
HW / SW Partitioning Approach For Reconfigurable
System Design

K. Ben Chehida  M. Auguin
 I3S, University of Nice Sophia Antipolis, CNRS I3S, University of Nice Sophia Antipolis, CNRS

Les Algorithmes/ Euclide B,2000 route des Lucioles        Les Algorithmes/ Euclide B,2000 route des Lucioles
BP 121, 06903 Sophia-Antipolis Cedex BP 121, 06903 Sophia-Antipolis Cedex

Tel. 0334 92942788 Tel. 0334 92942777
ben_cheh@i3s.unice.fr auguin@i3s.unice.fr

ABSTRACT
This paper presents a Genetic Algorithm (GA) based approach
for Hardware/Software partitioning targeting an architecture
composed of a processor and a dynamically reconfigurable
datapath (FPGA). From an acyclic task graph and a set of Area-
Time implementation trade off points for each task, our GA
performs HW/SW partitioning and scheduling such that the
global application execution time is minimized. The efficiency
of our GA is established through its application to an AC-3
decoder function and its performance is compared with a greedy
algorithm.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-Aided Engineering -
Computer-aided design (CAD).
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems - Real-time and embedded systems.

General Terms
Algorithms, Design, Performance.

Keywords
Genetic algorithm, HW/SW partitioning, clustering, dynamic
reconfiguration, codesign.

1. INTRODUCTION
The recent improvements in size, flexibility and reconfiguration
speed of FPGAs make this technology very attractive for low
cost and high speed embedded system design. Connecting a
reconfigurable device to a programmable processor in a single
chip [1, 2, 3, 4, 5], constitutes a very flexible and efficient
architecture that can be used in a wide variety of embedded
devices (for example, intelligent terminals or sensors such as a
networked camera [6]). Rapid development of embedded
systems using this software/reconfigurable technology suffers
from lack of advanced system level design tools which exploit
efficiently the parallelism and the dynamic reconfiguration
capabilities of the architecture.

The aim of the project EPICURE1 is to introduce a design
methodology for dynamically reconfigurable computing
platforms composed of a general purpose processor (CPU) and a
dynamically reconfigurable datapath (FPGA…). From
performance/cost estimates of implementations of tasks of the
application on the processor and on the reconfigurable circuit,
we have developed a partitioning tool which provides a mapping
and a schedule of the tasks on the architecture. The organisation
of this paper is as follow. In Section 2 we formulate our problem
to match the application and the architecture models. The
description of our partitioning approach based on a genetic
algorithm is provided in Section 3, and in Section 4 is outlined a
greedy algorithm. Results and performance comparison on a AC-
3 decoder task graph example are presented in Section 5. We
conclude with Section 6.

2. PROBLEM FORMULATION
The target architecture is composed of a processor connected to
a dynamically reconfigurable unit. This dynamic reconfiguration
technology is investigated by numerous research groups (e.g.
[7],[8]) and would be very attractive for commercial products.
Exploiting  dynamic reconfiguration requires rather a coarse
grain parallelism to reduce the relative cost of reconfiguration
and data transfers. The application model considered is a
function or task level data flow graph specification. From this
task graph, the goal of partitioning is to select whether to put
each task into SW or HW such that the whole execution time is
minimized. The partitioning algorithm takes into account the
dynamic reconfiguration capabilities of the hardware unit.
Currently, partial reconfigurations of the circuit are supported
(the reconfiguration time depends on the number of
Configurable Logic Blocks (CLBs) involved in the
reconfiguration) without allowing overlaps between computation
and  reconfiguration. Complete reconfigurations of the circuit
can be considered as well. The approach is based on a genetic
algorithm that realizes a design space exploration by generating
different mappings of the tasks on the processor and the FPGA.
Evaluation of the execution time of the architecture for each
mapping requires to define a schedule of the tasks including
reconfigurations for context switching and data transfers
between tasks. This evaluation is performed with a clustering
heuristic inspired by the COSYN method [9].
Each node of the acyclic data flow graph denotes a task that can
be mapped to the SW or the HW. the amount of data (bytes) that

                                                          
1 This project is supported by the French Ministry of Research and

Education through the Réseau National des Technologies Logicielles.
The partners of the project are CEA, Thales, Esterel Technologies,
LESTER - Université de Bretagne Sud and I3S - Université de Nice
Sophia Antipolis/CNRS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES 2002, October 8-11, 2002, Grenoble, France.
Copyright 2000 ACM 1-58113-575-0/02/0010…$5.00.

