*

*

STATE ASSIGNMENT FOR MULTILEVEL
LOGIC IMPLEMENTATION — MUSTANG

Optimize Area of Multilevel Circuits.

"Mustang: State Assignment of Finite State Machines
Targeting Multilevel Logic Implementations," IEEE Trans.
CAD, v. 7, n. 12, December 1988.

Basic notion: The cardinality of the PLA (2-level) cover is an
estimator for the size of a multilevel network — but a cover with
larger cardinality and more common cubes should produce
better multilevel implementations.

This is done by maximizing the number of literals in the
encoded representation by finding pairs and clusters of states
which should be kept minimally distant in the Boolean
encoding space.

In particular, the literals of interest are those arising from
common cube decomposition of the functions — as these are
the simplest to analyze.

Consider the following machine: -0

We can realize the states of this machine in several ways:

11
01
0-
11
10
1-
00
01
0-
11

st0
st0
st0
stl
stl
st1
st2
st2
st2
st3
st3

If we minimize the logic cover cardinality:

10
11
0-
01
-0
-1

0-

-1
1-

10
11
01
1-
-1
-1

10
01
10
01
01
10

01
01
10
01
10
01
10

— e - OO

—_ e e OO

3>

Inputs
= &

Present

st0
st0
st1
st
st0
st2
st2
stl
st3
st3
st2

OO

et e d e pd et (O

Output

Next

States m WW _ States

However, if we try to assign to maximize the # of common cubes,
we obtain a cover (7 terms rather than 6) which has a simpler
multilevel implementation:

=D
Inputs 4> »— Output
&
Present
States T Next

States

We wish to formalize this procedure.

def: The Hamming distance d(cq,c,) is defined between two
code words of the same length. For codes of length k, the
distance is: _
k-1 S
d(cp.c))= X (1if ¢f #.c}) (0 else)
, i=0

where ¢} is the ith bit in the encoding of ¢;.

Eqq 1011and 1001 have Hamming distance = 1
0101 and 1010 have Hamming distance = 4.

Note: The Hamming distance provides a discrete metric on the
Boolean space of dimension n, since,

1. &Aﬁ#.ﬁwv"QﬁﬁNuﬁ.—v \4

C1,C2

2. dicp,e)=0 VY,

The number of codes at distance k from some code is a rapidly
increasing function of k for k << n. n = dim. of B.

1. Number of codes at distance 1=n (one bit charge per word)
'n

Number of codes at distance &.nﬁ u (i bit charges per word)

A

Note: If two codes ¢; and ¢, represent states which share similar
outputs then if d(cj,c;)=d the logic implementing those
outputs share a cube of dimension n-d, since the

transiting states are similar in that many places.
3

Problem: Assign an encoding to states so that the maximum #
of common cubes are generated in the output and
transition functions.

We wish to capture 4 effects in common cube sharing;:

1. If 51 and s2 both transit to s3 and we assign codes to s1 and s2
with d(s1, s2) = Ng then the logic generating s3 will have a
common cube with N — Ny literals.

2. If s1 and s are both successors to s3, the logic for s1 and s2 both
contain a cube whose size is the weight of s3. (weight of ¢ is
d(c1,0) = # of on-bits in c1)

3. If two inputs j; and i, produce the same state from either the
same or different states, then there is a common cube
corresponding to state iy N i,. :

4. Finally if multiple states assert similar outputs on different
states — there is a common cube among those states to
generate each of the implicant codes.

Strategy: Between each pair of states set a weight used to
determine if the two states should be placed in a local
cluster (of Hamming — distance close state encodings).
Then use this matrix of weights to grade embeddings
of these states in the Boolean lattice.

Note: We do not know which cubes will be used, so we must
set the heuristic to create as large a set as possible.

Zonstruction of a matrix representing all 4 types of cube sharing
1ppears to be difficult —

2 algs. are proposed: Fanin and Fanout oriented:
Fanout Alg.:

Depends on the outputs and Fanout of each state. Pairs of
present states with similar outputs or successors are given large
edge weights. = Maximize the size of cubes.

for (i=1;i<N,;i=i+1) {
foreach (edges e(v;,v;) €G) {
if (W(e) - output{i]is 1) {
OUTPUT_SET; = OUTPUT_SET; v v,
nw(OUTPUT_SET;, v;) = nw(OUTPUT_SET;,
<wv+H

}
!
foreach(edges e(v,v))€G) {
N_STATE_SET;=N_STATE_SET; U vy,
nw(N_STATE_SET, v;) = nw(N_STATE_SET;, v;)
+1
!
Ny counts the number of distinct outputs -
W(e)-output[i] =1=> e(v,,v;) asserts output i.
nw stores the weight of each node in the sets.
OUTPUT_SETS; is set of all states with an edge whose output
is output().
N_STATE_SET; is set of all states whose successor is state i.

CONSTRUCTING THE WEIGHTS

foreach(v,,v))eGy) {
for(i=1;i<N;i=i+1)
we (ey(vi,v)) = we (epyy (v, V) +
nw(N_STATE_SET;, v;) * nw(N_STATE_SET;,
<~v
we (e (v, vp)) = we(epy (v, V) * Ny /2
for i=1;i<N,;i=i+1)

we (eyn,v) = we (ey(v,)+
nw(OUTPUT_SET;, v;) * nw(OUTPUT_SET;,
SV

we is an edge weight for each edge of Gm: i.e. for each pair of
states.

