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A fast algoritbm for finding dominators in a flowgraph is presented. The algorithm uses depth-first 
search and an efficient method of computing functions defined on paths in trees. A simple implemen- 
tation of the algorithm runs in O(m log n) time, where m is the number of edges and n is the number 
of vertices in the problem graph. A more sophisticated implementation runs in O(ma(m, n)) time, 
where a(m, n) is a functional inverse of Ackermann's function. 

Both versions of the algorithm were implemented in Algol W, a Stanford University version of 
Algol, and tested on an IBM 370/168. The programs were compared with an implementation by 
Purdom and Moore of a straightforward O(mn)-time algorithm, and with ~a bit vector algorithm 
described by Aho and Ullman. The fast algorithm beat the straightforward algorithm and the bit 
vector algorithm on all but the smallest graphs tested. 
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1. INTRODUCTION 

T h e  fo l lowing g r a p h  p r o b l e m  ar ises  in t he  s t u d y  of  g lobal  f low ana lys i s  and  

p r o g r a m  o p t i m i z a t i o n  [2, 6]. L e t  G = (V, E ,  r) be  a f l owgraph  1 w i t h  s t a r t  v e r t e x  

r. A v e r t e x  v domina tes  a n o t h e r  v e r t e x  w ~ v in G if e v e r y  p a t h  f r o m  r to  w 

con ta ins  v. V e r t e x  v is t h e  immedia te  domina tor  of  w, d e n o t e d  v ffi idom(w),  if v 
d o m i n a t e s  w and  e v e r y  o t h e r  d o m i n a t o r  o f  w d o m i n a t e s  v. 

THEOREM 1 [2, 6]. Every  vertex o f  a f lowgraph G = (V, E,  r) except  r has  a 
unique immedia te  dominator .  The  edges { ( idom(w),  w) [ w E V - {r}} form a 
directed tree rooted at r, cal led the d o m i n a t o r  t r ee  of  G, such that  v domina tes  
w i f  a n d  only i f  v is a proper  ancestor  o f  w in the domina tor  tree. See  Figures  1 
and  2. 

W e  wish  to  c o n s t r u c t  t h e  d o m i n a t o r  t r ee  o f  an  a r b i t r a r y  f l owgraph  G. I f  G 

r e p r e s e n t s  t h e  f low of  con t ro l  of  a c o m p u t e r  p r o g r a m  w h i c h  we a re  t ry ing  to  

Appendix A contains the graph-theoretic terminology used in this paper. 
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Fig. 1. A f lowgraph 

I 

Fig. 2. D o m i n a t o r  tree of  f lowgraph in Fig. 1 

optimize, then  the dominator  t ree  provides information about  what  kinds of code 
motion are safe. For  fur ther  details see [2, 6]. 

Aho and Ullman [2] and Pu rdom and Moore  [17] describe a s traightforward 
algori thm for finding dominators.  For  each vertex v ~ r, we carry out  the following 
step. 

General Step. Determine,  by means  of a search from r, the set S of vert ices 
reachable f rom r by pa ths  which avoid v. Th e  vert ices in V - {v} - S are exactly 
those which v dominates.  

Knowing the set of vert ices dominated  by each vertex, it is an easy ma t t e r  to 
construct  the dominator  tree. 
ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979. 



A Fast Algorithm for Finding Dominators in a Flowgraph 123 

To analyze the running time of this algorithm, let us assume that G has m 
edges and n vertices. Each execution of the general step requires O (rn) time, and 
the algorithm performs n - 1 executions of the general step; thus the algorithm 
requires O (rnn) time total. 

Aho and Ullman [3] describe another simple algorithm for computing domi- 
nators. This algorithm manipulates bit vectors of length n. Each vertex v has a 
bit vector which encodes a superset of the dominators of v. The algorithm makes 
several passes over the graph, updating the bit vectors during each pass, until no 
further changes to the bit vectors occur. The bit vector for each vertex v then 
encodes the dominators of v .  

This algorithm requires O (m) bit vector operations per pass for O (n) passes, or 
0 (nm) bit vector operations total. Since each bit vector operation requires O (n) 
time, the running time of the algorithm is O(n2m). This bound is pessimistic, 
however; the constant factor associated with the bit vector operations is very 
small, and on typical graphs representing real programs the number of passes is 
small (on reducible flowgraphs [3] only two passes are required [4]). 

In this paper we shall describe a faster algorithm for solving the dominators 
problem. The algorithm uses depth-first search [9] in combination with a data 
structure for evaluating functions defined on paths in trees [14]. We present a 
simple implementation of the algorithm which runs in O (m log n) time and a 
more sophisticated implementation which runs in O(rna(m, n)) time, where 
a(rn, n) is a functional inverse of Ackermann's function [1], defined as follows. 
For integers i , j  >_ 0, let A(i ,  0) ffi 0 if i _> 0, A(0,j)  = 2 y i f j  _> 1, A(i ,  1) = A( i  - 
1, 2) if i _> 1, and A ( i , j )  ffi A ( i  - 1, A ( i , j -  1)) if i __ 1, j_> 2. Then a(m, n) = 
min{i _> 1 [A(i, I 2rn/n J) > log2n}. 

The algorithm is a refinement of earlier versions appearing in [10-12]. Although 
proving its correctness and verifying its running time require rather complicated 
analysis, the algorithm is quite simple to program and is very fast in practice. We 
programmed both versions of the algorithm in Algol W, a Stanford University 
version of Algol, and tested the programs on an IBM 370/168. We compared the 
programs with a transcription into Algol W of the Purdom-Moore algorithm and 
with an implementation of the bit vector algorithm. On all but the smallest graphs 
tested our algorithm beat the other methods. 

This paper consists of five sections. Section 2 describes the properties of depth- 
first search used by the algorithm and proves several theorems which imply the 
correctness of the algorithm. Some knowledge of depth-first search as described 
in [9] and [10, sec. 2] is useful for understanding this section. Section 3 develops 
the algorithm, using as primitives two procedures that  manipulate trees. Section 
4 discusses two implementations, simple and sophisticated, of these tree manip- 
ulation primitives. Some knowledge of [14, secs. 1, 2, and 5] is useful for 
understanding this section. Section 5 presents our experimental results and 
conclusions. 