247

mailto:Ben_cheh@i3s.unice.fr
mailto:auguin@i3s.unice.fr


must be transferred between two connected tasks is associated
with each edge. A task can begin its execution when all its parent
tasks and incoming edges have completed their executions. SW
and HW runtimes of each task are estimated  in terms of Area–
Time trade off points. SW runtime performance is estimated
through profiling and HW (FPGA) performance / area
estimations are performed at the behavioral level. The number of
implementation points can differ for each task depending on the
exploitation of the available parallelism in the task [10].
Figure 1 shows an example of a task graph and the Area-Time
implementation points for each task. The area is evaluated as a
number of CLBs. A zero-CLBs implementation point of a task
denotes a SW only implementation. We assume that a shared
memory connects the processor and the reconfigurable unit with
two data buses of fixed speed. This interface involves
communication times to read and write data if two tasks
connected by an edge are placed one on the HW unit and one on
the SW unit. The transfer time depends linearly on the amount of
data bytes annotated on the edge [9]. Let ρi be the number of
bytes on edge ei and λl be the number of bytes per packet
supported by bus l. Let τl be the communication time of a packet
on l and Ωl  be the access time per packet on that bus. Then the
time to communicate the data on edge ei is given by:

( )ll
l

i
it Ω+








= τ

λ
ρ

. (1)

3. HW/SW PARTITIONING USING A
GENETIC ALGORITHM

We model and solve our partitioning problem through a Genetic
Algorithm. The encoding of any solution corresponds to the
binding of each task to an implementation point. Our encoding
method codes a chromosome C with an array of genes of length
N where N is the number of tasks. Each gene C(i) is an integer
representing a percentage. The maximum 100% value that can
take C(i) is associated with the most CLBs-based expensive
implementation of task i. The selected implementation point is
the nearest point to C(i) on the area axis. All the solutions
delivered by this encoding method are viable. The chromosome
example presented in Figure 2 assigns tasks 1 and 4 to a SW
implementation and all the others to the HW. Tasks mapped to
HW have to be grouped into Contexts (or Clusters) to finally
evaluate the effectiveness of the individual.
The NIndiv individuals forming the initial population are
randomly generated: the gene values of these chromosomes are

randomly chosen between 0 and 100. The fitness of every
chromosome (solution) delivered by GA is evaluated allowing
its ranking onto the current population. A solution is evaluated
by its overall execution time including the reconfigurations for
context switching and data transfers between tasks.

Communication times computation:
The chromosome structure provides an allocation of tasks to HW
and SW so that preliminary communication times can easily be
computed using (1). These communication times will be updated
after clustering.
Contexts definition (Clustering):
We use a Clustering approach as addressed in [9] to group tasks
in contexts. We first assign priority levels to tasks starting from
the graph leafs. The priority level of a task is the longest path
from the task to a leaf evaluated as computation and
communication costs (Fig. 3). To reduce the schedule length, we
need to decrease the length of the longest path by clustering
tasks along it in order to reduce the communication costs along
the path. The priority Pi of task i is computed considering the
priority of its successors j and the communication time between
i and j according to equation (2):

Pi  = T_exec(τi) +  Max(j) (Pj + T_com(τi , τj))       (2)

The cluster size Smax is limited to the maximum FPGA size (in
practice, 80 to 85 % of the total number of CLBs).
Initially, all the tasks are sorted in the decreasing order of their
priority levels. We pick the unclustered task τi(ti,Si) with the
highest priority level, where ti is the execution time and Si the
number of CLBs defined by the implementation pointed by C(i)
in the chromosome, and mark it clustered.  The available
resources of the current cluster Ress(Ccurr) (initially to Smax) are
decreased by Si. This context building is iterated with tasks
τj(tj,Sj) assigned to HW while:

Sj  ≤  Ress(Ccurr)            (3)

Else, a new cluster is created and the process is repeated until all
the HW tasks are assigned to clusters. The reconfiguration time
depends on the quantity Nk of logic cells (CLBs) needed for
mapping the context k on the FPGA. Let TF be the time for a full
reconfiguration then the reconfiguration time per CLB is given
by:

