
172 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 2, JUNE 1994

Clairvoyant: A Synthesis System
for Production-Based Specification

Andrew Seawright, Member, IEEE and Forrest Brewer, Member, IEEE

Abstract- This paper describes a new high-level synthesis
system based on the hierarchical Production Based Specification
(PBS). Advantages of this form of specification are that the
designer does not describe the control flow in terms of explicit
states or control variables and that the designer does not describe
a particular form of implementation. The production-based spec-
ification also separates the specification of the control aspects and
data-flow aspects of the design. The control is implicitly described
via the production hierarchy, while the data-flow is described
as action computations. This approach is a hardware analog of
popular software engineering techniques. The Clairvoyant system
automatically constructs a controlling machine from the PBS and
this process is not impacted by the possibly exponentially larger
deterministic state space of the designs. The encodings generated
by the constructions compare favorably to encodings derived
using graph-based state encoding techniques in terms of logic
complexity and logic depth. These construction techniques utilize
recent advances in BDD techniques.

Index Terms- Binary decision diagrams, control dominated
synthesis, hardware description languages, high-level synthesis,
reactive systems, state encoding.

I. INTRODUCTION

N CONVENTIONAL high-level and register-transfer-level I hardware description languages, the control structure of
a design is typically specified using conditional language
constructs such as if-then-else and case statements. Conditional
branching in the control flow is determined by the evaluation
of program state variables which are explicitly specified. For
many problems, however, the specification of the machine
behavior in this format is cumbersome. The designer may wish
to work at a higher level of abstraction in which the detailed
interaction of the sub-components is resolved automatically.
This is especially true for problems in which the time sequence
behavior is complex or the control state space is large or
difficult to describe explicitly. These design problems in-
clude the specification of protocol controllers, communication
devices, and computer interface subsystems. The high-level
synthesis system described in this paper addresses these types
of specification problems. This synthesis system is based on
the Production-Based Specification (PBS) [29] [301 [311.

Manuscript received December 14, 1992; revised May 14, 1993 and October
15, 1993. This work was supported by Synopsys, Inc. and the California
MICRO Program ##92-019.

A. Seawright was with the University of California, Santa Barbara, CA.
He is now with Synopsys, Inc., 700 E. Middlefield Rd., Mountain View, CA
94043 USA.

F. Brewer is with the University of California, Santa Barbara, CA 93016
USA.

IEEE Log Number 9400592.

1063-82 10/94$04

In a production-based specification, the control structure of
the design is specified as a hierarchical set of productions. Each
production is viewed as a submachine or, more precisely, a
nondeterministic automation. Productions are defined through
hierarchical compositions of other productions. The hierar-
chical composition defines the control structure of a design
implicitly. Data-flow computations called “actions” are hooked
into this implicitly described control-flow by associating them
with productions. A data-flow action is “executed” when
its associated submachine is “recognized”. The recognition
of a production may span many levels of abstraction. For
example, the recognition of a production may correspond to the
occurrence of a single signal transition, or to the termination
of an entire protocol transaction.

Clairvoyant is a new high-level synthesis system intended
for two areas of design. These areas are the specification and
synthesis of designs:

1) that are naturally specified with the use of a grammar-
based decomposition of the design’s behavior. These
machines include those that perform computations in
response to complex communication protocols.

2) that are naturally described as hierarchical compositions
of interacting submachines. These machines include
complex data-path controllers.

This manner of specification is intended to be a hard-
ware analogy of a popular software engineering techniques
and tools such as those used to create parsers, compiler
control structures, and lexical analyzers, applied to high-
level synthesis. Consider the design of an ASIC interface to
Ethernet. The sequential structure of the Ethernet protocol
can be described using a set of productions in the Backus-
Naur Form (BNF) commonly used for specifying language
grammars [l], [14]. These productions define the syntax for
correct Ethernet transactions as well as those transactions
performed on the machine interface side of the interface. Every
possible combination of machine behavior on all interfaces
is implicitly described this way as the set of recognizable
sequences of the productions. It is then natural to attach
data-path operations (actions) describing the desired semantics
to this production framework since we assume that each
action will be triggered on valid recognition of the underlying
annotated production. For example, in the Ethemet interface,
the action of storing a received data byte is triggered by the
recognition of the production describing required sequence for
a valid serial byte. This direct association between actions
and the recognition of valid high level behavior allows for
specifications where the required actions for a given behavior

..OO 0 1994 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

SEAWRIGHT AND BREWER: CLAIRVOYANT 173

are described locally, but other possibly simultaneous actions
necessary for other behaviors are described elsewhere. This
property and the reusable hierarchy of productions provide the
means for very concise and simpler behavioral specifications
of these complex machines. Of particular utility is the ability
to specify the desired behavioral response of a machine to a
set of sequential stimuli without specifying a particular state
machine implementation.

The Clairvoyant system is targeted toward the design of
sequential machine controllers with associated data-paths for
use in ASIC designs where the constructed control structures
aim for high performance and/or low power characteristics.
These ASIC designs are typically multilevel logic circuits
implemented using gate array or FPGA technology. Mapping
the output into such implementations can be performed by any
number of commercial synthesis packages, for example [7],
because the output of Clairvoyant is a directly synthesizable
subset of the VHDL [15] hardware description (HDL) lan-
guage. Thus, Clairvoyant works as an HDL generator. The user
describes the behavior of a design entity in the form of a PBS
description. This description is compiled and a hardware archi-
tecture is synthesized. In this process, both the control structure
and the data-path register transfers required to implement the
actions are created. The output is an HDL description of the
architecture at the register-transfer level (sequential VHDL
processes) with the required control machine described as a
sequential logic network (structural VHDL). The Clairvoyant
system aims to handle large designs with large state spaces.
The control machine is output in a structural format to avoid
the possibility that a deterministic state table output would
require exponential space. This possibility arises from the
nondeterministic nature of the input specification [141, [20].

The designs specified using PBS are entities that are typi-
cally components of larger systems. The PBS specified design
entity is assumed to interact with other design entities de-
scribed at different levels of abstraction and using different
specification techniques. In this way, the HDL generation can
be applied to large constructions in exactly those places where
it is most useful; i.e., submachines responding to complex
sequential protocols or submachines connected to several other
concurrently communicating sequential machines. An added
advantage of the VHDL output is the ability of the designer
to simulate and verify the synthesized design in the same way
that conventional VHDL designs are constructed.

The next section of this paper describes the model and
form of the PBS. Related work is discussed in Section 111. In
Section IV, the symbolic construction algorithms of the Clair-
voyant system are described. In Section V experimental results
are presented. Conclusions and future work are presented in
Section VI.

11. THE PRODUCTION-BASED SPECIFICATION

The PBS describes the behavior of a single design entity
with a well defined boundary and interface. It is assumed
that the design entity contains synchronous logic and that at
least one of the input signals is a global clock signal. The
PBS specification assumes a monorate sampling paradigm that

allows multiple clocks for multiphase synchronous clocking.
Each PBS entity can be specified over a unique synchronous
domain. The global clock(s) are assumed to be shared with
other design entities in the complete system. It is assumed that
other the entities in the system interact with the synthesized
entity only through its interface. The implementation of the
entity is not important so long as it meets the desired sequential
constraints of the interface and design constraints of area,
cycle time, and power consumption. Thus all implementations
of the design entity which satisfy the PBS specification are
behaviorally equivalent, and differ only when characterized
by implementation costs or other design metrics.

A production is a named composition of symbols, opera-
tors, and action clauses. There are two types of productions,
those specifying sequential behaviors and those specifying
combinational Boolean functions. The symbols in a sequential
production are either references to other sequential productions
or they are tokens. A token is a reference to a Boolean Produc-
tion or a Boolean composition in a sequential production. The
symbols in a Boolean production are either references to other
Boolean production or they are atomic symbols. These atomic
symbols either represent the input interface signals (primary
inputs) or they are other language defined symbols.

