SEQUENTIAL MACHINES

A sequential machine is represented by:

a set of states

a set of input symbols

a set of output symbols

amap: 6(IXQ)—>Q (next state)
amap: e(IxQ)—>Z (output)

tH & N0

Such a machine is a Mealy machine - if € is restricted to
€(Q)>Z = Moore machine.

* We assume the machine is deterministic =
£, ¢ is single-valued for all I x Q.

Generally we assume that Q, I, Z are finite sets -

for some applications, we may have restrictions on the sequences
of allowed inputs =

6 will have don't care outputs.

Alternatively the outputs of the machine may be ignored for
certain sequences of inputs:

= € has don't care or unspecified outputs.
We represent a state machine as a table (STT) with four columns:

a) the Primary inputs

b) the current state(s)
¢) the next state
d) the Primary outputs

Conventionally, each row in the STT corresponds to a single
transition of the machine. A slightly more compact form allows b)
to list all of the state sharing c), d); valid for a). Note: We can
further reduce the inputs by allowing don't cares to determine
only the inputs which must be present for the transition.

Eq:
Pl PS(s) NS PO
10-- 51,53 - S1 10
11-- 52,53 - S 11

0-0- 51,5,53 — S3 0-
This technique allows a much larger space of valid machines.

10--/10

Q)

»

11--/11
)

11--/11

0-0-

10- 0-0-/0-

A state machine defined in an ad/hoc manner may have a non-
minimal # of states in its STT. In the case where the transition
function 6 and the output function € are completely specified this
reduction to a minimal machine is simple:)

def: g¢;and g ; are equivalent ¢; =¢ i iff

€(J,gD=¢€U,q;) for all sequences J € I
i.e. two states are equivalent iff they cannot be
distinguished by any set of inputs and outputs.

def: g;and g; are k-equivalent g;=; q; iff
€(J,g)=€(,q;) for all sequences Jof length k.

lem: both equivalence and k-equivalence are equivalence
relations.

lem: if ;= q; = ¢=mq; Vm<k

if g=q; = ¢=9; Vi

k-equivalence forms a partition m;, of the set of states S into
equivalence classes for each k. Since |m;| can onlydecrease with k,
and since a partition class element is k-distinguishable from all
elements outside its partition, :

7, is a refinement of #, for V. k>r.

7 is a refinement of 7 for all k.

* If 7 contains partitions in which there is more than one state,

each of those states are redundant since we could describe a
machine with identical characteristics on input and output
with exactly one state per partition.

Minimization: for each machine form the sequence
My, My, M3... ... @ series of refinements of partitions of state.
Consider the process at step k: each partition is checked for
states whose successor belongs to a different partition than that
which is the successor to the other states. (States with differing
outputs are partitioned in 7;.) If this occurs, the partition must be
split since the states are k-distinguishable. If no refinement
occurs, then each partition transits to a unique partition on each
input symbol so the m, partitionsate-the m;,; partitions. An
identical procedure will show that m; = @y, =mM,,... for any
number of trials. Thus x, must = 7. Finally, at each step at least
one partition must be created until 7 is found = process must
terminate since there are only a finite # of states and each
partition must contain at least one state.

(Note that in this case, this alg. is at worst 6(p-r) where p= “ﬂ
and r is the number of distinct transitions on S.)

def: two machines S, T are equivalent iff for each states; €S
3t;eT 3 s;=t;and for each state t; €T 3 5;€53¢; =5;.

def: two machines S, T are isomorphic if we can find a one to
one mapping f such that: f(g;)—=qr

1. € (,9) =€ (,f(q)

2. f(6,(i,9)=Sr(.f(q)

foralliel,qeQ.
lemma: two minimal, equivalent machines are isomorphic.

Note: two equivalent machines need not have the same number
of states so may not be isomorphic.

We will often be concerned with machines which have no isolated
states or proper submachines = each state is recurrent. These
machines have strongly connected STG's and are called strongly
connected state machines.

Incompletely Specified Machines
(inclusion of don't cares)

We assume that the specified § and € are subsets of the
complete relations — -

In this case the previous state equivalence approach won't work
since not all input sequences are applicable. We shall have to
find a new relation: compatible which, unfortunately is not an
equivalence relation.

def: M;(J) is the last-output function. M;(J) is the last output of
the machine if initially in state i and is then subjected to
the set of inputs J.

In an incompletely specified machine, we cannot ask if
w;(J)=w;(J) for all / since some states have no defined outputs

and some transitions are undefined.

def: a sequence of inputs J is applicable iff

1) The sequence of states g1 =¢, 92 = u.e.?e.v, gy = 0y, qx-1)
is well defined.

2) €(i.qx) = M;(J) is defined.
i.e. the output of the last transition is defined.

