

Forrest Brewer

Displays: W. Burleson, K. Bernstein, P.

Gronoski

Basics (MOS Electrical Model)

$$I_{ds} = \frac{kW}{L} ((V_{gs} - V_T)V_F - \frac{V_F^2}{2})(1 + \lambda V_{ds})$$

- Nonlinear model with 3 conduction modes:
 - Linear Mode $(V_{ds} < V_{gs} V_T)$ and $(V_{ds} < V_{sat})$: $V_F = V_{ds}$
 - Saturation $(V_{ds} > V_{gs}-V_T)$ and $(V_{ds} < V_{sat})$: $V_F = V_{gs}-V_T$
 - Velocity Saturation (V_{ds} > V_{sat}): V_F = V_{sat}
- $V_F = Min(V_{gs}-V_T, V_{sat}, V_{ds})$

Body Effect

- Threshold is function of back potential
 - Increases difficulty of turn on for junction reverse bias increase

0.18μ	Φ_{f}	γ
N-type	0.4 (V)	0.32
P-type	0.4 (V)	-0.42

$$V_{T} = V_{T0} + \gamma \left(\sqrt{2|\phi_{f}|} + V_{SB} - \sqrt{2|\phi_{f}|} \right)$$

$$\phi_{f} = \frac{kT}{q} \ln \left(\frac{N_{a}}{n_{i}} \right)$$

$$\gamma = \frac{\sqrt{2q\epsilon_{Si}N_{a}}}{C_{or}}$$

Velocity Saturation

- Carrier Velocity Saturates at about 1.7x10⁷cm/s
- For short channel (small L) this occurs at V_{sat}
- Mobility (μ) is a function of doping and temperature

0.18μ	μ	V _{sat}
N-type	400 (cm ² /Vs)	0.8V
P-type	150 (cm ² /Vs)	2.2V

$$V_{sat} = \frac{(1.7 \times 10^7 \, cm/s) L(cm)}{\mu(cm^2/Vs)}$$

$$\mu(T) = \mu(300K) (T/300)^{-3/2}$$

$$\mu(T) = \mu(300K)(T/300)^{-3/2}$$

MOS Capacitors

- Gate (assume constant) = ε_{Si} WL/ t_{ox}
- Source/Drain
 - Bottom (Area) C_J m_J
 - SideWall (Perimeter) C_{JSW} m_{JSW}
- Equivalent Capacitance (Swing V_{low} to V_{high})

$$C_{eq} = \frac{\Delta Q_j}{\Delta V_D} = \frac{Q_j(V_{high}) - Q_j(V_{low})}{V_{high} - V_{low}} = K_{eq}C_{j0}$$

$$K_{eq} = \frac{-\phi_0^m}{(V_{high} - V_{low})(1-m)} [(\phi_0 - V_{high})^{1-m} - (\phi_0 - V_{low})^{1-m}]$$

Transient Capacitor Parasitics

- Only capacitors which change potential over the swing are included.
- Cgs and Cgd are often modeled as Cg and Cgso, Cgdo. Cgdo models the feed though (input to output) capacitance
- For low swing rates, double Cgdo
- For high swing rates, start the output swing from the offset output voltage
 - Cgdo and Cload produce a capacitive voltage divider.

Static Complementary CMOS

PUN and PDN are logically dual logic networks

Inverter Threshold vs. N/P Ratio

Inverter Gain

$$gain = \frac{-1}{I_D(V_M)} \frac{k_n V_{DSAT(n)} + k_p V_{DSAT(p)}}{\lambda_n - \lambda_p}$$

$$\approx \frac{1 + r}{(V_M - V_{Tn} - V_{DSAT(n)} / 2)(\lambda_n - \lambda_p)}$$

CMOS Inverter Propagation Delay

Approximating I_{avg}

- Prescription from Hodges and Jackson
 - Assume input rise is instantaneous: ignore rise-time effects
- Average charging current at endpoints of swing
 - Initial point is usually a supply rail, final point is threshold of next gate

Hodges-Jackson Current Averaging

- FET's act as a current source
- Simple model for full-swing current:
 - I₁ is initial current at start of swing
 - I₂ is current at threshold of next stage
 - I_{avg} is approximated by $(I_1+I_2)/2$

• Delay
$$t = \frac{C\Delta V}{I_{avg}} = CR_{eff} = 0.69CR_{eq}$$

Transient Response

Constructing a Complex Gate

- Logic Dual need **not** be Series/Parallel Dual
- In general, many logical dual exist, need to choose one with best characteristics
- Use Karnaugh-Map to find good duals
 - Goal: find 0-cover and 1-cover with best parasitic or layout properties
 - Maximize connections to power/ground
 - Place critical transistors closest to output node
 - Know the order of arrival of signals! order the transitions if possible

Example: Carry Gate

	С	C′
AB		
AB'	0	1
A'B'	1	1
A'B	0	1

- F = (ab+bc+ac)'
- Carry `c' is critical
- Factor c out: (Why c?)
- F=(ab+c(a+b))'
- 0-cover is n-pull up
- 1-cover is p-pull down

Example: Carry Gate (2)

- Pull Down is easy
- Order by maximizing connections to ground and critical transistors
- For pull up Might guess series parallel graph dual– but would guess wrong

Example: Carry Gate (3)

- Series/Parallel Dual
- 3-series transistors
- 2 connections to Vdd
- 7 floating capacitors

Example: Carry Gate (4)

- Pull Up from 1 cover of Kmap
 - Get a'b'+a'c'+b'c'
 - Factor c' out
- 3 connections to Vdd
- 2 series transistors
- Co-Euler path layout
- Moral: Use Kmap!