2. DEPTH-FIRST SEARCH AND DOMINATORS 

The fast dominators algorithm consists of three parts. First, we perform a depth- 
first search on the input flowgraph G = (V, E, r), starting from vertex r, and 
numbering the vertices of G from 1 to n in the order they are reached during the 
search. The search generates a spanning tree T rooted at r, with vertices 

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979. 



124 T. Lengauer and R. E. Tarjan 

/ 
l 

/ 
/ 
/ 

I 
I 
I 
I 
\ 
\ 
\ 

/ 
/ 

/ 
/ 

/ 

( 

(4,R) i 

. -  / \ \\ 

16,C) 

/ I f \ 
. /  I ! \ 

\ 
\ 

\ 

)(11,R) 

r 

(12,B) 

(13,D) 

Fig. 3. Depth-first search of flowgraph in Fig. 1. Solid edges are spanning tree edges; dashed edges 
are nontree edges. Number in parentheses is vertex number; letter is semidominator 

n u m b e r e d  in preorder  [5]. See Figure 3. For  convenience in s ta t ing our  results, 
we shall  a ssume in this section t ha t  all vert ices are identified by  number .  

T h e  following p a t h s  l emma  is an impor t an t  p roper ty  of depth-f i rs t  search and  
is crucial to the  correctness  of the  domina tors  algori thm. 

LEMMA 1 [9]. I f  v and  w are vertices o f  G such that  v <_ w, then any p a t h  from 
v to w mus t  contain a common ancestor o f  v and  w in T. 

Second, we compute  a value for each  ver tex w ~ r called its semidominator ,  
denoted  by  sdom(w)  and defined by  

sdom(w)  = min{v I there  is a pa th  v = Vo, v~ . . . . .  vk = w such tha t  (1) 
v i >  w f o r  1 <_ i<_ k - 1}. 

See Figure 3. Third ,  we use the  semidomina tors  to compute  the immedia te  
domina tors  of  all vertices. 

T h e  semidomina to r s  have  several  proper t ies  which make  their  computa t ion  a 
convenient  in te rmedia te  s tep in the  domina tors  calculation. I f  w ~ r is any  vertex,  
then  sdom(w)  is a p roper  ances tor  of  w in T, and  idom(w) is a (not necessari ly 
proper} ances tor  of  sdom(w).  I f  we replace the  set  of  nont ree  edges of G by  the 
set  of edges { (sdom(w),  w) I w E V and w ~ r}, then  the  domina tors  of  vert ices in 
G are unchanged.  T h u s  if we know the spanning tree and  the  semidominators ,  we 
can compute  the  dominators .  

In  the  r ema inde r  of this section we prove  the  proper t ies  of  semidomina to r s  and 
immedia te  domina to r s  which just ify the algori thm. T h e  following three  l e m m a s  
give basic re la t ionships  among  the  spanning tree,  the  semidominators ,  and  the  
immedia te  dominators .  

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979. 
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LEMMA 2. For any vertex w # r, idom(w) -~ w. 2 

PROOF. Any  domina to r  of w mus t  be on the  pa th  in T from r to w. [ ]  

LEMMA 3. For any vertex w ~ r, sdom(w) -2* w. 
PROOF. L e t p a r e n t ( w )  be the  pa ren t  of w in T. Since {parent(w), w) is an edge 

of G, by (1) sdom(w)  <_parent(w) < w. Also by (1), the re  is a p a t h  sdorn(w) = v0, 

vl, ... ,  vk = w such t h a t  vi > w for 1 _ i _< k - 1. By L e m m a  1, some ver tex  vi on 
the  pa th  is a common ances tor  of sdom(w) and w. But  such a common  ances tor  
vi must  sat isfy vi <- sdom(w).  This  means  i -- 0, i.e. vi = sdom(w),  and sdom(w)  is 
a p roper  ances tor  of w. []  

LEMMA 4. For any vertex w ~ r, idom(w) --~ sdom(w).  
PROOF. By  L e m m a s  2 and 3, idorn(w) and sdom(w)  are proper  ances tors  of w. 

The  pa th  consist ing of the  t ree  pa th  f rom r to sdom(w)  followed by  a p a t h  
sdom(w) = Vo, Vl, . . ,  vk = w such t ha t  vi > w for 1 _ i _< k - 1 (which mus t  exist  
by (1)) avoids  all p rope r  descendan ts  of sdom(w) which are also p rope r  ances tors  

of w. I t  follows t h a t  idom(w) is an ances tor  of sdom(w).  [] 

LEMMA 5. Let  vertices v, w satisfy v--~ w. Then  v-:* idom(w) or idom(w)--~ 
idom(v). 

PROOF. Let  x be any  p roper  descendan t  of idom(v) which is also a p rope r  
ances tor  of v. By  T h e o r e m  1 and Corol lary  1, there  is a pa th  from r to v which 
avoids  x. By conca tena t ing  this  pa th  wi th  the  t ree  pa th  from v to w, we ob ta in  a 
pa th  f rom r to w which avoids  x. Thus  idom(w) mus t  be e i ther  a descendan t  of 
v or an ances tor  of idom(v). F, 

Using L e m m a s  1-5, we obta in  two resul ts  which provide  a way to compu te  
immed ia t e  domina to r s  f rom semidomina tors .  

THEOREM 2. Let  w ~ r. Suppose every u for which sdom(w) -~  u -~ w satisfies 
sdom(u) >_ sdom(w).  Then  idom(w) = sdom(w).  

PROOF. By  L e m m a  4, it  suffices to show tha t  sdom(w) domina te s  w. Consider  
any  p a t h  p f rom r to w. Le t  x be the  las t  ver tex  on this  pa th  such t h a t  
x < sdom(w).  If  there  is no such x, then  sdom(w) = r domina tes  w. Otherwise,  let  
y be the  first  ver tex  following x on the  p a t h  and sat isfying sdom(w)-:* y -~ w. Let  
q = (x = v0, vl, v2, . . . ,  vk = y) be the  pa r t  of p f rom x to y. We cla im vi > y for 
1 _ i _< k - 1. Suppose  to the  con t ra ry  t h a t  some vi sat isfies v~ < y. By L e m m a  1, 
some v i wi th  i _ j  _ k - 1 is an ances tor  o fy .  By  the choice of x, vj >_ sdom(w),  
which means  sdom(w)  -:* vj--~ y ~ w, cont rad ic t ing  the  choice o fy .  Th is  proves  

the  claim. 
The  c la im toge ther  wi th  the  def ini t ion of s emidomina to r s  impl ies  t h a t  

sdom(y)  <_ x < sdom(w).  By the  hypo thes i s  of the  theorem,  y canno t  be a p rope r  
descendan t  of sdom(w).  Thus  y = sdom(w) and sdom(w) lies on the p a t h  p.  Since 
the  pa th  se lec ted  was a rb i t ra ry ,  sdom(w) domina tes  w. []  

THEOREM 3. Let  w # r and  let u be a vertex for which sdom(u)  is m i n i m u m  
among  vertices u satisfying sdom(w) -~ u -~ w. Then  sdom(u)  <_ sdom(w)  a n d  
idom(u) = idom(w).  

