

Forrest Brewer
Displays from Bakoglu, Addison-Wesley

- Circuit rise/fall times approach or exceed speed of light delay through interconnect
- Can no longer model wires as C or RC circuits
- Wire Inductance plays a substantial part
- Speed of light: 1ft/nS = 300um/pS

Fundamentals

- L dl/dt = V is significant to other effects
- Inductance: limit on the rate of change of the current
- E.g. Larger driver will not cause larger current to flow initially

Lossless Tranmission R=G=0

- Step of V volts propagating with velocity v
- Initially no current flows after step passes, current of +I
- After Step Voltage V exists between the wires

Lossless Tranmission R=G=0

- Maxwell's equation: $\Phi = \iint_S B \bullet dS$
- B is field, dS is the normal vector to the surface
- Φ is the flux
- For closed surface Flux and current are proportional

$$L = \frac{\Phi}{I}$$

Lossless Tranmission R=G=0

- For Transmission Line I and Φ are defined per unit length
- At front of wave: $d\Phi = d(IL) = ILdx$
- Faraday's Law: $V = d\Phi/dt = IL dx/dt = ILv$
- Voltage in line is across a capacitance Q=CV
- I must be: $I = \frac{dQ}{dt} = \frac{d(CV)}{dt} = CV \frac{dx}{dt} = CVv$
- Combining, we get: $v = \frac{1}{\sqrt{LC}}$
- Also: $Z = \frac{V}{I} = \sqrt{\frac{L}{C}}$

Units

- The previous derivation assumed $\varepsilon = \mu = 1$
- In MKS units: $v = \frac{1}{\sqrt{\varepsilon \mu}} = \frac{c}{\sqrt{\varepsilon_r \mu_r}}$
- c is the speed of light = 29.972cm/nS
- For typical IC materials $\mu_r = 1$

So:
$$Z_0 = \frac{\sqrt{\varepsilon_r}}{cC}$$
 $L = \frac{\varepsilon_r}{c^2C}$

Typical Lines

We can characterize a lossless line by its Capacitance per unit length and its dielectric constant.

Material	Dielectric Constant	Propagation Velocity
Polymide	2.5-3.5	16-19 cm/nS
SiO ₂	3.9	15
Epoxy PC	5.0	13
Alumina	9.5	10

Circuit Models

Circuit Models II

Driver End

- TM modeled by resistor of value Z
- Input voltage is function of driver and line impedance: $V_{line} = \frac{Z}{R_s + Z} V_s$

Inside Line

- Drive modeled by Step of 2V_i with source resistance Z
- Remaining TM as above (resistor)

Load End

- Drive modeled by Step of 2V_i with source resistance Z
- Voltage on load of impedance Z_L : $V_L = \frac{Z_L}{Z + Z_L} 2V_i$

Discontinuity in the line (Impedance)

Abrupt interface of 2 TM-lines

- Incident wave: $V_i = I_i Z_1$ Reflected Wave: $V_r = I_r Z_1$
- Transmitted Wave: V_t = I_tZ₂
- Conservation of charge: I_i = I_r + I_t
- Voltages across interface: V_i + V_r = V_t
- We have: $\frac{V_i}{Z_1} = \frac{V_r}{Z_1} + \frac{V_t}{Z_2}$ $V_r = V_i \frac{Z_2 Z_1}{Z_2 + Z_1}$ $V_t = V_i \frac{2Z_2}{Z_2 + Z_1}$

Reflection/Transmission Coefficients

The Coefficient of Reflection
$$\Gamma = V_r/V_i = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

• V_i incident from Z_1 into Z_2 has a reflection amplitude Γv_i

Similarly, the Transmitted Amplitude =
$$1+\Gamma = \frac{2Z_2}{Z_1 + Z_2}$$

Inductive and Capacitive Discontinuities

Typical Package Pins

Package	Capacitance (pF)	Inductance (nH)
40 pin DIP (plastic)	3.5	28
40 pin DIP (Ceramic)	7	20
68 pin PLCC	2	7
68 pin PGA	2	7
256 pin PGA (with gnd plane)	5	15
Wire bond (per mm)	1	1
Solder Bump	0.5	0.5

Discontinuity Amplitude

- The Amplitude of discontinuity
 - Strength of discontinuity
 - Rise/Fall time of Impinging Wave
- To first order Magnitude is:

• Inductive:
$$V_{peak} = \frac{L_D V_i}{2Zt_r}$$
 Capacitive: $V_{peak} = -\frac{C_D Z V_i}{2t_r}$

Critical Length (TM-analysis?)