Treconf/CLB  = 
max

 
S
TF     (4)

We evaluate the reconfiguration time of the context k by:
Treconf  (k)  =     . reconf/CLBk TN     (5)

Figure 1: Task Graph, Area-Time trade off curves Figure 2: Chromosome encoding

248



Tasks of the graph shown in figure 3 are annotated with the
parameters (ti /Si)//Pi. The priorities are computed before
communication times update. The GA allocates only task 5 on
the processor. According to equation (5) and assuming that the
reconfiguration time per CLB Treconf/CLB = 0.6 µs, the
reconfiguration times of the three contexts are:
Treconf (C1) = Treconf (C2) =  17 . (0.6) = 10 µs.
Treconf (C3) = 11 . (0.6) = 7 µs.
Communication time updates:
Once the contexts are defined, the algorithm updates the intra-
Context (within a context) and inter-Contexts (between different
contexts) communication times. Intra-Context communication
times are set to zero.
Let Ei(k) and Eo(k) be respectively the incoming and outgoing
edges of context k. for each edge ej ∈ Eo(l) ∩ Ei(k) of contexts l
and k. The communication time is updated by:
 Tcom(ej) = Max ( t(ej),  Treconf(k))           (6)

Where t(ej) is the communication time computed using (1).
Hence, after updating communication times (see fig. 3), the
global execution time is computed starting from the roots of the
DFG and considering the ASAP execution time of each task.
This global execution time (which is the cost of this solution) is
the maximum ASAP execution time among all the leaves. For
the example given in fig. 3, the cost of the solution is 84 µs.
Selection of solutions by GA is performed by the Tournament
technique. A number (Nparents) of tournaments are performed,
each one opposes a given number of individuals randomly
chosen in the current population to finally select the fittest to be
one of the parents allowed to reproduce.
Genetic operators are used on the Nparents individuals selected by
the Tournament technique to generate the Nchildren solutions
representing the new offspring. We perform a dynamic control
on the number of the individuals created by each operator based
on its efficiency over the previous generations. These operators
are:
Mutation operators:
Mutation randomly selects a gene (or a set of genes) and changes
its value. The mapping of a task can change from a SW to a HW
implementation, HW to SW, or the task may remain in HW but
using a different implementation point. Five mutation operators
are used in our algorithm. Two operators 2-Opt and 3-Opt from

the k-Opt family: neighbourhood search operators performing an
exploitation process by local optimization.
The Double Bridge operator permits large jumps in the solution
space assuring a pure exploration process. Two simple operators
are also used: the CutAndPaste operator (we cut the chromosome
at a random point and we swap the two portions) and the
Scramble operator (the genes between two randomly chosen
points are scrambled).
Crossover operators:
Two parent’s chromosomes are cut at the same offset(s)
(randomly set) from their starting points and the portions
following the cut are swapped. Two crossover operators are used
in our algorithm. A simple point (1p-Cross) and a double point
(2p-Cross) crossover operator.
After generation of the new offspring, the renewal of the
population is performed according to the elitism principle.
Clones are not allowed in our renewal procedure because they
can invade the whole population leading to a genetic drift. When
a number of generations Ngen has passed without improvements
of the best individual, GA halts and displays the best
encountered solution. The user-specified parameters of this
algorithm are NIndiv (initial population size), Nchildren (offspring
size) and Ngen (termination condition: number of populations
without improvements).

4. GREEDY  PARTITIONING
ALGORITHM

The partitioning problem can be addressed also using scheduling
heuristics. The greedy algorithm presented in [11] targets a
multiprocessor architecture. We have adapted this algorithm to
deal with an architecture composed of a processor connected to a
dynamically reconfigurable unit. Compared to the original
algorithm, we use an ALAP scheduling and a backward critical
path length evaluation. This ALAP scheduling algorithm
operates backward through the graph, starting from the terminal
tasks. It considers at each step the set of tasks that have their
successors allocated and scheduled. The algorithm selects from
this set the most time critical task, whatever the hardware or
software context available for this task.
The most critical task is allocated and scheduled to the context
that minimizes the estimated distance (in time) between the end
of execution of the task and the earliest start time of the initial
tasks of the graph (figure 4). Distances from each task to initial
tasks of the graph are calculated before partitioning using a
critical path length evaluation recursive algorithm.
These path lengths are evaluated for every implementation
points available for the task. Path length evaluation and task
scheduling take into account communication times and
reconfiguration times when there are not enough free CLBs to
allocate a new task in the reconfigurable unit.

