
Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
1

Compiler Optimization and
Code Generation

Professor: Sc.D., Professor
 Vazgen Melikyan

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
2

Course Overview

  Introduction: Overview of Optimizations
  1 lecture

  Intermediate-Code Generation
  2 lectures

  Machine-Independent Optimizations
  3 lectures

  Code Generation
  2 lectures

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
3

Introduction: Overview of
Optimizations

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
4

The Function of Compilers

  Translate program in one language to executable
program in other language.
  Typically lower abstraction level

  E.g., convert C++ into (x86, SPARC, HP PA, IBM PPC)
object code

  Optimize the Code
  E.g., make the code run faster (transforms a computation to an

equivalent but better form)
  Difference between optimizing and non-optimizing compiler

~ 4x (Proebsting’s law)
  “Optimize” is a bit of a misnomer, the result is not actually optimal

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
5

The Structure of a Compiler

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate Code Generator

Machine-Independent
Code Optimizer

Source Code (C, C++, Java, Verilog)

Target Machine Code (Alpha, SPARC, x86, IA-64)

Error handler Symbol-table

Code generator

Machine-Dependent
Code Optimizer

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
6

The Structure of a Compiler: Work
Example

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate Code Generator

Code generator

<id,1> <=> <id,2><+><id,3><*><60>

position = initial + rate*60

<id,1> <id,2> <id,3>

= +
* 60

<id,1> <id,2> <id,3>

= +
* inttoflat

60

t1 = inttofloat (60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3

Code Optimizer

t1 = id3 * 60.0
id1 = id2 + t1

LDF R2, id3
MULF R2, R2, #60.0
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
7

Lexical Analyzer

  The first phase of a compiler is called lexical analysis or
scanning.

  The lexical analyzer reads the stream of characters
making up the source program and groups the
characters into meaningful sequences called lexemes.

  For each lexeme, the lexical analyzer produces as output
a token of the form:

token-name - abstract symbol that is used during syntax analysis.
attribute-value - points to an entry in the symbol table for this token.
Information from the symbol-table entry is needed for semantic analysis
and code generation.

<token-name, attribute-value>

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
8

Syntax Analyzer: Parser

  The second phase of the compiler is syntax analysis or
parsing.

  The parser uses the first components of the tokens
produced by the lexical analyzer to create a tree-like
intermediate representation that depicts the grammatical
structure of the token stream.

  A typical representation is a syntax tree in which each
interior node represents an operation and the children of
the node represent the arguments of the operation.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
9

Semantic Analyzer

  The semantic analyzer uses the syntax tree and the
information in the symbol table to check the source
program for semantic consistency with the language
definition.

  Gathers type information and saves it in either the syntax
tree or the symbol table, for subsequent use during
intermediate-code generation.

  An important part of semantic analysis is type checking,
where the compiler checks that each operator has
matching operands.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
10

How Compiler Improves
Performance
Execution time = Operation count * Machine cycles per

operation
  Minimize the number of operations

  Arithmetic operations, memory accesses

  Replace expensive operations with simpler ones
  E.g., replace 4-cycle multiplication with1-cycle shift

  Minimize cache misses
  Both data and instruction accesses

  Perform work in parallel
  Instruction scheduling within a thread
  Parallel execution across multiple threads

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
11

Global Steps of Optimization

  Formulate optimization problem:
  Identify opportunities of optimization

  Representation:
  Control-flow graph
  Control-dependence graph
  Def/use, use/def chains
  SSA (Static Single Assignment)

  Analysis:
  Control-flow
  Data-flow

  Code Transformation
  Experimental Evaluation (and repeat process)

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
12

Other Optimization Goals Besides
Performance

  Minimizing power and energy consumption
  Finding (and minimizing the impact of)

software bugs
  Security vulnerabilities
  Subtle interactions between parallel threads

  Increasing reliability, fault-tolerance

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
13

Types of Optimizations

  Peephole
  Local
  Global
  Loop
  Interprocedural, whole-program or link-time
  Machine code
  Data-flow
  SSA-based
  Code generator
  Functional language

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
14

Other Optimizations

  Bounds-checking elimination
  Dead code elimination
  Inline expansion or macro expansion
  Jump threading
  Macro compression
  Reduction of cache collisions
  Stack height reduction

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
15

Basic Blocks

  Basic blocks are maximal sequences of consecutive
three-address instructions.
  The flow of control can only enter the basic block through the first

instruction in the block. (no jumps into the middle of the block)
  Control will leave the block without halting or branching, except

possibly at the last instruction in the block.