We can now partition I* into those sequences which are
applicable and those which are not.

def: T is the subset of * for which M;(J) is defined.

i.e. the applicable subset starting from state i

[; is the complement set in / LN =¢

(Note: if T; = ¢ for some i, = the state has no observable
care set = degenerate state. We can simply remove it

W.L.O.G)

def: inclusion for ST two machines g€ S, peT are states; p<gq
(g includes p) iff T, <T, and M,(J)= M, () for J €T

Note: this is clearly not symmetric.

def: S<T for machines S and T iff each state peT has a
corresponding state g €S such that g < p.

problem stmt.:

We wish to find a representative minimal state machine:
S 3T<S andforall Y 5 T<Y

the number of states of Y is greater than or equal to the number
of states of S. Then S is a minimal state representative of the
incompletely specified machine T. (Note that S need not be
unique!)

def: Compatible States

.9, are two states of S with I;,T}, being their applicable sets.

q,~qp (compatible) iff M, (=M, ()
for all J €T, NT},.

although this is reflexive and symmetric — it is not transitive
and so is not an equivalenzerelation.

Eq:
19 -

92 2943
93292
a9
9293 2 %1

— =0 OO
o o = O

q1~q; ~1onlgq —q, g q output 0.
~2 on 01 ¢; = q,, g = q; output 0.

on 11 g; = q,, g, = ¢; output 0.

~3 on 001 g; > g, g — gy output 0.

g1~q3: ~lonlg—aq 3¢ 0
~2on 0l g1>q, 3>q O

on 11 ¢1 > gy, ¢392 0.

~3 0on 001 gy >¢q,, g3—>4q2 O.

but ¢, # g3 since ~1 g, > 43, 93 > 2 but0#1.

def: wedefine g; ~k g, (k-compatible) iff
My (J)=M,,(J) forall J eT; NI of length < k.

def: a set of states is compatible (k—compatible) iff every pair is
compatible (k—-compatible)

def: a maximal-compatible set is a compatible set not
contained in any larger compatible set.

For any machine S there is a set (class) of maximal compatible

sets of states. As well, there is a set of all k-compatible maximal
sets of states. These sets are not disjoint necessarily.

We denote & ={Bj,...B,} is a cover of the states of S and is the
set of all maximal k-compatible sets of states for S.

This is an analog to the Boolean relation covering problems we

have seen before. Since compatibility was not an equivalence
relation, we get covers (not disjoint) instead of partitions. if ¢.q=¢ = no pair states in cover can be observably
_ different for any applicable set of inputs —
Since a state which is incompatible with all others forms a S lm. .
maximal-compatible set of one element, the set of all maximal- Example: Consider the machine:
compatible or maximal k-compatible sets form a cover for the

states of S. 0 a 4 O
0 ¢ ¢5 1
We can generate { systematically as follows: 0 ¢3.94 42 -
1. Generate {; by grouping states with the same outputs for 0 ¢ a1
those input symbols applicable to both states (~1). 0 ¢ - -
. 1 q.93 95 1
2. Check each set B; (assumed to be k-compatible) for 1 1
compatibility k +1.) @2 9
. . . m “ - -
if the set is k+1 compatible = . 1 g¢5 qs -
3 some Bj € §; 3 6(i,9) € B, for all g € B; and all i which are 1 g6 a1
applicable. iel. 4% 1:(¢1,93,94,96), 2:(92,93,94,95 ,6)
, VLl Ll .
if the set is not k+1 compatible = _J 1=0 12 2 2 - 2 2 2 1 - |4 Bloksin
I=1 2 2 - 12 12 2 -1

212 ﬁ~ on next state
Split Bj into (maximal) subsets each of which are k+1
compatible. (Note that two states will be in a common
subset iff 8(i,q;) and 8(i,q;) € B; < mw for some j and all

applicable i.)

¢, all states in 1: transit to 2 = 2-compatible = 1: (1,93,94:96)
gs is not 2-compatible with ¢;,43,94 on I=0.

3. Remove all non-maximal sets B; from the generated set of k+1
compatible sets. This will form the new {;,; set of maximal
k+1 compatible states.

ﬁNu .—“AQ.—w Qw. Q%. Q@vw N“AQN. Q@- qs, va. , quQm. Q@v
I=0 123 2 2 - 3 2 2 - 1 —
I=1 3 3 — 12 123 3 — 12 12 1.2

H.
(91,93.94) 2:(q4,q6) 4:(45,96)

3:(q296)
3t 1:(1,3,4) 2:(4,6) 3:(2,6) 4:(5,6)
AAY;
23422 2 — 4 — 1 -
4 4— =13 23413 1313
m»uwunvmmnm.

Once we have found ¢, we have already found all maximal sets of
states which can be merged into single states of the (a) reduced
representative.

def: preserved (closed) cover of S. a collection C of sets

where 6(,C;) = ?_Q =4(i,p) forall peC; where 8(i, p) mxmmﬁmw
i, aclosed cover is a cover where for each applicable input
symbol, the image of § for the cover element merges to a
unique cover element.

