ECE 124a/256c Timing Protocols and Synchronization

Forrest Brewer

Timing Protocols

- Fundamental mechanism for coherent activity
 - Synchronous $\Delta \phi = 0 \Delta f = 0$
 - Gated (Aperiodic)
 - Mesochronous $\Delta \phi = \phi c \Delta f = 0$
 - Clock Domains
 - Plesiochronous $\Delta \phi$ = changing Δf = slowly changing
 - Network Model (distributed synchronization)
 - Asynchronous
 - Needs Synchronizer locally, potentially highest performance

Clocks

- Economy of scale, conceptually simple
- Cost grows with frequency, area and terminals

Compare Timing Schemes I

TABLE 9-1 Timing Parameters					
Parameter	Symbol	Nominal	Skew (ps)	Jitter (ps)	
Bit cell	$t_{ m bit}$	2.5 ns			
Transmitter rise time	$t_{\rm r}$	1.0 ns			
Cable delay	$t_{ m wire}$	6.25 ns	100		
Receiver aperture	$t_{\rm a}$	300 ps	100	50	
Transmitter delay		500 ps	150	50	
Buffer stage delay		250 ps	100	50	

- Signal between sub-systems
 - Global Synchronous Clock
 - Matched Clock Line Lengths

Compare Timing Schemes II

- Send Both Clock and Signal separately
 - Clock lines need not be matched
 - Buffer and line skew and jitter same as synch. Model
- Double Edge Triggered Clocks

Compare Timing Schemes III

	A Skew	A Jitter	B Skew	B Jitter	
Description	(ps)	(ps)	(ps)	(ps)	
Transmitter clock	600	250		50	
Receiver clock	600	250		50	
Transmitter	150	50	30	50	
Receiver	100	50	20	50	
Data cable	100		100		
Reference clock cable			100		
TOTAL	1550	600	250	200	

- Gross Timing Margin: identical
 - Open Loop approach fails: time uncertainty 2.15nS (jitter+skew)
 - Closed Loop has net timing margin of 150pS (600pS 450pS)
- Skew removed by reference clock matching
 - In general, can remove low bandwidth timing variations (skew), but not jitter

Compare Timing Schemes IV

- Open loop scheme requires particular clock frequencies
 - Need for clock period to match sampling delay of wires
 - Need Odd number of half-bits on wire e.g:

$$\frac{t_{wire} + 0.5(t_r + t_a) + (t_{jitter} + t_{skew})}{N} \le t_{bit} \le \frac{t_{wire} - 0.5(t_r + t_a) - (t_{jitter} + t_{skew})}{N - 1}$$

- For open loop scheme this give 9nS/bit
- For redesign with jitter+skew = 550pS
 - Can operate with 2.5nS, 4.4nS, or 7.5nS+
 - But not 2.6nS!
- Moral-- avoid global timing in large distributed systems

Timing Nomenclature

- Rise and Fall measured at 10% and 90% (20% and 80% in CMOS)
- Pulse width and delays measured at 50%
- Duty Cycle $d_B = t_{wBh}/t_{cyB2}$
- Phase $\phi_{AB} = 2\pi t_{AB}/t_{cyA2}$
- RMS (Root Mean Square) $V_{RMS} = \sqrt{\oint_{cycle}} V(t)^2 dt$

Delay, Jitter and Skew

- Practical systems are subject to noise and process variations
 - Two signal paths will not have the same delay
 - Skew = average difference over many cycles
 - Issue is bandwidth of timing adjustment = PLL bandwitdh
 - Can often accommodate temperature induced delay
 - Jitter = real-time deviation of signal from average
 - High frequency for which timing cannot be dynamically adjusted
 - Asynchronous timing can mitigate jitter up to circuit limit