2 Throughou t  th is  paper  the  no ta t ion  "x -~, y"  means  t h a t  x is an ancestor  of y in the  spanning  t ree  

T genera ted  by the  depth-f i rs t  search, and  " ' x  --~ y means  x -:-, y and  x ~ y. 

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979. 
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PROOF. Let z be the vertex such that  s d o m ( w )  --~ z -% w. T h e n  s d o m ( u )  <_ 
s d o m ( z )  <_ s d o m ( w ) .  

By Lemma 4, i d o m ( w )  is an ancestor of s d o m ( w )  and thus a proper  ancestor of 
u. Thus  by Lemma 5 i d o m ( w )  -% idom(u) .  To prove i d o m ( u )  = i d o m ( w ) ,  it 
suffices to prove that  i dom(u)  dominates  w. 

Consider any p a t h p  from r to w. Let  x be the last vertex on this pa th  satisfying 
x < idom(u) .  If  there is no such x, then i dom (u )  = r dominates  w. Otherwise, let 
y be the first vertex following x on the path  and satisfying i d o m ( u )  -% y -% w. Let  
q = (x = v0, Vl, v2 . . . .  , vk - y) be the par t  o f p  from x to y. As in the proof  of 
Theorem 2, the choice of x and y implies tha t  v~ > y for 1 ___ i _ k - 1. Thus  
s d o m ( y )  <_ x. Since i dom(u )  <_ s d o m ( u )  by L e m m a  4, we have s d o m ( y )  <_ x < 
i dom(u )  <_ s d o m ( u ) .  

Since u has the smallest semidominator  among vertices on the tree pa th  from 
z to w, y cannot  be proper  descendant  of s d o m ( w ) .  Furthermore,  y cannot  be 
both a proper  descendant  of i dom(u)  and an ancestor  of u, for if this were the 
case the pa th  consisting of the tree pa th  from r to s d o m ( y )  followed by a path  
s d o m ( y )  = Vo, v~, . . . ,  vk --- y such tha t  vi > y for I _< i _< k - 1 followed by the tree 
path  from y to u would avoid idom(u) ;  but  no pa th  from r to u avoids i dom(u ) .  

Since i dom(u)  - ~  v -~  u -% w and i d o m ( u )  -% y -% w, the only remaining pos- 
sibility is tha t  i d o m ( u )  = y.  Thus  i dom(u )  lies on the pa th  from r to w. Since the 
path  selected was arbitrary,  i d o m ( u )  dominates  w. []  

COROLLARY 1. L e t  w ~ r a n d  le t  u be a v e r t e x  f o r  w h i c h  s d o m ( u )  is  m i n i m u m  

a m o n g  ver t i ce s  u s a t i s f y i n g  s d o m ( w )  - ~  u -% w. T h e n  

( s d o m ( w )  i f  s d o m ( w )  = s d o m ( u ) ,  
i d o m ( w )  = [ i dom(u )  o the rw i se .  

PROOF. Immedia te  from Theorems  2 and 3. [ ]  

The  following theorem provides a way to compute  semidominators.  
THEOREM 4. F o r  a n y  v e r t e x  w ~ r, 

(2) 

s d o m ( w )  = m i n ( { v  I (v, w) E E a n d  v < w} U { s d o m ( u )  l u  > w a n d  
t h e r e  is  a n  edge  (v, w) such  t h a t  u -% v} ). 

PROOF. Let  x equal the r ight-hand side of (3). We shall first prove tha t  s d o m ( w )  
_< x. Suppose x is a vertex such tha t  (x, w) E E and x < w. By (1), s d o m ( w )  <_ x.  

Suppose on the other  hand  x --- s d o m ( u )  for some vertex u such tha t  u > w and 
there is an edge (v, w) such tha t  u -% v. By (1) there is a pa th  x = Vo, vl . . . . .  vj -- 
u such tha t  vi > u > w for 1 _ i _ j  - 1. The  tree pa th  u --- vj--* vj+~ --* ... --* vk-1 
= v satisfies vi - u > w f o r j  _ i _ k - 1. Thus  the pa th  x = v0, vl . . . .  , vk-~ = v, vk 
= w, satisfies vi > w for 1 _< i _ k - 1. By (1), s d o m ( w )  <_ x.  

I t  remains for us to prove tha t  s d o m ( w )  >_ x.  Let s d o m ( w )  -- Vo, Vx . . . . .  vk = w 

be a simple pa th  such tha t  vi > w for 1 ___ i _ k - 1. I f  k = 1, ( s d o m ( w ) ,  w) ~ E ,  
and s d o m ( w )  < w by L e m m a  3. Thus  s d o m ( w )  >_ x. Suppose on the other  hand  
that  k > 1. L e t j  be min imum such t h a t j  _> 1 and v/-% Vk-~. Such a j  exists since 
k - 1 is a candidate for j.  

We claim vi > vj for 1 _ i _ j - 1. Suppose to the contrary  tha t  vi <- vj for some 
i i n  the range 1_< i _ < j -  1. Choose the i s u c h  tha t  1 _  i _ j -  l a n d  v i i s  
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minimum. By Lemma  1, vi --~ vj, which contradicts  the choice o f j .  This  proves 
the claim. 

T h e  claim implies sdom(w)  >_ sdom(vj)  >_ x. Th u s  whether  k = 1 or k > 1, we 
have sdom(w)  >_ x, and the theorem is true. [] 

3. A FAST DOMINATORS ALGORITHM 

In this section we develop an algorithm which uses the results in Section 2 to find 
dominators. Earlier versions of the algorithm appear in [10-12]; the version we 
present is refined to the point where it is as simple to program as the straightfor- 
ward algorithm [2, 7] or the bit vector algorithm [3, 4], similar in speed on small 
graphs, and much faster on large graphs. 

