Lecture 5
Dataflow Process Models

Stephen A. Edwards
Forrest Brewer

Ryan Kastner

Philosophy of Dataflow Languages

Drastically different way of looking at computation

Von Neumann imperative language style: program
counter is king

Dataflow language: movement of data the priority

Scheduling responsibility of the system, not the
programmer

Dataflow Languages

Every process can run concurrently
- Processes side-effect free resources assumed

Processes described with imperative code
- FSM, NDFA model of hardware or software

Processes only communicate through buffers
- Both control and data

Parallelism is bounded by places and data-flow

- Can describe general purpose computation this way
* Requires alternative viewpoint and metrics

- Fits transactional models of a system
- Data-base (Google)

Execution driven by demand

Dataflow Language Model

 Processes communicating through FIFO buffers

FIFO Buffer
Process 1 »| Process 2

FIFO Buffer

FIFO Buffer

A 4

Process 3

Dataflow Communication

« Communication only through buffers
- No side effects (or shared memory)

« Buffers are unbounded for simplicity
- Causes model complexity issues

 Token Sequence into link is sequence out of link
- links are strictly FIFO

« Destructive read: reading a value from a buffer
removes the value

- Cannot ‘check’ to see new token without read

 Unlike shared memory, can always determine latency

Applications of Dataflow Models

* Poor fit for a word processor
- Data-flow models are weak on control intensive behavior

« Common in signal-processing applications
- Ordered streams of data
- Simple map to pipelined hardware
« Lab View, Simulink, System C Transactions
- Buffers used for signal processing applications anyway

- FIFO buffers allow for mediation of bursty flows up to
capacity of the buffer
* Rates must strictly agree on average

Applications of Dataflow

« Good fit for block-diagram specifications
- System Level RTL (directed links)
- Linear/nonlinear control systems (Feedback Networks)
- Network Computing

« Common in Electrical Engineering

« Value: reasoning about data rates, availability,
latency and performance can be done abstractly

- Used for top-level models before processes are
designed

- Allow reasoning about process requirements

Kahn Process Networks

 Proposed by Kahn in 1974 as a general-purpose
scheme for parallel programming

 Laid the theoretical foundation for dataflow

* Unique attribute: deterministic

 Difficult to schedule

* Too flexible to make efficient, not flexible enough for
a wide class of applications

* Never put to widespread use

Kahn Process Networks

 Key idea:
Reading an empty channel blocks until data is available

* No other mechanism for sampling communication
channel’s contents

- Can’t check to see whether buffer is empty
- Can’t wait on multiple channels at once

Kahn Processes

* A C-like function (Kahn used Algol)
 Arguments include FIFO channels

 Language augmented with send() and wait()
operations that write and read from channels

A Kahn System

* Prints an alternating sequence of 0’s and 1’s

Emits a 1 then copies input to output

h

h

Emits a 0 then copies input to output

A Kahn Process

h
 From Kahn’s original 1974 paper g I i
h
process f(in int u, in int v, out int w)
{
int i; bool b = true; u
for (;;) { \
i = b ? wait(u) : wait(w); f — W
printf("%i\n", 1); /
send(i, w); v
b = !b;
} Process alternately reads
) from u and v, prints the data

value, and writes it to w

A Kahn Process I

 From Kahn’s original 1974 paper ==
h
o o _ ~—_Process
process f(in int u, in int v, out int w) interface
{ includes FIFOs
s 1 et o S e wait() returns the next
fc.)r (3) { _ / token in an input FIFO,
i = b ? wait(u) : wait(w); blocking if it's empty
printf("%i\n", 1);
send(i, w); _
b = lb; — send() writes a data
} value on an output FIFO

}

A Kahn Process I

g <
 From Kahn’s original 1974 paper
h

process d(in int u, out int v, out int w)

{ v
int i; bool b = true; y ; -
for(;;) { N

i = wait(u); o
if (b) send(i, v); else send(i, w);
b = lb;
}
} Process reads from u and

alternately copies it to vand w

Possible Runs of Kahn System

« Starts from upper
left corner

 Deterministic
since all output
writes must cross
boundary
- !be,ft going arcs
- 5i,ght going arcs
Thus all possible

output sequences
alternate 0/1/0...