■ TM-line effects significant if:
$$t_r < 2.5 t_f$$
■ Flight time tf = $d/v = \frac{d\sqrt{\epsilon_r}}{c}$

Rise Time (pS)	Critical Length (15 cm/nS)
25	150μm
75	0.45
200	1.3
500	3.0
1000	6.0
2000	12.0

Technology	On-Chip Rise time	Off-Chip Rise time
CMOS (0.1)	18-70pS	200-2000pS
GaAs/	2-50pS	8-300pS
SiGe/ (ECL)		

<u>Un-terminated Line R_s = 10Z</u>

<u>Un-terminated Line R_s = Z</u>

Un-terminated Line R_s = 0.1Z

Unterminated Line (finite rise time)

- Rise Time Never Zero
- For
- $R_s>Z_o, t_r>t_f$
 - Exponential Rise
- $Rs<Z0, t_r \approx t_f = l/v$
 - "Ringing"
 - Settling time can be much longer than t_f.

Line Termination (None)

Line Termination (End)

$$R = 0$$
 $R = Z$

Line Termination: (Source)

$$\begin{array}{c|c}
 & & & & & & & & & & \\
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & \\$$

Piece-Wise Modeling

- Create a circuit model for short section of line
 - Length < rise-time/3 at local propagation velocity
 - E.G. 50μm for 25pS on chip, 150nm wide, 350nm tall
- Assume sea of dielectric and perfect ground plane (this time)
 - $C = 2.4 pF/cm = 240 fF/mm = 12 fF/50 \mu m$
 - L = $3.9/c^2C$ = 1.81nH/cm = 0.181nH/mm = 9.1pH/50 μ m
 - $R = \rho L/(W H) =$
 - 0.005cm* $2.67\mu\Omega$ cm/(0.000015cm*0.000035cm) = $25\Omega/50\mu$ m

Lossy Transmission

- Attenuation of Signal
 - Resistive Loss, Skin-Effect Loss, Dielectric Loss
- For uniform line with constant R, L, C, G per length:

$$\frac{V(x=l)}{V(x=0)} = e^{-\alpha l}$$

$$\alpha = \alpha_R + \alpha_G = \frac{R}{2} \sqrt{\frac{C}{L}} + \frac{G}{2} \sqrt{\frac{L}{C}} = \frac{R}{2Z_0} + \frac{GZ_0}{2}$$

Conductor Loss (Resistance)

Conductor Loss (step input)

- Initial step declines exponentially as R £/2Z
- Closely approximates RC dominated line when R ℓ
 >> 2Z
- Beyond this point, line is diffusive
- For large resistance, we cannot ignore the backward distrbitued reflection

Conductor Loss (Skin Effect)

- An ideal conductor would exclude any electric or magnetic field change – most have finite resistance
- The depth of the field penetration is mediated by the frequency of the wave – at higher frequencies, less of the conductor is available for conducting the current
- For resistivity ρ (Ωcm), frequency f (Hz) the depth is: $\delta = \sqrt{\frac{\rho}{\pi \mu f}}$
- A conductor thickness $t > 2\delta$ will not have significantly lower loss
- For Al at 1GHz skin depth is 2.8μm

Skin Effect in stripline (circuit board)

Resistive attenuation:
$$\alpha = R/2Z = \frac{\rho}{2WHZ}$$

• At high frequencies:
$$\alpha = \frac{2R_{skin}}{2Z} = \frac{\rho}{W\delta Z} = \frac{\sqrt{\pi\mu f\rho}}{WZ}$$

Dielectric Loss

• Material Loss tangent:
$$\tan \delta_D = \frac{G}{\omega C} = \frac{\sigma_D}{\omega \epsilon_r}$$

• Attenuation:
$$\alpha_D = \frac{GZ}{2}$$

$$= \pi f C \tan \delta_D \sqrt{L/C}$$

$$= \pi f \tan \delta_D \sqrt{LC}$$

$$= \pi / c \sqrt{\varepsilon_r} \tan \delta_D$$