The algorithm consists of the following four steps. 

Step 1. 

Step 2. 

Step 3. 
Step 4. 

Carry out a depth-first search of the problem graph. Number the vertices from 1 to n as they 
are reached during the search. Initialize the variables used in succeeding steps. 
Compute the semidominators of all vertices by applying Theorem 4. Carry out the compu- 
tation vertex by vertex in decreasing order by number. 
Implicitly define the immediate dominator of each vertex by applying Corollary 1. 
Explicitly define the immediate dominator of each vertex, carrying out the computation 
vertex by vertex in increasing order by number. 

Our implementa t ion  of this algori thm uses the following arrays. 

Input 

succ(v): 

Computed 

parent(w): 
pred(w): 
semi(w): 

vertex (i): 
bucket(w): 
dom(w): 

The set of vertices w such that (v, w) is an edge of the graph. 

The vertex which is the parent of vertex w in the spanning tree generated by the search. 
The set of vertices v such that (v, w) is an edge of the graph. 
A number defmed as follows: 
(i) Before vertex w is numbered, semi(v) = O. 
(ii) After w is numbered but before its semidominator is computed, semi(w) is the 

number of w. 
(iii) After the semidominator of w is computed, semi(w) is the number of the semidom- 

inator of w. 
The vertex whose number is i. 
A set of vertices whose semidominator is w. 
A vertex defined as follows: 
(i) After step 3, if the semidominator of w is its immediate dominator, then dom(w) is 

the immediate dominator of w. Otherwise dom(w) is a vertex v whose number is 
smaller than w and whose immediate dominator is also w's immediate dominator. 

(ii) After step 4, dom(w) is the immediate dominator of w. 

Rathe r  than  convert ing vertex names to numbers  during step 1 and convert ing 
numbers  back to names at  the end of the computat ion,  we have chosen to refer  
to vertices as much  as possible by name. Arrays semi and vertex incorporate  all 
tha t  we need to know about  vertex numbers.  Array semi serves a dual purpose, 
represent ing ( though not  simultaneously) bo th  the number  of a ver tex and the 
number  of its semidominator .  As well as saving storage space, this device allows 
us to simplify the computa t ion  of semidominators  by combining the two cases of 
T h e o r e m  4 into one. 
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Here  is an Algol-like version of s tep 1. 

s t ep l :  n :-- 0; 
for each v E Vdopred(v) :ffi (D; semi(v) :ffi 0 od; 
DFS(r); 

S tep  1 uses the  recursive procedure  DFS,  defined below, to carry  out  the  depth-  
first search. When  a ver tex  v receives a n u m b e r  i, the  procedure  assigns 
semi(v)  := i and ver tex( i )  :ffi v. 

procedure DFS(vertex); 
begin 

semi(v) := n :ffi n + 1; 
vertex(n) := v; 
c o m m e n t  initialize variables for steps 2, 3, and 4; 
for each w ~ succ(v) d o  

i f  semi(w) = 0 t h e n  parent(w) := v; DFS(w) fi; 
add v to pred(w) o d  

e n d  DFS; 

After  carrying out  s tep 1, the  a lgor i thm carries out  s teps  2 and 3 s imultaneously,  
processing the  vert ices w ~ r in decreasing order  by  number .  During this 
computa t ion  the  a lgor i thm main ta ins  an auxil iary da ta  s t ruc ture  which represents  
a forest  conta ined in the  depth-f i rs t  spanning tree. More  precisely, the forest  
consists of  ver tex set  V and edge set  ( (paren t (w) ,  w )  [ver tex w has  been  proc- 
essed).  T h e  a lgor i thm uses one procedure  to cons t ruc t  the  forest  and  ano the r  to 
ex t rac t  informat ion  f rom it: 

LINK(v,  w): Add edge (v, w) to the  forest. 
EVAL(v): If  v is the  root  of a t ree  in the  forest, re turn  v. Otherwise,  let  r be the  root  of the  t ree  

in the  forest  which  conta ins  v. Re tu rn  any ver tex  u ~ r of m i n i m u m  semi(u) on the  
pa th  r ~ v. 

T o  process  a ver tex  w, the  a lgor i thm computes  the  semidomina to r  of  w by 
applying T h e o r e m  4. T h e  a lgor i thm assigns s emi (w)  := m i n { s e m i ( E V A L ( v ) ) [  
(v, w) E E}. After  this ass ignment ,  semi (w)  is the  n u m b e r  of the  semidomina to r  
of  w. To  verify this claim, consider any  edge (v, w) ~ E.  I f  v is numbered  less 
than  w, then  v is unprocessed,  which means  v is the  root  of  a t ree in the  forest  
and semi(v )  is the  n u m b e r  of  v. T h u s  s e m i ( E V A L ( v ) )  is the  n u m b e r  of  v. I f  v is 
numbered  grea ter  t han  w, then  v has  been  processed and is not  a root.  T h u s  
EVAL(v) re turns  a ver tex  u among  vert ices numbered  grea ter  t han  w satisfying 
u - ~  v whose semidomina to r  has  the  m i n i m u m  number ,  and  s e m i ( E V A L ( v ) )  is 
the  n u m b e r  of  u 's  semidominator .  Th is  means  tha t  the  a lgor i thm per forms  exact ly 
the  minimizat ion specified in T h e o r e m  4. 

After  comput ing  semi (w) ,  the a lgor i thm adds w to bucke t ( ve r t ex ( semi (w) ) )  and 
adds  a new edge to the forest  using L I N K ( p a r e n t ( w ) ,  w). This  comple tes  s tep 2 
for w. T h e  a lgor i thm then  empt ies  bucke t (paren t (w) ) ,  carrying out  s tep 3 for each 
ver tex in the  bucket .  Le t  v be such a vertex.  T h e  a lgor i thm implicit ly computes  
the immed ia t e  domina to r  of  v by applying Corollary 1. Le t  u ffi EVAL(v).  T h e n  

u is the  ver tex  s a t i s f y i n g p a r e n t ( w )  -~  u -~ v whose semidomina to r  has  m i n i m u m  
number .  I f  semi (u )  ffi semi(v) ,  then  p a r e n t ( w )  is the  immedia te  domina to r  of  v 
and the a lgor i thm assigns dora(v) := p a r e n t ( w ) .  Otherwise u and  v have  the  same 

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979. 