For our previous example

WH = .—.N.W wN = #,O ww = N,Q w» = m.m

I=0] I=1
B, | By B,
B, | By |BjorB,
B3| By B,
B,| B |BjorB,

So ¢ we calculated was a closed cover.

| (C1,Cys...,C,) of states of S is a closed cover iff

1. Itis a cover of the states of S
ie., _

0= m_n_. . GG, for j#i.
1=

2. 3,36G,C)cCy foreveryiel
(note: 6(i,C;)= ¢ =>callC...)

n

Note: {is always a closed cover from the construction.
For any closed cover of states C={B,...B,} for a machine

Ss=(1,0,Z,8,€) we can define a new machine S, =(I,,0,,Z.,90.,€.)
where S, 2 S as follows:

12

1. 1,=1,2,=2
2. Q, ={b,..b)

3. S.(i,b;)=by if G,B;)C By

4. €(i,bj)=€(,q;) for qj €B; if €(i,q;) is defined for some

else undefined.

Note: §,>S since we constructed each B; to be closed on C.

From this argument, it would appear that we are finished ... but
we do not know |C| for |¢|. In general |{| can be larger than |Q] — we
must find a closed cover of S with |C| minimal. Worse, the

elements of C need not be maximal compatible sets to be a
member of a minimal cover, however we know:
1. Each C; €C,,, is C; B; for at least one j-

2. Every state in S must occur in some C;.

to form a legal closed cover, we must have B;
> 6(G,B)cB; for each B; in the cover.

13

B

a1
92
93,96
44
ds
q14¢
q2
q3
q4
s

e e el e OO O OO

Clearly {=S;:

q3
qs

de
[

q3
s
de
de

— e e OO

0
0 | $=1(a194954).(92,44,95:96);
— (91,93, 95.496)}
- ={By, B, B3}
0
- NMO_ I=1
0 By | By | BB;,B;
! B, | B, B, By
0 By | B3 | By,ByB3
bi,bs3>b3 0
by—b 0
by-o>b 0 |§=3
bp—b3y 0
by by 1

However: B,, B cover all the states and:

B,
B;

B,
B;

B,,B,

is closed so

14

0 b b
= S m b b Is|=2
1

b, b3
by b;

- O O O

Neither of these machines are equivalent but

S¢28, 52 S so S, is a minimal representative.

The representation of
synthesis of suitable
below:

1=

A,B
Cc,D

— e = = O O
> 0gnx
-0 O = O O

A
B
C
D

a: yi=xy;+xy;
Y2 =Xy + XY,
z=2xy3

B yi=xyi+xyp
Y2 =XY,

state in an FSM is of prime importance in
machines. Consider the two machines

a n B Y1 Y2
A S5 0 0 A 5 0 0
B - 0 1 B - 0 1
cC » 1 1 C 51 0
D - 1 0 D - 1 1
= f1(x, y1)
= fo(x,y1,42)
= f3(x,¥7)
= f1(x, y1)
= f2(x,¥7)

z=xyip +ayiy2 = f3(0 YY)

By changing the enco

ding of state variables we can change the

dependencies of the output functions on their basis variables.
For completely specified machines, we can find state
assignments which minimize dependencies.

17

By use of Partiton theory:

1.

Hartmonis and Stearns, “Algebraic Structure Theory of
Sequential Machines,” Prentice-Hall, 1966.

Karp, RM., “Some Techniques of State Assignment for
Synchronous Sequential Machines,” IEEE Trans. Elec. Comp.,
v. EC-13, n. 5, pp. 507-518, Oct. 1964.

Kohavi, Z. and Smith, “Decomposition of Sequential
Machines,” Proc. Sixth Annual Symp. Switching Theory and
Logical Design, Ann Arbor, MI, Oct. 1965.

Kohavi, Z., “Switching Theory and Finite Automatica,”
McGraw-Hill, 1970, 1975.

[

?

However, these techniques do not lead to systematic techniques
for larger circuits. State Assignment can be viewed as either an
encoding problem or as a partitioning problem on FSM'’s.
Consider a state machine consisting of two separate
submachines. The state encoding can be selected to allow
separate decomposition of these variables or can be mixed to
force joint decoding. In general, machines which do not have
viable submachines can still be encoded as such, by making use
of don’t cares and by possibly augmenting the ensemble states of
the machine. Such encoding reduces the logical complexity of
the machine. Recently, logic synthesis has enabled automated
construction of much larger machines and State Assignment has
become more important and needs for good fast heuristics grows.

Encoding Techniques:

Jodi, Dolotta and McCluskey
Embedding Techniques:

Kiss, Cappiciono, NOVA
Assignment on Homing Distance:

Mustang, Lost Commitment.