Composition operators are used to compose the productions.
They are used to build more abstract or complex productions
from simpler productions. The composition operators are sim-
ilarly grouped into sequential and Boolean types for use in the
two kinds of productions. Thus Boolean composition operators
are used to define complex Boolean functions from simpler
Boolean functions and sequential composition operators define
abstract sequential behaviors from more primitive sequential
behaviors. Table I describes the available composition oper-
ators.

A token is “recognized” or “accepted”, if its Boolean
function is satisfied in the context (clock cycle) in which the
token appears in the productions. A production is accepted
during the clock cycle in which the time sequence behavior
dictated by its composition is satisfied. Thus, token recognition
provides the mechanism for a machine’s sequencing behavior.
The productions are annotated with action clauses or actions
for short. An action is a specified data-flow computation that
is executed when its antecedent symbol, composition, or pro-
duction is recognized. In general, any number of productions
may be active or simultaneously in the state of acceptance. A
production may also accept several times in its execution.

Recursive productions in the PBS specification are illegal
since the intent is the specification of state machine controllers
and data-paths of finite size. Although some recursive produc-
tion sets can be constructed as FSM’s, these cases are not
currently allowed to simplify the implementation. This does
not restrict the language capability since tail recursive behavior
can be concisely described using the Kleene closure operator.
A production, however, may be referenced by any number of
other productions.

Fig. 1, illustrates an example design entity. The top portion
[Fig. l(a)] depicts the design entity and its signal interface.
The PBS specification for this design’s behavior is shown
in Fig. l(b). In the description, there are seven productions:

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

174

operator
I

.*

I I
& &

!

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 2, JUNE 1994

name type example meaning
concatenation sequential a I b Recognized if a is recognized followed by the recogni-

multiple concatenation sequential a A n n concatenations of the sub-machinea. n is an integer

sequential or

sequential and sequential a & &b Recognized if a und b are simultaneously recognized ir

sequential not

tion of b. in time sequence.

constant.
Recognized if a or b or both are recognized.

the same clock cycle.
Recognized if a is not currently in the state of recogni-

sequential a I I b

sequential ! a

I I I I comwsition I

! !

TABLE I
COMP~SITION OPERATORS

t

tion.
Sub-machine a is initiated. If a is about to enter a state
from which it can never be recognized, then handler

exception-handler sequential a ! ! b

! R

*

t

machine b is initiated.
exception-reset Restan sub-machine a if initiated and a is about to entei

a state from which it can never accept
Kleene Closure sequential a * Recognizes all sequences consisting of zero or more con.

catenations of a.
one-or-more sequential a+ Recognizes sequences of one or more a’s.

sequential a ! R

I I IEqui&ent to a * I a.

& -
:

mouse

clock

- . -
Booleanand Boolean a&b Boolean function ahb.
Boolean complement Boolean -a Boolean function l a .
qualification special a : b Modify the behavior of the sub-machine b such that for

b to be recognized. the Boolean function represented by
a must be true throughout the execution of b.

T
mouse -> .*, event;
event -> forward I I reverse;
forward -> high:rising; I x <- x + 1; I
reverse -> 1ow:rising; I x <- x - 1; 1
rising -> 1-xclt, xc;
high -> xd;
low -> -xd;

(b)
. .
i j : :

/ / . .
j : . : xc ! I , I : I ’

j : j j

xd : :
i j

i i

i : i : : ,

X x=0$9 x ~ 4 x 4 4 x=Ox4B x x=Ox4A
: :
i : i :
. . . . i !

i :
j j j :

<forward> <forward> <reverse>

(C)

Fig. 1. (a) Design entity. (b) PBS specification. (c) Timing Diagram.

mouse, event, forward, reverse, rising, high, and
low. Of these, the first five are sequential productions, and the
last two are Boolean productions. The Boolean composition
(~ x c) is a token as it appears in the rising production. The
symbols xc and xd refer to the input interface signals. By
default, the first production in the PBS (mouse) is the top-
level production. The top-level production encompasses the
behavior of the whole design entity.

This description specifies the behavior of a 1-D positioning
machine such as that used in a computer mouse pointing
device. It continuously updates the signal x with a current
1-D position based on the quadrature encoding of the signals
xc and xd received from external motion sensors. Updating
the position occurs if one of the productions forward or
revers e are recognized. The r i s ing production recognizes
a rising edge occurring on the signal xc. It is recognized if xc
is in a high state following a sequence of one or more cycles
in which the signal xc has remained low since the initiation
of rising. The productions forward and reverse are
defined as qualified versions of the rising submachine.
HDL action clauses are attached to these two productions.
For example, if forward is recognized the signal x is incre-
mented. The sequential composition “.*, event” represents
the behavioral idiom “any input sequence followed by event”
since “.” denotes the Boolean function that is always true.
Thus, a new recognition of event is attempted on each clock
cycle so that both the forward and reverse submachines
are concurrently enabled to recognize motion of the mouse.
Fig. l(c) shows an example time sequence behavior of the
mouse design.

Production-Based Specifications are convenient to the de-
signer since it is often possible to implicitly specify very com-
plex sequential constraints in a concise format. Additionally,
this specification is local in the sense that additional desired
behaviors can be specified by adding additional concurrent
productions. For example, the rate of mouse motion can be
measured by adding a production which counts idle clock
cycles and adding two more actions to the forward and
reverse productions. In general, such changes to FSM state

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

SEAWRIGHT AND BREWER CLAIRVOYANT 175

descriptions require global modification of the entire design.
Another valuable property is the ability to reuse previously
defined productions representing key activities without regard
to the possible concurrency of their execution. For example,
a read production defined for a bus protocol can be used
in the definition of all desired bus activities even if those
activities might occur concurrently. A similar description as
a deterministic FSM would potentially require the Cartesian
multiplication of all of the possibly concurrent read sub-
machines to describe the possible states.

The PBS language was designed to allow flexible specifi-
cation of finite state machine controllers. Although it contains
a superset of the regular expression operators, the language
remains in the class of finite automata. This is because
all finite PBS specifications imply finite controllers. The
controller does not require unbounded storage as is the case,
for example, of a LALR parser which requires a stack [l],
[14]. The extended operator set allows for more convenient
expression of behaviors that would require exponentially larger
specification in the form of traditional regular expressions,
however each specification remains finite with respect to the
controller.

A. Execution Model

The behavior of the PBS design is defined by execution
of the implied control-flow where the actions are executed
at their respective points in the protocol and the execution
of each action concludes on the accepting clock cycle. This
model describes the external behavior of the design not how
the design is implemented. The PBS language model as-
sumes sufficient resources to execute all potential simultaneous
actions over all possible input excitation sequences. There
may be considerable freedom to schedule the actions without
violating the sequential interface constraints and thus optimize
the resources or other design constraints. The PBS language
doesn’t preclude action execution overlapped with recognition
of productions so long as these transformations result in
equivalent behavior. Techniques to exploit this freedom is the
topic of current research and will be described in a separate
publication.

Because of the nature of production recognition, it is pos-
sible that several actions may be triggered simultaneously
(during the same clock cycle). Since such actions may have
data dependencies, the conceptual ordering of their execution
within the accepting cycle is important. Consider the actions:
{x := 0 ;) and {x := x + l;}. In one ordering, the resulting
value of x is 0, while in the other order x is 1. Action
precedence is defined for two actions if one of their respective
productions is in the execution scope of the other respective
production. The scope of a production includes all of the
more primitive productions from which it is defined. The
precedence ordering specifies that actions of more primitive
productions conceptually occur before those of less primitive
productions. Thus, the set of actions has a partial order im-
posed by the production hierarchy. Actions whose productions
have unrelated scopes do not have a defined precedence
ordering.

This concept is best illustrated with an example. Consider
the following PBS fragment of two productions:

. . .
block ---f word”8; {X := 0 ; }

word .+ bit”32; {X := X +‘I; }

In this example, every time a word is recognized, the
variable x is incremented. When a block is recognized, how-
ever, both of the actions are executed, since the recognition
of the block occurs synchronously with the recognition of
the last word. The action precedence rules imply that in
the acceptance of the block production, the net result is
that x is 0, since the reset action is conceptually last. The
designer can exploit action precedence by crafting actions that
supplant the results of other. When no action precedence is
defined, dependencies between actions can be ambiguous. The
synthesis system, however, can warn the user of a possible
action conflict. This behavior is not forbidden so as to not
limit the expressability of the language.

