Compiler Optimization and
Code Generation

Professor: Sc.D., Professor
Vazgen Melikyan

Synopsys University Courseware
. Copyright © 2012 Synopsys, Inc. All rights reserved.
S‘/"[]PS\/S Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

W75 N

Course Overview

Introduction: Overview of Optimizations
a 1 lecture

Intermediate-Code Generation
o 2 lectures

Machine-Independent Optimizations
o 3 lectures

Code Generation
o 2 lectures

Synopsys University Courseware

S\/"UPS‘/S® Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

W75 N

Intermediate-Code Generation

Synopsys University Courseware
. Copyright © 2012 Synopsys, Inc. All rights reserved.
S‘/"UPS\/S Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

Logical Structure of a Compiler Front
End

In the analysis-synthesis model of a compiler, the front end analyzes
a source program and creates an intermediate representation, from

which the back end generates target code.

Static Intermediate Code i Code
— »Parser |} N Intermediate .
Checker Generator code (Generator
Front End + Back End ——
Static checking:
Type checking: ensures that operators are applied to compatible
operands

Any syntactic checks that remain after parsing

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

W75 N

Type Checking

Each operation in a language
o Requires the operands to be predefined types of values
o Returns an expected type of value as result

When operations misinterpret the type of their operands,
the program has a type error

Compilers must determine a unique type for each
expression

o Ensure that types of operands match those expected by an
operator

o Determine the size of storage required for each variable
Calculate addresses of variable and array accesses

W75 N

Synopsys University Courseware

S‘/"UPS‘/S® Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

Value of Intermediate Code
Generation

Typically the compiler needs to produce machine code or
assembler for several target machines.

The intermediate code representation is neutral in
relation to target machine, so the same intermediate
code generator can be shared for all target languages.

Less work in producing a compiler for a new machine.
Machine independent code optimization can be applied.

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation

Lecture - 2
Developed By: Vazgen Melikyan

W75 N

Main Methods of Intermediate Code (IC)
Generation

Two main forms used for representing
iIntermediate code:

a Postfix Notation: the abstract syntax tree is linearized
as a sequence of data references and operations.

For instance, the treefor:a* (9 + d) can be
mapped to the equivalent postfix notation: a9d+*
o Quadruples: All operations are represented as a 4-part
list:
(op, arg1, arg2, result)

o Eg.,x=y+z->(+yzX)

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan

W75 N

Commonly Used Intermediate
Representations

Possible IR forms

o Graphical representations: such as syntax trees, AST
(Abstract Syntax Trees), DAG

o Postfix notation
o Three address code
0 SSA (Static Single Assignment) form

Synopsys University Courseware

S‘/"UPS‘/S® Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

W75 N

Compiling Process without
Intermediate Representation

SPARC

HP PA

x86

IBM PPC

® Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan

Compiling Process with Intermediate
Representation

SPARC

HP PA

x86

IBM PPC

® Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2
10 Developed By: Vazgen Melikyan

Direct Acyclic Graph (DAG)
Representation

« Example: F = ((A+B*C) * (A*B*C))+C

® Synopsys University Cou re
S‘/“[]PS‘/S Copyr ght©2012 Syno p y Inc AII ght ed.
Compiler Optimization and Code Gen t
Le t -2
1 Developed By: Vazgen Melikyan

Postfix Notation: PN

A mathematical notation wherein every operator follows
all of its operands.

Example: PN of expression a* (b+a) is abc+*
Form Rules:
a If E is a variable/constant, the PN of E is E itself.

a If E is an expression of the form E1 op E2, the PN of E
Is E1'E2 'op (E1 " and E2 " are the PN of E1 and E2,
respectively.)

o If E is a parenthesized expression of form (E1), the PN
of E is the same as the PN of E1.

. Synopsys University Courseware
S\/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation

Lecture - 2
Developed By: Vazgen Melikyan

W75 N

12

Three Address Code

The general form: X =Y OpP Z

o X,y,and z are names, constants, compiler-generated
temporaries

o op stands for any operator such as +,-,...