We shall discuss PLA embedding first. (Kiss)

16

Synthesis of control using 2-level (PLA) logic

Ref: Giovanni de Méchek, CAD-5, no. 4, 1986
CAD—4, no. 3, 1985

Today we will examine problems in applying 2-level PLA
structures to designs (which may be incompletely specified) of
FSM’s with simultaneous minimization of both the internal logic
and the state encodings.

Control units arise in many VLSI designs (most of them!) Internal
control helps the chip to exploit the speed of on-—chip
communication vs. the much slower off-chip connectibility. In
particular we most often support:

¢ Communication Protocols

e Time-Sequenced Behavior (Controllers, Timers, etc.)

18

¢ Exceptions and data driven processing (eq.
computers).

Control is often specified as a high level specification on
activities of the process under control.

Eq: If (halt and Reset) {
If INT) {
AR « PC++;
If (E x ¢ # Decode (AR)) {
Execute();
else
Flush-pipe();
} else
Vect_interrupt(); }
else decode (Reset/Halt cond)
Executed();
}

However, this is often very far from the direct
implementation of the description as a finite state
machine since no concept of states (or even timing) is
directly apparent. In addition, there is an encoding
problem associated with the proper control of the bound
function units and a timing problem associated with
efficient implementation.

This level of design is called Functional Design of the
control structure and comprises translation of the formal
language level to a structure consisting of logic block and
registers.

(48)

In most commercial designs this is done manually,
even today.

Automated methods for control functional designs
usually start with allocation of a data-path to
perform the operations, scheduling of the
operations on the D.P. and finally inferring the
timing and signals needed to implement the
schedule. This is done by equating states of the
controller to microcode states of the data path and
during the timing and encoding from simulation of
the desired behavior on the data-path.

Note: The control unit timing affects the data-path
as well-- one must design the two
simultaneously for good results.

Several levels of optimation are possible:

Tradeoffs between control complexity
and data-path size.
between speed of operations and
size.
length of pipeline and complexity of
control...

We will assume that this level of design has been done
and we have a specification of the structure and states of
the control system. We will assume that this data is
tabular but symbolic in nature.

49

Several Problems Remain:

1. The derived specification of control is usually
incompletely specified = state minimization.
(NP-complete).

2. State assignments to Boolean values must be
made.

3. Efficient encodings of the states to control lines
must be done.

State encoding is important for optimization of the
control logic:

PLA area o (# of terms) (# inputs and outputs)

The minimum # of terms is the # of terms in a
minimal cover of the transition logic (dependent on
the assignment).

The minimum # of columns is directly related to the
encoding of the nexr -state.

Terms oc # of transitions i»
34.;4 ﬂmz

MABRAA

(50

* The particular notion of optimal state encoding
depends critically on the implementation
technology! ie. FSM /Rendom Logie/ Sepuatial mockiec-

1. Find assignmentof minimum code length
among those which minimize the # of terms.

2. Find the assignments of minimal # of terms
among those with minimal code length.

Symbolic Design:

We will simplify the Boolean problem of minimization
by representing inputs and outputs s mbolically then

find the optimal switching function and finally encode
the symbols in a minimal way.

This will allow us to solve:

1) Find optimal encoding of inputs.

2) Find optimal encoding of outputs.

3) Find optimal encoding of inputs and outputs such
that some set of outputs and inputs have the same
encoding. 4

1)

Minimal here implies 2-level sum of products minimum.

Acflso prle of

INDEX
INDEX
INDEX
INDEX
DIR
DIR
DIR
DIR
IND
IND
IND
IND

AND
OR

JMP
4ADD
AND
OR

JMP
ADD
AND
OR

JMP
ADD

it

CNTA
CNTA
CNTA
CNTA
CNTB
CNTB
CNTC
CNTC
CNTB
CNTD
CNTD
CNTC

2 inputs and 1 output function of symbols onto symbols.

Instead of assigning bits to the symbols first, we will

examine what can be done symbolically.

Disjoint minimization: treat the oc”vﬁm.mm separate

tables:

INDEX
DIR
IND
IND
DIR IND
DIR

AND OR ADD JMP

AND OR
AND
OR JMP
ADD
JMP

CNTA
CNTB
CNTB
CNTD
CNTC
CNTC

Compaction by refinement. (Note cannot combine 2-3
since IND/OR = CNTD # CNTB.

If we assign:

INDEX =00

DIR
IND

- 01
=11

AND =00
OR =01
ADD =10
JMP =11

CNTA =11
CNTB =01
CNTC =10
CNTD =00

(52)

we get:

for our table: note * = don't care.

We can delete line 4 as its output is 0.
= 5 terms minimal covering.

