
Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
1

Compiler Optimization and
Code Generation

Professor: Sc.D., Professor
 Vazgen Melikyan

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
2

Course Overview

  Introduction: Overview of Optimizations
  1 lecture

  Intermediate-Code Generation
  2 lectures

  Machine-Independent Optimizations
  3 lectures

  Code Generation
  2 lectures

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
3

Intermediate-Code Generation

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
4

Logical Structure of a Compiler Front
End
  In the analysis-synthesis model of a compiler, the front end analyzes

a source program and creates an intermediate representation, from
which the back end generates target code.

 Parser
Static

Checker
Intermediate Code

Generator
Code

Generator
Intermediate

code

Front End Back End

  Static checking:
  Type checking: ensures that operators are applied to compatible

operands
  Any syntactic checks that remain after parsing

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
5

Type Checking
  Each operation in a language

  Requires the operands to be predefined types of values
  Returns an expected type of value as result

  When operations misinterpret the type of their operands,
the program has a type error

  Compilers must determine a unique type for each
expression
  Ensure that types of operands match those expected by an

operator
  Determine the size of storage required for each variable

  Calculate addresses of variable and array accesses

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
6

Value of Intermediate Code
Generation
  Typically the compiler needs to produce machine code or

assembler for several target machines.
  The intermediate code representation is neutral in

relation to target machine, so the same intermediate
code generator can be shared for all target languages.

  Less work in producing a compiler for a new machine.
  Machine independent code optimization can be applied.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
7

Main Methods of Intermediate Code (IC)
Generation
  Two main forms used for representing

intermediate code:
  Postfix Notation: the abstract syntax tree is linearized

as a sequence of data references and operations.
  For instance, the tree for : a * (9 + d) can be

mapped to the equivalent postfix notation: a9d+*
  Quadruples: All operations are represented as a 4-part

list:
  (op, arg1, arg2, result)

  E.g., x := y + z -> (+ y z x)

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
8

Commonly Used Intermediate
Representations
  Possible IR forms

  Graphical representations: such as syntax trees, AST
(Abstract Syntax Trees), DAG

  Postfix notation
  Three address code
  SSA (Static Single Assignment) form

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
9

Compiling Process without
Intermediate Representation

C

Pascal

FORTRAN

C++

SPARC

HP PA

x86

IBM PPC

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
10

Compiling Process with Intermediate
Representation

C

Pascal

FORTRAN

C++

SPARC

HP PA

x86

IBM PPC

IR

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
11

Direct Acyclic Graph (DAG)
Representation
  Example: F = ((A+B*C) * (A*B*C))+C

F

=

+

C

+ *
*

B
A

*

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
12

Postfix Notation: PN
  A mathematical notation wherein every operator follows

all of its operands.
 Example: PN of expression a* (b+a) is abc+*

  Form Rules:
  If E is a variable/constant, the PN of E is E itself.
  If E is an expression of the form E1 op E2, the PN of E

is E1 ’E2 ’op (E1 ’ and E2 ’ are the PN of E1 and E2,
respectively.)

  If E is a parenthesized expression of form (E1), the PN
of E is the same as the PN of E1.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
13

Three Address Code
  The general form: x = y op z

  x,y,and z are names, constants, compiler-generated
temporaries

  op stands for any operator such as +,-,…
  A popular form of intermediate code used in optimizing

compilers is three-address statements.
  Source statement: f = a+b*c+e

 Three address statements with temporaries t1 and t2:
 t1 = b* c
 t2 = a + t1
 f = t2 + e

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
14

DAG vs. Three Address Code
  Three address code is a linearized representation of a syntax tree

(or a DAG) in which explicit names (temporaries) correspond to the
interior nodes of the graph.
 Expression: F = ((A+B*C) * (A*B*C))+C

F

=

+

C

+ *
*

B
A

*

T1 := A
T2 := C
T3 := B * T2
T4 := T1+T3
T5 := T1*T3
T6 := T4 * T5
T7 := T6 + T2
F := T7

T1 := B * C
T2 := A+T1
T3 := A*T1
T4 := T2*T3
T5 := C
T6 := T4 + T5
D := T6

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
15

Types of Three-Address Statements
  Assignment statements:

  x := y op z, where op is a binary operator
  x := y op z, where op is a binary operator

  Copy statements
  x := y

  The unconditional jumps:
  goto L

  Conditional jumps:
  if x relop y goto L

  param x and call p, n and return y relating to procedure calls
  Assignments:

  x := y[i]
  x[i] := y

  Address and pointer assignments:
  x := &y, x := *y, and *x = y

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
16

Generating Three-Address Code
  Temporary names are made up for the interior nodes of

a syntax tree
  The synthesized attribute S.code represents the code for

the assignment S
  The nonterminal E has attributes:

  E.place is the name that holds the value of E
  E.code is a sequence of three-address statements evaluating E

  The function newtemp returns a sequence of distinct
names

  The function newlabel returns a sequence of distinct
labels

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
17

Assignments
Production Semantic Rules

S -> id := E S.code := E.code || gen(id.place ':=' E.place)
E -> E1 + E2 E.place := newtemp;

E.code := E1.code || E2.code ||
 gen(E.place ':=' E1.place '+' E2.place)

E -> E1 * E2 E.place := newtemp;
E.code := E1.code || E2.code ||
 gen(E.place ':=' E1.place '*' E2.place)

E -> -E1 E.place := newtemp;
E.code := E1.code || gen(E.place ':=' 'uminus’E1.place)

E -> (E1) E.place := E1.place;
E.code := E1.code

E -> id E.place := id.place;
E.code := ‘‘

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
18

Incremental Translation

  Code attributes can be long strings, so they are
usually generated incrementally.