ﬁl

B G>¢e
AGKE

: |

Run f, pr ntO

T///a nd go to this state

Buffered data 7
Waiting to write Waiting to read
to this channel from this channel

Determinacy

-

Process: “ordered mapping” of input sequence to
output sequences

Continuity: process uses prefix of input sequences to
produce prefix of output sequences. Adding more
tokens does not change the tokens already produced

The state of each process depends on token values
rather than their arrival time

Unbounded FIFO: the speed of the two processes
does not affect the sequence of data values

- Practical networks need to mind this well

Proof of Determinism

 Because a process can’t check the contents of
buffers, only read from them, each process only sees
sequence of data values coming in on buffers

 Behavior of process:

Compute ... read ... compute ... write ... read ...
compute

« Values written only depend on program state
« Computation only depends on program state

 Reads always return sequence of data values,
nothing more

Determinism

Another way to see it:

« [f ’'m a process, | am only affected by the sequence
of tokens on my inputs

* | can’t tell whether they arrive early, late, or in what
order

* | will behave the same in any case

 Thus, the sequence of tokens | put on my outputs is
the same regardless of the timing of the tokens on
my inputs

Routes to Nondeterminism

Allow processes to test for emptiness

- If the token behavior changes, violates monotonic
property

- Cannot choose from possible inputs (l.e. if token on
either input... is not legal)
Allow processes themselves to be nondeterminate

Allow more than one process to read from a channel
- Cannot solve precedence issues in general

Allow more than one process to write to a channel
- Cannot fix the order of processes on channel

Allow processes to share a variable

- Unbounded communication bandwidth can cause
several problems above...

Scheduling Kahn Networks

* Challenge is running processes without
accumulating tokens

Scheduling Kahn Networks

* Challenge is running processes without
accumulating tokens

\

Only consumes
tokens from A

\ Tokens will

accumulate here

Always emit tokens

Demand-driven Scheduling?

 Apparent solution: only run a process whose outputs

are being actively solicited

* However...

A

Always

produce
\ tokens

Always
consume
/ tokens

Other Difficult Systems

* Not all systems can be scheduled without token
accumulation

a
P
b
P
Produces
two a’s for Alternates
every b between
receiving
one a and

one b

Tom Parks’ Algorithm

e Schedules a Kahn Process Network in bounded
memory if it is possible

o Start with bounded buffers

« Use any scheduling technique that avoids buffer
overflow

« |f system deadlocks because of buffer overflow,
increase size of smallest buffer and continue

Parks’ Algorithm in Action

o Start with buffers of size 1
- RunA,B,C,D

Only consumes
tokens from A

—

0-1-0 c

0-1

B 0-1-0 D

Parks’ Algorithm in Action

B blocked waiting for space in B->C buffer

* Run A, then C

« System will run indefinitely

0-1-0

Only consumes
tokens from A

—

Parks’ Scheduling Algorithm

e Neat trick

e Whether a Kahn network can execute in bounded
memory is undecidable

« Parks’ algorithm does not violate this

e [t will run in bounded memory if possible, and use
unbounded memory if necessary

Using Parks’ Scheduling Algorithm

It works, but...

Requires dynamic memory allocation

Does not guarantee minimum memory usage
Scheduling choices may affect memory usage
Data-dependent decisions may affect memory usage
Relatively costly scheduling technique

Detecting deadlock may be difficult

Kahn Process Networks

* Their beauty is that the scheduling algorithm does
not affect their functional behavior

 Difficult to schedule because of need to balance
relative process rates

« System inherently gives the scheduler few hints
about appropriate rates

« Parks’ algorithm expensive and fussy to implement

 Might be appropriate for coarse-grain systems
- Scheduling overhead dwarfed by process behavior

Synchronous Dataflow (SDF)

