VLSI Devices

- Intuitive understanding of device operation
- □ Fundamental analytic models
 - Manual Models
 - Spice Models
- □ Secondary and deep-sub-micron effects
- □ Junction Diode and FET
- □ Resistor and Capacitor

The Diode

Cross-section of *pn* junction in an IC process

Occurs as parasitic element in Digital ICs

Depletion Region

Forward Bias usually avoided in Digital ICs

Reverse Bias

Diode Isolation Mode

Diode Current

$$I_D = I_s(e^{V_D/kT} - 1)$$

Models for Manual Analysis

(a) Ideal diode model

(b) First-order diode model

Junction Capacitance

$$C_j = \frac{C_{j0}}{(1 - V_D/\phi_0)^m}$$
 m = 0.5: abrupt junction m = 0.33: linear junction

Diffusion Capacitance (Forward Bias)

$$C_d = \frac{\mathbf{d}Q_D}{\mathbf{d}V_D} = \tau_T \frac{\mathbf{d}I_D}{\mathbf{d}V_D} \approx \frac{\tau_T I_D}{\phi_T}$$

Secondary Effects

Avalanche Breakdown

Diode Model (Manual Analysis)

SPICE Parameters

Parameter Name	Symbol	SPICE Name	Units	Default Value
Saturation current	I_S	IS	A	1.0 E-14
Emission coefficient	n	N	-	1
Series resistance	R_S	RS	Ω	0
Transit time	τ_T	TT	sec	0
Zero-bias junction capacitance	C_{j0}	C10	F	0
Grading coefficient	m	M	-	0.5
Junction potential	φ ₀	VJ	V	1

First Order SPICE diode model parameters.

□ Transit time models charge storage

What is a Transistor?

A Switch!

- Resistor is poor model in saturation – current source
- □ Source and Drain are symmetric
- □ N-channel: Source is most negative of the two
- □ P-channel: Source is most positive of the two
- □ Four Modes:
 - Off (leakage current only)
 - Sub-Threshold (exponential)
 - Linear (Resistive)
 - Saturation (Current Source)

The MOS Transistor

MOS Transistors -Types and Symbols

NMOS Enhancement NMOS Depletion

PMOS Enhancement

NMOS with **Bulk Contact**

Threshold Voltage: Concept

The Threshold Voltage

$$V_T = \phi_{mS} - 2\phi_F - \frac{Q_B}{C_{OX}} - \frac{Q_{SS}}{C_{OX}} - \frac{Q_I}{C_{OX}}$$

$$\text{Workfunction}$$

$$\text{Difference}$$

$$\int_{\text{Surface Charge}}^{\uparrow} \text{Implants}$$

$$\text{Depletion Layer Charge}$$

$$V_T = V_{T0} + \gamma (\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{|-2\phi_F|})$$
 with
$$V_{T0} = \phi_{ms} - 2\phi_F - \frac{\mathcal{Q}_{B0}}{C_{ox}} - \frac{\mathcal{Q}_{SS}}{C_{ox}} - \frac{\mathcal{Q}_I}{C_{ox}}$$
 and
$$\gamma = \frac{\sqrt{2q\varepsilon_{Si}N_A}}{C_{ox}}$$

The Body Effect

Current-Voltage Relation

Transistor in Linear

MOS transistor and its bias conditions

Transistor in Saturation

Current-Voltage Relations Long-Channel Device

Linear Region: $V_{DS} \leq V_{GS} - V_{T}$

$$I_D = k_n^* \frac{W}{L} \Big((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \Big)$$

with

$$k'_n = \mu_n C_{OX} = \frac{\mu_n \varepsilon_{OX}}{t_{OX}}$$
 Process Transconductance Parameter

Saturation Mode:
$$V_{DS} \ge V_{GS} - V_{T}$$
 Channel Length Modulation
$$I_D = \frac{k_n^r W}{2L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