Synthesis of the controller in the Clairvoyant system does
not rely on predicting the external world’s response to the
execution of an action. Thus, actions that “side-effect’’ via
feedback from the external world and through the primary in-
puts, by design or otherwise, don’t present synthesis problems.
For example, an action may assert a signal on an output that
is fed back to a primary input, thus changing how tokens are
interpreted in subsequent cycles. These effects are considered
in the construction because, effectively, every possible input
sequence is assumed possible.

B. Operutors

The sequential operators are a superset of the classical
regular expression operators [l], [141, [20]. These operators
include generalizations such as the sequential not “!” operator,
and the sequential and ”&&” operator useful for specifying
synchronization.

The exception operators are designed for specifying excep-
tion handling, re-synchronization, and recovery mechanisms.
These operators are used to specify behaviors based on the
conditions in which a sub-machine enters a state in which
it can never accept. They are used to construct productions
which recognize when a dependent production cannot accept
and then take appropriate action. Exception operators may
be nested hierarchically, as they operate on a general sub-
machine which could contain other exception operators. An
exception operator is defined over the production scope of all
more primitive productions used to construct its dependent
part. For example, consider the following nested productions:

a --f b! ! c ;

b -+ d! !e;

d + . . .

If the production d receives an input for which it has no more
possible accepting sequences it is said to have failed. The b
production can then be accepted only if the e production (the

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

176 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 2, JUNE 1994

exception handler) is accepted. If e succeeds, b is accepted
and so a is accepted as well. If e fails, then b fails and since b
is in the scope of a, the exception handler c is activated. This
type of behavior greatly simplifies the problem of specifying
exceptional behavior since the alternative would be to specify
every possible failure sequence for a production. This could
require an exponentially larger regular expression.

The Boolean operators and “&’, or “I”, and not “N”, are
used in Boolean compositions for the specification of Boolean
functions which are used as tokens in sequential productions
and used as the left-hand operand in the qualification operator.
A sequential production or composition may be qualified with
a Boolean production or composition using the qualijication
operator. For a qualified production to accept, the Boolean
part must remain true during any accepting sequence of the
sequential part. In other words, the behavior of the qualified
submachine is the same as the unqualified submachine in
which all of its tokens have been anded with the qualifying
Boolean function. The qualification operator is useful because
it can modify or refine the behavior of a production in
different contexts. For example, a “generic” submachine can
be referenced from several other productions in different
contexts and its behavior refined through qualification in each
instance.

111. RELATED WORK
Jackson [161 championed a methodology for specification

and design of software programs and software interfacing
between programs using constructive methods. Similar ideas
are manifest in the successful compiler construction tools such
as YACC [17] and LEX [21]. In these tools, the specification of
the language to be complied is described as a set of productions
representing the language grammar. The semantic actions
performed by the compiler are specified as code annotations
to the grammar. The tools compile this specification into the
control structure of a compiler program to parse the specified
language. This provides an enormous simplification in the
complexity of constructing compilers since the designer need
not consider the all the concurrent combinations of productions
which are possible when the compiler is executed. PBS
mimics this specification approach, however, fundamentally
different operators and construction techniques are applied
since the constraints differ between hardware and software.
PBS achieves the economy of specification characteristic of
these tools.

Ullman et al. [lo], [181, [35] studied the use and compilation
of regular expressions in the design of hardware controllers.
In this work, the design is specified as a single regular
expression which is then implemented as a nondeterministic
FLA. The nondeterminism was expressed as feedback terms
in the PLA, each of which indicating the validity of a given
nondeterministic state. The system chose encodings based on
an algorithm to minimize the number of feedback terms in
the PLA. The PLA was minimized to produce the smallest
number of cubes in the final design. Trickey [34] proposed a
dynamic programming algorithm for optimizing the layout of
these PLA pattern recognizers.

Although there are similarities between Ullman’s approach
and PBS, particularly in the use of regular expression opera-
tors, there are several differences in the specification form,
construction techniques, and goal. In PBS, the notion of
explicit productions which are re-used in central and allows
more concise specification. The modeling of actions in PBS
is that of arbitrary high level data-flow behaviors instead
of output signal transitions and PBS targets multilevel logic
models for the control.

STATEMATE [13] is a system for the design and docu-
mentation of reactive systems for use in interactive software
and embedded systems. Designs are specified in the form of
a hierarchical statechart [12]. In this specification, a state is
active if any of its child states are active, for example, or
alternatively if all of its child states are active. Transitions
between states occur on events and are allowed between states
at different levels of abstraction. The statecharts are converted
directly into software code. Speccharts [27] addresses the
behavioral specification of whole systems by combining hi-
erarchical state charts and VHDL in a graphical specification
methodology. The SADE system [23] uses graphical entry and
underlying petri net models for design specifications that are
converted into HDL code. The PUBSS system [38] specifies
designs in the form of several interacting, but not hierarchical,
cooperative VHDL processes that are modeled as behavioral
finite state machines. Its synthesis focuses on scheduling
the communication and computation in the design under the
ensemble constraints induced from the individual process
constraints. In all of these techniques, the designer either
describes the behavior in terms of explicit states or the designer
explicitly partitions the problem into interacting procedural
processes that contain explicitly defined state variables. PBS,
instead, describes the decomposition of the control behavior
as a hierarchical listing of the possibly concurrent desired
behaviors. This difference is similar to differences between
C [19] and PROLOG [8] programs.

ESTEREL is a reactive programming language from which
hardware specification has been recently studied [3] , [1 I].
ESTEREL includes language constructs for parallelism and
includes a powerful trap mechanism. There are several differ-
ences between PBS specification and ESTEREL. The primary
difference is that the ESTEREL language is an imperative style
language [111 and PBS is an applicative language for control
specification. In an applicative language, the basic statements
are definitions as opposed to assignments or sequences of
tasks. Another difference is that a PBS specification has an
explicit partitioning of the behavioral specification between
the productions and the actions. Productions represent the
implicit control behaviors the designer wants to specify at a
very high level without describing the detailed state transitions
or the linking of the control and data-paths. The ensemble of
actions implicitly describe the data-path requirements. Thus,
control of the data-path is implicit in PBS which simplifies
the specification and allows more freedom in the final design
implementation. ESTEREL’s trapping mechanism is different
from PBS’ s exception mechanism, however, both allow for
the description of exceptional behaviors and both mechanisms
use the notion of lexical scope.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

SEAWRlGHT AND BREWER: CLAIRVOYANT

Fig. 2. Example productions.

In our previous work [29], we proposed the use of PBS for
use in high-level synthesis. In this earlier system, the execution
model of the implied nondeterministic machine includes action
clauses of VHDL code. These concepts have been expanded
in the synthesis system described in this paper. Clairvoyant
incorporates improvements to the expressive power of the
production specification language as well as more powerful
synthesis techniques. The addition of new production com-
position operators, combinational Boolean productions, and
the incorporation of recent BDD and symbolic representation
techniques allows an efficient re-formulation of the synthesis
task.

IV. CLAIRVOYANT IMPLEMENTATION

A. Design Representation

The synthesis process begins with the parsing of the PBS.
A production representation is created which captures the
hierarchical structure of the description and it is derived
from the production parse trees [l]. This representation is
the starting point for further synthesis tasks and is retained
throughout the synthesis process as an important representation
of the high-level design structure. To describe the production
representation and subsequent construction we will use a small
example shown in Fig. 2.