 Edward Lee and David Messerchmitt, Berkeley, 1987

* Restriction of Kahn Networks to allow compile-time
scheduling

 Basic idea: each process reads and writes a fixed
number of tokens each time it fires:

loop
read3 A, 5B,1C...compute ...write2D,1E,7F

end loop

Operational Semantics

Firing Rule
 Tokens = Data
 Assignment = Placing a token in the output arc
« Snapshot / configuration: state

« Computation

- The intermediate step between snapshots /
configurations

* An actor of a dataflow graph is enabled if there is a
token on each of its input arcs

Synchronous Dataflow (SDF)

Fixed Production/Consumption Rates

« Balance equations (one for each channel):

_ f AN — f BM
* Schedulable statically \‘ number of tokens consumed
e Get a well-defined “iteration number of firings per “iteration”
. Decidable:
® buffer memory requirements number of tokens produced
® deadlock
fire A { fire B {
= channel 2
produce N @ @ consume M
N M
} }

SDF and Signal Processing

Restriction natural for multirate signal processing

« Typical signal-processing processes:

* Unit-rate
- Adders, multipliers

 Upsamplers (1 in, n out)

« Downsamplers (n in, 1 out)

Operational Semantics
Firing Rule

 Any enabled actor may be fired to define
the “next state” of the computation

+ An actor is fired by removing a token ‘\:--/
from each of its input arcs and placing O
tokens on each of its output arcs. /".\

« Computation = A Sequence of
Snapshots 1

- Many possible sequences as long as
firing rules are obeyed coo

A
N

- Determinacy O
- “Locality of effect”

e
A

Multi-rate SDF System

« DAT-to-CD rate converter
 Converts a 44.1 kHz sampling rate to 48 kHz

11 2 3 2 7 8 7 5 1
> T > 1 > T > { >
Upsampler Downsampler

CD to DAT sample rate conversion

21 2:3 8:7 S
g FIF FIF FIF FiFi iigragti
147 147 98 28 32 160

Delays

« Kahn processes often have an initialization phase

 SDF doesn’t allow this because rates are not always
constant

« Alternative: an SDF system may start with tokens in
its buffers

 These behave like delays (signal-processing)

 Delays are sometimes necessary to avoid deadlock

Example SDF System

* FIR Filter (all single-rate)

Duplicate
One-cycle delay

|

/

Adder =

| dup -@—{ dup Hp—] dup Hp—]{dup -
o o o o o
4 4 4 4

Constant
multiply
(filter
coefficient)
PR

SDF Scheduling

« Schedule can be determined completely before the
system runs

 Two steps:

1. Establish relative execution rates by solving a system
of linear equations

2. Determine periodic schedule by simulating system
for a single round

Balance equations

* Number of produced tokens must equal number of consumed
tokens on every edge

O

* Repetitions (or firing) vector vg of schedule S: number of
firings of each actor in S

+ vg(A) n, = vg(B) n,
must be satisfied for each edge

Balance equations

3@2
N\
Oy

1
1

« Balance for each edge:

- 3Vvg(A)-vg(B) =0
- Vg(B) - vg(C) =0

- 2Vg(A)-vg(C)=0
- 2Vg(A)-vg(C)=0

Balance equations

3@2
1/21\1
Or—

*c Mvg=0
Iff S is periodic

* Full rank (as in this case)
* NO non-zero solution
* no periodic schedule

(too many tokens accumulate on A->B or B->C)

PN O QW

@) () [—

Balance equations

2@2 : " O

2 M:O 1 =

1/ 1\1 2 0 -

o o
1 1

Non-full rank
* infinite solutions exist (linear space of dimension 1)

Any multiple of g =|1 2 2|T satisfies the balance equations
ABCBC and ABBCC are minimal valid schedules
ABABBCBCCC is non-minimal valid schedule

Static SDF scheduling

« Main SDF scheduling theorem (Lee ‘86):

- A connected SDF graph with n actors has a periodic
schedule iff its topology matrix M has rank n-1

- If M has rank n-1 then there exists a unique smallest
iInteger solution q to

Mqg=0

 Rank must be at least n-7 because we need at
least n-1 edges (connected-ness), providing each a
linearly independent row

« Admissibility is not guaranteed, and depends on
initial tokens on cycles

Admissibility of schedules

1@2
/
Oy

 No admissible schedule:
BACBA, then deadlock...

