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CAD for semi-custom ASICs

m ASIC = application specific integrated circuit

= Semi-Custom = try to design reusing some already
designed parts

m CAD = flow through a sequence of design steps and
software tools.
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Example : microprocessors. Example: ethernet chip,hard disk controller..
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Example of modern system-on-a-chip IC

= Many big chunks

Random logic

RISC
Memo
Core
]
]
Datapath ™
— d
.
|
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Useful Components in Semi-Custom

= Logic gates
Maximally useful components you can reuse

Can design without knowing exactly what gates (type, speed,
power, size) you have : technology independent design.

Later, can map technology independent design onto specific
gate library (technology) : technology mapping problem.

= Memories

Module generator transforms specs on size (bits, words,
speeds) into final layout.

Very structured designs. :

= Datapaths u
Well structured (adders, multipliers) a

Often designed at gate and transistor level d
Produced by module generators. :
mEEOOaOm
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Semi-custom ASIC

= Made out of standard cells

Standard cell = one gate (complex)
Random logic

RISC
CPU Memory
Core \ ./
]
]
(— Datapath m
== —
] d
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ASIC CAD Tool Flow
| Behavioral synthesis |
]
| Logic synthesis
1
| Technology mapping
| Verification, test r
|
|Timing and power estimation
1 |
| Partitioning ]
| |
| Row based layout |
' d
| Design rule checking and extraction a
d
|
L) Qg
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High level (behavioral synthesis)

= Input:

High level description of desired system function, usually as
a program in a hardware description language (Verilog,

VHDL).
= Output:
Register transfer level structure: FSMs, logic, ALUS, ]
memory, busses. ]
]
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Logic synthesis
» Input:
Boolean equations, state diagrams, etc.
= Output:
Gates and connections, called netlist, a structural
design.
g ]
Boolean :. u
equations —) ]
- |
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Technology mapping

= Input:

Technology independent gate level design (un-
commited design)

= Output:
Gate level design using specific technology library.

S P = S
J:. -ﬁ —Dm | j

=Dy
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Formal verification

= Input:

A specification for a design (Boolean egns) and an
implementation

= Output:

Decision yes/no: is specification == implementation
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Timing estimation

= Input:
A gate level design, timing info about gates and
wires
= Output:
Delay estimate — critical path length
d=3

d=3
=1 — - _di -
—»— Timingest.
—»- =4
d=2 d
|
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Convergence problems between
synthesis and layout

Gate network designed without real
Knowledge of wire delays

Design spec

Logic synthesis

i

Row-based layout

After layout timing violated due to wires

256d
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Incompletely specified functions

For incompletely specified function ff we build 3 completely
specified functions: ff,,, ff.., ff.

onoffide| ff
on| off ffon On-set the same as On-set of ff
|
off lonl off ffoﬁ On-set the same as Off-set of ff :
i |
off |on ff dc On-set the same as DC-set of ff 4
d
) d
f OdOr isatautology L PERECL
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Motivation
Commercial success - used almost everywhere VLSI is done
More general treatment of discrete functions of discrete value
variables.
Body of useful and general techniques - can be applied to other
areas.
Foundation for:
combinational and sequential synthesis [
testing L]
timing and false paths |
formal verification d
optimal clocking schemes 8
power estimation 4
general combinatorics. -
mEaEaOaaJ0m
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Outline of the class

Introduction Delay in multi-level circuits
2-level combinational circuits Testability of multi-level
Binary decision diagrams circuits
Synthesis of multi-level Boolean matching
circuits Automatic test pattern
Technology mapping generation techniques in :
logic synthesis [
|
|
d
a
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Grading

Homework assignments : 20%
Final project : 70%
Class presentation of the project : 10%

®m You need to do one project for both 256b and 256d.
m
m
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Texts

Suggested books:

= R.K.Brayton, G.D.Hachtel, C.T.McMullen and
A.Sangiovanni-Vincentelli, “Logic Minimization
Algorithms for VLSI Synthesis”, Kluwer
Academic Publishers, Boston, MA, 1984.

» G.D. Hachtel and F.Somenazi, “Logic Synthesis :
and Verification Algorithms”, Kluwer Academic -
Publishers, Boston/Dordrecht/London, 1998. a

- |
.
.
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Logic Synthesis

Goal:

Map a high level functional description of logic function into a
set of primitives in a given technology.