The symbols, zl: 22.23, and 24 represent external interface
signals. The productions p l , p2, p3, p4 are sequential produc-
tions while production p5 is a Boolean production. Tokens
are atomic sequential productions and represent the sampling
of the interface signals for the desired Boolean function on
a synchronous clock. For example, the composition "(21 &

22)" is a token which is recognized if both zl and 22 are true
during the sample period. Production p3 is recognized (and
action1 is triggered) if productions p4 and p5 are simultane-
ously recognized. i.e., 22 became true at least one clock before
the current clock and 23 is true while 24 is false. Production p2
first requires zl and 22 to be simultaneously valid and then
p4 is recognized, while p l is recognized if either p2 or p3
are recognized. Note that if p3 is recognized, both action1
and action2 will be triggered simultaneously, with action2
conceptually occurring after action1 due to action precedence
(this precedence ordering can be easily seen for this example
in Fig. 3).

A collapsed production structure called the production DAG
is subsequently constructed from the parse tree. Each node in
the DAG represents a sequential composition operator. It is
constructed from the production representation by propagating
all Boolean operators toward the leaves of the DAG and then

Fig. 3. (a) Production representation. (b) Production-DAG.

representing the resulting complex Boolean composition dags
as combinational Boolean functions. For example, t l (2) =
z l zp , and t 2 (Z) = z2. This construction is always possible
because it is illegal for sequential productions or compositions
to be used in Boolean compositions. Reference to a Boolean
function from a sequential composition node implies token
recognition if the function is valid during that clock cycle.
Practically speaking, these functions are represented by an
ROBDD [5] , [6] using the external signals as the basis
variables. The example production representation and the
collapsed production DAG are illustrated in Fig. 3(a) and (b),
respectively. Here, the sequential composition operator nodes
are represented by unshaded nodes, while the Boolean com-
position nodes are shaded. It is important to note that each
sub-DAG from a sequential node to its leaves represents a sub-
machine of the design. Thus, the production DAG represents
a hierarchical finite-state machine partitioning of the entire
design. This property is exploited by the deterministic machine
construction process detailed in the following sections.

B. Intermediate Machine Representation

The production DAG represents the input behavioral spec-
ification of the desired state machine. Construction of a
physical implementation from this description passes through
an intermediate stage in which state encodings have been made
and the control can be described as a set of combinational
functions taking the current state and inputs into the next
state and outputs. This description is output as register-transfer
level VHDL for later logic synthesis and optimization by
conventional tools. The internal design representation of this
level is called the intermediate machine representation. The
construction of this representation by conventional algorithms
is hampered by the possibly exponential growth of the state
transition table due to the parallelism of the input specification.
For this reason, an implicit construction technique was devised
allowing more flexible and larger problem instances than can
be handled conventionally.

The intermediate machine representation consists of two
parts, a state transition function and an output function for
the machine. In what follows, B represents the set {0,1>. The
transition function A is a function mapping: B" x B'" 4 Bn.
This mapping is written:

A : { (2 1 , 2 2 , 5 3 , . . . , 2 n) } X { z I ~ z z J ~ ~ . . . , ~ k) }

--$ {(Yl, Y2r Y3,. . . 1 Yn)I1

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

178 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 2, JUNE 1994

Input : production-DAG node pointer n, Boolean Function fIX)
Output : Boolean Function h(X)

Build (n, f (XI) I

if (node n is a terminal function, t,(2)) (

g(X, 2) - and(f(X), t,(z)); ;
xt = RecallControlPoint(g(X, 2)) ;
if (x, is not null) I

xi = xt;
) 8168 I

x, - new control point;
Sav8ControlPoint (xl, glx, 2)) ;

I

hIX) - x , ;
Y f - f,(X. 2) - 4IX, ZI

8168 if (node n is a 'concatenation" node) I
g(X) - Buildtnode->left, f IX));
h(X) - Build(node->right, g(X));

I 016. if (node n is a "sequential and" node) I
g(X) * Build(n->left, fIX));
h(X) - Build(n->right, f(X));
h(X) - and(g(X),h(X));

t ala8 if (node n is a "sequential or" node) (
g(X) - Build(n->left, f (Xi);
h(X) - Build(n->right, f (XI ;
h(X) - or(g(X),h(X));

I else if (node n is a "sequential not" node) 1
g(X) - Build(n->right, f (X) ;
h(X) - not(g(X));

) 016- i f . . .
... t h e other cases . . .

1

if (action ak attached to n) (

I
raturn h(X);

set ck (X) - or (c, (Xi, h (X) 1 ;

Fig. 4. Build algorithm.

where X , Y , and 2 are Boolean vectors. X represents the
present state of the machine, 2 represents the input interface
signals, and Y the next state of the machine. The transition
function A represents a deterministic state transition function.
The representation, however, is unconventional in that each
state bit is associated with token recognition of a leaf of
the production DAG. In this encoding of state, a true bit
implies that control has been transferred to this bit and that
the corresponding token (Boolean function of the signals)
was recognized. Since the machine is non-deterministic, it
is possible for several such bits (called control points) to be
simultaneously true. Looking ahead, A can be viewed as a
circuit-in the example in Fig. 3, recognition of the function
t I (2) is associated with state bit 22 in the circuit in Fig. 5.
This representation has two views. As a whole, A represents
the transition function of a deterministic FSM, while each
function y; = f i (X , 2) in A represents the excitation of an
individual nondeterministic control point.

The Moore output function A : B" -t B" is defined as
a mapping:

A : ((21722,237.. . I 2")) -t {(alra2,a39.. . 7 am)}.

where X is the present state and ai E A represent each of the
individual actions. Each action is triggered by the condition
ai = c Z (X) corresponding to its location in the production
DAG. Because many actions may be triggered simultaneously,
action precedence enforces the execution sequence. The order-

Fig. 5. Example circuit.

ing of the ai's in the vector A satisfy the partial order action
precedence relations implied by the production DAG.

Altematively, a Mealy form output representation A' is
derived from A. In this case A' maps B" x Bk -t B",
with the individual action conditions a function of X and Z,
e.g., c i (X , 2). The action execution in the Moore form of the
output function lags by a cycle vs. the Mealy form of the
output function. The choice between the two forms of output
function is selected prior to construction by the designer.

C. Construction of the Intermediate Machine

The construction is a recursive procedure on the production
DAG building the intermediate machine. This procedure ap-
plies a particular construction rule at each composition node of
the DAG, based on the node's type. These rules are templates
for the application of a sequence BDD operations. Each time
a leaf of the production DAG is reached, a new control
point is added to the intermediate machine state vector. Since
the production DAG may have several paths to a leaf from
production re-use the number of control points may be larger
than the number of leaves in the DAG. This can be seen
in the example in which the tz(2) leaf denotes 4 distinct
control points 23,24,25 and 26 in Fig. 5. These control
points represent sequentially distinct recognitions of the t2 (2)
Boolean function of the input signals. Unlike Thompson's con-
struction [11, [141, [20], here there is no need for &-transitions
to link the machine components. This is a consequence of
the symbolic (ROBDD) representation of the control points
excitation function which allows direct manipulation by the
construction rules for both the conventional and generalized
regular expression operators.

The construction is performed by the recursive procedure
Build() illustrated in Fig. 4. At each level of the recursion, the
routine is passed a pointer to a node of the production DAG
and a Boolean function (BDD node pointer) representing an
excitation function f (X) passed from other recursion levels.
The routine returns a Boolean function h (X) which is true
on recognition of the current sub-DAG. At leaf nodes, new
control points are allocated and their excitation functions are
determined. When a leaf node is traversed, if a prior allocated
control point exists with identical excitation, this prior control
point is used instead of allocating a new control point. This
is implemented using a memory function and is illustrated by
the SaveControlPoint() and RecallControlPoint() calls in the
pseudocode. At intermediate nodes, left and right submachines
are composed via operations on the passed returned functions.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

SEAWRIGHT AND BREWER: CLAIRVOYANT 179

The construction process is initiated by allocating an initial
control point x1 and calling Build (n = top-level-node,

The time complexity of this algorithm depends on the
representation used for Boolean functions. Although ROBDD
representations can exhibit exponential growth in general, in
this algorithm, the variable support of the excitation functions
returned from the left and right submachines is disjoint in all
cases other than in the exception operator constructions. The
BDD growth is additive under the variable ordering implied
by the sequential allocation of control point variables for these
cases. As well, each constructed excitation function typically
has very small variable support. Thus, for a DAG representing
a regular expression, the time complexity of this construction
is typically linear in the size of the regular expression.

