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ﬁ Basics (MOS Electrical Model)

2
Lo =,V - e,
L 2
= Nonlinear model with 3 conduction modes:
= Linear Mode (Vg5 < Vg-V7) and (Vg < Vae): Ve = Vg
= Saturation (Vg > Vy-Vr) and (Vyg < V)t Ve = VVy
= Velocity Saturation (V. > V,1): Ve = Vo

H VF — Min(VgS-VTI Vsat’ Vds )



ﬁ Body Effect

= Threshold is function of back potential
= Increases difficulty of turn on for junction reverse bias increase
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“ Velocity Saturation

= Carrier Velocity Saturates at about 1.7x107cm/s
s For short channel (small L) this occurs at V,
= Mobility (n) is a function of doping and temperature
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“ MQOS Capacitors

= Gate (assume constant) = &g, WL/t,,

= Source/Drain
= Bottom (Area) C; m,
= SideWall (Perimeter) C;oyy Miswy

= Equivalent Capacitance (Swing Vi, to Vi)
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ﬁ Transient Capacitor Parasitics

Only capacitors which change
potential over the swing are included.

Cgs and Cgd are often modeled as Cg
and Cgso, Cgdo. Cgdo models the
feed though (input to output)
capacitance

For low swing rates, double Cgdo

For high swing rates, start the output
swing from the offset output voltage

= Cgdo and Cload produce a capacitive
voltage divider.
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i Static Complementary CMOS

Voo
Inl —
In2 PMOS only
InN
F(In1,In2,...InN)
Inl —
In2 7]
InN— NMQOS only

PUN and PDN are logically dual logic networks
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ﬁ CMOS Inverter Propagation Delay
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Approximating I

avg

= Prescription from Hodges and Jackson
= Assume input rise is instantaneous: ignore rise-time effects

= Average charging current at endpoints of swing
= Initial point is usually a supply rail, final point is threshold of next

gate
Actual
Current

naI (@Vout = Vfinal)

Linitial (@ Vour = Vinit)

Ich

out



“ Hodges-Jackson Current Averaging

s FET's act as a current source

= Simple model for full-swing current:
= [, is initial current at start of swing
= [, is current at threshold of next stage
= I, IS approximated by (I;+1,)/2
CAV

= Delay = ———=CR,; =0.69CR,

avyg




L Transient Response
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“ Constructing a Complex Gate

= Logic Dual need not be Series/Parallel Dual

= In general, many logical dual exist, need to
choose one with best characteristics

= Use Karnaugh-Map to find good duals

= Goal: find 0-cover and 1-cover with best parasitic or
layout properties

= Maximize connections to power/ground
= Place critical transistors closest to output node

= Know the order of arrival of signals! — order the
transitions if possible




a Example: Carry Gate

C C = F = (ab+bc+ac)’
= Carry ‘c’is critical

) = Factor c out: (Why c?)
m = F=(ab+c(a+b))’

AB

AB’ .
= 0-cover is n-pull up

0
\/

AR ( ; = 1-cover is p-pull down
[0)

A'B




“ Example: Carry Gate (2)

£ = Pull Down is easy

= Order by maximizing
connections to ground
and critical transistors

a 4| C _‘
= For pull up — Might guess
series parallel graph dual—
e “ a“ e _‘ I: but would guess wrong




“ Example: Carry Gate (3)

= Series/Parallel Dual
e _‘{ s 3-series transistors

= 2 connections to Vvdd

c_<{ a—<{ = / floating capacitors



“ Example: Carry Gate (4)

= Pull Up from 1 cover of
Kmap
= Get ab’'+a'c’'+b'c
= Factor ¢’ out

= 3 connections to Vdd

= 2 series transistors

= Co-Euler path layout

= Moral: Use Kmap!




Euler Path

= For CMOS standard cell, and Euler path often helps to
organize the transsistor order so that a faster, more
dense cell can be constructed.

= Ideally, the p-fet and n-fet sub-circuits can be traversed
in identical transistor orders to create a layout without
diffusion (thinox) gaps.

= Euler Path:

= Traversal of entire schematic (every transistor) without traversing
any transistor twice.

= Possible only if 0 or 2 odd nodes in schematics. Node count is the
number of transistors incident on a common point.

« If 0, any point can be start (will also be end) of path, for 2, one
of the odd nodes is the start and the other is the end.




“ Euler Path II

= Eg. Carry Gate
= Path: b-a-c-b-a or a-b-
c-a-b or ...

= Can sometimes also
minimize the routing by
careful choice of order

b .a ¢




1.

2.

tatic Logic: Rules of Thumb

Step-up (alpha) ratio of 4 produces
minimum power-delay product

P vs. N (beta) ratio of 2 balances pull-
up and pull-down times and noise
margins.

