
HW/SW Partitioning and Code Generation of Embedded
Control Applications on a Reconfigurable Architecture

Platform

Massimo Baleani‡ Frank Gennari† Yunjian Jiang† Yatish Patel† Robert K. Brayton†

Alberto Sangiovanni-Vincentelli †‡

‡PARADES EEIG †Department of EECS
Via San Pantaleo 66, 00186 Rome, Italy University of California, Berkeley CA 94720

mbaleani@parades.rm.cnr.it
�
gennari, wjiang, yatish, brayton, alberto � @eecs.berkeley.edu

ABSTRACT
This paper studies the usage of a reconfigurable architecture plat-
form for embedded control applications aimed at improving real
time performance. The hw/sw codesign methodology from POLIS
is used. It starts from high-level specifications, optimizes an inter-
mediate model of computation (Extended Finite State Machines)
and derives both hardware and software, based on performance
constraints. We study a particular architecture platform, which con-
sists of a general purpose processor core, augmented with a recon-
figurable function unit and data-path to improve run time perfor-
mance. A new mapping flow and algorithms to partition hardware
and software are proposed to generate implementation that best uti-
lizes this architecture. Encouraging preliminary results are shown
for automotive electronic control examples.

Keywords
CSoC, hw/sw co-design, code generation

1. INTRODUCTION
Configurable system-on-a-chip (CSoC) architectures are emerging
as a promising alternative to both ASIC and general purpose pro-
cessors (GPP), as witnessed by the number of currently available
commercial platforms [25]. ASICs suffer from long design cycles,
sky-rocketing NRE costs (SEMATECH estimates a cost of $1M
for a 0.15µ mask set) and poor flexibility, while GPPs do not meet
performance requirements for demanding applications. The em-
bedding of reconfigurable hardware (eFPGA) expands the range
of problems for which post-fabrication solutions are viable. This
eliminates the time and money spent in silicon design, fabrication
and manufacturing verification.

The wide adoption of these reconfigurable architectures relies on
the availability of appropriate methodologies as well as CAD tools
to map designs to future multi-million gate devices quickly and to
efficiently exploit their flexibility. Particularly, the hardware/software

co-design process must determine which portions of the overall
specification should be mapped into the reconfigurable logic and
what retained on the processor. In this paper, we discuss the au-
tomation of the entire design flow, from high-level specification to
hardware and software implementation for control-oriented appli-
cations.

While Estrin’s “fixed plus variable structure computer” proposed at
UCLA in the early 60’s is likely the first proposed reconfigurable
computers, the introduction of FPGAs spured a wealth of research
in reconfigurable FPGA-based systems [13]. In the last decade,
FPGA-based platforms have achieved significant speedups for a
range of applications including data encryption, DNA sequence
matching, automatic target recognition, genetic algorithms, image
filtering and network processors. However, with the advancement
in process technology and increasing system requirements, em-
bedded control applications, such as automotive control, avionics,
robotics and industrial plant control processes, are also experienc-
ing performance bottlenecks on traditional micro-controller plat-
forms. Thus reconfigurable hardware opens up new implementa-
tion opportunities in this domain.

In this work we use a homogeneous representation for both hard-
ware and software components, based on a network of Extended
Finite State Machines (EFSMs). This can be captured using sev-
eral high-level languages with underlying EFSM semantics, such
as ESTEREL [9] or State Transition Diagrams. From this common
representation we perform hardware/software partitioning and code
generation based on performance profiling.

For system implementation, we selected the reconfigurable VLIW
RISC core proposed in [7], featuring a 32-bit MIPS core augmented
with an FPGA reconfigurable control unit and data-path, which can
be customized to issue special instructions reading from and writ-
ing to the same MIPS integer registers. A GCC-based software
tool-chain for compilation and performance simulation for this ar-
chitecture was developed, as presented in [23]. It supports arbitrary
user defined instructions to be mapped onto the reconfigurable ma-
trix. The user manually identify and tag certain computation ker-
nels in the source code to be extracted as single FPGA instructions.
The tool-set then provides automated support for compilation, as-
sembly, simulation and profiling of the resulting code on this plat-
form.