Automation:
Predominantly for random logic

Automatic logic synthesis

Functional design (functional specification of the system,
transformed into a logic description in terms of Boolean
variables)

|

|

|

Logic design (manipulation of the logic representation without 4
modification of functionality). 8
d

d

|
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Physical design

Custom (macro-cells)
= high performance, highly optimized designs

Standard cells
Gate arrays
Field programmable gate arrays

Do not support
highly optimized designs

|
Between macro cells and standard cell: L
algorithmically generated macros produced by .
module generators. j
m PLA: effective for designing combinational circuits a
= ROM: look-up table (large Si area) |
mEaEaOaaJ0m
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2-level functions

Al\ OR plane
K AND plane
T ——
PLA are the most popular structures for implementation of 2-level logic

functions.
LT "'?‘_
T ] 1=x3x6'
Input matrix Output matrix l——ﬂlﬁ ol T a y .
l..I & T 1 i| 2=x2x4'+x1x5
X1 x2 x3 x4 x5 x6 yl y2 y3 ya4 cral Y [
[ &
1 * 0 1 0 0 0 ol 3] Y y3=x1 .
1 0 * 0O 1 0 O - 9
1 * * x Q 0 0 0 1 y4=x1x6'+x6
1ox o ox 1w 010 0 i |
0 * 0 0 0 1
—_ = = = L yly2y3ya J
x1 x2 x3 x4 x5 x6 i |
L L) RNl ]
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Optimization steps for PLA

= Logic optimization: reduction of the number of product terms needed to

implement the given function.

= Topological: elimination of unused space; folding and partitioning.
= Layout and circuit optimization: optimal sizing and placement of drivers, devices

and lines.

= Up to the definitions of the device and interconnect location, PLA is independent

of implementation technology.

= Advantages:
regular structure, easy to automate
minimization is well understood

= Disadvantages:
no shape control
little control of speed
little control of I/O placement

256d
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PLA (2-level) S Multi-level

256d
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The Boolean n-cube

Bn
o -]
(o) (0]
® o 8
(o)
° e oa
(o) o]
() Q@
B4 ]
° e e m
B° B! B2 ]
o |
B:{O,l} 1
-B°={ 0,1} x {o0,1} = { 00,01,1011} -
|
LR gy
256 23

Basic definitions

B={0,1}, Y ={0,1,2}, alogic function ff.: B ->Y"
x o B" isaninput, y oY" is an output.

2 - don't care value

ff - incompletely specified function

f - a completely specified function

ff = (ff1,ff2,,,,ffm)

di:1<i<m:

On-set: XONOBN: such x that ffi(x)=1
Off-set: xiOff 0Bh: such x that ffi(x)=0

Don't care set: xidCD BN: such x that ffi(x)=2
m=1 : single output function

m>1 : multiple output function
mEEOaam
256d 24
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Example

Tabular representation

X1 X2 X3 Y1 Y2

0 0 0 1 1 X1" = {[0,0,0],[0,0,1],[1,0,0],[1,0,1],

0 0 1 1 0 [1,1,01}

0 1 0O 0 1 X1""= {[0,1,0],[0,1,1]}

0o 1 1 0o 1

1 0 0 1 0 Xx={111} :

1 0 1 1 2 =

1 1 o0 1 1 .

1 1 1 2 1 a
A
o

UL
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Boolean functions

f(x):B" ->B

B={0,1}, x={x1,x2,...xn}
Each vertex of B" is mapped to 0 or 1.
The onset of fis {x | f(x)=1} = f -7 '1(1)
the offset of fis { x | f(x) =0} = ° = £ {0)
if f 1= B" , fis the tautology.
If f°= Bn , fis not satisfiable.
If f(x) = g(x) for all xin B", then f and g are equivalent.
x1, x2, ... arevariables
x1, x1', x2, x2' ...are literals

|
o
|
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o
|
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Literals

A literal is a variable or its negation : y, y'.

It represents a logic function

Literal x1 represents the logic function f, where f' = {x|x1=1}
Literal x1' represents the logic function g, where g = {x | x1 = 0}

L LR R
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Boolean formulas

Boolean functions can be represented by formulas defined as
catenations of

parentheses - (, )
literals - x, y, z, X', y', Z'.
Boolean operations - + (or), * (and)
complementations (x+y)’
Examples:
f=x1*x2" +x1'*x2 = (x1+x2) * (x1' + x2")

h=a+b*c=(a * (b’ +c))
We will usually replace * by catenation, e.g. a*b -> ab.