  Instead of building up E.code only the new
three-address instructions are generated.

  In the incremental approach, gen not only
constructs a three-address instruction, it
appends the instruction to the sequence of
instructions generated so far.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
19

Incremental Translation: Examples
Production Semantic Rules

S -> id := E gen(top.gen(id.lexeme) ‘:=' E.addr);

E -> E1 + E2 E.addr := new Temp();
gen(E.addr ‘:=' E1.addr '+' E2.addr);

E -> -E1 E. addr := new Temp();
gen(E. addr ‘:=' 'minus' E1. addr) ;

E -> (E1) E.addr := E1.addr

E -> id E.addr := top.get(id.lexeme);

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
20

While Statement

E.code

if E.place = 0 goto S.after

S1.code

goto S.begin
…

S.begin:

S.after:

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
21

Quadruples
  A quadruple is a record structure with four fields: op,

arg1, arg2, and result
  The op field contains an internal code for an operator
  Statements with unary operators do not use arg2
  Operators like param use neither arg2 nor result
  The target label for conditional and unconditional jumps are in

result

  The contents of fields arg1, arg2, and result are typically
pointers to symbol table entries
  If so, temporaries must be entered into the symbol table as they

are created
  Obviously, constants need to be handled differently

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
22

Quadruples: Example

op arg1 arg2 result

(0) uminus c t1

(1) * b t1 t2

(2) uminus c t3

(3) * b t3 t4

(4) + t2 t4 t5

(5) assign t5 a

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
23

Triples

  Triples refer to a temporary value by the position of the
statement that computes it
  Statements can be represented by a record with only three fields:

op, arg1, and arg2
  Avoids the need to enter temporary names into the symbol table

  Contents of arg1 and arg2:
  Pointer into symbol table (for programmer defined names)
  Pointer into triple structure (for temporaries)
  Of course, still need to handle constants differently

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
24

Triples : Example

op arg1 result

(0) uminus c

(1) * b (0)

(2) uminus c

(3) * b (2)

(4) + (1) (3)

(5) assign a (4)

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
25

Declarations

  A symbol table entry is created for every declared name
  Information includes name, type, relative address of

storage, etc.
  Relative address consists of an offset:

  Offset is from the field for local data in an activation record for
locals to procedures

  Types are assigned attributes type and width (size)
  Becomes more complex if dealing with nested

procedures or records

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
26

Declarations: Example
Production Semantic Rules

P -> D offset := 0
D -> D ; D
D -> id : T enter(id.name, T.type, offset);

offset := offset + T.width
T -> integer T.type := integer;

T.width := 4
T -> real T.type := real

T.width := 8
T -> array[num] of T1 T.type := array(num, T1.type);

T.width := num * T1.width
T -> ↑T1 T.type := pointer(T1.type);

T.width := 4

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
27

Translating Assignments
Production Semantic Rules

S -> id := E p := lookup(id.name);
if p != NULL then emit(p ':=' E.place)
else error

E -> E1 + E2 E.place := newtemp;
emit(E.place ':=' E1.place '+' E2.place)

E -> E1 * E2 E.place := newtemp;
emit(E.place ':=' E1.place '*' E2.place)

E -> -E1 E.place := newtemp;
emit(E.place ':=' 'uminus' E1.place)

E -> (E1) E.place := E1.place
E -> id p := lookup(id.name);

if p != NULL then E.place := p
else error

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
28

Addressing Array Elements

  The location of the i-th element of array A is:

 base + (i – low) * w
  w is the width of each element
  Low is the lower bound of the subscript
  Base is the relative address of a[low]

  The expression for the location can be rewritten as:
 i * w + (base – low * w)

  The subexpression in parentheses is a constant
  That subexpression can be evaluated at compile time

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
29

Semantic Actions for Array
References

Production Semantic Rules
S -> id := E gen(top.get(id.lexeme) ':=' E.addr)

E -> E1 + E2 E.addr=newTemp();
gen(E. addr '=' E1. addr '+' E2. addr) ;

 | L = E gen(L. addr. base '['L. addr ']' '=' E. addr);

 | id E.addr = top.get(id.lexeme)

L -> id [E] L.array = top.get(id.lexeme);
L.type = L.array.type.elem;
L. addr = new Temp 0;
gen(L.addr '=' E.addr '*' L.type.width);