Starting from the EFSM representation, we provide methods to ex-
plore different hw/sw trade-offs based on the profiling of the source
code with the GCC-based tool chain. Thus, we automatically de-
rive the C code with critical kernels tagged for FPGA implemen-
tation. Our methodology provides a totally automated flow from
high-level specifications such as ESTEREL, down to performance-
optimized machine code for the reconfigurable target architecture.

The paper is organized as follows. Section 2 reviews some related
work in reconfigurable computing and code generation. Section 3
gives our design flow, with details on the model of computation,
architecture selection and performance evaluation methods. Sec-
tion 4 details our method of hw/sw partitioning and code genera-
tion. Section 5 gives experimental results followed by conclusions
and future work in Section 6.

2. RELATED WORK
A number of research efforts have studied the development strate-
gies and CAD tools for reconfigurable platforms. A popular ap-
proach is to produce a unified development environment, and pro-
vide a single language that can be effectively mapped to either hard-
ware or software. PRISM [1] accepts generic C code and generates
FPGA configurations in a semi-automatic fashion. PRISM ana-
lyzed C code to identify C functions that could be implemented
with combinational logic. A similar approach to instruction-set
augmentation for general purpose computing was proposed for Prisc
[22] which considers a finer granularity, i.e. any grouping of in-
structions instead of entire C functions, for hardware synthesis onto
hardware programmable functional units. The Garp architecture
and compiler [6] were designed to accelerate loops of general pur-
pose ANSI C programs employing a reconfigurable array as a co-
processor. A hw/sw partitioning flow called Nimble was also pro-
posed in [19] for this architecture, which starts from C code and
explores the partitioning space for the computation intensive loop
kernels. Chameleon Systems reports co-compilation techniques for
its CS2000 series [27]. One promising area of research relies on
existing compilation techniques targeting VLIW architectures to
study the benefits of various functional units and interconnect struc-
tures. Adaptive Explicitly Parallel Instruction Computing [26] and
Dynamically Variable Instruction Set Architecture [20] represent
notable works in this research area.

Our approach starts from a high level abstraction using EFSMs
as the formal model to capture system specifications. Any tex-
tual or graphical language with underlying EFSM semantics (at
present ESTEREL is used as specification language) can be em-
ployed. In the POLIS framework [2] each EFSM is represented
by a single state transition table for the control path and a lookup
table for the data-path. This does not scale well to designs with
large state spaces. Binary Decision Diagrams (BDDs) are used to
optimize the state transitions and synthesize the code. This single
BDD-based representation cannot be used to perform partitioning
between hardware and software at a fine logic computation level.

Other works on Esterel compilation provide efficient ways to trans-
late Esterel programs directly into sequential C code [8, 12, 28].
These techniques do not easily support hw/sw partitioning and can-
not be utilized directly for mapping the applications onto a recon-
figurable architecture that we are interested in.

For functional evaluation using reconfigurable logic, Sasao et al. [24]
proposed using a platform that combines FPGAs with sequencing
logic to perform logic simulation and showed significant speed up

P1

M1

M2

E1

C4

P2

E2C1

C2

C3

v w

L1
L2

Figure 1: Control-data network

versus a GPP approach. However, only combinational logic func-
tions are considered in their approach.

3. DESIGN FLOW
3.1 Model of Computation
We use a network of EFSMs as the fundamental computation model.
This is derived from a high-level specification, currently ESTEREL.
Technology independent optimization is performed using multi-
valued (MV) logic and data-path manipulation.

We use MVSIS [11, 5] for optimization and synthesis. It operates
on a control-data network representation. This network has control
nodes and data nodes interconnected with two types of variables:
MV variables with finite ranges and data variables with unbounded
ranges. Each control node is a multi-valued function represented
in Multi-valued Decision Diagrams (MDDs) and sum-of-products
(SOPs). Data nodes consists of three types: multiplexers, expres-
sions and predicates.

A multiplexer is defined as f � f
�
yc � y0 ��������� yn � 1 � , where yc is a

MV-variable with n values, yi, (i 	�
 0 � n � 1) are data inputs. The
output f is assigned to yi if yc � i. Predicate nodes and expression
nodes contain computation of pure data variables, while a predicate
outputs an MV variable and an expression outputs a data variable.
The data computation is currently modeled as uninterpreted strings,
which may be complex computation and function calls. The ex-
pressions however must be arithmetic as defined in the semantics
of the C language.