A Fast Algorithm for Finding Dominators in a Flowgraph 129 

dominator and the algorithm assigns dora(v) = u. This completes step 3 for v. 
Here is an Algol-like version of steps 2 and 3 which uses LINK and EVAL. 

comment  initialize variables; 
f o r  i := n b y  - 1  un t i l  2 do 

w := vertex(i); 
step2: fo r  e a c h  v E pred(w)  do 

u := EVAL(v); i f  semi(u} < semi(w) t h e n  semi(w) := semi(u)  fi od; 
a d d  w to bucket(vertex(semi(w)));  
L I N K ( p a r e n t ( w ) ,  w); 

step3: fo r  each  v E bucke t (parent (w))  do 
delete  v f rom bucket(parent(w));  
u := EVAL(v); 
dora(v) := i f  semi(u)  < semi(v)  t h e n  u 

e l se  paren t (w)  fi od  od; 

Step 4 examines vertices in increasing order by number, filling in the immediate 
dominators not explicitly computed by step 3. Here is an Algol-like version of 
step 4. 

step4: fo r  i := 2 un t i l  n do 
w := vertex(i); 
i f  dora(w) ~ vertex(semi(w))  t h e n  dora(w) := dora(dora(w)) fi od; 

dora(r) := 0; 

This completes our presentation of the algorithm except for the implementation 
of LINK and EVAL. Figure 4 illustrates how the algorithm works. 

Figure 4(a) is a snapshot of the graph just before vertex A is processed. Two 
edges (B, A) and (R, A) enter vertex A, giving 8 (the number of B) and 1 (the 
number of R) as candidates for semi(A).  The algorithm assigns semi(A) := 1, 
places A in bucket(R),  and adds edge (B, A) to the forest. Then the algorithm 
empties bucket(B), which contains only D. EVAL(D) produces A as the vertex 

on the path B + A - ~  D with minimum semi. Since semi(A) = 1 < 8 = 
semi(D), idom(A) = idom(D) and the algorithm assigns dora(D) = A. 

Figure 4(b) is a snapshot of the graph just before vertex I is processed. Four 
edges (F, I), (G, I), (J, I), and (K, I) enter vertex I, giving 3 (the number of F), 2 
(semi(G)), 2 (semi(G)), and 1 (semi(K)),  respectively, as candidates for semi(I). 
The algorithm assigns semi(I) = 1, places I in bucket(R),  and adds edge (F, I) to 
the forest. Then the algorithm empties bucket(F), which contains nothing. 

Appendix B contains a complete Algol-like version of the algorithm, including 
variable declarations and initialization. Using Theorem 4 and Corollary 1, it is 
not hard to prove that after execution of the algorithm, dom(v) = idom(v) for 
each vertex v ~ r, assuming that LINK and EVAL perform as claimed. The 
running time of the algorithm is O(m + n) plus time for n - 1 LINK and m + n 
- 1 EVAL instructions. 

4. IMPLEMENTATION OF LINK AND EVAL 

Two ways to implement LINK and EVAL, one simple and one sophisticated, are 
provided in [14]. We shall not discuss the details of these methods here, but 
merely provide Algol-like implementations of LINK and EVAL which are adapted 
from [14]. 
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The simple method uses p a t h  c o m p r e s s i o n  to carry out EVAL. To represent 
the forest built by the L I N K  instructions {henceforth called the fores t} ,  the 
algorithm uses two arrays, a n c e s t o r  and label .  Initially ances tor (v}  = 0 and 
label (v)  = v for each vertex v. In general ances tor{v )  = 0 only if v is a tree root  
in the forest; otherwise ances tor (v )  is an ancestor of v in the forest. 

The  algorithm maintains the labels so that  they satisfy the following property. 
Let v be any vertex, let r be the root  of the tree in the forest containing v, and let 
v = vk, vk-i . . . . .  Vo = r be such that  ances tor (v i )  = vi-1 for 1 _< i __ k. Let  x be a 
vertex such tha t  s emi ( x )  is minimum among vertices x ~ { l a b e l ( v i )  I1 <- i <_ k} .  
Then  

x is a vertex such tha t  s e m i ( x )  is min imum among vertices x 
(3) 

satisfying r -2, x -~ v. 

To carry out LINK(v,  w), the algorithm assigns a n c e s t o r ( w )  := v. To carry out 
EVAL(v), the algorithm follows ancestor pointers to determine the sequence v 
= vk, vh-~, ., Vo= r s u c h t h a t  ances tor (v i )  = Vi-lfor l _ < i _ k .  I f v =  r, v i s  
returned. Otherwise, the algorithm performs a p a t h  c o m p r e s s i o n  by assigning 
ances tor (v i )  := r for i from 2 to k, simultaneously updating labels to maintain (3) 
as follows: If  semi( label(vi_~))  < semi ( labe l ( v i ) ) ,  then label (v i )  := l a b e l ( v , ) .  
Then  label (v)  is returned. Here is an Algol-like procedure for EVAL. 

vertex  procedure EVAL(v); 
if ancestor(v) = 0 then  EVAL := v 

else COMPRESS(v); EVAL := label(v) fi; 

Recursive procedure COMPRESS ,  which carries out  the path  compression, is 
defined by 

procedure COMPRESS(v); 
comment  this procedure assumes ancestor(v) ~ 0; 
if ancestor(ancestor(v)) ~ 0 then  

COMPRESS(ancestor(v)); 
if semi(label(ancestor(v))) < semi(label(v)) then 

label(v) := label(ancestor(v)) fi; 
ancestor(v) := ancestor(ancestor(v)) fi; 

The  time required for n - 1 L I N K s  and m + n - 1 EVALs using this 
implementat ion is O ( m  log n) [14]. Thus  the simple version of the dominators 
algorithm requires O ( m  log n) time. 