Combinational Logic Timing

- Static Logic continuously re-evaluates its inputs
 - Outputs subject to "Glitches" or static hazards
 - A changing input will contaminate the output for some time (t_{cAX})
 - But will eventually become correct (t_{dhAX})
- t_{dhAX} is the sum of delays on the longest timing path from A to X
- t_{cAX} is the sum of delays on shortest timing path from A to X

Combinational Delays

- Inertial Delay Model: Composition by Adding
 - Both signal propagation and contamination times simply add
 - Often separate timing margins are held for rising and falling edges
- Delays compose on bits **not** busses!
 - Bit-wise composite delays are a gross approximation without careful design

Edge Triggered Flip-flop

- **t**_a is the timing aperture width, t_{ao} is the aperture offset $t_{setup} = t_a/2 t_{ao} + t_r/2$ $t_{hold} = t_a/2 + t_{ao} + t_r/2$
- t_{cCQ} is the contamination delay
- t_{dCQ} is the valid data output delay
- Note: in general, apertures and delays are different for rising and falling edges

Level Sensitive Latch

- Latch is transparent when clk is high
 - t_{dDO}, t_{cDO} are transparent propagation times, referenced to D
- t_s , t_h referenced to falling edge of clock t_{dCO} , t_{cCO} referenced to rising edge of clock

Double-(Dual)-Edge Triggered Flipflop

- D is sampled on both rising and falling edges of clock
 - Inherits aperture from internal level latches
 - Does not have data referenced output timing— is not transparent
- Doubles data rate per clock edge
 - Duty cycle of clock now important

<u>Eye Diagram</u>

- Rectangle in eye is margin window
 - Indicates trade-off between voltage and timing margins
 - To have an opening: $t_{cy} \ge 2t_u + t_a + t_r$ (t_u is a maximum value the worst case early to late is 2t_u)

Signal Encoding

- Aperiodic transmission must encode that a bit is (a) Dual-Rail NRZ transferred and what bit
 - Can encode events in time
 - Can encode using multiple bits
 - Can encode using multiple levels

(b) Dual-Rail RZ

(c) Clocked NRZ

(d) Clocked RZ

(e) Ternary NRZ

(f) Ternary RZ

More Signal Encoding

- Cheap to bundle several signals with a single clock
 - DDR and DDR/2 memory bus
 - RAMBUS
- If transitions must be minimized, (power?) but timing is accurate – phase encoding is very dense

Synchronous Timing (Open Loop)

- Huffman FSM
- Minimum Delay
- Maximum Delay

$$t_{cAY} \ge t_k + t_h - t_{cCQ}$$

$$t_{cy} \ge t_{dBY} + t_k + t_s + t_{dCQ}$$

Two-Phase Clocking (latch)

- Non-overlapping clocks ϕ_1 , ϕ_2
 - Hides skew/jitter to width of non-overlap period
- 4 Partitions of signals
 - A^2 (valid in ϕ_2)
 - C^1 (valid in ϕ_1)
 - B^{f2} (falling edge of φ₂)
 - D^{f1} (falling edge of φ₁)

More 2-phase clocking (Borrowing)

- Each block can send data to next early (during transparent phase)
 - Succeeding blocks may start early (borrow time) from fast finishers

Limiting constraints:
$$t_{dAB} \leq t_{cy} - t_{no21} - t_s - t_{sCQ} - t_k$$

$$t_{dCD} \leq t_{cy} - t_{no12} - t_s - t_{sCQ} - t_k$$

• Across cycles can borrow: $t_{dN} \le N(t_{yc} - 2t_{dDQ})$

Still More 2-phase clocking

- Skew/Jitter limits
 - Skew+jitter hiding limited by non-overlap period, else:

$$t_{cCD} \ge t_k + t_h - t_{no12} - t_{cCQ}$$
 $t_{cAB} \ge t_k + t_h - t_{no21} - t_{cCQ}$

Similarly, the max cycle time is effected if skew+jitter > clk-high:

$$t_{cy} \ge t_{dAB} + t_{dCD} + 2t_{dDQ} + 2\max(0, t_k + t_s + t_{dCQ} - t_w - t_{dDQ})$$