A model for manual analysis

$$\begin{split} V_{DS} &> V_{GS} - V_T \\ I_D &= \frac{\kappa'_n \underline{W}}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS}) \end{split}$$

$$\begin{split} V_{DS} &< V_{GS} - V_T \\ I_D &= k_n' \frac{W}{L} \Big((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \Big) \end{split}$$

with

$$V_T = V_{T0} + \gamma (\sqrt{-2\phi_F + V_{SB}} - \sqrt{-2\phi_F})$$

Current-Voltage Relations: Deep-Submicron FET

Velocity Saturation

Perspective

I_D versus V_{GS}

I_D versus V_{DS}

Long Channel

Short Channel

A unified model for manual analysis

$$\begin{split} I_D &= 0 \text{ for } V_{GT} \leq 0 \\ I_D &= k' \frac{W}{L} \Big(V_{GT} V_{min} - \frac{V_{min}^2}{2} \Big) (1 + \lambda V_{DS}) \text{ for } V_{GT} \geq 0 \\ \text{with } V_{min} &= \min(V_{GT}, V_{DS}, V_{DSAT}), \\ V_{GT} &= V_{GS} - V_T, \\ \text{and } V_T &= V_{T0} + \gamma (\sqrt{|-2\phi_F|} + V_{SB}| - \sqrt{|-2\phi_F|}) \end{split}$$

Simple Model versus SPICE

A PMOS Transistor

Transistor Model for Manual Analysis

Table 3.2 Parameters for manual model of generic 0.25 μm CMOS process (minimum length device).

	V _{T0} (V)	γ (V ^{0.5})	V _{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115×10^{-6}	0.06
PMOS	-0.4	-0.4	≥ <u>1</u>	-30×10^{-6}	-0.1

0.5 μm	Vt	Gamma	Vd(sat)	k' (μΑ/V2)	Lambda
NMOS	0.7-0.8	0.48	3.1	50-60	0.04*
PMOS	-0.91- -0.97	0.59	-6.5	-17- -20	-0.07*

The Transistor as a Switch

$$R_{eq} = \frac{1}{2} \left(\frac{V_{DD}}{I_{DSAT}(1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT}(1 + \lambda V_{DD}/2)} \right) \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{5}{6} \lambda V_{DD} \right)$$

The Transistor as a Switch

The Transistor as a Switch

Table 3.3 Equivalent resistance R_{eq} (W/L= 1) of NMOS and PMOS transistors in 0.25 μ m CMOS process (with $L = L_{min}$). For larger devices, divide R_{eq} by W/L.

V_{DD} (V)	1	1.5	2	2.5
NMOS (kΩ)	35	19	15	13
PMOS (kΩ)	115	55	38	31

MOS Capacitances Dynamic Behavior

Dynamic Behavior of MOS Transistor

The Gate Capacitance

$$C_{gate} = \frac{\varepsilon_{ox}}{t_{ox}} WL$$

Cross section

Gate Capacitance

Operation Region	C_{gb}	C_{gs}	C_{gd}	
Cutoff	$C_{ox}WL_{eff}$	0	0	
Triode	0	$C_{ox}WL_{eff}/2$	$C_{ox}WL_{eff}/2$	
Saturation	0	$(2/3)C_{ox}WL_{eff}$	0	

Most important regions in digital design: saturation and cut-off

Gate Capacitance

Capacitance as a function of VGS (with VDS = 0)

Capacitance as a function of the degree of saturation

Diffusion Capacitance

$$C_{diff} = C_{bottom} + C_{sw} = C_{j} \times AREA + C_{jsw} \times PERIMETER$$

= $C_{j}L_{S}W + C_{jsw}(2L_{S} + W)$

Junction Capacitance

$$C_j = \frac{C_{j0}}{(1 - V_D/\phi_0)^m}$$
 m = 0.5: abrupt junction m = 0.33: linear junction