The construction for the closure operator case is somewhat
subtle. A temporary variable ztmp is allocated and used in
lieu of f (X) for construction of the operand submachine.
This is done because the complete excitation function for
the submachine depends on the function g (X) returned from
Build(), which is unknown until the operand sub-machine is
constructed. After Build() returns with g (X) , the function
h (X) = f (X) + g (X) is calculated. At this point, this
function is substituted for ztmp in every function in which
ztmp appears in the structure of the sub-machine. These sub-
stitutions are nicely performed by composing BDD functions
e.g. f (z = g o) = ite(g(), f z l f ~) [5] , [6]. Note, a unique :Etmp

variable must be used for each simultaneously open closure in
the construction process.

Special sequential operators called exception operators are
implemented. In an exception construction, a handler machine
Mh is initiated when its associated submachine M , once
initiated, will enter a state in the next cycle from which it can
never accept. Note this is a different notion than the sequential
not operation in which both the cases of “active but not
presently accepting” and “will never accept” are recognized.
The function e (X , 2) represents the excitation that triggers
Mh. Consider the following equation for ez(Xl Z) , which is
used to calculate e (X , 2):

f (X) = 2 1) .

e,(X, 2) = s(x). n f 2 (Z 1 2) (1)

This equation describes the conditions in which M is not in
a state of recognition, g (X) , and will contain no active control
points in the next cycle since each excitation function is false.
To calculate e (X) we also need knowledge that M is active.
This information can be computed as summation of the present
control points in M and M’s excitation. Thus e (X . 2) can
be calculated as:

f , E M

-

e (X , Z) = 5 2 + f (X) . e , (X . Z) (2) LEM)
An alternative calculation for .(XI 2) can be derived using

an extra control point to denote that control was passed to
M . This reduces the necessary logic necessary but introduces
control points that do not purely represent token recognition.
To derive e (X , 2) in this case, let X h represent this control

point. Then,

e (X , 2) = (zh + f (x)) ’ ez(X, 2) (3)

The excitation of xh is f h (X , 2) and can be computed as
follows:

~-
f h (X ~ 2) = (5 h + f (x)) . ez(X, 2) ’ h (X) (4)

These exception operator constructions are valid for a
general sub-machine, including sub-machines containing ex-
ception operators, and thus implement the notion of exception
scope described in Section 11.

The circuit illustrated in Fig. 5 represents the constructed
intermediate machine for the example in Fig. 3. Note that x2

becomes valid after the machine is initialized only if t l (2) is
seen on the inputs in the next cycle. The control points 2 3 and
5 5 correspond to repetitive recognitions of t2 (Z) required by
the closure operator.

D. Action Conditions

In the Build() algorithm, the action execution conditions
c k (X) ’ s are constructed using the current h (X) at production
operator nodes with the respective associated actions. The
Moore output function A is constructed in this process. The
Mealy output function can be created from the Moore output
function. This is done by substituting f , (X , 2) for all zz’s in
ck (X) forming a new c k (XI 2) by composing BDD functions.
The Moore and Mealy machines are not equivalent; actions are
triggered a cycle earlier in the Mealy format machine than in
the Moore machine. In the Clairvoyant system, the designer
chooses between the two forms of the action conditions before
writing the PBS specification.

The action execution conditions for the Moore and Mealy
implementations of the example design are as follows:
0 Moore:

0 Mealy:

action condition c l (X) = 27%.

action condition c z (X) = Z 7 Z 6 + 5 4 .

action condition q (X , 2) = t 2 t 3 ~ 1 (~ 5 + 2 1) .

action condition cz(X1 2) = t2t321(25 + 21)
f t 2 (2 3 + 5 2) .

E. Action Ordering and Resources

Actions are register transfer operations destined for execu-
tion on data-paths associated with the synthesized controller.
Action precedence from the production DAG is used to
constrain the conceptual ordering of these executions. How-
ever, the output HDL must be carefully structured to allow
subsequent synthesis procedures to take full advantage of
exclusive control paths in the design to minimize resource
usage [36]. In conventional high-level synthesis, the exclusive
nature of the different control paths are usually apparent from
the input description HDL code. In Clairvoyant, however, the
control structure can be analyzed to find which actions can
execute simultaneously and thus cannot share resources. The
output HDL is structured to indicate the exclusive use of the
register transfers and to meet the constraints of the partial
ordering relations from action precedence. Note, if actions
are further broken into operations, detailed scheduling could
be performed using data-flow precedence as well, however,

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

180 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 2, JUNE 1994

discussions of detailed scheduling in this context is the topic
of future research.

To determine if two actions can share resources, we need
to determine if states exist in the machine in which both ac-
tions are simultaneously triggered. Since the action execution
conditions are functions of the control points (state) and, in
the Mealy case, the input interface signals, we can use the
symbolic Boolean representation to determine if such states
exist. Two actions a; and aj are mutually exclusive if the
following equation holds:

(5)

In this equation, R (X) is a characteristic function [9],
[22], [33] representing the set of possible deterministic states
reachable from the initial state of the intermediate machine.
This function, mapping B" B, is true if and only if the
input vector X E B" is a reachable state.

Assessing action conflicts between all pairs of actions is not
sufficient, however, to determine the complete action conflict
information. For example, consider three action conditions all
executable on a common type of operator resource. If each pair
of actions is used simultaneously in some state, but all three
never occur together, only 2 data-path resources are needed
even though no pair of actions are exclusive. This sharing
cannot be predicted from a pair-wise analysis but is correctly
handled in the Clairvoyant model which represents all action
conflict information in a characteristic function A(Q) . Q is a
vector of variables (q I , q 2 , . . . , qm) corresponding to the set
of actions (a l , a2, . . . ,a,). A(Q) is true if there is a state
in which the set of actions corresponding to true variables
qi occur simultaneously and thus can't be shared. A(Q) is
computed as follows:

Ci(X, Z)Cj(X, Z) R (X) = 0

A(Q) = 3 (z) 3 (X) n (c i (X , 2) qi) . R (X) (6)

The existential quantification (smoothing) [9], [22], [33]

(" i=l)
operation above is defined as:

3 (X) f = 3(21)3(52) . . .3(%)f 3(2)f = fz i- fz (7)

The characteristic function A(Q) represents the image [9],
[33] of the reachable state set R (X) projected onto the space
B" through the action condition functions.

To see how A(Q) can be used to construct the output control
structure, consider A(Q) as a BDD. We can impose an order
on the variables Q that minimizes the BDD size and that is
compatible with the partial order required by the precedence
relations. It is very likely that the actions naturally occur in
independent sets which have no state overlap with other such
sets. If the variables are ordered into such sets, the canonical
nature of the ROBDD representation forces all the paths from
the previous set into a unique node at the start variable of the
next set. Then, since the BDD can be interpreted as a network
of ifthen-else constructs, we can construct a feasible control
structure for the output using if statements and procedures
which is no more complex than the BDD representation of
A(Q) , and correctly represents all possible resource sharing
of the actions. This can be done in time proportional to the

size of A(Q) , even though the number of complete paths
through the entire control structure may grow exponentially
fast. Alternatively, A(Q) can be used to generate a table of
overlaps for pair-wise exclusion or other approximate analysis.
Conflict analysis utilizing A(Q) is used to generate the output
VHDL coded to maximize the effectiveness of subsequent high
level synthesis allocation and resource sharing algorithms in
processing the generated VHDL code.