. Approximately 75% of static logic are

NAND stacks (limit stack to 3-4, use
ordering and tapering for speed)



ﬁ More Rules of Thumb

1. Glitches consume approximately 15%
of overall chip power.

2. Crossover (short-circuit) current
consumes ~ 10% of a static chip’s total
power (but is a function of
input/output slews, ie sizing)



Ratio Logic

VbD VbD VbD
Resistive Depletion PMOS
Load R, Load I-‘l: Vr<0 Load _Eoll:
0 F

Injq k In;,

In 20— In 20—

Vss
(a) resistive load (b) depletion load NMOS (¢) pseudo-NMOS

Goal: to reduce the number of devices over complementary CMOS
as a means to reduce parasitics (usually for performance).



Pseudo NMOS
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Vor = Vpp (similar to complementary CMOS)
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Even Better Noise Immunity/Density

1]

Differential Cascode Voltage Switch Logic (DCVSL)



DCVSL Example
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i DCVSL Transient Response
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Complementary Pass Gate Logic (CPL)
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“ Pass-gate Logic issues

= Limited fan-in

= Excessive fan-out

= Noise vulnerability (not restoring)

= Supply voltage offset/bias vulnerability
= Decode exclusivity (else short-circuit!)
= Poor high voltage levels if NMOS-only

= Body effect




ﬁ Pass-Gate Logic Rules of Thumb

= Pass-logic may consume half the power of static
ogic. But be careful of Vt drop resulting in static
eakage.

= Pass-gate logic is not appropriate when long
interconnects separate logic stages or when
circuits have high fan-out load (use buffering).




ﬁ Dynamic Logic

= Idea — use the low leakage of FETs to store
charge instead of moving current. Provides
higher density, faster operation at the cost of
reduced noise immunity and tricky design...

= Domino is by far the most common style in CMOS
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ﬁ Dynamic Logic Rules of Thumb

= Dynamic logic is best for wide OR/NOR structure
(e.g. bit-lines), providing 50% delay
improvement over static CMOS.

= Dynamic logic consumes 2x power due to its

phase activity (unconditional pre-charging), not
counting clock power.



ﬁ Domino Rules of Thumb

= Typical domino keepers have W/L = 5-20% of
effective width of evaluate tree.

= Typical domino output buffers have a beta ratio
of ~ 6:1 to push the switch point higher for fast
rise-time but reduced noise margin.



Conventional and Delay-precharge domino

---------------- 11 (1= N DS SO OCIC oD O

domino gates

ouUTl our?

' NM( S |

network | ' network |
— 4 — 4

T Nvos |

Inputs =

Domino Domino

From other

stage | stage 2

ie

domino gates

Delayed precharge
e
s ——d—>oT >0,
DYN

U{-f
_J_ﬂ NV

Stage | 71 nwvos |

—] Other stage

|

_l NMOS |

inputs " network | N . network |
_ 2 lInputs ]
<+ M,

removed



ﬁ Advanced Domino Logic forms

$

O

OUT = AB(CD + E)

131

¢ -

by

11 = A(B+CYD+E)

2 =(B+CND+HE)




“ Concerns in Dynamic Logic

= Charge-sharing

= Charge-leakage

= Interconnect coupling

= Back-gate coupling

= Supply noise and variation
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ﬁ Manchester Carry Chain
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Sizing the Manchester Carry Chain

Discharge Transistor
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ﬁ Domino Norl6 (zero-detect)
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ﬁ Flip-flops/latches/state elements

= Flip-flops occupy a special place in conventional
digital design
= Always Dynamic Behavior
= Allow time coherence across large parts of the circuit
= Preserve data across synchronization boundaries
= --Inherently asynchrnous design
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ﬁ Modified Svensson Latch of 21064
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Tri-state based static latch

Strong clocked feedback
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\v/ v
Stack order of the feedback is to take
advantage ofgood charge - sharing




ﬁ Master-slave (Dynamic) FF
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i Sense Amplifier-Based Flip-Flop
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ﬁ Sense Amplifier-Based Flip-Flop

The first stage is unchanged il G g d L
sense amplifier —— | =B
Second stage is sized to el b
provide maximum switching ) i ]
speed TR . el

0=S+RQO N~ S Il—

Driver transistors are Iarge\ e "
_ i
Keeper transistors are small [ | i |1 b |
and disengaged during : 0
transitions IE o | | ]
Do ot
O=R+S0 ’:“— —”:‘ O=S+RQ




ﬁ On-chip Memory

= Typically largest fraction of chip area

= Nearly always topologically organized (low Rent
parameter <0.6)

= Simple wire/area planning rules



Generic memory block diagram
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SRAM

read operation
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SRAM cell sized to avoid read-disturbance

Cell voltage vs. cell ratio
\Y )i J:2+5 \-"F., \"T'J,r': 0.5V

Voltage rise on node LOW

Cell ratio



Realistic layout issues in SRAM cell

6T SRAM cell layout
On-silicon with
rounding, misalignment, and
bias effects
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ﬁ Asymmetric Read/Write Ports
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Multi-porting
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Split Row Decoder

2KB RAM array
128 rows
X
128 columns
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Column mux and sense-amp
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21264 Integer Unit floorplan
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21264 Integer Register File cells
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21264 L1 Dcache
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