« Adding one token on A->C makes
BACBACBA valid

« Making a periodic schedule admissible is always possible, but changes
specification...

From repetition vector to schedule

* Repeatedly schedule fireable actors up to number of times in
repetition vector

q=1[1 2 2

1
 (Can find either ABCBC or ABBCC

 If deadlock before original state, no valid schedule exists (Lee
‘80)

Calculating Rates

« Each arc imposes a constraint

3a—-2b=0
4b-3d=0
b b-3c=0
2c—a =0
d-—2a=0

2 1 Solution?
1 2 a=2c
1°7 b =3c
d =4c

Calculating Rates

 Consistent systems have a one-dimensional solution
- Usually want the smallest integer solution

* Inconsistent systems only have the all-zeros solution

 Disconnected systems have two- or higher-
dimensional solutions

An Inconsistent System

 No way to execute it without an unbounded
accumulation of tokens

« Only consistent solution is “do nothing”

a—-c=0

1 1
a | C a—2b=0
1 1“ 3b—-c=0

b 3a—2c=0

An Underconstrained System

« Two or more unconnected pieces

* Relative rates between pieces undefined

1 ' a—b=0
3c—2d =0

Consistent Rates Not Enough

* A consistent system with no schedule

« Rates do not avoid deadlock

« Solution here: add a delay on one of the arcs

SDF Scheduling

 Fundamental SDF Scheduling Theorem:

If rates can be established, any scheduling
algorithm that avoids buffer underflow will
produce a correct schedule if it exists

Scheduling Example

 Theorem guarantees any valid simulation will
produce a schedule

a=2 b=3 c=1 d=4

1 5 4
Possible schedules:
3 2 3 BBBCDDDDAA
-) BDBDBCADDA
c 6 |d
> BBDDBDDCAA
3 1 ... many more
1 2
a <

BC ... is not valid

SDF Scheduling

 Goal: a sequence of process firings that

 Runs each process at least once in proportion to its
rate

« Avoids underflow
- NO process fired unless all tokens it consumes are
available

« Returns the number of tokens in each buffer to their
initial state

 Result: the schedule can be executed repeatedly
without accumulating tokens in buffers

Schedules

Dash is single
appearance
schedule

Short Dash is
minimum buffer
schedule

Note: SDF
schedules form a
lattice

------- minimum buffer size

— — single appearance schedule @
1V2

Scheduling Choices

« SDF Scheduling Theorem guarantees a schedule will
be found if it exists

« Systems often have many possible schedules

« How can we use this flexibility?
- Reduced code size
- Reduced buffer sizes

SDF Code Generation

« Often done with prewritten blocks

* For traditional DSP, handwritten implementation of
large functions (e.g., FFT)

 One copy of each block’s code made for each
appearance in the schedule

- l.e., no function calls

Code Generation

* In this simple-minded approach, the schedule
BBBCDDDDAA

would produce code like

- u AY BN | - n HE \aE

>PUOU0DU0UOWm

- n

Looped Code Generation

* Obvious improvement: use loops

* Rewrite the schedule in “looped” form:
(3B)C(4D)(2A)

 Generated code becomes
for(i=0;i<3;i++)B;
C;
for(i=0;i<4;i++)D;
for(i=0;i<2;it++) A;

Single-Appearance Schedules

« Often possible to choose a looped schedule in which
each block appears exactly once

* Leads to efficient block-structured code
- Only requires one copy of each block’s code

 Does not always exist

« Often requires more buffer space than other
schedules

Finding Single-Appearance
Schedules

« Always exist for acyclic graphs
- Blocks appear in topological order

* For SCCs, look at number of
tokens that pass through arc in
each period (follows from balance @ 6
equations)

« [f there is at least that much delay,
the arc does not impose ordering
constraints

* lIdea: no possibility of underflow a=2 b=3
6 tokens cross the arc
delay of 6 is enough