A popular form of intermediate code used in optimizing
compilers is three-address statements.

o Source statement: f = atb*ct+e
Three address statements with temporaries t1 and t2:
t1=b*c
t2=a+t1
f=t2+e

. Synopsys University Courseware
S\/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan

W75 N

13

DAG vs. Three Address Code

= Three address code is a linearized representation of a syntax tree

(or a DAG) in which explicit names (temporaries) correspond to the
interior nodes of the graph.

Expression: F = ((A+B*C) * (A*B*C))+C

® Synopsys University Courseware
SY"[]PS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation

Lecture - 2
14 Developed By: Vazgen Melikyan

Types of Three-Address Statements

Assignment statements:
o X :=Yyopz whereopis a binary operator
o0 X :=Yyopz where opis a binary operator

Copy statements
o X:=y

The unconditional jumps:
o gotolL

Conditional jumps:
o ifxrelopygotolL

param x and call p, n and return y relating to procedure calls

Assignments:

o X:=V[i]

o X[i]:=y

Address and pointer assignments:
o X:=&y,x:=%,and *x =y

. Synopsys University Courseware
S\/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

W75 N

15

Generating Three-Address Code

Temporary names are made up for the interior nodes of
a syntax tree

The synthesized attribute S.code represents the code for
the assignment S

The nonterminal E has attributes:
o E.place is the name that holds the value of E
o E.code is a sequence of three-address statements evaluating E

The function newtemp returns a sequence of distinct
names

The function newlabel returns a sequence of distinct

labels

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

16

Assignments

S->id:=E S.code := E.code || gen(id.place ":=' E.place)
E->E1+E2 E.place := newtemp;
E.code := E1.code || E2.code ||
gen(E.place ":=' E1.place '+' E2.place)
E->E1*E2 E.place := newtemp;
E.code := E1.code || E2.code ||
gen(E.place ="' E1.place ™' E2.place)
E ->-E1 E.place := newtemp;
E.code := E1.code || gen(E.place ":=' 'uminus’E1.place)
E->(E1) E.place := E1.place;
E.code := E1.code
E->id E.place = id.place;
E.code :="“
SYnopsys'

17

Lecture - 2
Developed By: Vazgen Melikyan

W75 N

Incremental Translation

Code attributes can be long strings, so they are
usually generated incrementally.

Instead of building up E.code only the new
three-address instructions are generated.

In the incremental approach, gen not only
constructs a three-address instruction, it
appends the instruction to the sequence of
instructions generated so far.

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

W75 N

18

Incremental Translation: Examples

S->id:=E gen(top.gen(id.lexeme) “:=' E.addr);
E->E1+E2 E.addr := new Temp();

gen(E.addr “:='E1.addr '+' E2.addr);
E -> -E1 E. addr := new Temp();

gen(E. addr “:="'minus' E1. addr) ;
E -> (E1) E.addr := E1.addr
E ->id E.addr := top.get(id.lexeme);
SYNoPSys

19 DevelopedLg;/::tL\J/r:z;;(Zen Melikyan

While Statement

S.begin:

>

S.after:

® Synopsys University Courseware
S‘/“[]PS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan

20

‘ Quadruples

A quadruple is a record structure with four fields: op,
arg1, arg2, and result

o The op field contains an internal code for an operator

o Statements with unary operators do not use arg2

o Operators like param use neither arg2 nor result
a

The target label for conditional and unconditional jumps are in
result

The contents of fields arg1, arg2, and result are typically
pointers to symbol table entries
o If so, temporaries must be entered into the symbol table as they

are created

o Obviously, constants need to be handled differently

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan

21

‘ Quadruples: Example

uminus C
(1) * b t1 t2
(2) uminus C t3
(3) * b t3 t4
(4) + t2 t4 t5
(5) assign t5 a

® Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2
29 Developed By: Vazgen Melikyan

Triples

Triples refer to a temporary value by the position of the
statement that computes it

o Statements can be represented by a record with only three fields:
op, arg1, and arg2

o Avoids the need to enter temporary names into the symbol table
Contents of arg1 and arg2.
o Pointer into symbol table (for programmer defined names)

o Pointer into triple structure (for temporaries)
o Of course, still need to handle constants differently

. Synopsys University Courseware
S\/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan

W75 N

23

‘ Triples : Example

uminus
(1) ” b (0)
(2) uminus C

(3) ” b (2)
(4) + (1) (3)
(5) assign a (4)

® Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2
o4 Developed By: Vazgen Melikyan

Declarations

A symbol table entry is created for every declared name

Information includes name, type, relative address of
storage, etc.

