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Clairvoyant: A Synthesis System 
for Production-Based Specification 

Andrew Seawright, Member, IEEE and Forrest Brewer, Member, IEEE 

Abstract- This paper describes a new high-level synthesis 
system based on the hierarchical Production Based Specification 
(PBS). Advantages of this form of specification are that the 
designer does not describe the control flow in terms of explicit 
states or control variables and that the designer does not describe 
a particular form of implementation. The production-based spec- 
ification also separates the specification of the control aspects and 
data-flow aspects of the design. The control is implicitly described 
via the production hierarchy, while the data-flow is described 
as action computations. This approach is a hardware analog of 
popular software engineering techniques. The Clairvoyant system 
automatically constructs a controlling machine from the PBS and 
this process is not impacted by the possibly exponentially larger 
deterministic state space of the designs. The encodings generated 
by the constructions compare favorably to encodings derived 
using graph-based state encoding techniques in terms of logic 
complexity and logic depth. These construction techniques utilize 
recent advances in BDD techniques. 

Index Terms- Binary decision diagrams, control dominated 
synthesis, hardware description languages, high-level synthesis, 
reactive systems, state encoding. 

I. INTRODUCTION 

N CONVENTIONAL high-level and register-transfer-level I hardware description languages, the control structure of 
a design is typically specified using conditional language 
constructs such as if-then-else and case statements. Conditional 
branching in the control flow is determined by the evaluation 
of program state variables which are explicitly specified. For 
many problems, however, the specification of the machine 
behavior in this format is cumbersome. The designer may wish 
to work at a higher level of abstraction in which the detailed 
interaction of the sub-components is resolved automatically. 
This is especially true for problems in which the time sequence 
behavior is complex or the control state space is large or 
difficult to describe explicitly. These design problems in- 
clude the specification of protocol controllers, communication 
devices, and computer interface subsystems. The high-level 
synthesis system described in this paper addresses these types 
of specification problems. This synthesis system is based on 
the Production-Based Specification (PBS) [29] [301 [311. 
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In a production-based specification, the control structure of 
the design is specified as a hierarchical set of productions. Each 
production is viewed as a submachine or, more precisely, a 
nondeterministic automation. Productions are defined through 
hierarchical compositions of other productions. The hierar- 
chical composition defines the control structure of a design 
implicitly. Data-flow computations called “actions” are hooked 
into this implicitly described control-flow by associating them 
with productions. A data-flow action is “executed” when 
its associated submachine is “recognized”. The recognition 
of a production may span many levels of abstraction. For 
example, the recognition of a production may correspond to the 
occurrence of a single signal transition, or to the termination 
of an entire protocol transaction. 

Clairvoyant is a new high-level synthesis system intended 
for two areas of design. These areas are the specification and 
synthesis of designs: 

1) that are naturally specified with the use of a grammar- 
based decomposition of the design’s behavior. These 
machines include those that perform computations in 
response to complex communication protocols. 

2) that are naturally described as hierarchical compositions 
of interacting submachines. These machines include 
complex data-path controllers. 

This manner of specification is intended to be a hard- 
ware analogy of a popular software engineering techniques 
and tools such as those used to create parsers, compiler 
control structures, and lexical analyzers, applied to high- 
level synthesis. Consider the design of an ASIC interface to 
Ethernet. The sequential structure of the Ethernet protocol 
can be described using a set of productions in the Backus- 
Naur Form (BNF) commonly used for specifying language 
grammars [l], [14]. These productions define the syntax for 
correct Ethernet transactions as well as those transactions 
performed on the machine interface side of the interface. Every 
possible combination of machine behavior on all interfaces 
is implicitly described this way as the set of recognizable 
sequences of the productions. It is then natural to attach 
data-path operations (actions) describing the desired semantics 
to this production framework since we assume that each 
action will be triggered on valid recognition of the underlying 
annotated production. For example, in the Ethemet interface, 
the action of storing a received data byte is triggered by the 
recognition of the production describing required sequence for 
a valid serial byte. This direct association between actions 
and the recognition of valid high level behavior allows for 
specifications where the required actions for a given behavior 
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are described locally, but other possibly simultaneous actions 
necessary for other behaviors are described elsewhere. This 
property and the reusable hierarchy of productions provide the 
means for very concise and simpler behavioral specifications 
of these complex machines. Of particular utility is the ability 
to specify the desired behavioral response of a machine to a 
set of sequential stimuli without specifying a particular state 
machine implementation. 

The Clairvoyant system is targeted toward the design of 
sequential machine controllers with associated data-paths for 
use in ASIC designs where the constructed control structures 
aim for high performance and/or low power characteristics. 
These ASIC designs are typically multilevel logic circuits 
implemented using gate array or FPGA technology. Mapping 
the output into such implementations can be performed by any 
number of commercial synthesis packages, for example [7], 
because the output of Clairvoyant is a directly synthesizable 
subset of the VHDL [15] hardware description (HDL) lan- 
guage. Thus, Clairvoyant works as an HDL generator. The user 
describes the behavior of a design entity in the form of a PBS 
description. This description is compiled and a hardware archi- 
tecture is synthesized. In this process, both the control structure 
and the data-path register transfers required to implement the 
actions are created. The output is an HDL description of the 
architecture at the register-transfer level (sequential VHDL 
processes) with the required control machine described as a 
sequential logic network (structural VHDL). The Clairvoyant 
system aims to handle large designs with large state spaces. 
The control machine is output in a structural format to avoid 
the possibility that a deterministic state table output would 
require exponential space. This possibility arises from the 
nondeterministic nature of the input specification [ 141, [20]. 

The designs specified using PBS are entities that are typi- 
cally components of larger systems. The PBS specified design 
entity is assumed to interact with other design entities de- 
scribed at different levels of abstraction and using different 
specification techniques. In this way, the HDL generation can 
be applied to large constructions in exactly those places where 
it is most useful; i.e., submachines responding to complex 
sequential protocols or submachines connected to several other 
concurrently communicating sequential machines. An added 
advantage of the VHDL output is the ability of the designer 
to simulate and verify the synthesized design in the same way 
that conventional VHDL designs are constructed. 

The next section of this paper describes the model and 
form of the PBS. Related work is discussed in Section 111. In 
Section IV, the symbolic construction algorithms of the Clair- 
voyant system are described. In Section V experimental results 
are presented. Conclusions and future work are presented in 
Section VI. 

11. THE PRODUCTION-BASED SPECIFICATION 

The PBS describes the behavior of a single design entity 
with a well defined boundary and interface. It is assumed 
that the design entity contains synchronous logic and that at 
least one of the input signals is a global clock signal. The 
PBS specification assumes a monorate sampling paradigm that 

allows multiple clocks for multiphase synchronous clocking. 
Each PBS entity can be specified over a unique synchronous 
domain. The global clock(s) are assumed to be shared with 
other design entities in the complete system. It is assumed that 
other the entities in the system interact with the synthesized 
entity only through its interface. The implementation of the 
entity is not important so long as it meets the desired sequential 
constraints of the interface and design constraints of area, 
cycle time, and power consumption. Thus all implementations 
of the design entity which satisfy the PBS specification are 
behaviorally equivalent, and differ only when characterized 
by implementation costs or other design metrics. 