If we assign instead:

we get:

CNTA =00
CNTB=01
CNTC=10
CNTD =11

mﬂ?f- .ﬁou. m:&w?unv

(53)

00 ** 00 — again we can remove line 1:
01 0* 01 output = 0 but there we can also
reduce the Boolean cover to:

11 00 01
11 *1 11 —» %1 0* 01
*1 10 SW .s] 1+ 10
01 11 10 1 * 1
mgom\noﬂﬁ.m 01, 10:
(Note: 01 0* 01 *1 could be 11
11 00 01
1 ov o1 °¥

Leaving 3 terms instead of 5 which was minimal before--

Symbolically this is equivalent to the table:

INDEX AND,OR,JMP ADD CTA
DIR, IND AND,OR CTB
DIR, IND ADD,]MP CTC
IND JMP,OR CTD

where we assume that CTD overrides CTB, CTC when
both are specified. — This leads directly to the 3 term
machine above.

Symbolic Minimization

def a symbolic variable s can take a single value from a

finite set: S

(549

¢ = no value was taken by the variable.

if £ §* — 8% is a completely specified function of then
input variables and m output variables if every input
maps to some output.

a k-input function on §' has domain: §' =5;x Six--xSh
similanfor output for range: S° = S0 X 89 X-+-XSY

ef if for some inputs, some outputs are unspecified =
don't care.

Eq Ex.4.1is completely specified withn=2,m =1

s = (DIR,IND,INDEX} S} ={AND, OR, ADD, JMP}
s = (CNTA,CNTB,CNTC,CNTD}

Boolean functions are symbolic functions on {0,1}".

Incompletely specified functions: {0,1,d}" form the
range.

Operations on Boolean functions can be defined by
order relations on a map from the Boolean rep. to the
natural numbers:

g ci SN (Nl Ko

(55)

Eq AND: s As Yy (min (r(s;),7(s,)))
OR: y(max (r(s)),7(s;)))
NOT: ~s ri(p=1-r(s)

Symbols, however, have no apriori ordering relation, so
we choose to relate them by orders of the words
representing the symbols.

def a sum of products for a single valued symbol
function is a sum of products of symbolic literal
functions.

if S is the set of admissible values for s = a symbolic

literal is the non-empty subset 6 < S. For any variable
s € S we define

TRUE if seo
£(s,0)=

False else .
Eq: 8/ ={A,B,C,D} if 0=(B,D} £(S,0)=True for s=
Note that £(s,0) is independent of the order of the st

However, the order of S? is important and we relate the
symbolic function to a partial order of relations among
Oﬁnmuﬁ_nm. Ovin 44 importmt 4o :Ari!.»rtox site.

B.

(56)

Let R T?%v“ 5,5 € mJ be a partial order on S°, then

scoverss’ifs=s’ors’ = ¢or (s,5) € RT where R is
the transitive closure of R.

The symbolic sum of s and s* is defined only if s covers s’
or s’ covers s. .

Eq: svs'= (s if s covers s’
s’ if &' covers s
ill defined else.

The symbolic product of s and s is not defined, instead
we define products of symbolic literals £,(s, 0).

def a symbolic product term of literals is the n + 1

tuple (0,,...,0,,7) where 6, 5] i=1l..m 7€ A 4
is called the output part.

def a symbolic product p(s’,7) of the literal fn :

t if £(s,0,)=TRUE VY,

£(s{,0,) is EFSHT else |
In the example above DIR AND CNTB is a product
term since the fn takes the value CNTB when the
inputs are DIR and AND.

E

(57)

Two products intersect (AN P, # §) if
I’ €S'3P(S', 1) ¢ and B(s',7,) # ¢.

Two sets of products P, and P, intersect (NP, # ¢) if
3p,eP, 3p,€ P, 3p, and P, intersect.

Two products are output-disjoint if either they do not
intersect or they have the same output symbols.

ie. P(s",1)NP(s"\ T)=T=1
A set of products is output disjoint if each pair is disjoint.

Eqg: DIR, IND ADD CNTC
DIR ADD, JMP CNTC

Intersect because for s/ = DIR, ADD the
product functions have values. These functions
are also output-disjoint since they have the
same output part.

A symbolic function can be represented in sum of

product form if Vs e S’ the output sum is well-defined.
Such a representation will always exist if

1. Any linear order on $° (since = well ordered).

(58)

2. The representation is a sum of pair-wise output-
disjoint products (since sum is only-identical values).

We will write sum of product fn s as a table of product
terms.

def symbolic implicant is a product p(s’,)3 vs' e §! for
which the function is specified: f(s') covers p(s',7)

A symbolic cover of a function is a set of implicants
P ={P,P,...Pp) whose sumis f(S"), Vs' €S’ for which the
fn fis specified.

Note: The sum depends on the order relation among

symbols s°, we write the cover: C (P, R),the cardinality of
Cis [P).

A minimum symbolic cover is a cover of minimum
cardinality.

A minimal symbolic cover is a cover 3 no proper
subset is a cover.

Eg: for the function defined in the example above:

a disjoint symbolic cover is:

(59)

INDEX AND, OR, ADD, JMP CNTA
DIR AND, OR CNTB
IND AND CNTB
IND OR, JMP CNTD
DIR, IND ADD CNTC
DIR JMP CNTC

= this cover is nogvmnzm with any order relation R.