Finding Single-Appearance
Schedules

 Recursive strongly-connected component
decomposition

« Decompose into SCCs
« Remove non-constraining arcs

 Recurse if possible
- Removing arcs may break the SCC into two or more

Minimum-Memory Schedules

Another possible objective

Often increases code size (block-generated code)

Static scheduling makes it possible to exactly predict
memory requirements

Simultaneously improving code size, memory
requirements, sharing buffers, etc. remain open
research problems

Cyclo-static Dataflow

« SDF suffers from requiring each process to produce
and consume all tokens in a single firing

 Tends to lead to larger buffer requirements

« Example: downsampler

 Don’t really need to store 8 tokens in the buffer

* This process simply discards 7 of them, anyway

Cyclo-static Dataflow

« Alternative: have periodic, binary firings

1,1,1,1,1,1,1,1) {1,0,0,0,0,0,0,0}

« Semantics: first firing: consume 1, produce 1

« Second through eighth firing: consume 1, produce 0

Cyclo-Static Dataflow

« Scheduling is much like SDF
« Balance equations establish relative rates as before

« Any scheduler that avoids underflow will produce a
schedule if one exists

« Advantage: even more schedule flexibility
 Makes it easier to avoid large buffers

« Especially good for hardware implementation:
- Hardware likes moving single values at a time

Cyclostatic Dataflow (CSDF)

(Lauwereins et al., TU Leuven, 1994)

Actors cycle through a regular production/consumption pattern.

Balance equations become:

R-1 R-1
fAZNimodP :fBzMimon; R :lcm(PﬂQ)
i=0 i=0
N@ .
Noseos Npoy My, s My

Cyclo-Static Dataflow

* Scheduling similar to SDF
 Balance equations establish relative rates
« Key: avoid underflow of channel

 Advantages

- Increased schedule flexibility
- Easier to avoid large buffers

- Closer to parallel hardware model
* Links move single values at a time

Multidimensional SDF
(Lee, 1993)

 Production and
consumption of N-
dimensional arrays of

data:

_—L

 Balance equations and
scheduling policies

generalize.

 Much more data
parallelism is exposed.

Boolean and Integer Dataflow (BDF, IDF)
(Lee and Buck, 1993)

- Balance equations are solved symbolically in terms of
unknowns that become known at run time.

 An annotated schedule is constructed with predicates
guarding each action.

« Existence of such an annotated schedule is undecidable (as
is deadlock & bounded memory)

- However often can check efficiently

fvwitchb — fB
fvwitch(l_b) — fC

||
||

Undecidability
(Buck '93)

« Sufficient set of actors for undecidability:
- boolean functions on boolean tokens
- switch and select
- initial tokens on arcs

~

e

 Undecidable:
- deadlock
- bounded buffer memory
- existence of an annotated schedule

Dynamic Dataflow (DDF)

Actors have firing rules
- Data consumed/produced may vary depending on the values
- Set of finite prefixes on input sequences
- Firing function applied to finite prefixes yield finite outputs

Scheduling objectives:
- Do not stop if there are executable actors
- Execute in bounded memory if this is possible
- Maintain determinacy if possible

Policies that fail:
- Data-driven execution
- Demand-driven execution
- Fair execution
- Many balanced data/demand-driven strategies

Policy that succeeds (Parks 1995):
- Execute with bounded buffers
- Increase bounds only when deadlock occurs

Summary of Dataflow

 Processes communicating exclusively through FIFOs

 Kahn process networks
- Blocking read, nonblocking write
- Deterministic
- Hard to schedule

- Parks’ algorithm requires deadlock detection, dynamic
buffer-size adjustment

Summary of Dataflow

Synchronous Dataflow (SDF)

* Firing rules:
- Fixed token consumption/production

« Can be scheduled statically
- Solve balance equations to establish rates

- Any correct simulation will produce a schedule if one
exists

 Looped schedules
- For code generation: implies loops in generated code
- Recursive SCC Decomposition

« CSDF: breaks firing rules into smaller pieces
- Scheduling problem largely the same