Qualified Clocks (gating) in 2-phase

- Skew hiding can ease clock gating
 - Register above is conditionally loaded (B¹ true)
 - Alternative is multiplexer circuit which is slower, and more power
- Can use low skew "AND" gate:

Pseudo-2Phase Clocking

- Zero-Overlap analog of 2 phase:
 - Duty cycle constraint on clock

$$t_{cAB} \ge t_k + t_h - t_{cCQ}$$

$$t_{cCD} \ge t_k + t_h - t_{cCQ}$$

$$t_{cy} \le t_{dAB} + t_{dCD} + t_k + 2t_{dDQ}$$

Pipeline Timing

- Delay Successive clocks as required by pipeline stage
 - Performance limited only by uncertainty of clocking (and power!)
 - Difficult to integrate feedback (needs synchronizer)
 - Pipeline in figure is wave-pipelined: t_{cyc} < t_{prop} (must be hazard free)

$$\begin{aligned} t_{nAB} &= (t_{cAB} + t_{dAB})/2 & t_{cAB} &= t_{nAB} - t_{uAB} \\ t_{uAB} &= (t_{dAB} - t_{cAB})/2 & t_{dAB} &= t_{nAB} + t_{uAB} \end{aligned} \qquad t_{validB} = t_{cyc} - t_{uAB} - t_{rB}$$

More Pipeline Timing

- Valid period of each stage must be larger than ff aperture
 - By setting delay, one can reduce the cycle time to a minimum:

$$t_{cyc} > t_{uAB} + t_{u\phi} + t_{aperture} + t_{rB}$$

- Note that the cycle time and thus the performance is limited only by the uncertainty of timing – not the delay
 - Fast systems have less uncertain time delays
 - Less uncertainty usually requires more electrons to define the events => more power

Latch based Pipelines

- Latches can be implemented very cheaply
 - Consume less power
 - Less effective at reducing uncertain arrival time

Feedback in Pipeline Timing

- Clock phase relation between stages is uncertain
 - Need Synchronizer to center fedback data in clock timing aperture
 - Worst case: performance falls to level of conventional feedback timing (Loose advantage of pipelined timing)
- Delays around loop dependencies matter
 - Speculation?

Delay Locked Loop

- Loop feedback adjusts t_d so that t_d+t_b sums to $t_{cyc}/2$
 - Effectively a zero delay clock buffer
 - Errors and Uncertainty?

Loop Error and Dynamics

- The behavior of a phase or delay locked loop is dominated by the phase detector and the loop filter
 - Phase detector has a limited linear response
 - Loop filter is low-pass, high DC (H(0) gain)
- Loop Response: $\Delta \phi(s)/e(s) = 1/(1+H(s))$
- When locked, the loop has a residual error:

$$\Delta \phi_r = \frac{2\pi}{t_{cyc}} \left(\frac{t_{cyc}/2 - t_{d0} - t_b}{1 + k_l} \right) \qquad k_l = \frac{2\pi}{t_{cyc}} H(0)$$

Where k₁ is the DC loop gain

More Loop Dynamics

- For simple low pass filter: $H(s) = \frac{ka}{s+a}$
- Loop Response: $\frac{\Delta \phi(s)}{e(s)} = \left(\frac{s+a}{s+a(k+1)}\right)^{s+a(k+1)}$
- Time response: $\phi(t) = \phi(0) \exp(-a(k+1)t)$
 - So impluse response is to decay rapidly to locked state
 - As long as loop bandwidth is much lower than phase comparator or delay line response, loop is stable.