C1

C2

C3 Smax = 20 CLBs

       Figure 3: Clustering and Communication time update

Figure 4:  Scheduling and allocation in the greedy algorithm

249



5. EXPERIMENTAL RESULTS
In this section results of the genetic algorithm for HW/ SW
partitioning are compared to those given by the greedy
algorithm. Our partitioning algorithms (GA and Greedy) are
implemented in C++ on an Ultra Sparc 5 Unix workstation.
The benchmark used to evaluate the result quality of our
partitioning algorithm is the AC-3 decoder application. It
includes functions such as Inverse Discrete Cosine Transform
(IDCT), Bit Allocation (BA), Decoupling (DC).A simplified task
graph of this application is presented in fig. 5.
The deadline given in the AC-3 norm is 5.33 ms. A SW only
implementation on a simple DSP processor leads to an execution
time of  5.57 ms. So we need to accelerate some portions of the
application on HW to fit the deadline constraint. We don’t target
a specific commercial FPGA component, so we consider its
attributes as parameters of the whole architecture: the FPGA
total size (in terms of number of CLBs), the reconfiguration time
per CLB, the buses speed and width and the memory access time.
We fix the buses speed and width (bus 1 between the processor
and the interface: λ1 = 128, τ1 = 10 ns; bus 2 between the FPGA
and the interface: λ2 = 256, τ2 = 15 ns) and the memory access
time Ω  = 2 ns.
GA is executed with an initial population size NIndiv of 600 and
an offspring size Nchildren of 200. The GA terminates when Ngen =
100 generations have passed without improvements of the best
solution. Towards the end of the run, a convergence is observed
as displayed in Figure 6. This figure shows the evolution of the
best individual’s cost and the mean cost over several
generations. The CPU run time on the Ultra 5 workstation of the
GA on the AC-3 application is in the range of 4 to 6 minutes and
0.03 s for the greedy algorithm.

Given a reconfiguration time per CLB of 0.2 µs (ATMEL
AT6K), we evaluate the influence of the FPGA total size on the
entire execution time of the application for the GA and the
greedy algorithms.
Figure 7 shows that the increase in the size of the reconfigurable
unit is useless since it does not provide any more speed up due to
the too large reconfiguration time penalties (obviously for the
total reconfiguration curve). The upper limits are 1600 CLBs for
GA and 1800 CLBs for the greedy algorithm. Except the point of
1400 CLBs, the genetic algorithm is able to do better exploitation
of the number of available CLBs giving lower execution times
than the greedy algorithm. This figure illustrates also that the
two algorithms cannot handle efficiently some sizes of the FPGA
(in the range 600-800 for the GA and the greedy algorithm). The
behaviour of the greedy algorithm and the clustering/scheduling
algorithm in GA consists in exploiting the available CLBs in the
FPGA to parallelize and to speed up executions of tasks.
However, the allocation of a new task to a HW context leads to
delay the executions of the other tasks already allocated in that
context since the reconfiguration time of the context is
augmented. This effect is not really handled in the algorithms as
it is illustrated in fig.7: considering a total reconfiguration of the
FPGA, we notice that the gap between the two curves given by
the GA is not too large mainly for small FPGA sizes. Note that
the results in fig.7 are obtained for a fixed granularity of CLBs.
Considering an FPGA with a different granularity requires new
estimations and partitioning.
As communications play an increasing role in today’s SOC
components, it is also interesting to see the variation of the mean
communication time over several generations. Figure 8 shows
that, after a short decrease, the mean communication time
increases as the overall execution time is dropped. That means
that the refinement procedure of the GA tries to exploit at best
the available parallelism between the Processing Elements (PEs)