A production is a named composition of symbols, opera- 
tors, and action clauses. There are two types of productions, 
those specifying sequential behaviors and those specifying 
combinational Boolean functions. The symbols in a sequential 
production are either references to other sequential productions 
or they are tokens. A token is a reference to a Boolean Produc- 
tion or a Boolean composition in a sequential production. The 
symbols in a Boolean production are either references to other 
Boolean production or they are atomic symbols. These atomic 
symbols either represent the input interface signals (primary 
inputs) or they are other language defined symbols. 

Composition operators are used to compose the productions. 
They are used to build more abstract or complex productions 
from simpler productions. The composition operators are sim- 
ilarly grouped into sequential and Boolean types for use in the 
two kinds of productions. Thus Boolean composition operators 
are used to define complex Boolean functions from simpler 
Boolean functions and sequential composition operators define 
abstract sequential behaviors from more primitive sequential 
behaviors. Table I describes the available composition oper- 
ators. 

A token is “recognized” or “accepted”, if its Boolean 
function is satisfied in the context (clock cycle) in which the 
token appears in the productions. A production is accepted 
during the clock cycle in which the time sequence behavior 
dictated by its composition is satisfied. Thus, token recognition 
provides the mechanism for a machine’s sequencing behavior. 
The productions are annotated with action clauses or actions 
for short. An action is a specified data-flow computation that 
is executed when its antecedent symbol, composition, or pro- 
duction is recognized. In general, any number of productions 
may be active or simultaneously in the state of acceptance. A 
production may also accept several times in its execution. 

Recursive productions in the PBS specification are illegal 
since the intent is the specification of state machine controllers 
and data-paths of finite size. Although some recursive produc- 
tion sets can be constructed as FSM’s, these cases are not 
currently allowed to simplify the implementation. This does 
not restrict the language capability since tail recursive behavior 
can be concisely described using the Kleene closure operator. 
A production, however, may be referenced by any number of 
other productions. 

Fig. 1, illustrates an example design entity. The top portion 
[Fig. l(a)] depicts the design entity and its signal interface. 
The PBS specification for this design’s behavior is shown 
in Fig. l(b). In the description, there are seven productions: 
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name type example meaning 
concatenation sequential a I b Recognized if a is recognized followed by the recogni- 

multiple concatenation sequential a A n  n concatenations of the sub-machinea. n is an integer 

sequential or 

sequential and sequential a &  &b Recognized if a und b are simultaneously recognized ir 

sequential not 

tion of b. in time sequence. 

constant. 
Recognized if a or b or both are recognized. 

the same clock cycle. 
Recognized if a is not currently in the state of recogni- 

sequential a I I b 

sequential ! a 

I I I I comwsition I 

! ! 

TABLE I 
COMP~SITION OPERATORS 

t 

tion. 
Sub-machine a is initiated. If a is about to enter a state 
from which it can never be recognized, then handler 

exception-handler sequential a ! ! b 

! R 

* 

t 

machine b is initiated. 
exception-reset Restan sub-machine a if initiated and a is about to entei 

a state from which it can never accept 
Kleene Closure sequential a * Recognizes all sequences consisting of zero or more con. 

catenations of a. 
one-or-more sequential a+  Recognizes sequences of one or more a’s. 

sequential a ! R 

I I IEqui&ent to a * I a. 

& - 
: 

mouse 

clock 

- .  - 
Booleanand Boolean a&b Boolean function ahb. 
Boolean complement Boolean -a  Boolean function l a .  
qualification special a : b Modify the behavior of the sub-machine b such that for 

b to be recognized. the Boolean function represented by 
a must be true throughout the execution of b. 

T 
mouse -> .*, event; 
event -> forward I I reverse; 
forward -> high:rising; I x <- x + 1; I 
reverse -> 1ow:rising; I x <- x - 1; 1 
rising -> 1-xclt, xc; 
high -> xd; 
low -> -xd; 

(b) 
. .  
i j  . .  . .  . .  : :  

/ /  . .  
j :  . :  . .  . .  xc ! I ,  I : I ’  

j :  j j  

xd : : 
i j  

i i  

i :  i :  : ,  

X x=0$9 x ~ 4 x 4 4  x=Ox4B x x=Ox4A 
: :  
i :  i :  
. .  . .  i !  . .  . .  . .  . .  . .  

i :  
j j  j :  

<forward> <forward> <reverse> 

(C) 

Fig. 1. (a) Design entity. (b) PBS specification. (c) Timing Diagram. 

mouse, event, forward, reverse, rising, high, and 
low. Of these, the first five are sequential productions, and the 
last two are Boolean productions. The Boolean composition 
( ~ x c )  is a token as it appears in the rising production. The 
symbols xc and xd refer to the input interface signals. By 
default, the first production in the PBS (mouse) is the top- 
level production. The top-level production encompasses the 
behavior of the whole design entity. 

This description specifies the behavior of a 1-D positioning 
machine such as that used in a computer mouse pointing 
device. It continuously updates the signal x with a current 
1-D position based on the quadrature encoding of the signals 
xc and xd received from external motion sensors. Updating 
the position occurs if one of the productions forward or 
revers e are recognized. The r i s ing production recognizes 
a rising edge occurring on the signal xc. It is recognized if xc 
is in a high state following a sequence of one or more cycles 
in which the signal xc has remained low since the initiation 
of rising. The productions forward and reverse are 
defined as qualified versions of the rising submachine. 
HDL action clauses are attached to these two productions. 
For example, if forward is recognized the signal x is incre- 
mented. The sequential composition “.*, event” represents 
the behavioral idiom “any input sequence followed by event” 
since “.” denotes the Boolean function that is always true. 
Thus, a new recognition of event is attempted on each clock 
cycle so that both the forward and reverse submachines 
are concurrently enabled to recognize motion of the mouse. 
Fig. l(c) shows an example time sequence behavior of the 
mouse design. 

Production-Based Specifications are convenient to the de- 
signer since it is often possible to implicitly specify very com- 
plex sequential constraints in a concise format. Additionally, 
this specification is local in the sense that additional desired 
behaviors can be specified by adding additional concurrent 
productions. For example, the rate of mouse motion can be 
measured by adding a production which counts idle clock 
cycles and adding two more actions to the forward and 
reverse productions. In general, such changes to FSM state 
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descriptions require global modification of the entire design. 
Another valuable property is the ability to reuse previously 
defined productions representing key activities without regard 
to the possible concurrency of their execution. For example, 
a read production defined for a bus protocol can be used 
in the definition of all desired bus activities even if those 
activities might occur concurrently. A similar description as 
a deterministic FSM would potentially require the Cartesian 
multiplication of all of the possibly concurrent read sub- 
machines to describe the possible states. 

The PBS language was designed to allow flexible specifi- 
cation of finite state machine controllers. Although it contains 
a superset of the regular expression operators, the language 
remains in the class of finite automata. This is because 
all finite PBS specifications imply finite controllers. The 
controller does not require unbounded storage as is the case, 
for example, of a LALR parser which requires a stack [l], 
[14]. The extended operator set allows for more convenient 
expression of behaviors that would require exponentially larger 
specification in the form of traditional regular expressions, 
however each specification remains finite with respect to the 
controller. 

A. Execution Model 

The behavior of the PBS design is defined by execution 
of the implied control-flow where the actions are executed 
at their respective points in the protocol and the execution 
of each action concludes on the accepting clock cycle. This 
model describes the external behavior of the design not how 
the design is implemented. The PBS language model as- 
sumes sufficient resources to execute all potential simultaneous 
actions over all possible input excitation sequences. There 
may be considerable freedom to schedule the actions without 
violating the sequential interface constraints and thus optimize 
the resources or other design constraints. The PBS language 
doesn’t preclude action execution overlapped with recognition 
of productions so long as these transformations result in 
equivalent behavior. Techniques to exploit this freedom is the 
topic of current research and will be described in a separate 
publication. 