The algorithm accumulates edge weights for each edge as the
product of each pair of state's node weights summed over all
states.

— nw counts the number of occurrences of a common cube in
the state or output parts.

The edge weight is set to the number of occurrences times the
occurrences common to the other edge.

The Np/2 factor reflects the "average” number of bits in
common between two states.

(Assuming the number of states is relatively close to the size of

the Boolean encoding.)
6

Example: -0 st0 st0 0 Fanin-alg: We wish to exploit the input similarities in the
11 st0,stl st0 0 machine: we shall count the number of similar inputs
01 st0 stl - leading to a common state and the number of similar
0- st st1 1 states leading to a new common state. = Maximize
10 stl st2 1 the # (number) of common cubes.
1- st2 st2 1
00 st2 stl 1 foreach(edge e(v;,v)€G) {
01 st2 st3 1 P_STATE_SET, = P_STATE_SET, U v,
0- st3 st3 1 nw(P_STATE_SET,, v)) = nw(P_STATE_SET,, v))
11 st3 st2 1 +1

}
output = 1: (st12, st23, st32) Mmmmﬂ mnM:m.QcQ sets of similar present states which fan-in to next

output =0: (« no need to implicate)

N_State_Set

so for (st1, st3):

nw will count the number of times (edges) in which state k
1. transited to state e.

Inputs: Count #'s of next states when input is 1, or 0 for each bit:

0. st02stll!
1: st0l, st1], st2!
N.

. Mm.w Mw” st3! for(i=1;i<N;;i=i+1) {
) ! ; foreach(edge e(v;,v;) €G) {

nss(0,1) *nss(0,3) + = 1*0+ » if (W(e).inputli]is 1) {
nss(1,1) *nss(13)+ = 1*0+ INPUT_SET?N = INPUT_SET VU v,
nss(2,1) *nss23)+ = 1%1+ nw(INPUT_SET?, v)) = nw(INPUT_SETV,
nss(3, 1) * nss(3,3) = 0*1=1 v)+1}

_zw /2= ww / Nmu,,_n 4 if (W(e).inputli] is 0) {
os(l)*os(13)=272= INPUT_SETOPF = INPUT_SETOF U v,
=» Total st1 &> st3=5 nw(NPUT_SET?®F, y) = nw(NPUT_SET'F,

v+l
}

Finally, calculate the edge weights for the graph as before —

this time the scaling is slightly different and the
ON(1) and OFF(0) sets of inputs are both counted.

foreach(vi,v)) e Gy) {

for(i=1;i<N,;i=i+1)

we (ey(Vi,v)) = we (e (v,v)) +nw(P_
STATE_SET;, v,) * nw(P_STATE_SET;, v)

we ANEAS«L\NVV = gmﬁﬁgc\k.&vv *2&

for (i=1;i<N;;i=i+1) {
we (ey(vg,vy) = we (ey(vg,vp)) +nw
(INPUT_SET®V , v,) * nw(INPUT_SETPV , v)
we (ey(v,v)) = we (ep(vg,vy)) + nw
(INPUT_SET?FF , v,) * nw(INPUT_SET?FF,
<~V

}

The edge weight for present states is counted by noting that each
time a present state produces multiple next states, the present
state (cube's) are common to the next state's encodings. The
number of occurrences depend on the intersection of the two
state codes. So next-state pairs with many common present
states are given large edge weights to maximize the intersection.

Edge weights for inputs are counted for next states by first finding
the number of similar inputs for a given next state. Then edge
weights are assigned to state pairs with many common inputs
thus forcing the encoding to place these states with similar
encodings.

Ex. Faninalg: (Same Example), input sets:

(0)— AmSm,m_”wNv ; pss: st0— m.SN.mSH

M- AmﬁoN,m_”mwv ; stl - mﬂo_,m:ﬁmﬁmH
ir(0) — (st0,st1!,st2") ; st2 - st1},st2! st3!
LH(1D—> AmEN,wSﬁmﬂNHmﬁwJ ; st3— mnmﬁmnwﬂ

so: for (st0, st1):

(states): pss(0,0)*pss(0,1) = 2*1+
+pss(1,0)*pss(1,1) = 1*1+
+pss(2,0)*pss(2,1) = 0*1+
+pss(3,0)*pss(3,1) = 0*0= 3-N,=6

(inputs): iw%(0,0)*iw’(0,)+ = 0%*3+

iwl(0,00*iwl(0,D+ = 2*0+
iw%(1,0) *iw®(1, 1)+ 1%1+
iwl(1,0)*iw!(1,1) 2%1=3

Owum©

11 9

Omm©

We are now left with the classical problem of assigning codes to
the states to minimize the sum of the edge weights times the
Hamming distances between the codes.

it

10

“onsider the Boolean lattice: The elements of an n-dimensional
3oolean space connected by the Hamming metric:

(=)
N _O

000

We wish to assign states to vertices of this lattice to minimize the
induced total weight of the graph. The induced weight is the

Hamming distance between two codes times the edge weight in
‘he weight matrix.

100 o

\/\/

N, N
.€e. Minimize Mw m Em?t&.v*&qu?b,mzn?\.vv.
i=1 j=1

This problem is NP-hard as it contains a specialized but NP-
;omplete graph embedding problem.