On-Chip Clock Distribution

- Goal: Provide timing source with desired jitter while minimizing power and area overhead
 - Tricky problem:
 - (power) Wires have inherent loss
 - (skew and jitter) Buffers modulate power noise and are non-uniform
 - (area cost) Clock wiring increases routing conjestion
 - (jitter) Coupling of wires in clock network to other wires
 - (performace loss) Sum of jitter sources must be covered by timing clearance
 - (power) Toggle rate highest for any synchronous signal
- Low-jitter clocking over large area at high rates uses enormous power!
 - Often limit chip performance at given power

On-Chip Clock Distribution

Buffers

- Required to limit rise time over the clock tree
- Issues
 - jitter from Power Supply Noise $t_j \propto V_{noise} t_r$
 - skew and jitter from device variation (technology)

Wires

- Wire Capacitance (Buffer loading)
- Wire Resistance
 - Distributed RC delay (rise-time degradation)
 - Tradeoff between Resistance and Capacitance
 - wire width; Inductance if resistance low enough
- For long wires, desire equal lengths to clock source.

Clock Distribution

- For sufficiently small systems, a single clock can be distributed to all synchronous elements
 - Phase synchronous region: Clock Domain
 - Typical topology is a tree with the master at the root
 - Wirelength matching

On-Chip Clock Example

Example:

- 10⁶ Gates
- 50,000 Flip-flops
- Clock load at each flop 20fF
- Total Capacitance 1nF
- Chip Size 16x16mm
- Wire Resistivity 70mW/sq.
- Wire Capacitance 130aF/μm² (area) +80aF/μm (fringe)
- 2V 0.18um, 7Metal design technology

On-Chip Example

Delay = 2.8nS

Skew < 560pS

Level	Fan-Out	Wire Length (mm)	Wire Width (μm)	C _w (ff)	$R_{ m w}$ (Ω)	C _L (ff)	$ au_{ ext{wire}}$ (ps)	C _O /C _I
1	2	4	3	1,880	93	250	93	17
2	4	3	3	1,410	70	250	57	27
3	2	4	3	1,880	93	250	93	17
4	4	3	3	1,410	70	250	57	27
5	4	1	0.6	158	117	250	37	7
6	6	1	0.6	158	117	667	85	20

Systematic Clock Distribution

- Automate design and optimization of clock network
 - Systematic topology:
 - Minimal Spanning Tree (Steiner Route):
 - Shortest possible length
 - H-tree:
 - Equal Length from Root to any leaf (Square Layout)
 - Clock Grid/Matrix:
 - Electrically redundant layout
 - Systematic Buffering of loss
 - Buffer Insertion
 - Jitter analysis
 - Power Optimization
 - Limits of Synchronous Domains
 - Power vs. Area vs. Jitter

Minimal Spanning Tree

- Consider N uniformly distributed loads
- Assume L is perimeter length of chip
- What is minimal length of wire to connect all loads?

• Average distance between loads: $d = \frac{L}{\sqrt{N}}$

Pairwise Connect neighbors:

$$\frac{(N/2)L}{\sqrt{N}} = \frac{L}{2}\sqrt{N}$$

Recursively connect groups

$$W = \frac{L}{2}\sqrt{N} + \frac{L}{4}\sqrt{N} + \dots = L\sqrt{N}$$

H-tree

- Wire strategy to ensure equal path lengths = D
- Total Length = $\frac{3D\sqrt{N}}{2}$
- Buffer as necessary (not necessarily at each branch)

Local Routing to Loads

- Locally, route to flip-flops with minimal routing
 - Conserve Skew for long wire links (H-tree or grid) but use MST locally to save wire.
 - Most of tree routing length (c.f. capacitance) in local connect!
 - Penfield/Horowitz model distributed delay along wires
 - Determine both skew and risetime
 - Local nets of minimal length save global clock power
 - Locality implies minimal skew from doing this

Buffer Jitter from Power Noise

 To first order, the jitter in a CMOS buffer from supply variation is proportional to the voltage variation and the slope at 50% of the swing.