Because of the nature of production recognition, it is pos- 
sible that several actions may be triggered simultaneously 
(during the same clock cycle). Since such actions may have 
data dependencies, the conceptual ordering of their execution 
within the accepting cycle is important. Consider the actions: 
{x := 0 ; )  and {x := x + l;}. In one ordering, the resulting 
value of x is 0, while in the other order x is 1. Action 
precedence is defined for two actions if one of their respective 
productions is in the execution scope of the other respective 
production. The scope of a production includes all of the 
more primitive productions from which it is defined. The 
precedence ordering specifies that actions of more primitive 
productions conceptually occur before those of less primitive 
productions. Thus, the set of actions has a partial order im- 
posed by the production hierarchy. Actions whose productions 
have unrelated scopes do not have a defined precedence 
ordering. 

This concept is best illustrated with an example. Consider 
the following PBS fragment of two productions: 

. . .  
block ---f word”8; {X := 0 ;  } 

word .+ bit”32;  {X := X +‘I; } 

In this example, every time a word is recognized, the 
variable x is incremented. When a block is recognized, how- 
ever, both of the actions are executed, since the recognition 
of the block occurs synchronously with the recognition of 
the last word. The action precedence rules imply that in 
the acceptance of the block production, the net result is 
that x is 0, since the reset action is conceptually last. The 
designer can exploit action precedence by crafting actions that 
supplant the results of other. When no action precedence is 
defined, dependencies between actions can be ambiguous. The 
synthesis system, however, can warn the user of a possible 
action conflict. This behavior is not forbidden so as to not 
limit the expressability of the language. 

Synthesis of the controller in the Clairvoyant system does 
not rely on predicting the external world’s response to the 
execution of an action. Thus, actions that “side-effect’’ via 
feedback from the external world and through the primary in- 
puts, by design or otherwise, don’t present synthesis problems. 
For example, an action may assert a signal on an output that 
is fed back to a primary input, thus changing how tokens are 
interpreted in subsequent cycles. These effects are considered 
in the construction because, effectively, every possible input 
sequence is assumed possible. 

B. Operutors 

The sequential operators are a superset of the classical 
regular expression operators [l], [ 141, [20]. These operators 
include generalizations such as the sequential not “!” operator, 
and the sequential and ”&&” operator useful for specifying 
synchronization. 

The exception operators are designed for specifying excep- 
tion handling, re-synchronization, and recovery mechanisms. 
These operators are used to specify behaviors based on the 
conditions in which a sub-machine enters a state in which 
it can never accept. They are used to construct productions 
which recognize when a dependent production cannot accept 
and then take appropriate action. Exception operators may 
be nested hierarchically, as they operate on a general sub- 
machine which could contain other exception operators. An 
exception operator is defined over the production scope of all 
more primitive productions used to construct its dependent 
part. For example, consider the following nested productions: 

a --f b! ! c ;  

b -+ d! !e;  

d + . . .  

If the production d receives an input for which it has no more 
possible accepting sequences it is said to have failed. The b 
production can then be accepted only if the e production (the 
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exception handler) is accepted. If e succeeds, b is accepted 
and so a is accepted as well. If e fails, then b fails and since b 
is in the scope of a, the exception handler c is activated. This 
type of behavior greatly simplifies the problem of specifying 
exceptional behavior since the alternative would be to specify 
every possible failure sequence for a production. This could 
require an exponentially larger regular expression. 

The Boolean operators and “&’, or “I”, and not “N”, are 
used in Boolean compositions for the specification of Boolean 
functions which are used as tokens in sequential productions 
and used as the left-hand operand in the qualification operator. 
A sequential production or composition may be qualified with 
a Boolean production or composition using the qualijication 
operator. For a qualified production to accept, the Boolean 
part must remain true during any accepting sequence of the 
sequential part. In other words, the behavior of the qualified 
submachine is the same as the unqualified submachine in 
which all of its tokens have been anded with the qualifying 
Boolean function. The qualification operator is useful because 
it can modify or refine the behavior of a production in 
different contexts. For example, a “generic” submachine can 
be referenced from several other productions in different 
contexts and its behavior refined through qualification in each 
instance. 

111. RELATED WORK 
Jackson [ 161 championed a methodology for specification 

and design of software programs and software interfacing 
between programs using constructive methods. Similar ideas 
are manifest in the successful compiler construction tools such 
as YACC [17] and LEX [21]. In these tools, the specification of 
the language to be complied is described as a set of productions 
representing the language grammar. The semantic actions 
performed by the compiler are specified as code annotations 
to the grammar. The tools compile this specification into the 
control structure of a compiler program to parse the specified 
language. This provides an enormous simplification in the 
complexity of constructing compilers since the designer need 
not consider the all the concurrent combinations of productions 
which are possible when the compiler is executed. PBS 
mimics this specification approach, however, fundamentally 
different operators and construction techniques are applied 
since the constraints differ between hardware and software. 
PBS achieves the economy of specification characteristic of 
these tools. 

Ullman et al. [lo], [ 181, [35] studied the use and compilation 
of regular expressions in the design of hardware controllers. 
In this work, the design is specified as a single regular 
expression which is then implemented as a nondeterministic 
FLA. The nondeterminism was expressed as feedback terms 
in the PLA, each of which indicating the validity of a given 
nondeterministic state. The system chose encodings based on 
an algorithm to minimize the number of feedback terms in 
the PLA. The PLA was minimized to produce the smallest 
number of cubes in the final design. Trickey [34] proposed a 
dynamic programming algorithm for optimizing the layout of 
these PLA pattern recognizers. 

Although there are similarities between Ullman’s approach 
and PBS, particularly in the use of regular expression opera- 
tors, there are several differences in the specification form, 
construction techniques, and goal. In PBS, the notion of 
explicit productions which are re-used in central and allows 
more concise specification. The modeling of actions in PBS 
is that of arbitrary high level data-flow behaviors instead 
of output signal transitions and PBS targets multilevel logic 
models for the control. 

STATEMATE [13] is a system for the design and docu- 
mentation of reactive systems for use in interactive software 
and embedded systems. Designs are specified in the form of 
a hierarchical statechart [12]. In this specification, a state is 
active if any of its child states are active, for example, or 
alternatively if all of its child states are active. Transitions 
between states occur on events and are allowed between states 
at different levels of abstraction. The statecharts are converted 
directly into software code. Speccharts [27] addresses the 
behavioral specification of whole systems by combining hi- 
erarchical state charts and VHDL in a graphical specification 
methodology. The SADE system [23] uses graphical entry and 
underlying petri net models for design specifications that are 
converted into HDL code. The PUBSS system [38] specifies 
designs in the form of several interacting, but not hierarchical, 
cooperative VHDL processes that are modeled as behavioral 
finite state machines. Its synthesis focuses on scheduling 
the communication and computation in the design under the 
ensemble constraints induced from the individual process 
constraints. In all of these techniques, the designer either 
describes the behavior in terms of explicit states or the designer 
explicitly partitions the problem into interacting procedural 
processes that contain explicitly defined state variables. PBS, 
instead, describes the decomposition of the control behavior 
as a hierarchical listing of the possibly concurrent desired 
behaviors. This difference is similar to differences between 
C [19] and PROLOG [8] programs. 