Figure 1 shows an example of a control-data network, where bold
wires indicate data variables. It consists of four control nodes (C1-
C4), two multiplexers (M1, M2), two predicates (P1, P2), two ex-
pressions (E1, E2) and two latches (L1, L2).

A set of technology independent optimization methods are avail-
able in MVSIS [5]. These include algorithms extended from binary
logic: algebraic decomposition [10], don’t care-based simplifica-
tion [16], elimination, resubstitution; as well as algorithms specifi-
cally tuned for multi-valued logic: node pairing and encoding [11].

In the architecture mapping phase, implementation code is auto-
matically generated from this control-data network for the recon-
figurable platform. (See Section 4).

3.2 Architectures
Reconfigurable platforms, coupling a programmable logic with a
processor core, come in different varieties, differing in processor

integration scheme, computing model, and the granularity of the re-
programmable logic. For the computing model, the reconfigurable
array may be deployed as an autonomous co/stream processor, ded-
icated I/O processor, interface glue logic, or as instruction set aug-
mentation. Several computing models may be supported by the
same platform, but effectiveness depends on the level of integra-
tion between the reconfigurable logic and CPU core. The reconfig-
urable logic can be placed on an I/O bus [1], can be moved closer
to the CPU [15] (akin to a standard floating point unit) or can be in-
tegrated into the processor as a reprogrammable functional unit [7,
21, 14].

The integration scheme determines the granularity of the applica-
tion segments executed on the reconfigurable fabric. Due to the
fine granularity of the finite state machine code, we adopted the
instruction augmentation computing model and the reconfigurable
platform of [7]. Special FPGA operations can be reconfigured and
viewed as special instructions in the system ISA. This can be uti-
lized at C programming level. Since the reconfigurable array is
part of the processor’s data path, there is minimal communication
overhead compared to the coprocessor implementation. A copro-
cessor platform requires additional cycles to explicitly transfer data
to and from the reconfigurable array, thus undermines the perfor-
mance gain obtained from FPGA instructions.

There are disadvantages of this approach as well. The number of
ports on the register file limits the input/output bandwidth of the
FPGA array. The control flow of the data path also requires the
FPGA array be executed synchronously with the pipeline design.
These requirements dictate that only small blocks with few inputs
and outputs can be implemented on the FPGA array. Fortunately,
this works well in the chosen application space, in that EFSMs con-
tain nodes that have only a few inputs and outputs and perform
simple calculations.

3.3 Performance Evaluation
We use the GCC-based performance evaluation tool-chain devel-
oped for the target architecture [23]. Given the C code of the target
application, the user can tag blocks of C code to be implemented
on the reconfigurable array, using a pragma directive:

#pragma instr name opcode delay nout nin outs ins

where instr name is the mnemonic name of the FPGA instruction;
opcode is the instruction code used in hardware simulation, which
is not relevant in our approach; delay is the latency in clock cycles
of this instruction; nouts and nins are the numbers of outputs and
inputs; outs and ins are the lists of output and input variables. The
code that follows is interpreted as a C simulation model, which is
then ended with another pragma directive:

#pragma end

After the tags are added to the C code, the simulator simulates the
code using the cycle counts specified by the user for the tagged
blocks. The profiler returns the number of cycles used to execute
each line of code.

Our goal is to automatically partition hardware and software and
generate the tags for FPGA instructions, which implements the
hardware partition. There are two limitations for an FPGA instruc-
tion: (a) it must have no more than 3 inputs and 2 outputs, due

to instruction encoding and register file limitations; (b) there is a
limited pool of LUTs for FPGA instructions. These are taken into
account in the partition algorithm in the next section. There is also
a challenge of accurately estimating the cycle count of the FPGA
instructions. The most precise method compiles the perspective
FPGA instructions into LUTs and calculates the longest path delay
versus the clock cycle time of the processor pipeline. In the exper-
iments we use heuristics for the estimation in order to have a quick
performance evaluation.

