unique p a t h f rom r to v. I f v and w are vert ices in a t ree T and
there is a pa th f rom v to w, then v is an ancestor of w and w is a descendant of
v (denoted by v -:-> w). I f in addi t ion v ~ w, then v is a proper ancestor of w and

w is aproper descendant of v (denoted by v - ~ w). I f v - ~ w and (v, w) is an edge
of T (denoted by v --~ w), then v is the parent of w and w is a child of v. In a t ree

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

A Fast Algorithm for Finding Dominators in a Flowgraph 139

e a c h v e r t e x h a s a u n i q u e p a r e n t (e x c e p t t h e r o o t , w h i c h h a s n o p a r e n t) . I f G =

(V, E) is a g r a p h a n d T = (V ' , E ' , r) is a t r e e s u c h t h a t (V ' , E ') i s a s u b g r a p h o f

G a n d V = V ' , t h e n T is a s p a n n i n g t r e e o f G.

APPENDIX B. THE COMPLETE DOMINATORS ALGORITHM

T h i s a p p e n d i x c o n t a i n s a c o m p l e t e l i s t i n g o f b o t h v e r s i o n s o f t h e d o m i n a t o r s

a l g o r i t h m . T h e a l g o r i t h m a s s u m e s t h a t t h e v e r t e x s e t o f t h e p r o b l e m g r a p h is V

= { v l l < _ v < _ n } .

p r o c e d u r e DOMINATORS(in teger se t a r r a y succ(1 :: n); i n t e g e r r, n; i n t e g e r a r r a y
dora(1 :: n));

beg in
i n t ege r a r r a y parent, ancestor, [child,] vertex(1 :: n);
i n t ege r a r r a y label, semi [, size](O :: n);
i n t ege r se t a r r a y pred, bucket(1 :: n);
i n t ege r u, v, x;

p r o c e d u r e DFS(in tege r v);
beg in

semi(v) := n := n + l;
vertex(n) := label(v) := v;
ancestor(v) := [child(v) :=] 0;
[size(v) := 1;]
for e ach w E succ(v) do

if semi(w) = 0 t h e n parent(w) := v; DFS(w) fi;
add v to pred(w) od

end DFS;

p r o c e d u r e COMPRESS(in teger v);
i f ancestor(ancestor(v)) ~ 0 t h e n

COMPRESS(ancestor(v));
i f semi(label(ancestor(v))) < semi(label(v)) t h e n

label(v) := label(ancestor(v)) fi;
ancestor(v) := ancestor(ancestor(v)) fi;

i n t e g e r p r o c e d u r e EVAL(in teger v);
i f ancestor(v) = 0 t h e n EVAL := v

else COMPRESS(v); EVAL := label(v) fi;

p r o c e d u r e LINK(in teger v, w);
ancestor(w) := v;

stepl: f o r v : = l u n t i l n d o
pred(v) := bucket(v) := ~; semi(v) := 0 od;

n : = 0 ;
DFS(r);
[size(O) := label(O) := semi(O) := 0;]
for i := n by - 1 un t i l 2 do

w := vertex(i);
step2: for e ach v ~ p r e d (w) do

u := EVAL(v);
if semi(u) < semi(w) t h e n semi(w) := semi(u) fi od;

add w to bucket(vertex(semi(w)));
L INK(paren t (w) , w);

step3: for e ach v E bucket(parent(w)) do
delete v from bucket(parent(w));
u := EVAL(v);

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

140 T. Lengauer and R. E. Tarjan

dora(v) := i f semi(u) < semi(v) t hen u
else parent(w) fi od od;

step4: i : = 2 u n t i l n d o
w := vertex(i);
if dora(w) ~ vertex(semi(w))

t hen dom(w) := dom(dorz(w)) fi od;
dora(r) := 0

end DOMINATORS;

The simple version of the algorithm consists of the procedure above, with
everything in brackets deleted. The sophisticated version of the algorithm consists
of the procedure above, with everything in brackets included, and the following
procedures substituted for EVAL and LINK.

i n t ege r p r o c e d u r e EVAL(integer v);
if ancestor(v) = 0 t h e n EVAL := label(v)

else COMPRESS(v);
EVAL := i f semi(label(ancestor(v))) > semi(label(v))

t h e n label(v) else label(ancestor(v)) fi fi;

p r o c e d u r e LINK(integer v, w);
beg in in t ege r s;

S := W;
whi l e semi(label(w)) < semi(label(child(s))) do

if size(s) + size(child(child(s))) >_ 2. size(child(s))
then ancestor(child(s)) := s;

child(s) := child(child(s))
else size(child(s)) := size(s);

s := ancestor(s) := child(s) fi od;
label(s) := label(w);
size(v) := size(v) + size(w);
i f size(v) < 2.size(w) t hen s, child(v) := child(v), s fi;
whi le s # 0 do ancestor(s) := v; s := child(s) od

end LINK;

REFERENCES
1. ACKERMANN, W. Zum Hilbertschen Aufbau der reellen Zahlen~ Math. Ann. 99 (1928), 118-133.
2. AHO, A.V., AND ULLMAN, J.D. The Theory of Parsing, Translation, and Compiling, Vol. II:

Compiling. Prentice-Hall, Englewood Cliffs, N.J., 1972.
3. AHO, A.V., AND ULLMAN, J.D. Principles of Compiler Design. Addison-Wesley, Reading, Mass.,

1977.
4. HECHT, M.S., AND ULLMAN, J.D. A simple algorithm for global data flow analysis problems.

S I A M J. Comput. 4 (1973), 519-532.
5. KNUTH, D.E. The Ar t of Computer Programming, Vol. 1: Fundamenta l Algorithms. Addison-

Wesley, Reading, Mass., 1968.
6. LORRY, E.S., AND MEDLOCK, C.W. Object code optimization. Comm. A C M / 2 , 1 (Jan. 1969), 13-

22.
7. PURDOM, P.W., AND MOORE, E.F. Algorithm 430: Immediate predominators in a directed graph.

Comm. A C M 15, 8 (Aug. 1972), 777-778.
8. REIF, J. Combinatorial aspects of symbolic program analysis. Tech. Rep. TR-11-77, Center for

Research in Computing Technology, Harvard U., Cambridge, Mass., 1977.
9. TARJAN, R.E. Depth-first search and linear graph algorithms. S I A M J. Comptng. 1 (1972), 146-

160.
10. TARJAN, R. Finding dominators in directed graphs S I A M J. Comptng. 3 (1974), 62-89.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

A Fast Algorithm for Finding Dominators in a Flowgraph 141

11. TARJAN, R.E. Edge-disjoint spanning trees, dominators, and depth-first search. Tech. Rep.
STAN-CS-74-455, Comptr. Sci. Dept., Stanford U., Stanford, Calif., 1974.

12. TAP, JAN, R.E. Applications of path compression on balanced trees. Tech. Rep. STAN-CS-75°512,
Comptr. Sci. Dept., Stanford U., Stanford, Calif., 1975.

13. TARJAN, R.E. Solving path problems on directed graphs. Tech. Rep. STAN-CS-528, Comptr. Sci.
Dept., Stanford U., Stanford, Calif., 1975.

14. TARJAN, R.E. Applications of path compression on balanced trees. To appear in J. ACM.

Received December 1977; revised March 1979

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979.