ESTEREL is a reactive programming language from which 
hardware specification has been recently studied [ 3 ] ,  [ 1 I]. 
ESTEREL includes language constructs for parallelism and 
includes a powerful trap mechanism. There are several differ- 
ences between PBS specification and ESTEREL. The primary 
difference is that the ESTEREL language is an imperative style 
language [ 111 and PBS is an applicative language for control 
specification. In an applicative language, the basic statements 
are definitions as opposed to assignments or sequences of 
tasks. Another difference is that a PBS specification has an 
explicit partitioning of the behavioral specification between 
the productions and the actions. Productions represent the 
implicit control behaviors the designer wants to specify at a 
very high level without describing the detailed state transitions 
or the linking of the control and data-paths. The ensemble of 
actions implicitly describe the data-path requirements. Thus, 
control of the data-path is implicit in PBS which simplifies 
the specification and allows more freedom in the final design 
implementation. ESTEREL’s trapping mechanism is different 
from PBS’ s exception mechanism, however, both allow for 
the description of exceptional behaviors and both mechanisms 
use the notion of lexical scope. 
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Fig. 2. Example productions. 

In our previous work [29], we proposed the use of PBS for 
use in high-level synthesis. In this earlier system, the execution 
model of the implied nondeterministic machine includes action 
clauses of VHDL code. These concepts have been expanded 
in the synthesis system described in this paper. Clairvoyant 
incorporates improvements to the expressive power of the 
production specification language as well as more powerful 
synthesis techniques. The addition of new production com- 
position operators, combinational Boolean productions, and 
the incorporation of recent BDD and symbolic representation 
techniques allows an efficient re-formulation of the synthesis 
task. 

IV. CLAIRVOYANT IMPLEMENTATION 

A. Design Representation 

The synthesis process begins with the parsing of the PBS. 
A production representation is created which captures the 
hierarchical structure of the description and it is derived 
from the production parse trees [l]. This representation is 
the starting point for further synthesis tasks and is retained 
throughout the synthesis process as an important representation 
of the high-level design structure. To describe the production 
representation and subsequent construction we will use a small 
example shown in Fig. 2. 

The symbols, zl: 22.23, and 24 represent external interface 
signals. The productions p l ,  p2, p3, p4 are sequential produc- 
tions while production p5 is a Boolean production. Tokens 
are atomic sequential productions and represent the sampling 
of the interface signals for the desired Boolean function on 
a synchronous clock. For example, the composition "(21 & 

22)" is a token which is recognized if both zl and 22 are true 
during the sample period. Production p3 is recognized (and 
action1 is triggered) if productions p4 and p5 are simultane- 
ously recognized. i.e., 22 became true at least one clock before 
the current clock and 23 is true while 24 is false. Production p2 
first requires zl and 22 to be simultaneously valid and then 
p4 is recognized, while p l  is recognized if either p2 or p3 
are recognized. Note that if p3 is recognized, both action1 
and action2 will be triggered simultaneously, with action2 
conceptually occurring after action1 due to action precedence 
(this precedence ordering can be easily seen for this example 
in Fig. 3). 

A collapsed production structure called the production DAG 
is subsequently constructed from the parse tree. Each node in 
the DAG represents a sequential composition operator. It is 
constructed from the production representation by propagating 
all Boolean operators toward the leaves of the DAG and then 

Fig. 3. (a) Production representation. (b) Production-DAG. 

representing the resulting complex Boolean composition dags 
as combinational Boolean functions. For example, t l ( 2 )  = 
z l zp ,  and t 2 ( Z )  = z2. This construction is always possible 
because it is illegal for sequential productions or compositions 
to be used in Boolean compositions. Reference to a Boolean 
function from a sequential composition node implies token 
recognition if the function is valid during that clock cycle. 
Practically speaking, these functions are represented by an 
ROBDD [ 5 ] ,  [6] using the external signals as the basis 
variables. The example production representation and the 
collapsed production DAG are illustrated in Fig. 3(a) and (b), 
respectively. Here, the sequential composition operator nodes 
are represented by unshaded nodes, while the Boolean com- 
position nodes are shaded. It is important to note that each 
sub-DAG from a sequential node to its leaves represents a sub- 
machine of the design. Thus, the production DAG represents 
a hierarchical finite-state machine partitioning of the entire 
design. This property is exploited by the deterministic machine 
construction process detailed in the following sections. 

B. Intermediate Machine Representation 

The production DAG represents the input behavioral spec- 
ification of the desired state machine. Construction of a 
physical implementation from this description passes through 
an intermediate stage in which state encodings have been made 
and the control can be described as a set of combinational 
functions taking the current state and inputs into the next 
state and outputs. This description is output as register-transfer 
level VHDL for later logic synthesis and optimization by 
conventional tools. The internal design representation of this 
level is called the intermediate machine representation. The 
construction of this representation by conventional algorithms 
is hampered by the possibly exponential growth of the state 
transition table due to the parallelism of the input specification. 
For this reason, an implicit construction technique was devised 
allowing more flexible and larger problem instances than can 
be handled conventionally. 

The intermediate machine representation consists of two 
parts, a state transition function and an output function for 
the machine. In what follows, B represents the set {0,1>. The 
transition function A is a function mapping: B" x B'" 4 Bn. 
This mapping is written: 

A : { ( 2 1 , 2 2 , 5 3 , . .  . , 2 n ) }  X { z I ~ z z J ~ ~ . .  . , ~ k ) }  

--$ {(Yl, Y2r Y3,. . . 1  Yn)I1 
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Input : production-DAG node pointer n, Boolean Function fIX) 
Output : Boolean Function h(X) 

Build (n, f (XI ) I 

if (node n is a terminal function, t,(2)) ( 

g(X, 2 )  - and(f(X), t,(z)); ; 
xt  = RecallControlPoint(g(X, 2) ) ; 
if (x, is not null) I 

xi = xt; 
) 8168 I 

x, - new control point; 
Sav8ControlPoint (xl, glx, 2) ) ; 

I 

hIX) - x , ;  
Y f  - f,(X. 2 )  - 4IX, ZI 

8168 if (node n is a 'concatenation" node) I 
g(X)  - Buildtnode->left, f IX)); 
h(X) - Build(node->right, g(X)); 

I 016. if (node n is a "sequential and" node) I 
g(X) * Build(n->left, fIX)); 
h(X) - Build(n->right, f(X)); 
h(X) - and(g(X),h(X)); 

t ala8 if (node n is a "sequential or" node) ( 
g(X) - Build(n->left, f (Xi); 
h(X) - Build(n->right, f (XI ; 
h(X) - or(g(X),h(X)); 

I else if (node n is a "sequential not" node) 1 
g(X) - Build(n->right, f (X) ; 
h(X) - not(g(X)); 

) 016- i f  . . .  
... t h e  other  cases . . .  

1 

if (action ak attached to n) ( 

I 
raturn h(X); 

set ck (X) - or (c, (Xi, h (X) 1 ; 

Fig. 4. Build algorithm. 

where X , Y ,  and 2 are Boolean vectors. X represents the 
present state of the machine, 2 represents the input interface 
signals, and Y the next state of the machine. The transition 
function A represents a deterministic state transition function. 
The representation, however, is unconventional in that each 
state bit is associated with token recognition of a leaf of 
the production DAG. In this encoding of state, a true bit 
implies that control has been transferred to this bit and that 
the corresponding token (Boolean function of the signals) 
was recognized. Since the machine is non-deterministic, it 
is possible for several such bits (called control points) to be 
simultaneously true. Looking ahead, A can be viewed as a 
circuit-in the example in Fig. 3, recognition of the function 
t I ( 2 )  is associated with state bit 22 in the circuit in Fig. 5. 
This representation has two views. As a whole, A represents 
the transition function of a deterministic FSM, while each 
function y; = f i ( X ,  2)  in A represents the excitation of an 
individual nondeterministic control point. 