F. Reachable State Analysis

Clairvoyant is equipped to perform a reachable state analysis
on the constructed intermediate machine to compute the set
of possible deterministic states reachable from the initial
reset state of the intermediate machine: 212223z4 . .?En.
Reachable state analysis is not required for the synthesis of
the intermediate machine, but it is useful in several ways. In
particular, knowledge of the reachable states is needed for
the exact construction of A(Q) shown previously. Reachable
state information can also be used to simplify portions of
the intermediate machine, for example, simplifying (1). The
essential use is to describe all deterministic states of the
machine. All state bit combinations not in this set are not
states and therefore specify don't care conditions for any of
the functions depending on the control points.

The computation method is based on the recent implicit
fixed-point iteration techniques [9], [22], [33] with custom
heuristics based on properties of the intermediate machine.
Even using these techniques, calculation of the set of reachable
states is usually far more time consuming than the construction
of the intermediate machine.

Recall that the set of reachable states is used in calculating
the action relation. An approximate action conflict charac-
teristic function can be calculated assuming all states are
reachable in the event the reachable state computation is not
invoked. For the Mealy model machines, this approximation is
useful because particular actions are often strongly correlated
to the current inputs. For example, in the mouse example
described earlier, the increment and decrement actions are
selected by the level of a signal input, so they are clearly
exclusive.

G. Intermediate Machine Locality Property

A useful property of the intermediate machine representa-
tion is that any node of the production DAG can be directly
related to specific portions of the intermediate machine rep-
resentation, and each control point and excitation function
can be related back to specific productions and compositions.
Specifically, each production and each composition node is
associated with a set of closed intervals [a, b] of control points
created on each call to build() for the node. A new interval of
control points is created each time the production is re-used
since control points are allocated sequentially. This property is
important for debugging, high-level optimization, and design
information tracking. It can be used to provide links between
the specification and structure similar to the CORAL I1 ap-
proach [4]. For example, the example productions in Fig. 2
can be related to the circuit in Fig. 5 as shown in Table 11.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

SEAWRIGHT AND BREWER: CLAIRVOYANT

TABLE I1
PBS et INTERMEDIATE MACHINE LINKAGE

181

TABLE 111
DESIGN CHARARCTERISTICS

sequential production control points I interval(s)
Pl (x2 . x3. x4, x5. x6. XI I I L2.II

1x2. x3. x 4)

H. Implementation Details

Clairvoyant synthesis system was developed in C++ and is
comprised of approximately 7600 total lines. Of this, 3160
lines represents reusable classes including a 1485 line BDD
manipulation package. The output of the Clairvoyant PBS
compiler is VHDL code describing the synthesized machine
architecture. This VHDL is composed of structural elements
that describe the logic structure of the controller, and pro-
cesses that implement the register transfers and data-path
logic required by the actions. The structure of the VHDL
action processes satisfy the partial ordering required by action
precedence.

The tool uses BDD’s for the symbolic Boolean manipu-
lations. During the synthesis, BDD variables are allocated
dynamically as the machine construction proceeds. This con-
struction process also naturally develops a reasonable heuristic
variable ordering based on circuit topology arguments [25].
BDD variables are grouped into classes based on use and
are interleaved. The following three-way ordering is used:
z1 < x1 < :y1 < 22 < 5 2 < y2 < z3 < .c3 < :y3.... The
yi’s represent an additional set of state variables used by the
reachable state analysis, and in computing the action conflict
relation A (&) .

In the Clairvoyant system, after the intermediate machine
is constructed, redundant registers may exist. These arise for
several reasons. Boundary registers with lack of fan-out may
exist if action conditions are converted from Moore to Mealy
form. Registers with identical excitation may exist that were
not filtered by the memory function described in Section
IV-C. This is due to the existence of temporary variables
allocated in the construction process preventing identification.
Finally, if the reachable state analysis is invoked, additional
redundant registers may be identified using techniques similar
to those described in [28]. Post-processing steps manipulate
the intermediate machine to ensure that all registers (control
points) identified as reductant will be eliminated by later logic
synthesis. For example, after logic synthesis, the registers x4,
and z6 will be removed (equivalent fan-in to 2 3 . 5 5) . If Mealy
action conditions are used, register 1c7 (output unused) will be
removed as well, in the circuit in Fig. 5.

V. EXPERIMENTAL RESULTS

A. Examples

Several example designs were specified using Production-
Based Specifications. These designs and their characteristics
are tabulated in Table 111. The number of inputs includes the
clock signal and the reset signal. Each design was verified
by simulation of VHDL output from Clairvoyant. The several

mouse designs are different versions of the 1-D quadrature
decoder machine described in the introduction of this paper.
The “mouse(a)” design is identical to this earlier example. The
“mouse(b)” design recognizes a complete quadrature sequence
as an event and so is a more restrictive version, although, both
versions correctly interpret quadrature data. The “xymouse”
designs are 2-D versions of the respective 1-D mouse decoder
examples. The xymouse designs are specified as a single set
of productions using the expressive power of the Boolean
representation in the language. Using the early version of
the PBS language [29], the xymouse designs would require
a symbolic alphabet consisting of the Cartesian product of
the 1-D mouse alphabets, and would be far more difficult to
express. Using arbitrary Boolean functions as tokens allows
representation of enormous symbolic alphabets, and makes
specification of realistic designs possible.

The “countO” example is a design that counts sequen-
tial zero’s in a valid input frame format. This example is
based on the procedural VHDL design in [7]. The “qr42”
design is a handshake conversion protocol. This design is a
standard asynchronous example specified as a synchronous
machine. This design connects two interfaces together, one
side operating with two-phase (nonretum-to-zero) signaling
and the other with four-phase (return-to-zero) signaling. This
machine uses the “&&’ operator for synchronization. The
“i825 1 ar” example is the asynchronous receiver protocol in
the i825 1 high-level synthesis benchmark [2]. This example
uses the Boolean qualification operators in the specification
of the different modes of operation. This design also uses an
exception operator to reset the machine if invalid stimulus is
encountered. The “midi” design is a large design example.
It is an interface controller which interprets the MIDI [26]
music protocol for a digital synthesizer chip controller. The
specification of this design also includes an exception operator
to restart the machine in case of invalid input sequences. The
“mismatch” example is the pathological regular expression
described in [18] which detects mismatches between first
and the last symbols in the input sequence. This example is
expected to produce very large numbers of deterministic states.

B. Results

Results for compiling the example designs to the intermedi-
ate machine form are illustrated in Table IV. In this table,
the number of control points in the intermediate machine