4. CODE GENERATION
The code generation problem is, given a multi-level control-data
network, generate efficient code that consists of two portions: soft-
ware blocks to be executed on the processor and tagged hardware
blocks to be implemented as FPGA instructions. The objective is
to maximize the overall performance while satisfying appropriate
resource constraints, such as RAM and ROM usage and FPGA size.

We solve this problem in two steps: (a) construct maximal regions
(clubs) of the network that can be implemented as a single instruc-
tion without violating data dependencies, (b) explore the assign-
ment of individual clubs to hardware or software based on perfor-
mance estimation and profiling. For the final generation of C code,
we use an MDD-based code generation approach [17].

4.1 Clubbing
A club is a candidate block of functionality for potential hardware
implementation. It is defined as a cluster of nodes, which satisfies
the following constraints:

1. It does not contain primary inputs or latches;

2. It consists of either pure control nodes or pure data nodes;

3. Its number of inputs (outputs) does not exceed a predeter-
mined maximum number;

4. It does not introduce combinational cycles among clubs.

We currently do not allow primary inputs to be implemented on
the reconfigurable array, because the architecture dictates that all
functional inputs be supplied through the register files. However,
in some applications it may be worthwhile to consider different ar-
chitectures that allow this. Latches can be implemented in FPGAs
as well, in that the FPGA operations may have states that is kept
from instruction to instruction. However, this involves sequential
EFSM partitioning, which is beyond the scope of this paper.

Condition (2) is present because control and data nodes require dif-
ferent sets of logic and data-path for implementation. Condition (3)
is due to instruction encoding and register file limitations. Condi-
tion (4) guarantees deterministic and correct functionality.

In [18] Khatri introduced a clustering algorithm with a similar def-
inition of clubs, for the mapping from a logic network to a network
of PLAs. Although it does not satisfy our clubbing constraints, our
clubbing algorithm, outlined in Figure 2, is based on this.

The network is first optimized and decomposed into small nodes.
Routine Build levelized array() (step 2) then levelizes and sorts the
nodes in a depth-first order. In the levelization, the nodes are tra-
versed from inputs to outputs; when a node is added to the array,

Algorithm [Network Clubbing]:
input: control-data-network N
output: club pool Result
1 N1 = Decompose network (N, M);
2 L = Build levelized array (N1);
3 Foreach node k in L do
4 if check club

�
C � k � then

5 C � make club
�
C � k � ;

6 Continue;
7 else
8 Result � Result � C;
9 C � new club

�
k � ;

10 end if
11 end

Figure 2: Network Clubbing Algorithm

a recursive function is called on each of the node’s fanouts; in the
recursion, if all of a node’s fanins have previously been added to
the array, this node is also added. In essence, a node is inserted to
the end of the array immediately after all of its fanins have been
inserted. Notice that primary inputs and latches are not included in
this array.

The main clubbing loop then iterates through each node in this lev-
elized array and checks if the addition of the node to the current
club violates any of conditions 1-4 (check club()). If not, the node
is added to the club (make club()); otherwise a new club is initiated
for this node and the previous club added to the final pool.

4.2 Bit-packing
The synthesis flow supports multi-valued variables in the EFSM
model, but in many designs, a majority of the nodes only require a
few bits to represent the largest value. Therefore, in order to fully
utilize the FPGA instructions with the 3-input and 2-output limi-
tation, we need to bit-pack multiple control variables into a single
32-bit integer and thus be able to cluster larger clubs. There is
of course overhead cost of assigning (extracting) the proper bits
of the 32-bit integer for the inputs (outputs) of the FPGA instruc-
tions. However, larger clusters would be able to eliminate unnec-
essary intermediate variables and thus save load/store instructions
and memory accesses.

To incorporate the bit-packing, the code generation flow described
above is modified in two aspects:

1. The clubbing algorithm is modified so that the input/output
constraint reflects the number of bits rather than variables.
For the selected architecture [7], the input constraint is 32 � 3
bits and the output constraint is 32 � 2 bits.

2. The code of each club is included with additional temporary
variables for the constrained club-inputs and club-outputs.
New code is added to align the original input bits into the
temporary club input variables before the FPGA instruction,
and to extract output bits from the temporary club output
variables after the FPGA instruction.