The Moore output function A : B" -t B" is defined as 
a mapping: 

A : ((21722,237.. . I 2")) -t {(alra2,a39.. . 7  am)}. 

where X is the present state and ai E A represent each of the 
individual actions. Each action is triggered by the condition 
ai = c Z ( X )  corresponding to its location in the production 
DAG. Because many actions may be triggered simultaneously, 
action precedence enforces the execution sequence. The order- 

Fig. 5.  Example circuit. 

ing of the ai's in the vector A satisfy the partial order action 
precedence relations implied by the production DAG. 

Altematively, a Mealy form output representation A' is 
derived from A. In this case A' maps B" x Bk -t B", 
with the individual action conditions a function of X and Z, 
e.g., c i ( X ,  2). The action execution in the Moore form of the 
output function lags by a cycle vs. the Mealy form of the 
output function. The choice between the two forms of output 
function is selected prior to construction by the designer. 

C. Construction of the Intermediate Machine 

The construction is a recursive procedure on the production 
DAG building the intermediate machine. This procedure ap- 
plies a particular construction rule at each composition node of 
the DAG, based on the node's type. These rules are templates 
for the application of a sequence BDD operations. Each time 
a leaf of the production DAG is reached, a new control 
point is added to the intermediate machine state vector. Since 
the production DAG may have several paths to a leaf from 
production re-use the number of control points may be larger 
than the number of leaves in the DAG. This can be seen 
in the example in which the tz(2) leaf denotes 4 distinct 
control points 23,24,25 and 26 in Fig. 5.  These control 
points represent sequentially distinct recognitions of the t2 (2) 
Boolean function of the input signals. Unlike Thompson's con- 
struction [ 11, [ 141, [20], here there is no need for &-transitions 
to link the machine components. This is a consequence of 
the symbolic (ROBDD) representation of the control points 
excitation function which allows direct manipulation by the 
construction rules for both the conventional and generalized 
regular expression operators. 

The construction is performed by the recursive procedure 
Build() illustrated in Fig. 4. At each level of the recursion, the 
routine is passed a pointer to a node of the production DAG 
and a Boolean function (BDD node pointer) representing an 
excitation function f (  X )  passed from other recursion levels. 
The routine returns a Boolean function h ( X )  which is true 
on recognition of the current sub-DAG. At leaf nodes, new 
control points are allocated and their excitation functions are 
determined. When a leaf node is traversed, if a prior allocated 
control point exists with identical excitation, this prior control 
point is used instead of allocating a new control point. This 
is implemented using a memory function and is illustrated by 
the SaveControlPoint() and RecallControlPoint() calls in the 
pseudocode. At intermediate nodes, left and right submachines 
are composed via operations on the passed returned functions. 
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The construction process is initiated by allocating an initial 
control point x1 and calling Build (n  = top-level-node, 

The time complexity of this algorithm depends on the 
representation used for Boolean functions. Although ROBDD 
representations can exhibit exponential growth in general, in 
this algorithm, the variable support of the excitation functions 
returned from the left and right submachines is disjoint in all 
cases other than in the exception operator constructions. The 
BDD growth is additive under the variable ordering implied 
by the sequential allocation of control point variables for these 
cases. As well, each constructed excitation function typically 
has very small variable support. Thus, for a DAG representing 
a regular expression, the time complexity of this construction 
is typically linear in the size of the regular expression. 

The construction for the closure operator case is somewhat 
subtle. A temporary variable ztmp is allocated and used in 
lieu of f ( X )  for construction of the operand submachine. 
This is done because the complete excitation function for 
the submachine depends on the function g ( X )  returned from 
Build(), which is unknown until the operand sub-machine is 
constructed. After Build() returns with g ( X ) ,  the function 
h ( X )  = f ( X )  + g ( X )  is calculated. At this point, this 
function is substituted for ztmp in every function in which 
ztmp appears in the structure of the sub-machine. These sub- 
stitutions are nicely performed by composing BDD functions 
e.g. f ( z  = g o )  = ite(g(), f z l  f ~ )  [ 5 ] ,  [6]. Note, a unique :Etmp 

variable must be used for each simultaneously open closure in 
the construction process. 

Special sequential operators called exception operators are 
implemented. In an exception construction, a handler machine 
Mh is initiated when its associated submachine M ,  once 
initiated, will enter a state in the next cycle from which it can 
never accept. Note this is a different notion than the sequential 
not operation in which both the cases of “active but not 
presently accepting” and “will never accept” are recognized. 
The function e ( X ,  2 )  represents the excitation that triggers 
Mh.  Consider the following equation for ez(Xl Z) ,  which is 
used to calculate e ( X ,  2): 

f ( X )  = 2 1 ) .  

e,(X,  2 )  = s(x). n f 2 ( Z 1  2 )  (1) 

This equation describes the conditions in which M is not in 
a state of recognition, g ( X ) ,  and will contain no active control 
points in the next cycle since each excitation function is false. 
To calculate e ( X )  we also need knowledge that M is active. 
This information can be computed as summation of the present 
control points in M and M’s excitation. Thus e ( X . 2 )  can 
be calculated as: 

f , E M  

- 

e ( X , Z )  = 5 2  + f ( X )  . e , ( X . Z )  ( 2 )  LEM ) 
An alternative calculation for .(XI 2 )  can be derived using 

an extra control point to denote that control was passed to 
M .  This reduces the necessary logic necessary but introduces 
control points that do not purely represent token recognition. 
To derive e ( X ,  2)  in this case, let X h  represent this control 

point. Then, 

e ( X ,  2)  = (zh + f ( x ) )  ’ ez(X, 2)  (3) 

The excitation of xh is f h ( X ,  2)  and can be computed as 
follows: 

~- 
f h ( X ~  2)  = ( 5 h  + f ( x ) ) .  ez(X, 2)  ’ h ( X )  (4) 

These exception operator constructions are valid for a 
general sub-machine, including sub-machines containing ex- 
ception operators, and thus implement the notion of exception 
scope described in Section 11. 

The circuit illustrated in Fig. 5 represents the constructed 
intermediate machine for the example in Fig. 3. Note that x2 

becomes valid after the machine is initialized only if t l (2 )  is 
seen on the inputs in the next cycle. The control points 2 3  and 
5 5  correspond to repetitive recognitions of t2 (Z)  required by 
the closure operator. 

D. Action Conditions 

In the Build() algorithm, the action execution conditions 
c k ( X ) ’ s  are constructed using the current h ( X )  at production 
operator nodes with the respective associated actions. The 
Moore output function A is constructed in this process. The 
Mealy output function can be created from the Moore output 
function. This is done by substituting f , ( X ,  2)  for all zz’s in 
ck ( X )  forming a new c k  ( XI 2)  by composing BDD functions. 
The Moore and Mealy machines are not equivalent; actions are 
triggered a cycle earlier in the Mealy format machine than in 
the Moore machine. In the Clairvoyant system, the designer 
chooses between the two forms of the action conditions before 
writing the PBS specification. 