Relative address consists of an offset:

o Offset is from the field for local data in an activation record for
locals to procedures

Types are assigned attributes type and width (size)

Becomes more complex if dealing with nested
procedures or records

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation

Lecture - 2
Developed By: Vazgen Melikyan

W75 N

25

Declarations: Example

P->D
D->D;D
D->id:T

T -> integer
T ->real
T -> array[num] of T1

T->1T1

offset :=0

enter(id.name, T.type, offset);
offset := offset + T.width

T.type := integer;

T.width := 4
T.type := real
T.width := 8

T.type := array(num, T1.type);
T.width := num * T1.width

T.type := pointer(T1.type);
T.width := 4

SYNOPSYsS

26

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

Translating Assignments

S->id:=E p := lookup(id.name);
if p = NULL then emit(p ":=' E.place)
else error
E->E1+E2 E.place := newtemp;
emit(E.place ":=' E1.place '+' E2.place)
E->E1*E2 E.place := newtemp;
emit(E.place ":=' E1.place ™ E2.place)
E ->-E1 E.place := newtemp;
emit(E.place ":=' 'uminus' E1.place)
E->(E1) E.place := E1.place
E ->id p := lookup(id.name);
if p I= NULL then E.place :=p
else error
SYNoPSys

27

Lecture - 2
Developed By: Vazgen Melikyan

W75 N

Addressing Array Elements

The location of the i-th element of array A is:

base + (i—low) * w
o w is the width of each element

o Low is the lower bound of the subscript
o Base is the relative address of a[low]

The expression for the location can be rewritten as:
| *w + (base — low * w)

o The subexpression in parentheses is a constant

o That subexpression can be evaluated at compile time

W75 N

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

28

Semantic Actions for Array

References
S->id:=E gen(top.get(id.lexeme) ":=' E.addr)
E->E1+E2 E.addr=newTemp();

gen(E. addr '="' E1. addr '+' E2. addr) ;
| L=E gen(L. addr. base TL. addr '] '=' E. addr);
| id E.addr = top.get(id.lexeme)
L -> id [E] L.array = top.get(id.lexeme);

L.type = L.array.type.elem;
L. addr = new Temp O;
gen(L.addr '=' E.addr "' L.type.width);

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan

W75 N

29

Type Conversions

There are multiple types (e.g. integer, real)
for variables and constants

o Compiler may need to reject certain mixed-type
operations

ao At times, a compiler needs to general type conversion
Instructions

An attribute E.type holds the type of an

expression

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan

W75 N

30

Boolean Expressions

Boolean expressions compute logical values
Often used with flow-of-control statements

Methods of translating Boolean expression:

o Numerical:
True is represented as 1 and false is represented as O
Nonzero values are considered true and zero values are
considered false

ao Flow-of-control:

Represent the value of a Boolean by the position reached in a
program
Often not necessary to evaluate entire expression

W75 N

Synopsys University Courseware

S‘/"UPS‘/S® Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

31

Boolean Expressions: Examples

E->E1orE2 E1.true := E.true;

E1.false := newlabel;

E2.true := E.true;

E2.false := E.false;

E.code := E1.code || gen(E1.false ") || E2.code
E ->E1and E2 E1.true := newlabel;

E1.false := E.false;

E2.true := E.true;

E2.false := E.false;

E.code := E1.code || gen(E1.true ') || E2.code
E -> not E1 E1.true := E false;

E1.false := E.true;

E.code := E1.code
SYnopsys'

32

Lecture - 2
Developed By: Vazgen Melikyan

W75 N

Boolean Expressions: Examples (2)