The sophisticated method uses path  compression to carry out the EVAL 
instructions but  implements the L I N K  instruction so that  pa th  compression is 
carried out only on b a l a n c e d  trees. See [14]. The  sophisticated method requires 
two additional arrays, s i z e  and chi ld .  Initially s i ze (v )  = 1 and ch i ld (v )  = 0 for all 
vertices v. Here are Algol-like implementat ions of EVAL and L I N K  using the 
sophisticated method.  These procedures are adapted from [14]. 

vertex  procedure EVAL(v); 
comment  procedure COMPRESS used here is identical to that in the 

simple method. 
if ancestor(v) = 0 then EVAL := label(v) 

else COMPRESS(v); 
EVAL := if semi(label(ancestor(v))) >_ semi(label(v)) 

then  label(v) else  label(ancestor(v)) fi fi; 
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procedure LINK(v, w); 
b e g i n  

comment this procedure assumes for convenience that  
size(O) = label(O) = semi(O) = 0; 

S: = W; 
wh i l e  s e m i ( l a b e l ( w ) )  < s e m i ( l a b e l ( c h i l d ( s ) ) )  do 

if  s ize(s)  + s i z e ( c h i l d ( c h i l d ( s ) ) )  >_ 2*)s i ze (ch i ld ( s ) )  t h e n  
p a r e n t ( c h i l d ( s ) )  := s; ch i ld ( s )  := c h i l d ( c h i l d ( s ) )  

else s i z e ( ch i ld ( s ) )  := size(s);  

s := p a r e n t ( s )  := ch i ld ( s )  fi od; 
labe l ( s )  := labe l (w) ;  

s i ze(v)  := s i ze (v )  + s i ze (w);  
i f  s i ze (v )  < 2*s i ze (w)  then s, ch i ld ( v )  := ch i ld (v ) ,  s fi; 
w h i l e  s ~ 0 d o  p a r e n t ( s )  := v; s := ch i ld ( s )  od  

e n d  LINK; 

With this implementat ion,  the t ime required for n - 1 L INKs  and rn + n - 1 
EVALs is O(ma(m, n)), where a is the functional inverse of Ackerman's  function 
[1] defined in the Introduct ion.  Thus  the sophist icated version of the dominators  
algori thm requires O(ma(m, n)) time. 

5. EXPERIMENTAL RESULTS AND CONCLUSIONS 

We performed extensive experiments  in order  to quali tat ively compare  the actual 
performance of our  algori thm with tha t  of the Purdom-Moore  algori thm [7] and 
tha t  of the bit  vector  algorithm. We t ransla ted both  versions of our  algori thm as 
contained in Appendix B into Algol W and ran  the programs on a series of 
randomly generated program flowgraphs. 

Table  I and Figures 5 and 6 il lustrate the results. T h e  sophisticated version 
beat  the simple version on all graphs tested. Th e  relative difference in speed was 
between 5 and 25 percent  increasing with increasing n. I t  is impor tan t  to note  
tha t  the running t imes of the algori thms are insensitive to the way the test  graphs 
are selected; for fixed m and n the running t imes vary  very  little on different 
graphs, whether  the graphs are chosen randomly or by some o ther  method.  This  
is also t rue for the Purdom-Moore  algorithm. 

Table I. Running Times in 10 -3 Sec of the Simple and Sophisticated Versions of the Fast  Algorithm 
(Three Graphs for Each Value of n) 

Simple Sophisticated Simple Sophisticated 

n Min Max Min Max n Min Max Min Max 

10 2.0 2.1 1.9 2.0 200 46.4 47.2 36.2 36.4 
20 4.3 4.4 3.7 3.9 300 70.1 72.3 55.0 55.7 
30 6.2 6.8 5.5 5.8 400 98.5 101 74.7 78.1 
40 8.0 8.8 7.1 7.6 500 123 125 92.0 93.7 
50 10.5 11.4 8.9 9.6 600 150 152 110 120 
60 12.4 13.4 10.9 11.6 700 176 181 130 137 
70 14.6 15.4 12.6 13.1 800 214 217 158 167 
80 17.4 18.6 14.5 15.6 900 238 244 173 188 
90 20.0 20.2 16.7 16.8 1000 263 268 192 206 

100 22.4 22.7 18.0 19.3 
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We transcribed the Purdom-Moore algorithm into Algol W and ran it and the 
sophisticated version of our algorithm on another series of program flowgraphs. 
Table II and Figure 7 show the results. Our algorithm was faster on all graphs 
tested except those with n = 8. The Purdom-Moore algorithm rapidly became 
noncompetitive as n increased. The tradeoff point was about n = 10. 

We implemented the bit vector algorithm using a set of procedures for manip- 
ulating multiprecision bit vectors. (Algol W allows bit vectors only of length 32 or 
less.) Table III gives the running time of this algorithm on the second series of 
test graphs, and Figure 8 compares the running times of the bit vector algorithm 
and the sophisticated version of our algorithm. The speed of the bit vector 
algorithm varied not only with m and n, but also with the number of passes 
required (two, three, or four on our test graphs). However, the bit vector method 
was always slower than our algorithm. 

There are several ways in which the bit vector algorithm can be made more 
competitive. First, the bit vector procedures can be inserted in-line to save the 
overhead of procedure calls. We made this change and observed a 33-45-percent 
speedup. The corresponding change in the fast algorithm, inserting LINK and 
EVAL in-line, produced a 20-percent speedup. These changes made the bit vector 
algorithm almost as fast as our algorithm on graphs of less than 32 vertices, but 
on larger graphs the bit vector algorithm remained substantially slower than our 
algorithm. See Tables I and IV and Figure 9. 

Second, the bit vector procedures can be written in assembly language. To 
provide a fair comparison with the fast algorithm, it would be necessary to write 
LINK and EVAL in assembly language. We did not try this approach, but we 

Table II. Running Times in 10 -a Sec of the Purdom-Moore Algorithm 
and the Sophisticated Version of the Fast  Algorithm (Three Graphs  for 

Each Value of n) 

In-line 
Sophisticated sophisticated Purdom-Moore  

n Min Max Min Max Min Max 

8 1.7 1.7 1.4 1.5 
16 3.0 3.2 2.5 2.6 
24 4.4 4.5 3.6 3.7 
32 5.8 6.1 4.7 4.8 
40 7.4 7.6 6.0 6.1 
48 8.8 9.2 7.0 7.4 
56 10 11 8.0 8.8 
64 12 13 9.3 10.0 
72 13.2 13.8 10.3 10.9 
80 14.9 15.1 11.8 12.0 
88 16.5 17.4 13.0 13.9 
96 17.7 17.9 14.0 14.5 

104 19.3 20.4 15.4 16.4 
112 19.9 20.6 15.9 16.7 
120 22.3 23.4 17.7 19.0 
128 23.5 23.8 18.7 19.2 

1.3 1.4 
4.6 4.7 

10.I 10.3 
18.4 18.6 
29.4 29.6 
40.8 42.5 
56.5 58.2 
74.3 75.5 
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Fig. 7. Running times in 10 -:~ sec of the Purdom-Moore algorithm and the sophisticated version of 
the fast algorithm 