The action execution conditions for the Moore and Mealy 
implementations of the example design are as follows: 
0 Moore: 

0 Mealy: 

action condition c l ( X )  = 27%. 

action condition c z ( X )  = Z 7 Z 6  + 5 4 .  

action condition q ( X ,  2)  = t 2 t 3 ~ 1 ( ~ 5  + 2 1 ) .  

action condition cz(X1 2)  = t2t321(25 + 21) 
f t 2 ( 2 3  + 5 2 ) .  

E. Action Ordering and Resources 

Actions are register transfer operations destined for execu- 
tion on data-paths associated with the synthesized controller. 
Action precedence from the production DAG is used to 
constrain the conceptual ordering of these executions. How- 
ever, the output HDL must be carefully structured to allow 
subsequent synthesis procedures to take full advantage of 
exclusive control paths in the design to minimize resource 
usage [36]. In conventional high-level synthesis, the exclusive 
nature of the different control paths are usually apparent from 
the input description HDL code. In Clairvoyant, however, the 
control structure can be analyzed to find which actions can 
execute simultaneously and thus cannot share resources. The 
output HDL is structured to indicate the exclusive use of the 
register transfers and to meet the constraints of the partial 
ordering relations from action precedence. Note, if actions 
are further broken into operations, detailed scheduling could 
be performed using data-flow precedence as well, however, 
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discussions of detailed scheduling in this context is the topic 
of future research. 

To determine if two actions can share resources, we need 
to determine if states exist in the machine in which both ac- 
tions are simultaneously triggered. Since the action execution 
conditions are functions of the control points (state) and, in 
the Mealy case, the input interface signals, we can use the 
symbolic Boolean representation to determine if such states 
exist. Two actions a; and aj are mutually exclusive if the 
following equation holds: 

( 5 )  

In this equation, R ( X )  is a characteristic function [9], 
[22], [33] representing the set of possible deterministic states 
reachable from the initial state of the intermediate machine. 
This function, mapping B" B, is true if and only if the 
input vector X E B" is a reachable state. 

Assessing action conflicts between all pairs of actions is not 
sufficient, however, to determine the complete action conflict 
information. For example, consider three action conditions all 
executable on a common type of operator resource. If each pair 
of actions is used simultaneously in some state, but all three 
never occur together, only 2 data-path resources are needed 
even though no pair of actions are exclusive. This sharing 
cannot be predicted from a pair-wise analysis but is correctly 
handled in the Clairvoyant model which represents all action 
conflict information in a characteristic function A(Q) .  Q is a 
vector of variables ( q I , q 2 ,  . . . , qm) corresponding to the set 
of actions ( a l ,  a2, .  . . ,a,). A(Q)  is true if there is a state 
in which the set of actions corresponding to true variables 
qi occur simultaneously and thus can't be shared. A(Q)  is 
computed as follows: 

Ci(X, Z)Cj(X,  Z ) R ( X )  = 0 

A(Q)  = 3 ( z ) 3 ( X )  n ( c i ( X ,  2) qi) . R ( X )  (6) 

The existential quantification (smoothing) [9], [22], [33] 

(" i=l ) 
operation above is defined as: 

3 ( X ) f  = 3(21)3(52) . . .3(%)f 3(2)f = fz i- fz (7) 

The characteristic function A(Q)  represents the image [9], 
[33] of the reachable state set R ( X )  projected onto the space 
B" through the action condition functions. 

To see how A( Q )  can be used to construct the output control 
structure, consider A(Q)  as a BDD. We can impose an order 
on the variables Q that minimizes the BDD size and that is 
compatible with the partial order required by the precedence 
relations. It is very likely that the actions naturally occur in 
independent sets which have no state overlap with other such 
sets. If the variables are ordered into such sets, the canonical 
nature of the ROBDD representation forces all the paths from 
the previous set into a unique node at the start variable of the 
next set. Then, since the BDD can be interpreted as a network 
of ifthen-else constructs, we can construct a feasible control 
structure for the output using if statements and procedures 
which is no more complex than the BDD representation of 
A(Q) ,  and correctly represents all possible resource sharing 
of the actions. This can be done in time proportional to the 

size of A(Q) ,  even though the number of complete paths 
through the entire control structure may grow exponentially 
fast. Alternatively, A(Q)  can be used to generate a table of 
overlaps for pair-wise exclusion or other approximate analysis. 
Conflict analysis utilizing A(Q)  is used to generate the output 
VHDL coded to maximize the effectiveness of subsequent high 
level synthesis allocation and resource sharing algorithms in 
processing the generated VHDL code. 

F. Reachable State Analysis 

Clairvoyant is equipped to perform a reachable state analysis 
on the constructed intermediate machine to compute the set 
of possible deterministic states reachable from the initial 
reset state of the intermediate machine: 212223z4 . .?En. 
Reachable state analysis is not required for the synthesis of 
the intermediate machine, but it is useful in several ways. In 
particular, knowledge of the reachable states is needed for 
the exact construction of A(Q)  shown previously. Reachable 
state information can also be used to simplify portions of 
the intermediate machine, for example, simplifying (1). The 
essential use is to describe all deterministic states of the 
machine. All state bit combinations not in this set are not 
states and therefore specify don't care conditions for any of 
the functions depending on the control points. 

The computation method is based on the recent implicit 
fixed-point iteration techniques [9], [22], [33] with custom 
heuristics based on properties of the intermediate machine. 
Even using these techniques, calculation of the set of reachable 
states is usually far more time consuming than the construction 
of the intermediate machine. 

Recall that the set of reachable states is used in calculating 
the action relation. An approximate action conflict charac- 
teristic function can be calculated assuming all states are 
reachable in the event the reachable state computation is not 
invoked. For the Mealy model machines, this approximation is 
useful because particular actions are often strongly correlated 
to the current inputs. For example, in the mouse example 
described earlier, the increment and decrement actions are 
selected by the level of a signal input, so they are clearly 
exclusive. 

G. Intermediate Machine Locality Property 

A useful property of the intermediate machine representa- 
tion is that any node of the production DAG can be directly 
related to specific portions of the intermediate machine rep- 
resentation, and each control point and excitation function 
can be related back to specific productions and compositions. 
Specifically, each production and each composition node is 
associated with a set of closed intervals [a, b] of control points 
created on each call to build() for the node. A new interval of 
control points is created each time the production is re-used 
since control points are allocated sequentially. This property is 
important for debugging, high-level optimization, and design 
information tracking. It can be used to provide links between 
the specification and structure similar to the CORAL I1 ap- 
proach [4]. For example, the example productions in Fig. 2 
can be related to the circuit in Fig. 5 as shown in Table 11. 
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TABLE I1 
PBS et INTERMEDIATE MACHINE LINKAGE 
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TABLE 111 
DESIGN CHARARCTERISTICS 

sequential production control points I interval(s) 
Pl (x2 .  x3. x4, x5. x6. XI I I L2.II 

1x2. x3. x 4 )  

H. Implementation Details 

Clairvoyant synthesis system was developed in C++ and is 
comprised of approximately 7600 total lines. Of this, 3160 
lines represents reusable classes including a 1485 line BDD 
manipulation package. The output of the Clairvoyant PBS 
compiler is VHDL code describing the synthesized machine 
architecture. This VHDL is composed of structural elements 
that describe the logic structure of the controller, and pro- 
cesses that implement the register transfers and data-path 
logic required by the actions. The structure of the VHDL 
action processes satisfy the partial ordering required by action 
precedence. 