However:
INDEX AND, OR, ADD, JMP CNTA
DIR, IND AND, OR CNTB
DIR, IND ADD, JMP 'CNTC
IND JMP, OR CNTD

is a cover if R = {(CNTD, CNTB); (CNTD, CNTO)}
since the fourth term intersects with the second and
third terms.

Symbolic Minimization (1-output)

As in Boolean minimizations, we are now to try to find a
minimal cover for the symbolic representation. We
expect that this problem is NP-complete.

Our plan is to iteratively reduce the cover cardinality by
detecting and listing order relations (the set R) among
the words, when these relations lead to smaller
cardinality covers. i.e. we generate R to reduce the
cardinality of P.

(60)

C%(P°,R%) is the initial cover, P is output-disjoint; R® = ¢.

We will first describe the output = 1 term version to
simplify the presentation.

R will be represented by a digraph G(V, A) where V = 5°,
Ac{s € $%s, €S 0 #8 : (51,5,)}

Let $° = ?.o :i=1l.q}letON;={pe P°> T,= u_f. i.e. the set
with a common output.

Note ON; NON; = ¢ if i # j since output disjoint.
The function to be covered is a collection of 4 multi-

valued input, binary valued output functions whose on-
set cort. to the points of the domain mapped into s,
whose offset corresponds to those points mapped into 57,

j # 1, and whose don't care set corresponds to the
unspecified points.

We can solve the problem of finding a minimal symbolic
representation of product terms by using multi-valued
input, single (binary) output minimization techniques as
in rect. cover reduction. We can do this g-times (once
for each output symbol) to get a minimal disjoint rep.

— But we can do better than this!

(61)

P need not be output disjoint as long as there is a cover
relation between the non-disjoint words.

For example: suppose that @W,%v € R then any point in

domain — ON; can be used to reduce the cardinality of
ON;. i#]j. .

In the minimal symbolic representation, this point is still
mapped,q, s{ since (s},s}) € R. Thus we can augment the
don't care set of ON; by adding the care set of ON for j#1
and @w.%v €R.

Eq: Lets) = CNTB and 5] = CNTD, then .QZ_. is:

DIR AND, OR CNTB
IND AND CNTB

if (CNTD, CNTB) € R = DC; includes:

IND OR, IMP CNTD

so the point in the domain s' =(IND OR) can be
used to reduce the cardinality of ON;:

DIR, IND AND, OR CNTB

62)

We need the don't_care set explicitly: we will do this by

complementing the offset generalized to include cover
relations:

the off_set OFF, MWN ON; ; J uT.wm?.S.vm Q@
i.e. there is a path from v; to vjin G or that v; covers v;.

i.e. the OFF; set is the subset of s!that is mapped by f into
a value different than s? and which is covered by s°.
At each iteration, we minimize M; by minimizing ON;

using a routine that performs multi-valued input, binary
output minimization.

We invoke minimize (ON;, OFF;) so that the don't care
set DC; = ON, N OFF, is as large as possible.

if M, NON; = add (s?,s’)toR.

Symbolic Minimization:

DATAON; i=1.4
DATAG(V,A); A=¢,P=¢;
for(k=1togq) {
i = select (k) ;
OFF;=U;ONj; J={j | 3apath forv: to vjin G}
NS.. = minimize «OZ_.\ Omﬁ_&

(63)

>H>C?<\.,,<_.Vw§$362\vﬂsT
P=PuU M;;
}

Select is a heuristic ordering criterion for this routine =
note that this 1-pass routine is essentially using greedy
reduction.

The graph G produced above is acyclic.

pff: Initially G is empty. If at stage k, the graph is acyclic,
then it will be acyclic at stage i + 1 since we only add
edges: ? .si j€JIM,NON,; # 3. Since initially
acyclic, any cycle must include one of these new

edges. = a path must exist from v; to some v; But
by construction such a path would be in the OFF; set

and ON, "OFF; = ¢.
The C(P, R) generated above is a cover (minimal) of

f=Co(P°, R where |P|< _wo_ :

pff: Each s must be represented since s = ON;in PVis
mapped into M;. For any element s’ of the domain
let P(s') = ?u eP>p(s’,1)# ﬁ since C(P, R) is not
necessarily output disjoint, The 7’ of P(s!) can

conflict, but if they do then M;NON; = (v;,v;)€R so
the sum of P(s!) given R is f(sD). Since M; is minimal,

(64)

¢ is minimal.

=
—
5
N
o}
=
-~
—

Example:

Oﬁﬁﬁwmwcﬁ:b:b:}:k‘
Q"’WUQ""“‘!UQ"”WU|'
wphwuwmw—n—nﬂ»—al

disjoint minimization: i.e. for each output symbol, find
minimal cover.