Bit-packing allows each club to have up to 96 binary variables as
input, and 64 binary variables as output. The IO constraint of the
FPGA instructions for control is then only limited by the data de-
pendencies between control nodes and data nodes. However, bit

Table 1: Benchmark examples

Example strl PI PO node MUX PRED EXP latch
Dance 243 1 14 299 73 13 41 38

Display 155 4 6 148 51 3 43 14
Driver 775 85 49 541 118 41 58 71

packing and unpacking are very expensive operation on conven-
tional processors and create overhead on the software partition. Yet
they are extremely cheap on the FPGA processor. This again illus-
trates the trade-off between computation and communication.

4.3 Partitioning
We explore different hardware/software trade-offs based on perfor-
mance profiles of each potential club. This is done in two steps:

1. Obtain the performance profile and FPGA implementation
cost (reconfigurable array LUT count) for each club.

2. Find the best hw/sw partition that maximizes performance
gain and satisfies the FPGA size constraints.

For first step, we generate C code for all clubs with no FPGA in-
structions; we run through the GCC-based tool-chain and obtain an
average cycle count for each line of the C code; the cycle count for
a club is then the summation of the cycle count for all its source
lines.

A simple algorithm based on the number of input and output bits is
used to estimate the number of LUTs required if the club is imple-
mented in hardware. Node patterns that commonly appeared were
synthesized using Xilinx logic synthesis tools to determine the LUT
counts. Any unidentifiable node types such as function calls were
estimated manually.

The second step is formulated as a Boolean programming problem.
For potential FPGA clubs � C1 � C2 ��������� Cn � , let � T1 � T2 ������� � Tn � be
their cycle count from the performance profiling, and let � S1, S2,
����� , Sn � be their estimated LUT count for the FPGA implemen-
tation. Create a Boolean variable xi for each club Ci; let xi � 1
represent Ci being implemented in hardware and xi � 0 represent
software implementation. The goal is to find the Boolean assign-
ment of the vector � x1 � x2 ��������� xn � , such that:

Maximize : ∑n
1 xi � Ti

Constraint : ∑n
1 xi � Si � SIZE

In the actual experiments done so far, due to our primitive estima-
tion of cycle count and LUT size, we chose a greedy assignment
approach: the clubs are sorted in descending order of their profiled
cycle counts; assign, in order, each as FPGA instruction until the
FPGA size limit is reached.

After hw/sw partitioning, each chosen FPGA instruction needs an
estimated cycle count for performance simulation. The heuristics
used assume that small nodes will take 1 cycle. For commonly
used clubs, we again run a Xilinx synthesis tool and estimate the
resulting FPGA hardware latency. For more complex control clubs,
we estimate based on the number of input and output values. Other
types of clubs that involve function calls and data computation are
estimated manually.

Table 2: Results from performance simulation
Clubs Est. LUTs Cycles

Shock dance
No FPGA 0 0 923,384

All Control 75 128 536,729
All Data 76 2596 736,794

Mix 151 2724 406,695
Cross display
No FPGA 0 0 452,268

All Control 18 18 346,882
All Data 58 2100 306,641

Mix 76 2118 218,146
Injection driver
No FPGA 0 0 5,263,012

All Control 122 542 4,682,820
All Data 99 3304 2,169,596

Mix 221 3846 1,530,823

5. EXPERIMENTS
The benchmark set includes a multi-injection driver for engine con-
trol systems [3], an automotive cross-display module and a Lego
Mindstorms Acrobot [4]. All contain both control and data portions
in the FSM. They are converted into an intermediate control-data
network representation. The corresponding statistics are shown in
Table 1, with strl for the number of lines in the Esterel source
code, PI (PO) for the number of inputs (outputs), node for the to-
tal number of control and data nodes, and also the number for each
type of data node.

Table 2 show the average number of cycles required to execute the
FSM for a set of 500 input vectors, depending on which set of clubs
was implemented on the reconfigurable array. Four variations were
tried. The first implemented all of the C code on the processor and
no FPGA instructions. The second targeted all control nodes to the
reconfigurable array; the third targeted all of the data nodes. The
fourth targeted all possible clubs to the array while still satisfying
the FPGA size limitation.