  The basic blocks become the nodes of a flow graph,
whose edges indicate which blocks can follow which
other blocks.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
16

Partitioning Three-address
Instructions into Basic Blocks

4

  Input: A sequence of three-address instructions
  Output: A list of the basic blocks for that sequence in which each

instruction is assigned to exactly one basic block
  Method: Determine instructions in the intermediate code that are

leaders: the first instructions in some basic block (instruction just
past the end of the intermediate program is not included as a leader)

The rules for finding leaders are:
1.  The first three-address instruction in the intermediate code
2.  Any instruction that is the target of a conditional or unconditional jump
3.  Any instruction that immediately follows a conditional or unconditional

jump

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
17

Partitioning Three-address Instructions
into Basic Blocks: Example

1.  i = 1
2.  j = 1
3.  t1 = 10 * i
4.  t2 = t1 + j
5.  j = j + 1
6.  if j <= 10 goto (3)
7.  i = i + 1
8.  if i <= 10 goto (2)
9.  i = 1
10.  t3 = i – 1
11.  if i <= 10 goto (10)

  First, instruction 1 is a leader by rule (1).
Jumps are at instructions 6, 8, and 11. By
rule (2), the targets of these jumps are
leaders (instructions 3, 2, and 10,
respectively)

  By rule (3), each instruction following a
jump is a leader; instructions 7 and 9.

  Leaders are instructions 1, 2, 3, 7, 9 and
10. The basic block of each leader
contains all the instructions from itself
until just before the next leader.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
18

Flow Graphs

  Flow Graph is the representation of control flow between basic
blocks. The nodes of the flow graph are the basic blocks.

  There is an edge from block B to block C if and only if it is possible
for the first instruction in block C to immediately follow the last
instruction in block B. There are two ways that such an edge could
be justified:

1.  There is a conditional or unconditional jump from the end of B
to the beginning of C.

2.  C immediately follows B in the original order of the three-
address instructions, and B does not end in an unconditional
jump.

  B is a predecessor of C, and C is a successor of B.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
19

Flow Graphs: Example

Flow Graph Example of program in Example(1).
The block led by first statement of the program is the start, or entry
node.

B1: i = 1

B2: j = 1

B3: t1 = 10 * i
 t2 = t1 + j
 j = j + 1
 if j <= 10 goto (3)

B4: i = i + 1
 if i <= 10 goto (2)

B5: i = 1

B6: t3 = i – 1
 if i <= 10 goto (10)

 Entry
 Exit

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
20

Flow Graphs: Representation

  Flow graphs, being quite ordinary graphs, can be
represented by any of the data structures appropriate for
graphs.

  The content of a node (basic block) might be
represented by a pointer to the leader in the array of
three-address instructions, together with a count of the
number of instructions or a second pointer to the last
instruction.

  Since the number of instructions may be changed in a
basic block frequently, it is likely to be more efficient to
create a linked list of instructions for each basic block.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
21

Local Optimizations

  Analysis and transformation performed within a basic
block

  No control flow information is considered
  Examples of local optimizations:

  Local common sub expression elimination
 analysis: same expression evaluated more than once in b.
 transformation: replace with single calculation

  Local constant folding or elimination
 analysis: expression can be evaluated at compile time
 transformation: replace by constant, compile-time value

  Dead code elimination

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
22

Global Optimizations:
Intraprocedural
  Global versions of local optimizations

  Global common sub-expression elimination
  Global constant propagation
  Dead code elimination

  Loop optimizations
  Reduce code to be executed in each iteration
  Code motion
  Induction variable elimination

  Other control structures
  Code hoisting: eliminates copies of identical code on parallel

paths in a flow graph to reduce code size.

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
23

Induction Variable Elimination

  Intuitively
  Loop indices are induction variables

 (counting iterations)
  Linear functions of the loop indices are also induction variables

 (for accessing arrays)

  Analysis: detection of induction variable
  Optimizations

  Strength reduction: replace multiplication by additions

  Elimination of loop index: replace termination by tests on other
 induction variables

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
24

Loop Invariant Code Motion

  Analysis
  A computation is done within a loop and

 result of the computation is the same as
 long as keep going around the loop

  Transformation
  Move the computation outside the loop

a = b + c

t = b + c

a = t

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
25

Loop Fusion (1)

  Loop fusion, also called loop jamming, is a compiler optimization,
a loop transformation, which replaces multiple loops with a single
one.

 After Loop Fusion

int i, a[100], b[100];
 for (i = 0; i < 100; i++) {

a[i] = 1;
b[i] = 2;

 }

 Original Loop

 int i, a[100], b[100];
 for (i = 0; i < 100; i++) {

 a[i] = 1;
 }

 for (i = 0; i < 100; i++) {
 b[i] = 2;

 }

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
26

Loop Fusion (2)

  Loop fission (or loop distribution) is a compiler optimization technique attempting
to break a loop into multiple loops over the same index range but each taking only a
part of the loop's body.

  The goal is to break down large loop body into smaller ones to achieve better
utilization of locality of reference. It is the reverse action to loop fusion. This
optimization is most efficient in multi-core processors that can split a task into multiple
tasks for each processor.

 After Loop Fission
 int i, a[100], b[100];

 for (i = 0; i < 100; i++) {
 a[i] = 1;

 }
 for (i = 0; i < 100; i++) {

 b[i] = 2; }

 Original Loop
 int i, a[100], b[100];

 for (i = 0; i < 100; i++) {
 a[i] = 1;
 b[i] = 2;

 }

Synopsys University Courseware
Copyright © 2012 Synopsys, Inc. All rights reserved.

Compiler Optimization and Code Generation
Lecture - 1

Developed By: Vazgen Melikyan
27

Predictable Success