There are several heuristics — here we shall use wedge
-lustering. This should prove an effective technique since the
-onstraint matrices constructed have strong structure. i.e. we
>xpect several strongly connected clusters only weakly
nteracting.

Wedge clustering is essentially greedy assignment.
1

Wedge Clustering:

G= QNS
while (|G| #0) {

Ny :
Select v, € G and y;'s€ G 3 Y we(v,,y;) is maxima.
i=1
Assign v, and the y;'s minimally distant codes from
those which are unassigned;
(note v, and the y;'s may already have assignments.)
delete v, from G and all edges (v;,;)-

}

Note: This essentially finds v, 3 there are exactly N, +1 codes to
assign in the cluster (ideally). This can be done if no other
codes in the family are assigned.

In the case where we can assign unidistant codes to the y;"s from
vy and when:

we(vy,y;) 2 sm?.,vc.v +we(y Vi) Vi j k-

This alg. makes a minimal cost assignment for this cluster.

RESULTS OBTAINED USING SIMPLE CHART

ixample: N, =3 for 5 states: | exampi | _RANDOM-A | RANDOMB | KiSS__| MUST-F | MUST-N | MUSTANG
Results: sle | RAT_| #it | RAT | e | RAT | _ Wi it it
hbain 120 1% (] 112 101 1.2 Rl JOK 3]
bbsse 04 | vk | oo [13] oaas | oo 144 171 144
bbias 37| s) 26 | s | 3a | 106 st E7) 3
e 205 | 133 | 339] 11| 264 | 082 | 304 319 304
Np=3 a5 | a2 | 17| 109 | 10| o | osr | 1o 128 104
a6 | 553 | 159 | Si6 | 149 | 411 | 118 | 383 346 346
st3 (st0, stl, st2) keyb 810 | 245 | 663 | 200 | 474 1 143 | 495 330 330
" lion 20| tn | 18| 100 | 20| 116 18 2 18
Kon? 61 | 305 | 2| 260 37 188 25 2 20
st3 — 000 st0 — 001 mark) 2 | 128 | 89| 102] 114} 13 130 87 87
me 40 1.1 37 1.02 43 1.19 37 36 36
st1— 010st2 — 100 modulo |43 | 119 |_40 | 1a1| ey {136 © 36 3
plane | 1063 | 124 | 1oi2 | 1a8 | sey | 101 | 103 854 854
51 352 | 426 | 805 | 402 | 690 | 345 | 639 200 200
sha 6 | 40 | 83| 250 | 382 | 235 | sS4 162 160
scf 1674 | 131 | 1596 | 125 1aar | 143 | 13% 1274 1274
shifurcg 3 185 | 32 | 160 8 | 400 2 5 2
v 25 | 104 | 24| 10| 24 100 2 % 2
wmin | 580 | 112 | 5321 110 | se3 | 116 | s1s 482 2
wain1) s | 136 | s3] 106| 46| 0m 50 55 50
TOTAL T444 1.62 6807 1.48 | 5809 1.26 43586
st1(st0, st2, st4) ﬁ‘ STATISTICS OF BENCHMARK EXAMPLES

st4 > 110 « #iop | #out | #sues | #enc
: 4 2 10 4
; K 16 [4 | ¢
w 2 2 3 3 RESULTS AFTER INTENSIVE SCRIPT AND TECHNOLOGY MAPPING
5t3 is ch i i i :
5 chosen as it has the maximum set of 3 edge weights. : I L _ [RANDOMB | _KISS | MUSTANGN
= st3 — 000 and st2,st1,st0 are unidistant. M T T s EXAMPLE =05 T sgate | #tis | #guie | ol | #guee
s o s o= | 2¢0] 115 | 203 | 95 |220 | 105
Da6e 394 | 175 | 315 | 143 {290 | 124
delete st3 and edges: now choose st1 (010) w “ “ w ko l3n | 158 (213] 12 y20] 12
Fa s planct_ | 654 | 290 | 547 | 249 |63 | 267
ce 3 54 | 174 | 352 173 (160 | 93
we need st4 to be 1 unit distant from I A a B AT e Tt [10 [®
uio
st1 (010) and 110, 111, 011, 101 are free. planet T v | s | 6 sf [on2 | 445 |86l | 401 | 852 | 393
3 T 1 6 % 1 s emin | 342 | 170 | 381 | 169 | 297 | 130
.) 1 81 6 0 | 5
so st4 could be either 110 or 011. P T T
shiftreg |] 8 3
v | 4 4 4 2
1bk.min [3 16 4
train} } 2 | 1 10 4
HCFB2562814
13 14

I. Ed

Boolean Graph Embedding

» Wedge Clustering is a fast algorithm but is not necessarily a
good minimizer of the cost.

» Annealing provides a much better solution due to a simple
move and reasonably smooth cost manifold.

Problem (Undirected Graph Embedding): Given a graph G(V,E)
with weighted edges E, assign unique binary vectors to the
vertices such that the cost function:

C = M w(vy, Vo) H(v, vy)

(vi,v) € E
is minimized. H(a,b) is the Hamming distance between a and b.

A fast annealing move can be found by noticing that if a random
bit in some encoding vector is inverted, there are only two
possibilities (all codes are unique):

1. the new code (after the inversion) is a new unique vector
which is not any other code.