A D,EEFG 1

B D,E 2

C D 2

B F,G 3

C G 3

C E,F 4
PP=¢p A=¢ ON1= A D,E,F,G 1
ON; = M B D,E 2
C D 2
ON;3 = M B F,.G 3
C G 3
ONy = C EF 4

(65)

Select 1: OFF;=\ON; ; J={€G}=¢

DC;=ON; N OFF,=ON, = ON, VON; UON,
find M; = minimize (ON;, OFF;)
=A D,EF,G 1 Since null
intersection with other terms.

P=PuU(A ; DEFG ; 1)
ENDOZN.HQV.

Select 2) OFFz=¢

M; = minimize (ON,, OFF;) =B, C D,E 2 since
we have C E, F — don't care.

M;nON;=ON, = (s3,s3)€R:(42)€R
P=Pu(B,C; D,E ;2)

Select (3) OFF3=¢

M; = minimize (ON3;, OFF3) =B,C F,G 3 since
we have C ; E, F — don't care.

M,nON,=ON, = (s3,s3)eR(4,3)eR

P=PuU(B,C; F,G; 3)

(66)

Select (4) OFF4= ONz U ON;

M;=C,;EF (no intersections)
M;n ON i= (]
A DEFG 1 R D ®
BC DE 2
BC FG 3 .
C EF 4 ®

Boolean Encoding

1.

Note:

We need to encode the input symbols so that each
term in the symbolic cover is represented by a single
implicant in the Boolean rep.

We need to encode the output symbols to preserve
the cover relations R of the symbolic cover. i.e. we
need the Boolean sop to map the outputs reps. so
that the don't care covers are maintained.

a Boolean implicant term is a cube or product of
literals!

67

o TR

Note: we also need (for an \miv,ﬁo have a set of
symbols whose encodings satisfy both 1 and 2
above. (state variables)

Formally:
let S be the set of symbols to encode, 1 = ISI.
let n,= | P| of the symbolic cover.
n, = encoding length (i.e. # of bits)

We will need extended Boolean logic: {1, 0, ¢, *}

*=> don't care ¢ — empty
AND 0 1 * ¢ OR 01 * ¢
0 0 ¢ 0 ¢ 00 ** 0
1 ¢ 11 ¢ 1 * 1 * 1
* 0 1 * ¢ * ok ok % K
¢ ¢ 0 ¢ 0 $ 01 * ¢
def word-literal incidence matrix A: A, , € {0,1, %}
a, . . .
a 1 if word j belongs to liti
A= N MT._S.N..._a‘s_uirmwsqn * if word j is don't care *in i

0 else.
aw—
"
* don't care symbol in a literal is a symbol that may
appear or not in a literal w/o affecting the
representation.

68

) ! o def E = Encoding matrix € {0,1}"™ where each row is an
Eg: let S be the set of op-codes: ={(AND, OR, ADD,]MP} encoding of the words of the set S.

for: def selection for x,a €{0,1,*,¢}. The selection of x
M x 8 % according to a is:
INDEX AND,OR,ADD,JMP CTA o< &
DIR AND,OR CTB 111 1]CTA a.xuﬁx if a=1
IND AND cre |1 10 0|CTB ¢ else
IND ORJMP CTD 0 01 1[CTC
DIRIND ADD CTC 0 10 1CTD This can be generalized to matrix valued selections:
DIR JMP CTC
Ae{01%0}"¢ X e{0,1%9}""
def B = partial order adjacency matrix € {0,1}*™ is the o
m&mWwSa% graph nmmnmmmav“&od for the transitive " A-X=C= TL where ¢, =OR(, a, - x,

closure of R. i.e. if word i covers word j = b;j =1.

Since this is defined for the transitive closure: if = ?: .x:.v OR ?_.N .xev OR () OR ?_.a .xe.v

i—=jj—ok= b =1 also. Although b; =0V, we will use selection to constrain the choices of the
encodings to meet cover requirements.

def Face Matrix: F e{0,1,*,¢}"™ each row f, is a fa ce
of the np-dim Boolean hypercube corresponding to
the fa-ce which encodes the symbolic literal.

Eq: for example withR#¢: B=

F = A-E for an incidence matrix A and some

encoding E. (Selection of E by A)

o O O O
- O O O
- O O O
o o O O

ie. m.livm —b

69) (70)

B

00 * % 1111
01 0* 1100
if E= F=A-E= for A=

10 %] ° 0011

11 *1 0101
©__B 0
A W ¢ Each f; row is the minimum
Y ‘wU subspace containing the state
o R 1 encodings for groupi .
10 C 11

if we now form A = {ay } (ay = 1iff a; =0 else = 0) then F;

F' =aji-¢, is a matrix whose rows are:
i) the encoding of word i if word i doesn't
belong to literal j and is not a don't care.

ii) empty.