The tool uses BDD’s for the symbolic Boolean manipu- 
lations. During the synthesis, BDD variables are allocated 
dynamically as the machine construction proceeds. This con- 
struction process also naturally develops a reasonable heuristic 
variable ordering based on circuit topology arguments [25]. 
BDD variables are grouped into classes based on use and 
are interleaved. The following three-way ordering is used: 
z1 < x1 < :y1 < 22 < 5 2  < y2 < z3 < .c3 < :y3.... The 
yi’s represent an additional set of state variables used by the 
reachable state analysis, and in computing the action conflict 
relation A ( & ) .  

In the Clairvoyant system, after the intermediate machine 
is constructed, redundant registers may exist. These arise for 
several reasons. Boundary registers with lack of fan-out may 
exist if action conditions are converted from Moore to Mealy 
form. Registers with identical excitation may exist that were 
not filtered by the memory function described in Section 
IV-C. This is due to the existence of temporary variables 
allocated in the construction process preventing identification. 
Finally, if the reachable state analysis is invoked, additional 
redundant registers may be identified using techniques similar 
to those described in [28]. Post-processing steps manipulate 
the intermediate machine to ensure that all registers (control 
points) identified as reductant will be eliminated by later logic 
synthesis. For example, after logic synthesis, the registers x4, 
and z6 will be removed (equivalent fan-in to 2 3 . 5 5 ) .  If Mealy 
action conditions are used, register 1c7 (output unused) will be 
removed as well, in the circuit in Fig. 5. 

V. EXPERIMENTAL RESULTS 

A. Examples 

Several example designs were specified using Production- 
Based Specifications. These designs and their characteristics 
are tabulated in Table 111. The number of inputs includes the 
clock signal and the reset signal. Each design was verified 
by simulation of VHDL output from Clairvoyant. The several 

mouse designs are different versions of the 1-D quadrature 
decoder machine described in the introduction of this paper. 
The “mouse(a)” design is identical to this earlier example. The 
“mouse(b)” design recognizes a complete quadrature sequence 
as an event and so is a more restrictive version, although, both 
versions correctly interpret quadrature data. The “xymouse” 
designs are 2-D versions of the respective 1-D mouse decoder 
examples. The xymouse designs are specified as a single set 
of productions using the expressive power of the Boolean 
representation in the language. Using the early version of 
the PBS language [29], the xymouse designs would require 
a symbolic alphabet consisting of the Cartesian product of 
the 1-D mouse alphabets, and would be far more difficult to 
express. Using arbitrary Boolean functions as tokens allows 
representation of enormous symbolic alphabets, and makes 
specification of realistic designs possible. 

The “countO” example is a design that counts sequen- 
tial zero’s in a valid input frame format. This example is 
based on the procedural VHDL design in [7].  The “qr42” 
design is a handshake conversion protocol. This design is a 
standard asynchronous example specified as a synchronous 
machine. This design connects two interfaces together, one 
side operating with two-phase (nonretum-to-zero) signaling 
and the other with four-phase (return-to-zero) signaling. This 
machine uses the “&&’ operator for synchronization. The 
“i825 1 ar” example is the asynchronous receiver protocol in 
the i825 1 high-level synthesis benchmark [2]. This example 
uses the Boolean qualification operators in the specification 
of the different modes of operation. This design also uses an 
exception operator to reset the machine if invalid stimulus is 
encountered. The “midi” design is a large design example. 
It is an interface controller which interprets the MIDI [26] 
music protocol for a digital synthesizer chip controller. The 
specification of this design also includes an exception operator 
to restart the machine in case of invalid input sequences. The 
“mismatch” example is the pathological regular expression 
described in [18] which detects mismatches between first 
and the last symbols in the input sequence. This example is 
expected to produce very large numbers of deterministic states. 

B. Results 

Results for compiling the example designs to the intermedi- 
ate machine form are illustrated in Table IV. In this table, 
the number of control points in the intermediate machine 
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- ~~~ 

design mchabk states diameter computaion time ite calk 
mouse@) 8 2 0.23 8,761 
xymous(a) 50 2 1.52 64.396 
how) 14 4 0.71 28.863 
xymo=(b) 170 4 10.72 408,505 
count0 5 3 0.171 5.663 

TABLE IV 
INTERMEDIATE MACHINE SYNTHESIS 

qr42 62 
i825lar 17 
midi 166 
mismalch 8062 

design 

12 3.49 126,158 
12 3.11 114.765 
40 1.79 1 37.33 1,185 
16 5.191 172.791.476 

xymouse(a) 
mouse@) 
xy mouse@) 
count0 

lmidi 
lmismatch 

TABLE V 
OPTIONAL REACHABLE STATE ANALYSIS 

representation after construction are listed. Also listed in Table 
IV are the construction times in CPU seconds (Solbourne 
Series 5e/906 machine) and construction complexity measured 
in terms of the numbers of calls to the primitive BDD function 
ite() for the entire construction. 

Table V shows the results of the reachable state analysis. 
The number of reachable states represent the total number 
of unique deterministic states in the intermediate machine 
representation of the controller. The diameter measures the 
shortest path from the initial state of the controller to the 
furthest reachable state. This number is directly related to 
the number of fixed point iterations required to compute the 
reachable states. The ite call numbers reflect the total number 
of calls to ite() during the reachable state analysis. Times are 
CPU seconds (Solbourne Series 5e/906 machine). 

Action conflict data is given in Table VI. In this table, “con- 
flict states” refers to the number of points in the Boolean space 
B” covered by A(Q)  in each of the designs. This represents 
the number of combinations of possible simultaneous action 
execution. For example, in the mouse designs three states are 
possible for its two actions. Neither action can execute, or 
each action can execute individually, however, both can never 
execute simultaneously. The table also indicates the number 
of BDD nodes in the function A(Q)  and the time (CPU 
seconds for Solbourne 5e/906) and number ite calls recorded 
to construct A( Q ) .  

The intermediate machine is used in Clairvoyant for rep- 
resentation, analysis, and optimization of the design. It is 
also utilized in derivation of a circuit realization of the 
design’s controller. This is advantageous because the con- 
struction naturally creates machine implementations with very 

small excitation functions. In practice, the excitation function 
for a given control point tends to depend on a very small 
number of other control points. Results showing the size of the 
average and maximum literal support for the control points is 
tabulated in Table VII. This table reflects the variable support 
of the control point excitation functions (the f i ( X ,  Z)’s in A) 
and the action conditions (the c ; ( X ,  2)’s  in A) after redundant 
registers are removed. Average and maximum numbers are 
reported in the table. The relatively large maximum support 
for the i8251ar and midi examples is a consequence of the 
exception operators in these designs. 

Comparisons of the encodings present in the Clairvoyant 
implementations of the example designs to conventional state 
assignment techniques are presented in Tables VIII(a) and 
VIII(b). These comparisons were performed as follows. BLIF 
files describing the controller portion of the designs were 
generated from the intermediate machine representation by 
the Clairvoyant system. These BLIF files were read into the 
SIS sequential and logic synthesis system [32] for analysis. 
Comparisons were made between the SIS circuit network 
optimizations of the Clairvoyant implementations and the 
implementations generated by extracting the State Transition 
Graphs (STG’s) and performing state assignment. Three state 
assignment algorithms were used in the comparisons: NOVA 
[37], JEDI [22], and one hot. These algorithms were invoked 
from within SIS. Table VIII(a) shows the comparision of the 
Clairvoyant encodings to state assignments of the extracted 
STG. Table VIII(b) shows the same comparisons, however, the 
extracted STG’s were state minimized before state assignment. 
In these comparisons, standard SIS minimization scripts were 
invoked for the network optimization. 