L LR R
2560 28
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Operations on Boolean functions

Multiple output functions: the usual Boolean operations
are performed component-wise on the outputs.

A complement of f:B" — B™ isafunction f :B" - B"
such that fl, f2,---, fm have their on-sets equal to the
off-sets of f. »
o
m
- |
f = d
f o
UL ey
256d 29
The intersection: h=f [§ (f n g):h hasan on-set
equal to the intersection of the on-sets of f.and g;.
f
9
m
o
fi
? m
- |
- |
.
o
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The difference: h=f —g (f#g)=f n g

g
—_ m
9 m
L
a
h=f#g -
.
o
R R
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Theunion: h=f+g (f OQg)

The tautology: off set is empty.

L LR R
2560 32
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Incompletely specified functions

For incompletely specified function ff we build 3 completely

specified functions: T, T, 4.

on|offide| ff

f on| off ffon On-set the same as On-set of ff
]
d | off|on| off ffoﬁ On-set the same as Off-set of ff :
A
off [on ff On-set the same as DC-set of ff 4
r dc I
. |
f OdOr isatautology EEREE NN
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Algebraic representation

ff =(ff, ff,,---, ff.). . isan algebraic representation
of ffi if itis a Boolean expression that evaluates to 1 for

all inputs in XiON , to O for %‘ﬂ inputs of XiOFF, and either
to 0 or 1 for all inputs in X,™~ .

m
Algebraic representation of ff is denoted by f, f(ff). u
m
i |
| |
d
d
m

mEaEaa.1m
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Example

x1 x2 x3 yl y2
Can be simplified

0 0 O 1 1 _ o

0 0 1 1 0 f1 = X2 + X Xs

0 1 0 0 1

0 1 1 0 1 _ _

1 0 0 1 0 f2 =X, + X1 X3

1 0 1 1 2

1 1 O 1 1

1 1 1 2 1

—h
1
X |
X |

2Xa +;(1;(2X3 + )(1;(2;(3 + )(1;(2)(3 + )(1)(2;(3

[

n

n

- - - - B m
f2 = X1 X2 Xz + X1X2X3 + )(1)(2)(3 + X1X2X3 + X1X2X3 j
(Sum of products form) :
n

L LR R
2560 =

fl = ;(2 + )(1;(3
f, =X, +XiXs

Each product term in the sum of products algebraic representation of f determines
a logic function.

X2 X
3
X1 x2 x3 Xl A 2 3
0 0 O 1 Q o o .
0 0 1 1
0 0 1 1 n
0 1 0 0
0 1 0 0 -
0 1 1 0
0 1 1 0 »
1 0 O 1
1 0 O 1 a
1 0 1 1
1 0 1 1
1 1 0 1 q
1 1 1 2 1 1 0 1 -
1 1 1 2 =
2-D cube 1-D cube
UL REREEEY |
256d 6
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Cubes

P - a product term in an algebraic sum of products expression of a logic
function of n inputs and m outputs

A cube p is specified by C:[Cl,CZ,“' C ]

T ¥n+m

if )(I appears complemented in p

if )(I appears not complemented in p
if does not appear in p

if pIs not present in algebraic representation of {._ i=n+1...
if pis present in the algebraic representation of n+m

i=1,2, ...,n

(@)
I
rwNRO

i-n

Example: fl = ;(2 + )(1;(3

]

]

— v v ]

f, =X, +XiXs -

o output cube d
—

P= X2 C=[2 0 2 4 3] Jd

N -

Input cube N

mEaEaa.1m
2560 37

Input cube = compact form of the coordinates of the vertices of the cube
corresponding to the product term.

Example: I(c)=[2 0 2] represents (1,0,1), (0,0,0), (1,0,0) and (0,0,1).

O(c) =[4 3] identifies the space where the cube belongs.