Linearizing the Junction Capacitance

Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest

$$C_{eq} = \frac{\Delta Q_j}{\Delta V_D} = \frac{Q_j(V_{high}) - Q_j(V_{low})}{V_{high} - V_{low}} = K_{eq}C_{j0}$$

$$K_{eq} = \frac{-\phi_0^m}{(V_{high} - V_{low})(1-m)} [(\phi_0 - V_{high})^{1-m} - (\phi_0 - V_{low})^{1-m}]$$

MOS Capacitances in 0.25/0.5 µm CMOS processes

	C_{ox} (fF/ μ m ²)	$C_{\mathcal{O}}$ (fF/ μ m)	$\frac{C_j}{(ext{fF}/ ext{ ext{mm}}^2)}$	m_{j}	φ _b (V)	$C_{j_{ extstyle sw}} \ ext{(fF/}\mu ext{m)}$	m_{jsw}	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

0.5um AMI/C5	C _{ox} fF/μm²	C ₀ fF/μm	C _j fF/μm²	m _j	φ _b V	C _{jsw} fF/μm	m _{jsw}	$\phi_{\sf bsw}$ V
NMOS	2.5	0.20	0.44	0.34	0.90	0.28	0.35	0.89
PMOS	2.4	0.28	0.73	0.5	0.91	0.33	0.32	0.90

The Sub-Micron MOS Transistor

- Threshold Variations
- Subthreshold Conduction
- □ Parasitic Resistances

Threshold Variations

Threshold as a function of the length (for low V_{DS})

Drain-induced barrier lowering (for low *L*)

Sub-Threshold Conduction

The Slope Factor

$$I_D \sim I_0 e^{\frac{qV_{GS}}{nkT}}, \quad n = 1 + \frac{C_D}{C_{ox}}$$

$$S$$
 is ΔV_{GS} for I_{D2}/I_{D1} =10

$$S = n \left(\frac{kT}{q}\right) \ln(10)$$

Typical values for S: 60 .. 100 mV/decade

Sub-Threshold I_D vs V_{GS}

$$I_D = I_0 e^{\frac{qV_{GS}}{nkT}} \left(1 - e^{-\frac{qV_{DS}}{kT}} \right)$$

Subthreshold MOS Characteristics - EE141 0.25u process

Sub-Threshold I_D vs V_{DS}

$$I_D = I_0 e^{\frac{qV_{GS}}{nkT}} \left(1 - e^{-\frac{qV_{DS}}{kT}} \right) 1 + \lambda \cdot V_{DS}$$

Subthreshold MOS Characteristics - EE141 0.25u process

Summary of MOSFET Operating Regions

- \square Strong Inversion $V_{GS} > V_T$
 - Linear (Resistive) $V_{DS} < V_{DSAT}$
 - Saturated (Constant Current) V_{DS} ≥ V_{DSAT}
- □ Weak Inversion (Sub-Threshold) $V_{GS} \le V_T$
 - Exponential in V_{GS} with linear V_{DS} dependence

Parasitic Resistances

Latch-up

Future Perspectives

25 nm FINFET MOS transistor

Problems HW3

- 1. Rabaey Chap. 3 on-line problems: 2, 3(do not do the spice simulation), 6, 9(L=0.5um)
- Consider an inverter built with 1/0.5 (nmos W/L) and 2/0.5 (pmos) transistors. Draw a sue schematic for the inverter driving a 10fF load capacitor (other terminal is grounded). Using your model for the AMI FET transistors, determine the peak current flowing into the FET after both an abrupt rising and falling edge on the inverter input, given a supply voltage of 3.3 Volts and using the Mosis extracted parameters from the MOSIS or the class website. Simulate these transitions using spice from the Sue schematic.
- Complete the Max layout of the full adder cells and build a schematic in sue for each cell and for an 8-bit ripple carry adder. Be sure to use the same transistor sizes in the schematic as you had in your layout. Simulate the adder for the following transition: a=0->1, b=255 Plot the sum and carry outputs and estimate the total carry chain delay and delay per stage.