Euler Path

- For CMOS standard cell, and Euler path often helps to organize the transsistor order so that a faster, more dense cell can be constructed.
- Ideally, the p-fet and n-fet sub-circuits can be traversed in identical transistor orders to create a layout without diffusion (thinox) gaps.

Euler Path:

- Traversal of entire schematic (every transistor) without traversing any transistor twice.
- Possible only if 0 or 2 odd nodes in schematics. Node count is the number of transistors incident on a common point.
- If 0, any point can be start (will also be end) of path, for 2, one
 of the odd nodes is the start and the other is the end.

Euler Path II

- Eg. Carry Gate
 - Path: b-a-c-b-a or a-bc-a-b or ...
 - Can sometimes also minimize the routing by careful choice of order

Static Logic: Rules of Thumb

- 1. Step-up (alpha) ratio of 4 produces minimum power-delay product
- 2. P vs. N (beta) ratio of 2 balances pullup and pull-down times and noise margins.
- 3. Approximately 75% of static logic are NAND stacks (limit stack to 3-4, use ordering and tapering for speed)

More Rules of Thumb

- 1. Glitches consume approximately 15% of overall chip power.
- 2. Crossover (short-circuit) current consumes ~ 10% of a static chip's total power (but is a function of input/output slews, ie sizing)

Ratio Logic

Goal: to reduce the number of devices over complementary CMOS as a means to reduce parasitics (usually for performance).

Pseudo NMOS

 $V_{OH} = V_{DD}$ (similar to complementary CMOS)

$$k_n \left((V_{DD} - V_{Tn}) V_{OL} - \frac{V_{OL}^2}{2} \right) = \frac{k_p}{2} (V_{DD} - \left| V_{Tp} \right|)^2$$

$$V_{OL} = (V_{DD} - V_T) \left[1 - \frac{1 - \frac{k_p}{k_n}}{1 - \frac{k_p}{k_n}} \right]$$
 (assuming that $V_T = V_{Tn} = |V_{Tp}|$)

SMALLER AREA & LOAD BUT STATIC POWER DISSIPATION!!!

Even Better Noise Immunity/Density

Differential Cascode Voltage Switch Logic (DCVSL)

DCVSL Example

XOR-NXOR gate

DCVSL Transient Response

Complementary Pass Gate Logic (CPL)

Pass-gate Logic issues

- Limited fan-in
- Excessive fan-out
- Noise vulnerability (not restoring)
- Supply voltage offset/bias vulnerability
- Decode exclusivity (else short-circuit!)
- Poor high voltage levels if NMOS-only
- Body effect

Pass-Gate Logic Rules of Thumb

- Pass-logic may consume half the power of static logic. But be careful of Vt drop resulting in static leakage.
- Pass-gate logic is not appropriate when long interconnects separate logic stages or when circuits have high fan-out load (use buffering).

- Idea use the low leakage of FETs to store charge instead of moving current. Provides higher density, faster operation at the cost of reduced noise immunity and tricky design...
- Domino is by far the most common style in CMOS

Domino logic (single and dual-rail)

Dynamic Logic Rules of Thumb

- Dynamic logic is best for wide OR/NOR structure (e.g. bit-lines), providing 50% delay improvement over static CMOS.
- Dynamic logic consumes 2x power due to its phase activity (unconditional pre-charging), not counting clock power.

Domino Rules of Thumb

- Typical domino keepers have W/L = 5-20% of effective width of evaluate tree.
- Typical domino output buffers have a beta ratio of ~ 6:1 to push the switch point higher for fast rise-time but reduced noise margin.

Conventional and Delay-precharge domino

Advanced Domino Logic forms

Concerns in Dynamic Logic

- Charge-sharing
- Charge-leakage
- Interconnect coupling
- Back-gate coupling
- Supply noise and variation

Back-gate coupling

Manchester Carry Chain

Sizing the Manchester Carry Chain

Discharge Transistor

$$t = 0.69 \left(\sum_{i=1}^{N} R_i \left(\sum_{j=i}^{N} C_j \right) \right), R = R_{eq} / k, C = C_p + kC_n$$

Speed (normalized by 0.69 RC)

Area (in minimum size devices)

Domino Nor16 (zero-detect)

Flip-flops/latches/state elements

- Flip-flops occupy a special place in conventional digital design
 - Always Dynamic Behavior
 - Allow time coherence across large parts of the circuit
 - Preserve data across synchronization boundaries
 - --Inherently asynchrnous design

evel-sensitive latch pair

Modified Svensson Latch of 21064

Tri-state based static latch

Stack order of the feedback is to take advantage of *good* charge - sharing

Master-slave (Dynamic) FF

Sense Amplifier-Based Flip-Flop

Sense Amplifier-Based Flip-Flop

The first stage is unchanged sense amplifier

Second stage is sized to provide maximum switching speed

Driver transistors are large

Keeper transistors are small and disengaged during transitions

On-chip Memory

- Typically largest fraction of chip area
- Nearly always topologically organized (low Rent parameter < 0.6)
- Simple wire/area planning rules

Generic memory block diagram

SRAM read operation

SRAM cell sized to avoid read-disturbance

Realistic layout issues in SRAM cell

Asymmetric Read/Write Ports

Multi-porting

Split Row Decoder

Column mux and sense-amp

21264 Integer Unit floorplan

21264 Integer Register File cells

21164 L2 Cache