Generally the results show that performance benefits the most from
implementing data nodes on the reconfigurable array. However
data nodes require a significantly higher number of LUTs. Further,
implementation of complex data computation like multiplication in
FPGA may not be as efficient as the arithmetic unit in the GPP core.
Further study is needed for more intricate trade-off between FPGA
hardware and traditional arithmetic data-path in GPPs.

Due the relative small size of our benchmark suite, the FPGA size
of the target architecture is large enough to implement all poten-
tial clubs in these examples. We experimented with smaller FPGA
limitations, and the mapping algorithm succeeded in producing sig-
nificant performance improvement.

The results of adding the bit-packing feature is shown in Table 3.
Since only control clubs take advantage of bit-packing, we present
results for implementing only control clubs. As a result of relaxed
IO constraints, the clubs become larger and more consolidated,
(from 122 to 50 for the injection driver example) which leads to
more efficient FPGA implementation. Since a large amount of the
cycle count lies in data computation, the improvement of the total
cycle count due to bit-packing is limited. Yet, it does increase the
performance of the control portion, from 20% to 40%.

6. CONCLUSION AND FUTURE WORK

Table 3: Results from bit-packing control clubs
Example Clubs Est. LUTs Cycles
Dance 38 102 366,332

Display 8 12 302,543
Driver 50 442 4,428,876

We introduced an automated hw/sw partitioning and code genera-
tion flow for control applications on a reconfigurable platform. It
uses the EFSM model and derives hw/sw implementation automat-
ically from high-level synchronous specifications. Compared to the
GPP approach, the reconfigurable array functional unit can signif-
icantly improve the run time of the applications we targeted. The
data computation seems to benefit most from the use of the recon-
figurable array. However, more complicated data nodes require sig-
nificantly larger area on the reconfigurable array than the simpler
control nodes.

Using this automated synthesis flow, embedded applications can
be smoothly mapped from high-level language specifications like
Esterel, down to hw/sw implementation on the reconfigurable ar-
chitecture platform. However, our approach is limited to the ap-
plications that can be modeled and programmed by extended finite
state machines.

Our algorithm for clubbing used a relatively simplistic estimation
of the area and delay required for the FPGA implementation. As a
result, the hw/sw partitioning may not be optimal, due to inaccurate
delay and size information. Future work includes incrementally
building a knowledge-base that keeps FPGA implementation costs
for sub-components.

The mapping onto other standardized system-on-chip architectures
with different FPGA embedding and data-path configuration needs
to be explored further. The automatic synthesis of the communica-
tion scheme between hardware and software, which explores dif-
ferent on-chip communication options, seems to be a promising
research direction.

Future work also includes sequential EFSM partitioning, which
produces sequential FPGA operations that may have internal states.
At a higher-level, decomposing an EFSM into smaller machines
with synchronous or asynchronous composition remains an open
problem.

7. ACKNOWLEDGMENTS
The authors would like to acknowledge Luciano Lavagno for his
insightful discussion and comments. We also thank the anonymous
reviewers comments and suggestion. We are grateful for the sup-
port of the SRC under contract 683.004 and the California Micro
program and industrial sponsors, Fujitsu, Cadence, and Synplicity.

8. REFERENCES
[1] P. M. Athanas and H. F. Silverman. Processor

reconfiguration through instruction-set metamorphosis. IEEE
Computer, 26(3):11–18, 1993.

[2] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli,
E. Sentovich, K. Suzuki, and B.Tabbara. Hardware-Software
Co-Design of Embedded Systems: The Polis Approach.
Kluwer Academic Press, 1997.

[3] M. Baleani, M. Conti, A. Ferrari, and

A. Sangiovanni-Vincentelli. HW/SW co-design of a multiple
injection driver automotive subsystem using a configurable
system-on-chip. In Proc. of the Conf. on Design Automation
& Test in Europe, Mar. 2002.

[4] G. Berry. A dancing lego mindstorms acrobot programmed
in esterel. Technical Report, 2000.

[5] R. K. Brayton and et al. MVSIS.
http://www-cad.eecs.berkeley.edu/mvsis.