E->(E1) E1.true := E.true;
E1.false := E.false;
E.code := E1.code

E ->id1 relop id2 E.code := gen('if id.place
relop.op id2.place 'goto’
E.true) ||
gen('goto’ E.false)

E -> true E.code := gen('goto’ E.true)

E -> false E.code := gen('goto’ E.false)

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

33

Flow-of-Control

The function newlabel returns a new symbolic
label each time it is called

Each Boolean expression has two new
attributes:

a E.true is the label to which control flows if E is true
o E.false is the label to which control flows if E is false

Attribute S.next of a statement S:

o Inherited attribute whose value is the label attached to
the first instruction to be executed after the code for S

o Used to avoid jumps

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan

34

Flow-of-Control: Examples

S -> if E then S1 E.true := newlabel;
E.false := S.next;
S1.next := S.next;
S.code := E.code || gen(E.true ') || S1.code

S -> if E then S1 else S2 E.true := newlabel;
E.false := newlabel;
S1.next := S.next;
S2.next := S.next;
S.code := E.code || gen(E.true ') || S1.code || gen('goto
S.next) || gen(E.false ') || S2.code

S -> while E do $1 S.begin := newlabel;
E.true := newlabel;
E.false := S.next;
S1.next := S.begin;
S.code := gen(S.begin ') || E.code || gen(E.true ') ||

S1.code || gen(‘goto’ S.begin)

Synopsys University Courseware

S‘/"UPS‘/S® Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

35

Labels and Goto Statements

The definition of a label is treated as a declaration of the
label

Labels are typically entered into the symbol table

o Entry is created the first time the label is seen

o This may be before the definition of the label if it is the target of any
forward goto

When a compiler encounters a goto statement:

o It must ensure that there is exactly one appropriate label in the current
scope
o If so, it must generate the appropriate code; otherwise, an error should

be indicated

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

36

Return Statements

Several actions must also take place when a

procedure terminates

o If the called procedure is a function, the result must be stored in a
known place
o The activation record of the calling procedure must be restored

o A jump to the calling procedure's return address must be
generated

No exact division of run-time tasks between the
calling and called procedure

Synopsys University Courseware

S‘/"UPS‘/S® Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

W75 N

37

Pass by Reference

The param statements can be used as placeholders for
arguments

The called procedure is passed a pointer to the first of
the param statements

Any argument can by obtained by using the proper offset
from the base pointer

Arguments other than simple names:

o First generate three-address statements needed to evaluate
these arguments

o Follow this by a list of param three-address statements

W75 N

Synopsys University Courseware

S‘/"UPS‘/S® Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

38

Pass by Reference Using a Queue

S ->callid (Elist) for each item p on queue do
emit('param’ p); emit('call' id.place)

Elist -> Elist, E push E.place to queue

Elist-> E initialize queue to contain E

The code to evaluate arguments is emitted first,
followed by param statements and then a call

If desired, could augment rules to count the

number of parameters

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation

Lecture - 2
39 Developed By: Vazgen Melikyan

Backpatching

A key problem when generating code for Boolean
expressions and flow-of-control statements is that of
matching a jump instruction with the target of the jump.

Backpatching uses lists of jumps which are passed as
synthesized attributes.

Specifically, when a jump is generated, the target of the
jump is temporarily left unspecified. Each such jump is
put on a list of jumps whose labels are to be filled in
when the proper label can be determined.

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan

W75 N

40

One-Pass Code Generation using
Backpatching

Generate instructions into an instruction array, and labels
will be indices into this array. To manipulate lists of
jumps, three functions are used:

o makelist(i) creates a new list containing only i, an
index into the array of instructions; makelist returns a

pointer to the newly created list.

o merge(pl , p2) concatenates the lists pointed to by pl
and p2 , and returns a pointer to the concatenated list.

o backpatch(p, i) inserts i as the target label for each of

the instructions on the list pointed to by p.

. Synopsys University Courseware
S‘/"UPS‘/S Copyright © 2012 Synopsys, Inc. All rights reserved.
Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

41

SYNOPSYS

Predictable Success

Synopsys University Courseware

S‘/"UPS‘/S® Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2
Developed By: Vazgen Melikyan

42