2. the new code is identical to an already existing code
assignment. In this case, we can simply swap the code
assignments to finish the move.

All that is necessary to complete the move is to determine the
change in the cost of the embedding. Since only a single bit has
been changed, (in at most 2 codes) updating the cost is simple.

Consider the set of edges which impinge on vy, the initial value
and on v,, the new value. Since only one bit has been changed,

the Hamming distance for each of these edges in the final cost
can have been changed by at most the weight of each edge.
Again there are 2 cases:

1.The edge is adjacent to a vertex which has just decreased its
Hamming distance by one (it agrees in the swapped bit with the
changing encoding).

2. The edge is adjacent to a vertex which has just increased its
Hamming distance by one (it disagrees in the swapped bit place
with the new encoding).

So to update the cost, simply add the weight for each edge to a
vertex with a bit agreeing with the old encoding and subtract a
weight for each bit agreeing with the new encoding. This
requires O(n) time for n codes.

In the case of swapping codes, you must do this for each of the
two codes (also O(n)).

A simple way to determine if a given code is used is to make a
matrix of vertices, indexed by the codes themselves. If the code
is allocated, the vertex index saved as the value, else a value
corresponding to no code is saved at that address.

If a fast method for calculating the weight of a Boolean Vector
exists (say a table), this can be improved by randomly selecting a
new code the replace the one in question and scaling the changes
by the fast Hamming metric which is just the weight of the bit-
wise exclusive-or of the two codes. This results in a faster
annealing, at the cost of a slight increase in size of the program.

Based on this move several variant algorithms are possible:

* Annealing-- best cost performance, relatively easy to get
optimal solutions for non-negative weight matrices.

» Kernighan-Lin based constrained swapping (swap and
continue until no more are possible, choose best sequence of
moves).

+ .Greedy move selection.

Surprisingly, all three of these algorithms out perform wedge
clustering in terms of the cost of the results. Kernighan-Lin and
greedy are both typically fairly fast, but K-L gives consistently
better results. Note that for most matrices generated by these

. methods, minimal code lengths are almost always generated as
minimal cost; extra bits, when present, are not used. This is one
of the primary faults of this technique-- the current heuristic
weights and embeddings select against larger (possibly simpler)
encodings.

Comparison of different Embedding Strategies

sample greedy gtime K-L Ktime Anneal Atime states

mouse2 1402 0.1s 1400 0.1s 1304* 10.1s 9
foo2 11568 0.1s 11561 0.3s 11440* 17.5s 16
cor 27842 3.3s 27866 4.1u 27466 37.3s 45
midi 88068 50.1s 88439 69.6s 88023 97s 111

Applications of Boolean Relations

* We will revisit several encoding problems for state
machines from the context of Boolean Relations will
allow a much simpler and more consistent approach.

e We will define and use Symbolic (Multiple-Valued)
input and output relations as well.

¢ To set the stage:

def: a Boolean Relation is a one to many mapping
R c B" xB™. For each
xeB", R(x)= T\ € wSTR\S € %M

is the set of possible mappings for x (the image of
x).

B" denotes the domain of R
B™ denotes the co-domain of R

for a set X ¢ B”, the image of X with respect to R is
RX) = ? € ws_ IxeX: (x,ye ﬂ.

def: R is well defined if Vx € B" R(x)#¢.

*def: A multi output function f is a mapping compatible
with R if Vx e B", f(x) € R(x).
This is written: f <R

¢V}

Q.
[©]
—

Let D;...D, be sets of symbols and X;...Z, be sets W) =w) e f<:, R
of symbols, then a mapping f: " fEN=vy & f<ey

e

) & and y are also called encodings of the input

f:D—>X where D=D;xD)X...xD, symbols D and the output symbols .
=21 XZy X...XZ,
def: a finite state machine FSM is defined as a

is an r input, n output Symbolic function if for each 6-triple: M=(1,0,%,8,4,0,)
minterm x € D f maps exactly one y € 2.

) where I, 0 are the sets of inputs and outputs and X
f is completely specified if each y is a specific is the set of states.
element of X.

S : I xX — X is the next state function.

*def: a Symbolic Relation Rc DXZ is a one to many A : I xX =0 is the output function.
mapping of D into X. As before D is the domain of
R and X is the co-domain. 0, is assumed for the machine to be a start set of

def: for each minterm x € D, the image of x is the set of states or state.

mappings R(x) = T\ € Z(x,y) eR} def: a state is reachable if 32 sequence of inputs taking
the start state to a reachable state.
the image of a set X ¢ D is the set R(X)

def: two states o; and 0, are equivalent if no sequence

= ? eXIreX:(x,y)e ﬁ,. of Hbﬁﬂam applied to 07 and 0, result in conflicting
outputs.

def: Rc DxZ iswell defined if Vx e D, R(x) # ¢.

def: if the machine is incompletely specified then two
states are compatible if no admissible sequence of

*def: a Boolean function f:B" —B" is a compatible inputs applied to both ¢; and 0, can force a
mapping for Rc DXZX if there exist £:D—>B an conflicting output.
input mapping and y : £ — B" an output mapping

such that Vx € D,3y € R(x) with def: asequence is admissible iff each transition is from a
’ well defined state to a well defined state.