$$\left. \frac{dV}{dt} = \frac{V_{dd}}{RC} (e^{-t/RC}) \Longrightarrow \frac{dt}{dV} \right|_{50\% swing} = \frac{2RC}{V_{dd}} \Longrightarrow \Delta t = 2RC \left(\frac{\Delta V}{V_{dd}} \right)$$

Example 1 (Power lower bound)

- 100,000 10fF flip flops, 1cm² die
 - minimum clock length = 3.16 meters
 - For interconnect 0.18 wire (2.23pf/cm) => 705pF capacitance
 - Total Loading w/o buffers is 1.705nF
 - 1.8 Volt swing uses 3.05nC of charge per cycle
 - \blacksquare 300MHz Clock => 3x10^8*3.05nC = 0.915A
 - Without any buffering, the clock draws 1.8V*0.91A=1.6W

Example 2 (Delay and Rise Time)

- Wire resistance 145Ω/mm
 - Assuming H-tree:R=5mm*145Ω, C=1.7nF
 - Elmore Delay From Root (perfect driver) to leaf--
 - Delay =(1/2)R*(1/2)C+(1/2)R*(1/4)C = (3/8)RC+(1/4)R*(1/8)C+(1/4)R*(1/16)C = (3/64)RC+(1/8)R*(1/32)C+(1/8)R*(1/64)C = (3/512)RC+ ...
 - = (3/8)RC(1+1/8+1/64+1/512+...) = (3/7)RC = 528nS!
 - Clearly no hope for central buffer unless much lower wire resistance...
 - At W=100um, R=1.32 Ω (5mm), C=2.17nF => (3/7)RC=1.2nS but this presumes a perfect clock driver of nearly 4A. (Here we assumed top level metal for top 5 levels then interconnect for rest).

<u>Distributed Buffer Clock Network</u>

- In general, tradeoff buffer jitter (tree depth) with wire width (power cost)
- Use Grid or H-Tree at top of tree
- MST at bottom of tree
- Lower Bound on number of Buffers: (vs. rise time requirment)
 - Total Capacitance of network: C_t
 - Delay and load of Buffer: D = aC+b; C_b
 - Given N buffers, assume equal partition of total load= C_t+NC_b
 - Delay D is 50%, rise time is 80% -- multiplier is 1.4:

$$t_r = 1.4D = 1.4(a(C_t + NC_b)/N + b)$$
 $N = \frac{aC_t}{t_r/1.4 - b - aC_b}$

Example 3 (Distributed Buffer)

- Reprise: 1.8V 0.18um 100,000 10fF leaves, 1cm², 316cm
- Wire Cap + load = 1.7nF
- MMI_BUFC: 44fF load, delay(pS) = 1240*C(pF)+28pS
- Need 34,960 buffers, 1.54nF Buffer Cap to meet 200pS rise time at leaves.
- Total Cap = 3.24nF, so at 300MHz Power= 3.15W
- On a single path from root to leaf, need 111 buffers
 (1cm) note that this is far from optimal delay product.
 - Clump to minimize serial buffers i.e. 11 in parallel each mm.
 - 1mm load = 224fF wire + 480fF Buffer = 700fF
 - Delay = 145*112+100*700fF + 28pS = 114pS/mm = 1.1nS
 - Issue: 10 buffers along path => jitter!

Clock Grid

- Structure used to passively lower delivered jitter (relative to tree)
- 150pF load, 350pF Wire Cap, 8.5mm², 14um wire width
 - Gound plane to minimize inductance

Example

- H-tree example
- 150pF load, 8.5mm², Variable wire width
 - plot of response, each layer (note TM effects on root notes)

Folded (serpentine)

- Used in Pentium Processors
 - Fold wire to get correct length for equal delay
- Results: Grid: 228pF, 21pS delay, 21pS skew

Tree: 15.5pF 130pS delay, skew low

Serp: 480pF 130pS delay, lowest skew

TM Model Improvement

- TM effects added to design of variable width tree
- TM issues important when wire widths are large
 - IR small relative to LdI/dt