Table III. Running Times in 10 -:~ Sec and Number  of Passes of the Bit 
Vector Algorithm (Three Graphs for Each Value of n) 

Bit vector 

n Time Passes Time Passes Time Passes 

8 3.2 3 3.4 3 3.4 3 
16 6.3 3 6.3 3 6.4 3 
24 9.3 3 9.4 3 9.5 3 
32 12.4 3 12.4 3 15.7 4 
40 12.8 2 12.9 2 17.3 3 
48 20.9 3 20.9 3 21.0 3 
56 24.3 3 24.3 3 24.3 3 
64 27.9 3 28.2 3 28.2 3 
72 25.6 2 35.1 3 35.5 3 
80 28.6 2 39.2 3 39.6 3 
88 43.7 3 43.8 3 44.1 3 
96 46.6 3 47.7 3 47.7 3 

104 40.6 2 41.0 2 56.0 3 
112 43.9 2 43.9 2 61.3 3 
120 65.9 3 66.0 3 66.6 3 
128 70.5 3 71.3 3 91.5 4 
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Fig. 8. Running times in 10 -3 sec of the bit vector algorithm and the sophisticated version of the 
fast algorithm 

believe that the fast algorithm would still beat the bit vector algorithm on graphs 
of moderate size. 

Third, use of the bit vector algorithm can be restricted to graphs known to be 
reducible. On a reducible graph only one pass of the bit vector algorithm is 
necessary, because the only purpose served by the second pass is to prove that 
the bit vectors do not change, a fact guaranteed by the reducibility of the graph. 
We believe that  a one-pass in-line bit vector algorithm would be competitive with 
the fast algorithm on reducible graphs of moderate size, but only if one ignores 
the time needed to test reducibility. 

The bit vector algorithm has two disadvantages not possessed by the fast 
algorithm. First, it requires O(n 2) storage, which may be prohibitive for large 
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Table  IV. R u n n i n g  T i m e s  in 10 -3 Sec and  N u m b e r  of Passes  of  the  In- 
Line Bit  Vector  Algor i thm (Three  Graphs  for Each  Value of n) 

In-line bit vector  

n T i me  Passes  T i m e  Passes  T i m e  Passes  

8 1.8 3 1.8 3 1.9 3 
16 3.3 3 3.4 3 3.4 3 
24 4.9 3 5.0 3 5.1 3 
32 6.4 3 6.5 3 7.9 4 
40 7.7 2 7.7 2 10.1 3 
48 12.1 3 12.2 3 12.4 3 
56 14.2 3 14.2 3 14.2 3 
64 16.1 3 16.3 3 16.3 3 
72 16.8 2 22.4 3 22.7 3 
80 18.4 2 24.7 3 24.8 3 
88 27.1 3 27.5 3 27.8 3 
96 29.5 3 29.6 3 29.8 3 

104 27.1 2 27.2 2 38.1 3 
112 30.4 2 30.8 2 41.5 3 
120 44.0 3 44.1 3 44.3 3 
128 46.5 3 46.9 3 60.6 4 
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Fig. 9. R u n n i n g  t imes  in 10 -3 sec of the  in-line bit vector  a lgor i thm and  the  in-line sophis t ica ted  
version of t he  fas t  a lgor i thm 
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values of n. Second, the domina to r  tree, not  t he  domina to r  relation, is required 
for m a n y  kinds of  global flow analysis [8, 13], bu t  the bit  vector  a lgor i thm 
computes  only the domina to r  relation. Comput ing  the relat ion f rom the t ree is 
easy, requiring constant  t ime per  e lement  of the relat ion or O(n) bit  vector  
operat ions  total. However ,  comput ing  the  t ree f rom bit  vectors  encoding the  
relat ion requires  O(n 2) t ime in the worst  case. 

We can summar ize  the good and bad  points  of the three  a lgor i thms as follows: 
T h e  P u r d o m - M o o r e  a lgor i thm is easy to explain and easy to p rog ram but  slow on 
all bu t  small  graphs.  T h e  bit  vector  a lgor i thm is equally easy to explain and 
program,  fas ter  than  the P u r d o m - M o o r e  algori thm, but  not  compet i t ive  in speed 
with the fast  a lgor i thm unless it is run  on small  graphs  which are reducible or 
a lmost  reducible.  T h e  fast  a lgor i thm is m u c h  ha rde r  to prove  correct  but  a lmos t  
as easy to p rog ram as the  o ther  two algori thms,  is compet i t ive  in speed on small  
graphs, and  is much  fas ter  on large graphs.  We favor  some version of the  fast  
a lgor i thm for pract ical  applications.  

We conclude with a few c o m m e n t s  on ways to improve  the  efficiency of the  
fast  algori thm. One can speed up the  a lgor i thm by rewrit ing D F S  and COM- 
P R E S S  as nonrecurs ive  procedures  which use explicit stacks.  One can avoid 
using an auxil iary s tack for C O M P R E S S  by  ins tead .using a t r ick of reversing 
ancestor pointers;  see [12]. A similar  t r ick allows one to avoid the  use of  an 
auxiliary s tack for DFS.  One can save some addit ional  s torage by  combining 
certain arrays,  such as parent and ancestor. These  modif icat ions save running 
t ime and storage space, bu t  only a t  the expense of p rog ram clarity. 

APPENDIX A. GRAPH-THEORETIC TERMINOLOGY 

A directed graph G = (V, E) consists of a finite set  V of vertices and a set  E of 
ordered pairs  (v, w) of dist inct  vertices, called edges. I f  (v, w) is an edge, w is a 
successor of v and v is apredecessor of w. A graph  G1 = (V1, El) is a subgraph of 
G if V~ ___ V and E~ ___ E. A path p of length k f rom v to w in G is a sequence of 
v e r t i c e s p  = (v = Vo, Vl, . . . ,  Vk = W) such tha t  (vi, vi+~) E E for 0 _< i < k. T h e  pa th  
is simple if v0, ..., Vk are distinct (except possibly Vo = vk), and  the  p a t h  is a cycle 
if Vo = vk. By convent ion there  is a p a t h  of  no edges f rom every ver tex to itself, 
bu t  a cycle mus t  contain a t  least  two edges. A graph  is acyclic if it contains no 
cycles. I f p l  = (u = Uo, Ul, ..., uk = v) is a p a t h  f rom u to v a n d p  = (v = v0, Vl, 
..., v~ = w) is a p a t h  f rom v to w, the  p a t h  p~ followed by p2 is p = (u = u0, Ul, 
. . .  , U k  ~ V ~ Vo~ e l ,  • . .  , V l  ~ -  W ) .  