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

182 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 2, JUNE 1994

- ~~~

design mchabk states diameter computaion time ite calk
mouse@) 8 2 0.23 8,761
xymous(a) 50 2 1.52 64.396
how) 14 4 0.71 28.863
xymo=(b) 170 4 10.72 408,505
count0 5 3 0.171 5.663

TABLE IV
INTERMEDIATE MACHINE SYNTHESIS

qr42 62
i825lar 17
midi 166
mismalch 8062

design

12 3.49 126,158
12 3.11 114.765
40 1.79 1 37.33 1,185
16 5.191 172.791.476

xymouse(a)
mouse@)
xy mouse@)
count0

lmidi
lmismatch

TABLE V
OPTIONAL REACHABLE STATE ANALYSIS

representation after construction are listed. Also listed in Table
IV are the construction times in CPU seconds (Solbourne
Series 5e/906 machine) and construction complexity measured
in terms of the numbers of calls to the primitive BDD function
ite() for the entire construction.

Table V shows the results of the reachable state analysis.
The number of reachable states represent the total number
of unique deterministic states in the intermediate machine
representation of the controller. The diameter measures the
shortest path from the initial state of the controller to the
furthest reachable state. This number is directly related to
the number of fixed point iterations required to compute the
reachable states. The ite call numbers reflect the total number
of calls to ite() during the reachable state analysis. Times are
CPU seconds (Solbourne Series 5e/906 machine).

Action conflict data is given in Table VI. In this table, “con-
flict states” refers to the number of points in the Boolean space
B” covered by A(Q) in each of the designs. This represents
the number of combinations of possible simultaneous action
execution. For example, in the mouse designs three states are
possible for its two actions. Neither action can execute, or
each action can execute individually, however, both can never
execute simultaneously. The table also indicates the number
of BDD nodes in the function A(Q) and the time (CPU
seconds for Solbourne 5e/906) and number ite calls recorded
to construct A(Q) .

The intermediate machine is used in Clairvoyant for rep-
resentation, analysis, and optimization of the design. It is
also utilized in derivation of a circuit realization of the
design’s controller. This is advantageous because the con-
struction naturally creates machine implementations with very

small excitation functions. In practice, the excitation function
for a given control point tends to depend on a very small
number of other control points. Results showing the size of the
average and maximum literal support for the control points is
tabulated in Table VII. This table reflects the variable support
of the control point excitation functions (the f i (X , Z)’s in A)
and the action conditions (the c ; (X , 2)’s in A) after redundant
registers are removed. Average and maximum numbers are
reported in the table. The relatively large maximum support
for the i8251ar and midi examples is a consequence of the
exception operators in these designs.

Comparisons of the encodings present in the Clairvoyant
implementations of the example designs to conventional state
assignment techniques are presented in Tables VIII(a) and
VIII(b). These comparisons were performed as follows. BLIF
files describing the controller portion of the designs were
generated from the intermediate machine representation by
the Clairvoyant system. These BLIF files were read into the
SIS sequential and logic synthesis system [32] for analysis.
Comparisons were made between the SIS circuit network
optimizations of the Clairvoyant implementations and the
implementations generated by extracting the State Transition
Graphs (STG’s) and performing state assignment. Three state
assignment algorithms were used in the comparisons: NOVA
[37], JEDI [22], and one hot. These algorithms were invoked
from within SIS. Table VIII(a) shows the comparision of the
Clairvoyant encodings to state assignments of the extracted
STG. Table VIII(b) shows the same comparisons, however, the
extracted STG’s were state minimized before state assignment.
In these comparisons, standard SIS minimization scripts were
invoked for the network optimization.

In the tables, “L” refers to the number of literals in the fac-
tored form of the optimized technology independent network.
A measure for performance comparison of the encodings was
obtained by mapping the optimized network to two input logic
gates and recording the maximum levels of logic required.
These numbers are listed in the columns labeled “D”. The
number of required registers for each of the encodings is also
listed in the table in columns labeled “R’. The STG for the
mismatch example could not be extracted due to the large
number of deterministic states. State minimization for the midi
STG failed due to the example’s size. Note, in the extraction of
the STG’s from the networks, not all of the network reachable
states are significant due to the presence of redundant registers
which don’t fan out. This is why the number of STG states
differs from the number reachable states in the intermediate
form. The SIS command “xdc” reports the number reachable
states of the network which are identical to those listed in
Table V.

Results for further VHDL and logic synthesis of the output
RTL implementations generated by the Clairvoyant system
for each of the example designs is shown in Table IX. Gate
level circuit implementations of the designs were synthesized
using the Synopsys@ VHDL and logic synthesis tools. In
these results, no additional sequential optimizations such as
state assignment, re-timing, or re-encoding were invoked. The
logic synthesis was directed to optimize for speed (critical
path delay) and the synthesized circuits were optimized for

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

SEAWRlGHT AND BREWER CLAIRVOYANT

Variable Support

A A

design avg. max. avg. max.
L
mouse(a) 2 4 4 4

x ymouse(a) 2 4 4 4

183

i82.5lar 84 16 14
midi 604 22 166
mismatch 114 6 62

TABLE VJ
ACXION CONFLICT DATA

171 741 161 51 1121 2.51 51 951 121 17

1661 7431811 81 10981891 817051 231 I66
unable

TABLE VI1
VARIABLE SUPPORT OF INTERMEDIATE MACHINE FUNCTIONS

TABLE VIIJ
STATE MACHINE ENCODING COMPARISON #1 (a). COMPARISON #2 (b).

and mapped to LSI 10k gate array library cells [24]. The
data for the path delay (in nS), relative area, total number
of LSI 10k cells, and total number of flip flops is given.
These numbers include both the control as well as the data-
path portions of the designs. The relative area numbers are the
area estimates based on LSI 10k library cells returned by the
synthesis tool.

Some conclusions can be drawn from these results. In
comparing the mouse machines with the xymouse machines,
the number of productions and control points roughly doubles
while the state space of the machine is squared. It is clear
that the machine construction complexity is not proportional
to the growth of the machine’s state space as would be
expected from conventional algorithms. The execution speed
of the two designs (which includes the data-path delay as
well as the control delay) is nearly the same (the Clairvoyant
design for the xy-version consists essentially of two of the
single machines in parallel thus the delay differences are
artifacts of the further synthesis). The midi design was much
more complicated in its behavior and included an exception
handling routine so that any valid data imbedded in arbitrary

invalid data would be correctly interpreted. Considering this,
the design’s cycle time was an impressive 13.96 nS. Also,
note that this design required only 30 productions for the
entire specification, which fit comfortably on 2 pages of
text. Finally, the pathological mismatch design had 8062
deterministic states, but was constructed in 0.28 CPU seconds,
showing the relative independence of the construction time
from the size of the deterministic state space. Table VI
shows that our optimal technique for generation of operation
exclusion information is both feasible and is simple to map
into the output VHDL, as shown by the very small ROBDD
representations needed to represent the functions A(Q) . Use

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

184 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 2, JUNE 1994

TABLE M
VHDL AND LOGIC SYNTHESIS RESULTS

of this information is critical in allowing subsequent logic
optimization to minimize the required resources.

It is of interest to note the relatively high performance of the
designs derived directly from the intermediate form. These de-
signs typically have more registers than conventional designs
but generally have very simple excitation logic between the
control points. This is due to the direct use of the specification
in constructing the logic and selecting the deterministic codes.
In effect, the control points provide a set of signals from
which the excitation functions can be derived with very
small literal support. These considerations are demonstrated
by the differences in logic complexity (as reflected by factored
literal counts) and in controller logic delay (as reflected by
the mapped logic depth) shown for Clairvoyant designs and
designs created by symbolic state extraction, state assignment,
minimization and identical synthesis. In particular, in the small
state machines with little parallelism: mouse(a), mouse(b),
i825 lar, and count0, the Clairvoyant designs are comparable
to the state assigned designs. However, for larger and more
parallel cases such as xy-mouse and qr42, the quality of
the distributed encoding becomes much more impressive.
Note that even when the minimal machine encodings have
comparable literal counts, the logic depth (and hence the
controller delay) of these machines is greater. In the typical