[vi] 3

State Assignment Revisited

Consider the following machines:

Mi: 0 ; s - 5 ;1 Mp: 0 ; 51 = s ; 1
1 ; s - s3 ; 0 1 ;586 - 5 ;0
-0 osus o osg ;1 -5 % > s ;1
-, 84 - 51 ;1 - ; 8 > st ;0

M, is equivalent to M, since the two machines produce
identical outputs given the same inputs. However M, is
state minimal.

Note that no conventional state assignment encoding for
M; will produce the logic N, below:

N 2 0

1

0

= O O O
VRN
O = O O
O = O

1
0 1
1 0
0 0

However, this machine can be constructed directly from
M,.

= We must take egquivalent machines into account
when synthesizing a new state machine.

However, there is no guarantee that choosing a minimal
machine will lead to a smaller design . ..

[C)]

Consider the following machines:

Mp: 0 55 55 0 My: 0 s9 50 O
1 s s¢ O 1 sg s6 O
0 s s3 0 0 s7 s3 0
1 51 s 0 1 51 s 0
0 S 8 0 0 S92 S0 0
1 5 s5 0 1 sp s5 0
0 s3 51 O 0 s3 5 0
1 s3 s3 0 I 1 s3 54 0
0 s5 s 1 0 s4 54 O
1 s5 5 1 1 s4 s3 0
- s s3 0 0 s5 s 1
- 5 5 0 1 s5 s 1

- S5 S3 0
- s 5 0
(8 terms) (7 terms)

Although they are equivalent, the reduced machine takes
8 terms in an optimal 2-level encoding while the larger
machine can be built in 7 terms.

(Note that state s3 of M is equivalent to s3,s4 of Mj.)
Note that the state mapping in which s3 could transit to its
successors or to those of s, defines a relation and not a

function since there are several possible mappings for s3
even though the machines are completely specified.

(&)

e We will define the encoding problem for a state
machine in terms of Symbolic Relations of the STG.
This will allow more degrees of freedom to encode
the machine since we may or may not give the same
encoding to two equivalent states.

We can solve several kinds of Symbolic Relation Encoding
problems for 2-level logic exactly using BDD's.

1. Generate all candidate primes for the relations.

2. We must solve a covering problem with weighted
cover. However, unlike the function case, we must
impose constraints on the covering to ensure that the
encoding does maintain compatibility with the
Relation.

3. After all constraints have been specified, we solve the
covering problem as an instance of Binate Covering.
(Actually Weighted Binate Cover.)

] Generation of Primes Ref: "Exact Minimizer for Boolean
Relations,” ICCAD-89, Nov.,
pp- 316-319.

(Boolean Case)
def: a cube C ¢ B” xB" is a Boolean Relation denoted

C=(/I) > cisacubeofB’, IcB"and
C(x) I Vxec
{0},Vxegc.

6)

¢ is the support set of C and I is the influence set.
The size of C is [d].

*def: a candidate prime of a Boolean Relation R is a
prime of a compatible mapping f <R.

def: Let R ¢ B" xB" be a Boolean Relation and C ¢ B” x B"
be a cube. C is an implicant of R iff:

VxeB", Yy’ €C(x), Jye R(x) 3y’ <y (ybit-wise contains y’)

def: a prime_implicant (C/I) of R is a cube with the
property that i € I iff (c/7) is a c-prime of R.

def: a fundamental implicant of a Relation Rc B" xB” is
an implicant (X/I) where x e B" and I = R(x).

Note that we could enumerate primes of R by choosing
every mapping and counting all primes of each mapping -
but this is very expensive. Instead we will form the
fundamental implicants and use pair-wise consensus to
generate the larger primes.

def: 2 cubes C’ and C” are adjacent iff their supports ¢’, ¢”
are hamming distance one from each other. ie., they
differ in only one bit.

def: the merge of 2 adjacent cubes ¢’ and c¢” denoted
C=C’-C" is a cube C with support set

c=c’uc”

and influence set

I= ? € B" : y = greatest lower bound (y’,y")
where y’el’, y” el @

here the glb is simply bit-wise AND of the elements.

®

input: The set of fundamental implicants of R.
output: The set P of all prime implicants of R.

A, = {all fundamental implicants of R};
P=0;
for s=1,...,r{
B, =0;
for each pair (a,a") € A;_1 X As_1,a" #a"{
if a’ is adjacent to a” {
b=a’oa”;
mark all i’ e I’ such that Vi” el”,i"<i”;
mark all i” € I” such that Vi’ eIl’, " <i’;
B, =B, u{b};

}

remove all marked vertices from the influence sets of
the cubes in A;_y;
P=Pu \&mlan
As=Bg;
}
P=PUA,;

e sranges from 1 to r; after each iteration all maximal
implicants of size s are produced.

e A, ;or A refers to the set of maximal implicants of
sizes.

(]

Each member of B; is produced by merging the
adjacent cubes of A,_; and each is a maximal cube.

As each new cube is produced, mark the vertices of

‘the influence sets that are covered by the adjacent

influence set. This ensures that implicants from the
earlier iteration A;_; which are contained by the
current set are deleted. Thus each primed set is prime
elements.