EExxpp   BBAA DDMM DDCC RRXX IIDDCCTT

Figure 5: A simplified AC-3 decoder task graph

Figure 6: Best individual’s cost and the mean cost values

Figure 7: Impact of FPGA size on exec. time

  Figure 8: The PE’s idle time, the mean exec. time and
   the mean com. time

250



leading to extra communication times that remain ‘reasonable’
comparing with the overall execution time. Figure 8 shows also
the variation of the mean PE’s Idle time which is the mean over
the individuals of a given generation of the Idle times on the two
PEs (the FPGA and the processor). This mean time decreases
drastically as the GA proceeds, which is also due to the
refinement procedure capability to use at best the available gaps
in the timing charts of the two PEs. These timing charts are
presented in figure 9 where we can distinguish three FPGA
contexts (notice that we have considered partial reconfiguration
in this example: the reconfiguration time blocs are of different
sizes), the scheduling on the processor and the memory
occupation.

6. CONCLUSION
The iterative partitioning process of the greedy algorithm
optimizes locally the allocation and the scheduling of the
tasks on the units of the architecture. No backtracking is
introduced in this algorithm avoiding to consider different
allocation of tasks. The scheduling/clustering process in
the fitness evaluation step of the genetic algorithm is also
a greedy algorithm. These two algorithms must be tuned
to take into account the delay introduced in the executions
of tasks in a context due to the allocation of a new tasks in
that context.In the genetic algorithm allocation and
scheduling are separated: allocation is included in the
design space exploration while scheduling allows the
evaluation of each solution. The genetic approach for
HW/SW partitioning with a dynamically reconfigurable
unit is really effective compared with a scheduling-based
greedy algorithm. The genetic partitioning approach
provides an efficient assistance to the designer in the
investigation of a balanced architecture. It allows various
parameters of the architecture to be optimized, such as the
number of available CLBs in the reconfiguration unit, the
reconfiguration time per CLB, the data transfer rates on
the buses, the relative speeds of the processor and the
reconfiguration unit.

7. REFERENCES
[1]   O. Brosch, J. Hesser. ATLANTIS – A Hybrid FPGA/RISC

Based Reconfigurable System, Reconfigurable
Architectures Workshop, Cancun; Mexico  May 2000.

[2]   J. R. Hauser and J. Wawrzynek, Garp: A MIPS Processor
with a Reconfigurable Coprocessor, Proc. FCCM '97, April
1997.

[3]   H. Singh, M. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, E.
M. C. Filho, MorphoSys: An Integrated Reconfigurable
System for Data-Parallel and Computation-Intensive
Applications. IEEE Transactions on Computers 49(5): 465-
481 (2000).

[4]   Excalibur backgrounder, Altera Corporation, June 2000.

[5]   Virtex-II Pro data sheet, Xilinx Inc. January 2002.

[6]   P. Six, Designing Reconfigurable Networked Appliances
using C++, IMEC, Vendor presentation at DAC 2001, june
18-20, Las Vegas.

[7]   C. Ebeling, D. Cronquist and P. Franklin. Configurable
Computing: The Catalyst for High-Performance
Architectures, Proceedings of IEEE International
Conference on Application-specific Systems, Architectures
and Processors, pp. 364-72, July 1997.

[8]   H. Singh, M. H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh
and E. M. C. Filho. MorphoSys : An Integrated
Reconfigurable System for Data-Parallel Computation-
Intensive Applications. University of California, Irvine, CA
1999.

[9]   B.P. Dave, G. Lakshminarayana, N. Jha. COSYN:
hardware/software co-synthesis of
embedded systems, Design Automation
Conference, Anaheim, 1997.

[10]   S. Bilavarn, G. Gogniat, J. L. Philippe. Area Time Power
Estimation for FPGA Based Designs at a Behavioral Level,
ICECS, Beyrouth, December 2000, Kaslik, Lebanon.

[11]   B.Jorgensen, P.Madsen. Critical path driven heterogeneous
target architectures, 5th Workshop Codes / CASHE’97 ,15-
19, Braunschweig, March 1997.

FPGA Sched.

Proc. Sched.

Memory Occup.

Figure 9: A partitioning solution

251


	ABSTRACT
	General Terms
	INTRODUCTION
	PROBLEM FORMULATION
	GREEDY  PARTITIONING ALGORITHM
	EXPERIMENTAL RESULTS
	
	
	As communications play an increasing role in toda
	
	CONCLUSION
	REFERENCES