case, the logic depth of Clairvoyant was smaller than any
of the other encodings, state minimized or not. Finally, it
is important to note that the mismatch design complexity is
relatively simple even though it could not be synthesized at
all using state-graph based techniques.

The register costs for the Clairvoyant designs must be
measured relative to the implementation technology. The en-
codings are ideal for FPGA implementation where registers are
virtually free since they typically occur in every FPGA cell.
In these designs, the small average literal support and logic
depth should allow efficient, high performance designs. In
other technologies where high performance is required, these
encodings may be desirable, regardless of the register costs.

VI. CONCLUSION AND FUTURE WORK

We have presented a new high-level synthesis system di-
rected toward the synthesis of complex designs that are spec-

ified concisely using hierarchical grammar-like decompositon
of their behavior. These specifications are of practical use
in synthesis problems that are control dominated or require
complex concurrent protocols. The use of productions enables
the specification to span many levels of complexity, and to
describe what actions should be taken in each case. Nondeter-
minism in the language frees the designer from the onerous
task of determining the precise behavior required of each
deterministic state. Instead, the designer needs only to specify
the kinds of behaviors expected and what actions should take
place. The direct use of Boolean functions in both the token
recognition and production qualification processes greatly ex-
pand the expressability of engineering design specifications
in this format. The resulting specifications are very concise
and allow the designer to specify the design at high levels
of abstraction in which the detailed interaction of the sub-
machines is automatically derived. The system synthesizes
a hardware architecture with VHDL register-tranfer output
allowing system assembly with VHDL modules from many
sources and use of commercially available tools.

The Clairvoyant system implementation makes extensive
use of symbolic construction techniques to perform this syn-
thesis. These techniques include a new direct machine con-
struction algorithm which is not directly impacted by the size
of the deterministic state space and hence is applicable to
very large designs. The constructed intermediate machine form
is a convenient representation base for further analysis and
optimization using both classical and more recent symbolic
techniques. With little additional optimization, this form yields
sequential machines with favorable performance characteris-
tics. Techniques for evaluating resources conflicts for designs
in this representation have also been described.

In future work, further optimization of the intermediate
machine to reduce the number of registers without reducing
the high level of performance achieved in the design will
be studied and applied to the Clairvoyant synthesis tool.
Additional studies and possible future work includes operation
scheduling and optimization in conjuction with the controller
and protocol constraints as well as optimizations to simplify
the productions.

ACKNOWLEDGMENT

The authors wish to acknowledge E. Girczyc and M. Marek-
Sadowska for helpful suggestions and discussion. The authors
also thank the reviewers for their constructive feedback.

REFERENCES

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers Principles, Techniques
and Tools.
Benchmarks of the Fourth International Workshop on High-Level Syn-
thesis, 1989.
G. Berry, “A Hardware implementation of pure ESTEREL,” SdhanZ,
vol. 17, Part 1, pp. 95-130, Mar. 1992.
R. L. Blackburn, D. E. Thomas, and P. M. Koenig, “CORAL 11: Linking
behavior and structure in an IC design system,” Proc. 25th DAC, pp.
529-535, June 1988.
K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of a BDD Package,” Proc. 27th DAC, pp. 4M5, June 1990.
R. E. Bryant, “Graph based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., pp. 677-691, Aug. 1986.

Reading, M A Addison-Wesley 1988.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

SEAWRIGHT AND BREWER: CLAIRVOYANT 185

S. Carlson, Introduction to HDL-Based Design Using VHDL. Moun-
tain View, CA: Synopsys, 1990.
W. F. Clocksin and C. S. Mellish, Programming in PROLOG. Berlin:
Springer-Verlag, 1984, second ed.
0. Coudert and J. C. Madre, “A unified framework for the formal
verification of sequential circuits,” Proc. ICCAD-YO, pp. 126-129, Nov.
1990.
R. W. Floyd and J. D. Ullman, “The compilation of regular expressions
into integrated circuits,” J. of the ACM, pp. 603-622, vol. 29, no. 3,
July 1982.
N. Halbwachs, Syncronous Programming of Reactive Systems . Dor-
drecht: Kluwer, 1993.
D. Harel, “Statecharts: A visual approach to complex systems,’’ Sei. of
Comput. Program., vol. 8, pp. 231-274, 1987.
D. H a e l et al., “STATEMATE: A working environment for the devel-
opment of complex reactive systems,” Proc. Int. ConJ Softwure Engin.
, pp. 396406. 1988.
J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation.
IEEE Standard VHDL Language Reference Manual. IEEE Std.
1076-1987.
M. A. Jackson, “Constructive methods of program design,” in Lec-
ture Notes in Computer Science. Springer-Verlag, 1976, vol. 44, pp.
236-262.
S. C. Johnson, “Yacc: Yet another compiler compiler,” Compuring
Science Tech. Rep. 32, AT&T Bell Lab., Murray Hill, NJ, 1975.
A. R. Karlin, H. W. Trickey, and J. D. Ullman, “Experience with a
regular expression compiler,’’ Proc. ICCD, pp. 6.56-665, 1983.
B. W. Kernighan and D. M. Ritchie, The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1988, second ed.
Z. Kohavi, Switching and Finite Automata. New York: McGrdw-Hill.
1978.
M. E. Lesk, “Lex-A lexical analyzer generator,” Computing Science
Tech. Rep. 39, AT&T Bell Lab., Murray Hill, NJ, 1975.
B. Lin, “Synthesis of VLSI designs with symbolic techniques,” Ph.D.
Thesis, Univ. California, Berkeley, UCBERL M91/105, Nov. 1991.
J. Lathi, M. Sipola, and J . Kivela, “SADE: A graphical Ttool for
VHDL-based systems analysis,” Proc. ICCAD-YI, pp. 262-265, Nov.
1991.
LSI Logic Corporation, “ I .5-Micron Compacted Array Technology,
Databook, July 1987.
S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincetelli,
“Logic verification using binary decision diagrams in a logic synthesis
environment,” Proc. ICCAD-88, pp. 6-9, Nov. 1988.
MIDI Specification Version 1.0, .International MIDI Assoc. , 1983.
S. Narayan, F. Vahid, and D. D. Gajski, “System specification with the
Speccharts language,” Proc. ICCAD-91, pp. 266-269, Nov. 1991.
H. Savoj, H. Touati, and R. K. Brayton. “Extracting local don’t cares
for network optimization,” Proc. ICCAD-91, pp. 514-517, Nov. 1991.
A. Seawright and F. Brewer, “Synthesis from production-based specifi-
cation,’’ Proc. 29th DAC, pp. 194-199, June 1992.
-, “PBS 2.x Users Guide,” ECE Tech. Rep. #Y2-21, UCSB, Oct.
1992.
-, “High-level symbolic construction techniques for high perfor-
mance sequential synthesis,” Proc. 30th DAC, pp. 424-428, June 1993.
E. M. Sentovich, K. J . Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A system for sequential circuit synthesis,” Electron.
Res. Lab. Memo. No. UCB/ERL M92/4/, May 1992.

Reading, MA: Addison-Wesley, 1986.

[33] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton and A. Sangiovanni-
Vincentelli, “Implicit State Enumeration of Finite State Machines using
BDD’s,” proc. ICCAD-YO, pp. 13G133, November 1990.

1341 H. W. Tricky, “Good layouts for pattern recognizers,” IEEE Trans.
Comput., vol. 31, pp. 514-520, June 1982.

[35] J. D. Ullman, Computational Aspects of VLSI. Rockville: Computer
Science Press, 1984.

[36] K. Wakabayashi and H. Tanaka, “Global scheduling independent of
control dependencies based on condition vectors,” Proc. 2Yth DAC, pp.
112-1 15, June 1992.

[37] T. Villa, T. and A. Sangiovanni-Vincentelli, “NOVA: State assignment
of finite state machines for optimal two-level logic implementation,”
IEEE Truns. Computer-Aided Des., vol. 9, pp. 905-924, Sept. 1990.

1381 W. Wolf er al., “The Princeton University behavioral synthesis system,”
Proc. 29th DAC, pp. 182-187, June 1992.

Andrew Seawright (M’93) was bom in Manhdttan,
NY He received the B S degree in electrical engi-
neering from Rutgers University, NJ, in 1989 and
the M.S and Ph D. degrees in electrical and com-
puter engineering from the University of California,
Santa Barbara, in 1992 and 1994, respectively

Presently, he is with Synopsys, Iuc , Mountain
View, CA His current research interests include
system level computer-aided design, high-level syn-
the\is, de5ign specification and entry, and the use of
BDD techniques for analysis and synthesis of digital
systems.

Dr Seawright is a member of the Association for Computing Machinery,
Tau Beta Pi, and Eta Kappa Nu.

Forrest Brewer (M’87) received the Bachelor of
Science degree with honors in physics from the
California Institute of Technology, Pasadena, in
1980 and the M.S. and Ph.D. degrees in computer
science in 1985 and 1988, respectively, from the
University of Illinois, Urbana-Champaign.

Since 1988, he has served as an Assistant Profes-
sor with the University of California, Santa Barbara.
From 1981 to 1983, he was a Senior Engineer at
Northrop Corp dnd consulted there until 1985 He
co-authored Chippe, which was the first dcmon-

strated closed loop high level synthesis 5ystem Recently, his research work
has been in the application of logic synthesis techniques to hlgh level
synthesis, specification, and scheduling of control dominated designs

Dr Brewer is a member of the ACM and APS

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 20:26 from IEEE Xplore. Restrictions apply.