Consider the following relation:

000 00

001 00

010 00

100 00 the fundamental implicantsof Rare:
011 10 €1 011}10

101 01 Cy 101} 01

110 00,11 ¢3 110 | 11
111 00,11 ¢4 111 | 11

¢, is adjacent to ¢,= form c5=cjocq =—11|10

¢, is adjacent to cy= form cg =cyocq =1-1|01

¢3 is adjacent to ¢4 = form ¢y =czocy =11-|11

There are no more adjacencies so c;...c; are the complete
set of c-primes.

(10

Note that these primes cannot be used in the conventional
way to construct a cover since we must insure that the
function f so produced is compatible with R.

In general f=ayc; +0pcy +03c3+---+ 00707
However, we must have: f(x) e R(x), Vx e B

We can form these constraints in conjunctive form
using 2" terms:

000,010,001,100=1

011= (0 +)

101 = (ary + o)

110=> (03 + 07 + 03 7)

(
111=> (0tg + 0ty + 05 0t + Qs 0t Q7 Oy

an

We can write:

C=(ay +o5 (0 + 05)3 + 007 + 03 07)04 + 07 + Q50 + 0l 05 O 07)
which must be true for f € R. Each cube has a number of
literates related to its size, we wish to satisfy C with an
assignment to ;3) a;®; is minimized. This is an

i
instance of the Binate Cover Problem (weighted). Note
that 01=0, =1 O3 =04 =05 =0 =0y =0 is a solution
with weight 6

Qm“QmH.— QHHQNHQ&HQ»HQVHO
is a solution with weight 4.

We will show a very fast way to solve BCP which is linear
time in the size of the constraint BDP.

o C-Primes for the Symbolic Case

In the case of symbolic relations we must account for all
possible combinations of code choices (encodings) and
output choices. Compatibility here is:

VxeD, JyeRx)3 fEx)=wy(y)

for encoding functions £ and v .

def: a fundamental implicant of a symbolic relation

Rc DxZX is an implicant (x| 0) where x € D, 6 = R(x).

az

def: a symbolic c-prime (or gc-prime) of a symbolic
Relation R is a cube (clo)c DXZX 3 there exists an

input encoding &:D— B” and an output encoding

y:Z — B" for which (&(c)|y(0)) is a prime of f where

f=ew R

We will adopt a similar strategy as before and generate a
set of prime implicants for these symbolic relations. Then
we will derive a set of constraints which allow the
realization of a two-level minimal compatible function f to
be found over all encodings of inputs and outputs. This
will also be cast as a Binate Cover Problem.

e To generate all prime implicants for a symbolic
Relation we use an encoding trick proposed in
Devachs and Newton, "Exact Algorithms for Output
Encoding, State Assignment and Four-level Boolean
Minimization," ICCAD, January 1991.

The idea is to encode the output symbols as 0-hot
encodings:

ie. 01=011111..1 0,=101111..1 03=110111...1
Given N =|Z| we use N bits to encode the outputs.

It can be shown that the prime implicants of this encoding
have the same correspondence as those of the original

function.

(13)

For Relations, we may have the choice of several outputs
for a given implicant so:

Encode the relation as above (output encoding) to make
the fundamental implicants. Then apply the c-prime
generation procedure with the following changes:

1.

c-primes with all-1 output can (and should) be
removed.

Note: in a 0-hot encoding, all-ones does not assert
any output symbols = it cannot be a member of a
primal cover.

If we know a-priori that the eventual output encoding
length is L we can remove several cubes since:

Nh|~

for n> , any n district codes have a zero

intersection.

= for each new cube, the number of zeros in its

output part are counted, if greater than y
cube is non-prime for final encoding of length /.

This technique produces all cube prime implicants of the

original Relation for Boolean encoded inputs and can be
generalized for multiple value inputs.

(14)

* Derivation of constraints: Given c-primes from above,
we wish to derive the necessary constraints for their
inclusion in a compatible function f.

¢ Output Encoding

Given a Binary input, symbolic output relation:
Rc B" xX where £={0;...05}

Encode X with at most L bits 3 0 =by, by, ...by, such

that the number of product terms in the minimized
relation is a minimum.

There are 2 constraints which are needed to validate a
given encoding assuming N < yad

1. We must have compatibility to a realizable
function f subject to the output choices of R.

2. We must insure that each symbol is uniquely
encoded.

(1) Consider a minterm xeB wlog let x have
R(x)= ?.T.:QL as possible mappings. Let g;...g, be
the set of all prime implicants which cover x.

9i
Let :oﬁ. be the output of g;
j=1

(15

]
list of indices for which a prime covering x also.
includes oy in its output port.

Finally let I = T:.m 1A(3)(0, = q% e, Iy is a

Ik is the complements set: I—Iy for I ={1...n}

We must have

p gi
2| I &|| 2 &Il eoy)||=elox)|-1

K=1 mmMK ~.m-A \.H.—
NAQ_.N. v represents the encoding of the given symbol.

Each g; represents a Boolean selection variable
corresponding to the inclusion of the related g-prime
in the cover, the @@. 's below represent the encoding

variables. i.e., F.\. is the j-th bit of the i-th symbol.

Note: the first term | [] &; | ensures no illegal set of
mmNN

simultaneous assignments are made from the set of

Relation choices.