A flowgraph G = (V, E, r) is a directed graph  (V, E) with a dist inguished start 
vertex r such tha t  for any  ver tex  v E V there  is a pa th  f rom r to v. A program 
flowgraph is a f lowgraph such tha t  each  ver tex  has  exact ly two successors. A 
(directed, rooted) tree T = (V, E, r) is a f lowgraph such tha t  I E [  = [ V[ - 1. T h e  
s ta r t  ver tex r is the root of the  tree. Any t ree  is acyclic, and  if v is any  ver tex in 
a t ree T, there  is a unique p a t h  f rom r to v. I f  v and w are vert ices in a t ree  T and  
there  is a pa th  f rom v to w, then  v is an ancestor of w and w is a descendant of 
v (denoted by  v -:-> w). I f  in addi t ion v ~ w, then  v is a proper ancestor of w and 

w is aproper descendant of v (denoted by  v - ~  w). I f v - ~  w and (v, w) is an edge 
of T (denoted by  v --~ w), then  v is the parent of w and w is a child of v. In  a t ree  

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, July 1979. 



A Fast Algorithm for Finding Dominators in a Flowgraph 139 

e a c h  v e r t e x  h a s  a u n i q u e  p a r e n t  ( e x c e p t  t h e  r o o t ,  w h i c h  h a s  n o  p a r e n t ) .  I f  G = 

(V, E )  is  a g r a p h  a n d  T = ( V ' ,  E ' ,  r)  is  a t r e e  s u c h  t h a t  ( V ' ,  E ' )  i s  a s u b g r a p h  o f  

G a n d  V = V ' ,  t h e n  T is  a s p a n n i n g  t r e e  o f  G.  

APPENDIX B. THE COMPLETE DOMINATORS ALGORITHM 

T h i s  a p p e n d i x  c o n t a i n s  a c o m p l e t e  l i s t i n g  o f  b o t h  v e r s i o n s  o f  t h e  d o m i n a t o r s  

a l g o r i t h m .  T h e  a l g o r i t h m  a s s u m e s  t h a t  t h e  v e r t e x  s e t  o f  t h e  p r o b l e m  g r a p h  is V 

= { v l l < _ v < _ n  } .  

p r o c e d u r e  DOMINATORS(in teger  se t  a r r a y  succ(1 :: n); i n t e g e r  r, n; i n t e g e r  a r r a y  
dora(1 :: n)); 

beg in  
i n t ege r  a r r a y  parent,  ancestor, [child, ] vertex(1 :: n); 
i n t ege r  a r r a y  label, semi [, size](O :: n); 
i n t ege r  se t  a r r a y  pred, bucket(1 :: n); 
i n t ege r  u, v, x; 

p r o c e d u r e  DFS( in tege r  v); 
beg in  

semi(v) := n := n + l; 
vertex(n) := label(v) := v; 
ancestor(v) := [child(v) :=] 0; 
[size(v) := 1;] 
for  e ach  w E succ(v) do 

if  semi(w) = 0 t h e n  parent(w) := v; DFS(w) fi; 
add  v to pred(w) od 

end  DFS; 

p r o c e d u r e  COMPRESS( in teger  v); 
i f  ancestor(ancestor(v)) ~ 0 t h e n  

COMPRESS(ancestor(v));  
i f  semi(label(ancestor(v))) < semi(label(v)) t h e n  

label(v) := label(ancestor(v)) fi; 
ancestor(v) := ancestor(ancestor(v)) fi; 

i n t e g e r  p r o c e d u r e  EVAL(in teger  v); 
i f  ancestor(v) = 0 t h e n  EVAL := v 

else COMPRESS(v); EVAL := label(v) fi; 

p r o c e d u r e  LINK( in teger  v, w); 
ancestor(w) := v; 

stepl: f o r v : =  l u n t i l n d o  
pred(v) := bucket(v) := ~; semi(v) := 0 od; 

n : = 0 ;  
DFS(r); 
[size(O) := label(O) := semi(O) := 0;] 
for  i := n by  - 1  un t i l  2 do 

w := vertex(i); 
step2: for  e ach  v ~ p r e d ( w )  do 

u := EVAL(v); 
if  semi(u) < semi(w) t h e n  semi(w) := semi(u) fi od; 

add w to bucket(vertex(semi(w))); 
L INK(paren t (w) ,  w); 

step3: for  e ach  v E bucket(parent(w)) do 
delete v from bucket(parent(w) ); 
u := EVAL(v); 
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dora(v) := i f  semi(u) < semi(v) t hen  u 
else parent(w) fi od od; 

step4: i : = 2 u n t i l n d o  
w := vertex(i); 
if  dora(w) ~ vertex(semi(w)) 

t hen  dom(w) := dom(dorz(w) ) fi od; 
dora(r) := 0 

end DOMINATORS; 

The simple version of the algorithm consists of the procedure above, with 
everything in brackets deleted. The sophisticated version of the algorithm consists 
of the procedure above, with everything in brackets included, and the following 
procedures substituted for EVAL and LINK. 

i n t ege r  p r o c e d u r e  EVAL(integer  v); 
if  ancestor(v) = 0 t h e n  EVAL := label(v) 

else COMPRESS(v); 
EVAL := i f  semi(label(ancestor(v))) > semi(label(v)) 

t h e n  label(v) else label(ancestor(v)) fi fi; 

p r o c e d u r e  LINK(integer  v, w); 
beg in  in t ege r  s; 

S := W; 
whi l e  semi(label(w)) < semi(label(child(s))) do 

if  size(s) + size(child(child(s))) >_ 2. size(child(s)) 
then  ancestor(child(s)) := s; 

child(s) := child(child(s)) 
else size(child(s)) := size(s); 

s := ancestor(s) := child(s) fi od; 
label(s) := label(w); 
size(v) := size(v) + size(w); 
i f  size(v) < 2.size(w) t hen  s, child(v) := child(v), s fi; 
whi le  s # 0 do ancestor(s) := v; s := child(s) od 

end  LINK; 
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