In the tables, “L” refers to the number of literals in the fac- 
tored form of the optimized technology independent network. 
A measure for performance comparison of the encodings was 
obtained by mapping the optimized network to two input logic 
gates and recording the maximum levels of logic required. 
These numbers are listed in the columns labeled “D”. The 
number of required registers for each of the encodings is also 
listed in the table in columns labeled “R’. The STG for the 
mismatch example could not be extracted due to the large 
number of deterministic states. State minimization for the midi 
STG failed due to the example’s size. Note, in the extraction of 
the STG’s from the networks, not all of the network reachable 
states are significant due to the presence of redundant registers 
which don’t fan out. This is why the number of STG states 
differs from the number reachable states in the intermediate 
form. The SIS command “xdc” reports the number reachable 
states of the network which are identical to those listed in 
Table V. 

Results for further VHDL and logic synthesis of the output 
RTL implementations generated by the Clairvoyant system 
for each of the example designs is shown in Table IX. Gate 
level circuit implementations of the designs were synthesized 
using the Synopsys@ VHDL and logic synthesis tools. In 
these results, no additional sequential optimizations such as 
state assignment, re-timing, or re-encoding were invoked. The 
logic synthesis was directed to optimize for speed (critical 
path delay) and the synthesized circuits were optimized for 
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Variable Support 

A A 

design avg. max. avg. max. 
L 
mouse(a) 2 4 4 4 

x ymouse(a) 2 4 4 4 

183 

i82.5lar 84 16 14 
midi 604 22 166 
mismatch 114 6 62 

TABLE VJ 
ACXION CONFLICT DATA 

171 741 161 51 1121 2.51 51 951 121 17 

1661 7431811 81 10981891 817051 231 I66 
unable 

TABLE VI1 
VARIABLE SUPPORT OF INTERMEDIATE MACHINE FUNCTIONS 

TABLE VIIJ 
STATE MACHINE ENCODING COMPARISON #1 (a). COMPARISON #2 (b). 

and mapped to LSI 10k gate array library cells [24]. The 
data for the path delay (in nS), relative area, total number 
of LSI 10k cells, and total number of flip flops is given. 
These numbers include both the control as well as the data- 
path portions of the designs. The relative area numbers are the 
area estimates based on LSI 10k library cells returned by the 
synthesis tool. 

Some conclusions can be drawn from these results. In 
comparing the mouse machines with the xymouse machines, 
the number of productions and control points roughly doubles 
while the state space of the machine is squared. It is clear 
that the machine construction complexity is not proportional 
to the growth of the machine’s state space as would be 
expected from conventional algorithms. The execution speed 
of the two designs (which includes the data-path delay as 
well as the control delay) is nearly the same (the Clairvoyant 
design for the xy-version consists essentially of two of the 
single machines in parallel thus the delay differences are 
artifacts of the further synthesis). The midi design was much 
more complicated in its behavior and included an exception 
handling routine so that any valid data imbedded in arbitrary 

invalid data would be correctly interpreted. Considering this, 
the design’s cycle time was an impressive 13.96 nS. Also, 
note that this design required only 30 productions for the 
entire specification, which fit comfortably on 2 pages of 
text. Finally, the pathological mismatch design had 8062 
deterministic states, but was constructed in 0.28 CPU seconds, 
showing the relative independence of the construction time 
from the size of the deterministic state space. Table VI 
shows that our optimal technique for generation of operation 
exclusion information is both feasible and is simple to map 
into the output VHDL, as shown by the very small ROBDD 
representations needed to represent the functions A(Q) .  Use 
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TABLE M 
VHDL AND LOGIC SYNTHESIS RESULTS 

of this information is critical in allowing subsequent logic 
optimization to minimize the required resources. 

It is of interest to note the relatively high performance of the 
designs derived directly from the intermediate form. These de- 
signs typically have more registers than conventional designs 
but generally have very simple excitation logic between the 
control points. This is due to the direct use of the specification 
in constructing the logic and selecting the deterministic codes. 
In effect, the control points provide a set of signals from 
which the excitation functions can be derived with very 
small literal support. These considerations are demonstrated 
by the differences in logic complexity (as reflected by factored 
literal counts) and in controller logic delay (as reflected by 
the mapped logic depth) shown for Clairvoyant designs and 
designs created by symbolic state extraction, state assignment, 
minimization and identical synthesis. In particular, in the small 
state machines with little parallelism: mouse(a), mouse(b), 
i825 lar, and count0, the Clairvoyant designs are comparable 
to the state assigned designs. However, for larger and more 
parallel cases such as xy-mouse and qr42, the quality of 
the distributed encoding becomes much more impressive. 
Note that even when the minimal machine encodings have 
comparable literal counts, the logic depth (and hence the 
controller delay) of these machines is greater. In the typical 
case, the logic depth of Clairvoyant was smaller than any 
of the other encodings, state minimized or not. Finally, it 
is important to note that the mismatch design complexity is 
relatively simple even though it could not be synthesized at 
all using state-graph based techniques. 

The register costs for the Clairvoyant designs must be 
measured relative to the implementation technology. The en- 
codings are ideal for FPGA implementation where registers are 
virtually free since they typically occur in every FPGA cell. 
In these designs, the small average literal support and logic 
depth should allow efficient, high performance designs. In 
other technologies where high performance is required, these 
encodings may be desirable, regardless of the register costs. 

VI. CONCLUSION AND FUTURE WORK 

We have presented a new high-level synthesis system di- 
rected toward the synthesis of complex designs that are spec- 

ified concisely using hierarchical grammar-like decompositon 
of their behavior. These specifications are of practical use 
in synthesis problems that are control dominated or require 
complex concurrent protocols. The use of productions enables 
the specification to span many levels of complexity, and to 
describe what actions should be taken in each case. Nondeter- 
minism in the language frees the designer from the onerous 
task of determining the precise behavior required of each 
deterministic state. Instead, the designer needs only to specify 
the kinds of behaviors expected and what actions should take 
place. The direct use of Boolean functions in both the token 
recognition and production qualification processes greatly ex- 
pand the expressability of engineering design specifications 
in this format. The resulting specifications are very concise 
and allow the designer to specify the design at high levels 
of abstraction in which the detailed interaction of the sub- 
machines is automatically derived. The system synthesizes 
a hardware architecture with VHDL register-tranfer output 
allowing system assembly with VHDL modules from many 
sources and use of commercially available tools. 

The Clairvoyant system implementation makes extensive 
use of symbolic construction techniques to perform this syn- 
thesis. These techniques include a new direct machine con- 
struction algorithm which is not directly impacted by the size 
of the deterministic state space and hence is applicable to 
very large designs. The constructed intermediate machine form 
is a convenient representation base for further analysis and 
optimization using both classical and more recent symbolic 
techniques. With little additional optimization, this form yields 
sequential machines with favorable performance characteris- 
tics. Techniques for evaluating resources conflicts for designs 
in this representation have also been described. 

In future work, further optimization of the intermediate 
machine to reduce the number of registers without reducing 
the high level of performance achieved in the design will 
be studied and applied to the Clairvoyant synthesis tool. 
Additional studies and possible future work includes operation 
scheduling and optimization in conjuction with the controller 
and protocol constraints as well as optimizations to simplify 
the productions. 
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