16)

This set of Boolean equations can be simplified to:

4 L gi .
M : 8i : M 8i : w@.\@ @wﬁ« =1

K=1\ielx Je=1 \\i=Ix \j=1

P L

_ 4i
=2 | I1 & [IT |oxe+ X 8 I1 B3 |=1

K=1 mmwN =1 mm:A \.H.—L.\.ﬂMA

(2) Disjointness Constraint:

We ensure that the final codes are orthogonal in L bits
for N values:

::z

N-1 L
I1 > ?:A @vana
i=1 j=i+1 K=1

=t

-+

to build an instance of BCP from these constraints, we
can construct a BDD which represents the set of
constraints and find the path to 1 which has lost

weight. We shall assign weight (g;)=1, weight

AF\. V ucmoulﬁEmmﬁo_&mgnovaomcnmamagﬂm-_mé_
cover.

(next time: state encoding)

an

Sideline: Where did those constraints come from?

In our earlier study of Encodings we used dominance
relations among the codes to reduce cover
cardinality - there is another way to reduce the size of
these covers:

Consider the following machine:

101 outl 1
100 out 2 1
111 out 3 1

This machine is output disjoint so that by our
previous technique no reduction is possible.
However, if we assign:

out1l 11
out 2 10
out 3 01

we can realize the function in 2 cubes ...

10- out2 (10) 1
1-1 out3 (01) 1

this is because the case for out 1 satisfies both cubes :
resultingin11 = out 1.

Our earlier techniques failed to make use of this
possibility — so could not necessarily find optimal
exact encodings.

(18)

®* 5o .. consider the problem of constructing a 2-level
cover for an encoding of a Boolean Function.

We can construct all Generalized Prime duplicants for this
problem in direct analog to the construction for Boolean
Relations we saw last time:

1. Merge of 2 adjacent symbolic output cubes by
forming union of the cube part and intersecting the
symbol part. (union of the symbols)

Eq. if the output port of c; is (out 1, out 3) and of
adjacent ¢, : (out 2, out 3)

that of £ =c; 06, = (out 1, out 2, out 3)

2. Remove all cubes from n-1 generation who's output
port is identical.

This leads to a list of cubes of successively larger size and

smaller effectivity outputs. The remqval process ensures

N\,

that only prime implicants are kept. -

a

E

Let ¢(0,) be the encoding for the output symbol

10111 a 101- ac on minterm x.
1000 | b 10-0 b,
0101 a 0-01 ac Finally each prime p;(x) has several symbols in
1010 ¢ 010- ab its output port so p;(x), j is the jth such symbol,
-ot+to1b* —01-0 b and e(p;(x),j) is the encoding of the jth such
0001 c symbol.
-1+6-6b*
I1e(pi(x),j) 1is the Dbit-wise
(Note: 101 - is not adjacent to 1 0 — 0 — don't care i intersection of all the
symbols must agree for adjacency.) encodings of all the
symbols in the output
. Once we have built all these generalized prime implicants, port of the ith prime
we are free to construct a cover for the function. Note that covering x.
even in this case, there are constraints which must be met.
We could check for proper (non-cyclic) dominance and for > 8i x| [Te(pi(x),j)| is the bit-wise OR of all
correct disjunction, however, there is a simpler solution. S j selected primes' inter-
sected output encodings
* We wish to formulate exact constraints on the primes for all selected primes
so that the combination selected results in a realizable covering x = note this
Boolean implementation (in 2-levels). must be the same as the
desired encoding of the
Note that if we encode the symbols as Boolean output of x in the
vectors, we could simply check that for each minterm - original cover.
of f the 2-level result is identical to the selected
encoding.

= VxY, 8| [1e(pix).j) |=e(o)
Let p;(x) be the ith prime which covers x. i j
Let g; , be the Boolean Variable which selects is

p;(x) appears in the cover. This simply ensures that any input minterm produces

a valid output encoding.

20) Qn

* As before we can simplify this if we assume encoding

of length L, b; , = ¢(0; v&

w v
Weget: Vx][] M,. 8ix _l—wi;.x by, |=1
1

=1
Ex: fortheinitialcover: 101a

110b
111c¢

the constraints are then: (L=2)

j20x

weget: g3 101 a
$H111c
g3 1-1 ac
84 HH:N?O

::iaU@m+§+$FbﬁM+§+$FL
110 - b=> (by,1 + 81+ 8abe,1)(by2 + s1+ 84bc,2)
111 ¢ => (b, 1 + 82 +83ba,1 + 84by,1)(Bc,2 + 82 + 83ba2 + 2abs)

plus, we must also insure that the b's are disjoint

(different) output symbols.

Note that gg=¢1=¢2=0, g3 =

8s=1

requires that: b, ; and b, 5 =1

finally we canlet b, ; =0and b, , =0

(22

this gives the solution:

1-1,(anc)=(01Nn11)=01
11—, (bNnc)=(10n11)=10

which is the exact minimal solution.

23

Back to Symbolic Relations

For this problem we have the difficulty that there are
now symbolic inputs as well as outputs and these
inputs will cause a change in the previous prime
generation alg.

It has been shown that for a pure symbolic input
Boolean output problem, we can transform the
symbolic input into a multiple-value input (Sasoo).
We will use a hot-one encoding for the symbolic input
and then we can apply the previous prime generation
algorithm as before with the caviat:

2 cubes can be merged only if:

1. identical input binary parts and
different symbolic parts

2. distance -1 binary parts and identical
symbolic parts

Cancellation can occur only when:

the state, next state, and output parts are
identical.