[6] T. Callahan, J. Hauser, and J. Wawrzynek. The Garp
architecture and C compiler. IEEE Computers., 2000.

[7] F. Campi, R. Canegallo, and R. Guerrieri. IP-reusable 32-bit
VLIW RISC core. In European Solid-State Circuits
Conference, Sept. 2001.

[8] S. Edwards. Compiling esterel into sequential code. In Proc.
of the Design Automation Conf., June 2000.

[9] The ESTEREL language. [On-line] http://www.esterel.org.

[10] M. Gao and R. K. Brayton. Semi-algebraic methods for
multi-valued logic. In Proc. of the Intl. Workshop on Logic
Synthesis, May. 2000.

[11] M. Gao, J. Jiang, Y. Jiang, Y. Li, S. Singha, and R. K.
Brayton. MVSIS. In Proc. of the Intl. Workshop on Logic
Synthesis, May. 2001.

[12] O. Hainque, L. Pautet, Y. L. Biannic, and E. Nassor. Cronos:
a separate compilation toolset for modular esterel
applications. Formal Methods, 1999.

[13] R. Hartenstein. A decade of reconfigurable computing: A
visionary perspective. In Proc. of the Conf. on Design
Automation & Test in Europe, March 2000.

[14] S. Hauck, T. Fry, M. Hosler, and J. Kao. The Chimaera
reconfigurable functional unit. In the IEEE Symposium on
FPGAs for Custom Computing Machines, Apr. 1997.

[15] J. R. Hauser and J. Wawrzynek. Garp: A mips processor with
a reconfigurable coprocessor. In Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing
Machine, Apr. 1997.

[16] Y. Jiang and R. K. Brayton. Don’t cares and multi-valued
logic network minimization. In Proc. of the Intl. Conf. on
Computer-Aided Design, Nov. 2000.

[17] Y. Jiang and R. K. Brayton. Logic optimization and code
generation for embedded control applications. In Proc. of the
Intl. Symposium on Hardware/Software Co-Design, Apr.
2001.

[18] S. P. Khatri, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Cross-talk immune VLSI design using a network of PLAs
embedded in a regular layout fabric. In Proc. of the Intl.
Conf. on Computer-Aided Design, pages 412–18, Nov. 2000.

[19] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and
J. Stockwood. Hardware-software co-design of embedded
reconfigurable architectures. In Proc. of the Design
Automation Conf., June 2000.

[20] Proceler. Soft instruction set architectures for embedded
computing. [On-line] http://www.proceler.com.

[21] R. Razdan. PRISC: Programmable Reduced Instruction Set
Computers. PhD thesis, Harvard University, May 1994.

[22] R. Razdan, K. Brace, and M. D. Smith. PRISC software
acceleration techniques. In Proceedings of the International
Conference on Computer Design, pages 145–149, October
1994.

[23] A. L. Rosa, L. Lavagno, and C. Passerone. A software
development tool chain for a reconfigurable processor. In
Proc. of the Intl. Conf. on Compilers, Architecture and
Synthesis for Embedded Systems, Nov. 2001.

[24] T. Sasao, M. Matsuura, and Y. Iguchi. A cascade realization
of multiple-output function for reconfigurable hardware. In
Proc. of the Intl. Workshop on Logic Synthesis, May. 2001.

[25] P. Schaumont, I. Verbauwhede, K. Keutzer, and
M. Sarrafzadeh. A quick safari in the reconfiguration jungle.
In Proc. of the Design Automation Conf., June 2001.

[26] S. Talla. Adaptive Explicitly Parallel Instruction Computing.
PhD thesis, New York University, 2000.

[27] X. Tang, M. Aalsma, and R. Jou. A compiler directed
approach to hiding configuration latency in Chameleon
processors. In Proceedings of the 10th International
Conference on Field Programmable Logic and Applications
(FPL), 2000.

[28] D. Weil, V. Bertin, E. Closse, M. Poize, P. Venier, and
J. Pulou. Efficient compilation of Esterel for real-time
embedded systems. In Proc. of the Intl. Conf. on Compilers,
Architecture and Synthesis for Embedded Systems, Nov.
2000.