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
30

Type Conversions

  There are multiple types (e.g. integer, real)
for variables and constants
  Compiler may need to reject certain mixed-type

operations
  At times, a compiler needs to general type conversion

instructions

  An attribute E.type holds the type of an
expression

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
31

Boolean Expressions
  Boolean expressions compute logical values
  Often used with flow-of-control statements
  Methods of translating Boolean expression:

  Numerical:
  True is represented as 1 and false is represented as 0
  Nonzero values are considered true and zero values are

considered false

  Flow-of-control:
  Represent the value of a Boolean by the position reached in a

program
  Often not necessary to evaluate entire expression

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
32

Boolean Expressions: Examples
Production Semantic Rules

E -> E1 or E2 E1.true := E.true;
E1.false := newlabel;
E2.true := E.true;
E2.false := E.false;
E.code := E1.code || gen(E1.false ':') || E2.code

E -> E1 and E2 E1.true := newlabel;
E1.false := E.false;
E2.true := E.true;
E2.false := E.false;
E.code := E1.code || gen(E1.true ':') || E2.code

E -> not E1 E1.true := E.false;
E1.false := E.true;
E.code := E1.code

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
33

Boolean Expressions: Examples (2)
Production Semantic Rules

E -> (E1) E1.true := E.true;
E1.false := E.false;
E.code := E1.code

E -> id1 relop id2 E.code := gen('if' id.place
relop.op id2.place 'goto'
E.true) ||
gen('goto' E.false)

E -> true E.code := gen('goto' E.true)

E -> false E.code := gen('goto' E.false)

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
34

Flow-of-Control
  The function newlabel returns a new symbolic

label each time it is called
  Each Boolean expression has two new

attributes:
  E.true is the label to which control flows if E is true
  E.false is the label to which control flows if E is false

  Attribute S.next of a statement S:
  Inherited attribute whose value is the label attached to

the first instruction to be executed after the code for S
  Used to avoid jumps

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
35

Flow-of-Control: Examples
Production Semantic Rules

S -> if E then S1 E.true := newlabel;
E.false := S.next;
S1.next := S.next;
S.code := E.code || gen(E.true ':') || S1.code

S -> if E then S1 else S2 E.true := newlabel;
E.false := newlabel;
S1.next := S.next;
S2.next := S.next;
S.code := E.code || gen(E.true ':') || S1.code || gen('goto'
S.next) || gen(E.false ':') || S2.code

S -> while E do S1 S.begin := newlabel;
E.true := newlabel;
E.false := S.next;
S1.next := S.begin;
S.code := gen(S.begin ':') || E.code || gen(E.true ':') ||
S1.code || gen('goto' S.begin)

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
36

Labels and Goto Statements

  The definition of a label is treated as a declaration of the
label

  Labels are typically entered into the symbol table
  Entry is created the first time the label is seen
  This may be before the definition of the label if it is the target of any

forward goto

  When a compiler encounters a goto statement:
  It must ensure that there is exactly one appropriate label in the current

scope
  If so, it must generate the appropriate code; otherwise, an error should

be indicated

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
37

Return Statements

  Several actions must also take place when a
procedure terminates
  If the called procedure is a function, the result must be stored in a

known place
  The activation record of the calling procedure must be restored
  A jump to the calling procedure's return address must be

generated

  No exact division of run-time tasks between the
calling and called procedure

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
38

Pass by Reference

  The param statements can be used as placeholders for
arguments

  The called procedure is passed a pointer to the first of
the param statements

  Any argument can by obtained by using the proper offset
from the base pointer

  Arguments other than simple names:
  First generate three-address statements needed to evaluate

these arguments
  Follow this by a list of param three-address statements

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
39

Pass by Reference Using a Queue

  The code to evaluate arguments is emitted first,
followed by param statements and then a call

  If desired, could augment rules to count the
number of parameters

Production Semantic Rules
S -> call id (Elist) for each item p on queue do

emit('param' p); emit('call' id.place)
Elist -> Elist, E push E.place to queue

Elist -> E initialize queue to contain E

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
40

Backpatching

  A key problem when generating code for Boolean
expressions and flow-of-control statements is that of
matching a jump instruction with the target of the jump.

  Backpatching uses lists of jumps which are passed as
synthesized attributes.

  Specifically, when a jump is generated, the target of the
jump is temporarily left unspecified. Each such jump is
put on a list of jumps whose labels are to be filled in
when the proper label can be determined.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
41

One-Pass Code Generation using
Backpatching
  Generate instructions into an instruction array, and labels

will be indices into this array. To manipulate lists of
jumps, three functions are used:
  makelist(i) creates a new list containing only i, an

index into the array of instructions; makelist returns a
pointer to the newly created list.

  merge(pl , p2) concatenates the lists pointed to by pl
and p2 , and returns a pointer to the concatenated list.

  backpatch(p, i) inserts i as the target label for each of
the instructions on the list pointed to by p.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 2

Developed By: Vazgen Melikyan
42

Predictable Success