A given state encoding matrix Eis a solution to the input
constrained encoding problem and satisfies the input

constraint relatio

n A if:

 [Bes
FAF=s|fonf, |= ¢V,el.n
Fa O o,
Eq: The previous example satisfied the constraint, but if
we swap:
01
00
E=
10 -
11

ﬁrmbwrm<<oambnomwbmmoﬂ.>0_um3mam2mﬁ_mer
fa ce :

0 11117 [01
_ _ 1 1100(|00
FPAF=(a3-e)n(A-E)=(_|[10 :
(az-e3)N(A-E) Ac [vDﬁco: Hov
1 0101] | 11
o9 **1 o0
10| {o*| [¢0
= M =
o0 1*| | ¢¢
10 *x| |10

72)

Remark: We must avoid the violation of the above
constraint as this constraint ensures that
the input state literal can be uniquely
decoded, i.e. no other state not in the group
can match the cube. (Free). We wish to
find the encoding of minimal length.

El: Given an incidence matrix A, find E an encoding
with minimal number of columns (= encoding
length) 5F' NF=¢V,.

Note: there is always an encoding E which satisfies the

above relation: E = I will work for any A. i.e.
encode each symbol as a single Boolean literal.

Also: B = AT will satisfy Asince A-A” = f; =1V,
SFNF =0

Finally as in other state encoding systems, one can freely
permutthe columns and complement columns.

(73)

Output _<m1mc~m. Encodin

def: Ae{0,1}”9,X e{0,1}*" Boolean selection is:

pxr

AoX = ﬁﬁ:v where n@. = OWNH.—E» AND N@
AND, OR are the normal Boolean functions.

Let G=BoE. Row i of matrix G is the logical sum of the encoding
of the words that must be covered by the encoding of the word i.
= Output constraints are satisfied if E covers G or E AND G=0.
O is an all zero matrix.

0000 00 00
0000 0 1 00
Eg: B=y o o o| " E=|1 o] PFTCT|0 0
0110 11 11
00 0 0] [11
_ I E U 00| _ |00
EnG=0. Butif E=| |=BeE=G=| (| E=|g ,|#0
0 1 11] |10

Since 3—2, 3—1but 3=01and 1=11. Boolean cover does not
agree.

We can always find a solution to above for any B:

19

Noteif E=B' = solves above trivially.

[
[e
N =
—_ O O =
—_ 0 O =

BoBle=G=0R(by Nbz)=0. So G=0.
E2: Given B, find E of minimal columns 3 ENn(B<E)=0

E3: Given A, B find E of minimal columns 3 Both input and
output constraints are satisfied.

= we can always solve E2:
but: E3 may not have a solution for arb. A, B.
th: Given A, B Je3E satisfied input and output constraints

ifft: ~ V,s;€S where r>s—t Je3a, = 1, =0, ay =

Row Based Heuristic Alg:

Step 1: Select a symbol not yet encoded.
2: Find encoding of that word satisfying the constraint for
those words selected so far.
3: If not possible, add column. — goto 2.

4: Choose best encoding from set generated in 2 and add
to list —» goto 1.

20

This works since:

HEmom:ommSmmmmBmimbno&bmnoHrmmonw%mz&smQw ﬁmg

a
satisfies A” & B.

2. When we cannot find such an « there is always T wﬁma_uﬁg will

for a binary vector T. i.e., never need more than 1 column.
(Why) (E2, E1)—>E3 may require z.

note: —m_aﬂ_ satisfies _M.mg

However, this algorithm has poor performance for large
examples. .
We wish to satisfy both constraints at the same time — we will

introduce a partial satisfyability measure on the input constraint
relation. (The output relation can be satisfied for any bit width. .).

ie., E partially satisfies Aif JA’<SA3A’=>F nF'=¢.

We then count the number of elements A’ and use this as a
measure of performance.

Step 1: Select column vector {0,1}" that satisfies the output
constraints B and has the largest satisfaction above.

Step2: Append vector to E ; if all input constraints satisfied,
stop.

21

Notes:

if E satisfies the output relations B < each column: if E
also does. But this is not true for input relations: E may
satisfy the input relations but some subsets of E may
not. On the other hand, adding a column to E cannot
decrease the set which is satisfied.

Column-based encoding

A, B inputs.

FI, FO, ny—-max;
FI= E1 prob. FO= E2 prob. FINFO=E3 prob.

if (FI) A = clean (A)
if (FI) A = compress (A);
if (FINFO) A,B = verify constraints (A,B)

dof

e = column-select;

if (n,=0) E=e

else E=[Ele] _

m,= column coordinality of E

if (FI) A = reduce — constraints (A);

} while (not all input constraints satisfied.)

where:

clean ()

compress ()

verify—constraint ()

release—constraints ()

HCFB2562813

deletes duplicate rows of A and removes
allrowsof0’'sor’1 1.

reorders the rows: don’t cares to bottom
and further reduces A by deleting rows
which are products of rows of the reduced
A

ensures that a solution can be found for
E3 by releasing constraints.

allows only the part of A necessary to be
used: simplifying the constraints.