24)

S1
S1
S2
S2
S3
S3

B

OO MmO

51
52
52
53
S3
S3

100
110
101
110

—_ O OO
-0 o |

(51, 52)
(S1, S3)
(51, S3)
(S2)

0 note: S1=100
0 S2 =010
o mwuooH
o

Note: each prime with an input symbolic encoding
which has more than 11 (eq: 0 110 — (S1, S3) 0)
implies a constraint on the input encoding since if
this prime is selected, we must ensure that the
smallest cube which covers e(S1) & e(S2) does not
cover e(53).

Each such cube prime introduces face constraints.

(25

* In our previous discussion we performed the
minimization of the cover, then determined if the
cover was encodeable. i.e., A, B matrices were
compatible.

Here, we again use the g; variables to select the presence
or absence of a prime in the cover. Thus for any well
defined relation we can find an encoding for some
selection of the primes.

For each prime with a merged symbolic input part (except
an all-1's input port which is discarded) we add the
following constraint to the encoding:

Let g1...¢n select the primes which produce a
particular face constraint.

Let ot;... 01 be the set of states in the face and

Or,---Org Dbe the set of states which must not
be in the face.

Then:

o~

n R T
Mw. i +»~.|HH ~. m?:;. ® Ft.v =1 (for each constraint)

1j

Note that this is just an exhaustive check of all satisfying
codes.

6)

¢ Joint State Minimization and State Encoding

We can now generalize the state encoding problem by
identifying pairs of equivalent states in a machine
description and expanding the relation to include the new
degrees of freedom.

1. Apply conventional state minimization to identify
state equivalent and implied pairs.

a. Build an implication graph G(V, E) where each
vertex v is an equivalent state pair (0y;, 0v,) and
each edge is a constraint where merging of
v1 — v2 implies the merging of vs.

2. Expand the encoding problem to a relation in which
any transition to a state could transition to any of that
state's equivalent states.

3. Solve the symbolic relation problem in which we
relax the requirement of unique state codes. i.e.,
Equivalent states need not have disjoint codes.

e This is done by modifying the Disjoint Constraints
and adding new implied merging constraints.

N1 N L

L I I 3 (ba®by)=1
i=1 j=1+1 k=1,
Q-,#Q\

20

here, the only difference is that we don't check the
codes that belong to both pairs of equivalent states.

If (0i, 0) is an equivalent state pair, and
:QE O v::AQE /Og, vv are implied pairs:

el o)

~n n |
= 11 5 (5 003+ 11 (5 Btye) -1

28)

Binate Covering Problem:

Let the Boolean Formula T(X1 . .. Xp) represent the
covering constraints where an input vector X is satisfying
iff T(X) = 1.

Let the cost of a positive literal x; be given by w; and the
cost of a negative literal ¥; is 0. .

Find a minimum cost satisfying assignment X.
* Solution using BDD's:

def: the cost of a path in a BDD (D) is defined to be the
sum of the cost of the arcs along the path where a ‘0’
arc is free and a '1' arc costs wy for variable v.

Th: For an ROBDD representing T(x1, . . . x»), the lowest
cost (shortest) path connecting the root to a '1' mode
is a minimum cost satisfiable assignment, regardless
of the variable order.

Pff: Every path from '1" to the root represents a satisfiable
assignment (minterm) of T. Each weight is added to
the cost of the path iff that particular variable is 1 in
the assignment.

We can find this shortest path weighted solution in time
O(V) on an ROBDD by simply applying Dijkstra's alg.

However: We must prime the BDD often as a problem
with 100 primes (relatively small) will have
over 10,000 variables! So BDD size
containment is very important!

29

Example: Consider the state Machines below:

Mi: 0,a - 4,0 M2: 0Oa — a0
l,La — ¢,0 la - b0
0b - b0 0b - (ab)0
Lb - b- 16 - al
0,c - b0
l,c - a1l

minimized Machine
representation: a = {a, b}

b={b,c}

We can encode this machine's state with just 1 bit — but
we can also see the appropriate constraints.

Converting M2 to primes leads to the following list:

&1 0 a a0 the output constraints are:
82 1 a b0 ~
0 b 0 Oa : AF +8 +%mv
&3 a 7
0o b bo W (2ts)
84 o s o
g 1 b a1l 0b : (by+83+86+87)84 +(b2+84)83%637
86 0 aub a O b : g5 (essential cube)
87 - b a0

disjoint coding constraint: b; @b, =1

No face constraints since either 1 or 2 possible merges,
both timed.

G0

note: . that the Ob minterm and the recurrent b; ®b, =1
are a tautology:

(by ®b,)-((B1+ 85 +86 +87)84 +(B2 + 84)338637) =1
ifby=1b,=0=>g,+g4=1 (this is because we could
if TH HO\@N H”.—”th +W¢H.— write aub = -

=g¢: 0,——4,0)
So the final set of reduced constraints is:
(B + 81+ 86)(B2 + 82)35(B1 + b,)by +b2)
there are 2 solutions with 2 terms:
{85,860/ 01}=1
{82,85/b2} =1

whichleadto: 1,0-51,1
0,-—-1,0

or: 1,0-1,0
1,1-0,1
AAO\ |v - O\ va.

ICFB2562953

@31