— Al A2 Ky . o .
C —{C A& 000 (C } is a cover of ff with n inputs and m outputs, if for

j=1,2,....m, the set of input parts of the cubes that have a 4 in the j-th position
contain all the vertices corresponding to the on-set of ff . and none of the

off-set of ., 1.e. a cover represents a union of the on-det and some o
arbitrary posi{ion of the don't cares. n
|

There is a 1-1 correspondence between a cover and an algebraic -
representation of a function as a sum-of-products. .
d

d

mEaEaOaaJ0m
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A maitrix representation of a cover:

M(C)of C= [Cl, C,ey Cn+m] is a matrix obtained by stacking the row

vectors representing each of the cubes of C.

Example:  f, = Xz + X Xs MC)=[2 0 2 4 3
- - = 12043
, =X, X1 Xs 21234
0203 4
G=I(M(C)) input matrix ]
L
H=0(M(C)) output matrix |
a
Matrix representation and cover are used interchangeably. d
If C is a cover of a single output function, then H:ﬂ Jd
a
mREOaJ oW
256d 39

Let C:[Cl,CZ,°°°,Cn+m] and d =[d1,d2,”° d ]

1~ n+m

be 2 cubes.
The cube ¢ contains d if:

the cube represented by the input part of ¢ contains all the vertices of d;
and must be present in all Boolean spaces where d is present.

A minterm ei is a cube whose input part does not contain any 2s and whose
output part contains (m-1) 3s and one 4 in position I.

The input cube is a vertex and this vertex is present only in one, I-th Boolean
n-space. AI minterm does not contain any other cube. If a cube contains a
minterm € we say that e' is an element of c.

Example: [1,1,1,4,3] is a minterm and an element of [2,2,1,4,4].

(I W

Each cube can be decomposed into a set of all minterms that are elements of
the cube. -

L LR REREEERT]
2560 40
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Example
c=[2, 2,1, 4, 4]
A set of cubes C = [C1 ,C%, ,C"*m] covers
@ =0, 0, 1, 4, 3] acubec (C [ C) if each of the minterms of ¢
€, =10,0,1,3,4] is covered by at least one cube of C.
€, =[1,0,1,4,3] .
€ =[10,1,3, 4] Special cubes:
e, =[0,1,1,4,3] - | _
g =1[0,1,1, 3, 4] U’ - the universe of the j-th Boolean space
88 =[1,1,143]
€ =[1,1,1,3 4] i _ APoooons Je.en, N+l N4, L, nEm
u: = 2. 2...2,3,...3,..4,...3...3
U= 1,2,...... Je.en, N+l N4, L, nEm
2. 2...2,4,..4,..4,..4..4
U is the total universe
i Xj 1,2,...... Je.en, N+l N4, L, nEm
X" : the positive half-space of 2 1..2,4 .4 4_ 4_4
’ T WaWaaan
256d 41
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De Morgan'’s law:

C:[Cl,Cz,--

. ’Cmm]

1. Express the cover in algebraic form

2. Exchange AND and OR

3. Change variables to complements

Example

f =X Xs + XaX, + XX, X4

=0+ %)% +Xa) (X + Xz + X,)

Multiply out using rules of Boolean algebra:

Xx=0
2. XX =X
3. x+x=1

=X+ X Xa + XXX, + X Xa (X, + X2)

L

:

L LR R
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Intersection or a product of 2 cubes

cnd
! n<i<=n+m
3 4
G
G

3] 3 83

4| 3 4
&'is an empty cube If an output part of a cube has all 3 it is empty.

|
Intersection: input part corresponds to the vertices that are commontocandd. W
Output part specifies that the cube is present in the Boolean n-spaces in which boijy
¢ and d are present.

i |
If 2 cubes have no common vertices or no common Boolean space: j
cNnd =6 canddareorthogonal. f A f = ﬂ d
UL R
256d 43
The union of 2 cubes: ¢ [] d (c+d): the set of vertices
covered by the input part of either c or d in the Boolean
n-space where they are present.
In matrix representation: C [1d is the matrix formed by 2
rows corresponding to ¢ and d, respectively.
The distance between 2 cubes: (# of conflicts)
d(c,d) = (1 (c), 1 (d)) + 5(O(c),0(d)) 1
where :
S(1@), 1 () =Hilc,nd, =0 F
Oif c. nd, =4 somejn r
5(0(c),0(d)) :{ L -
Lotherwise TILEERFLL
256d 44
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The consensus of 2 cubes: € =cOd
cnd if J(c,d)=0
@ if o(c,d)=2
If o(l(c),I(d))=100(0(c),0(d)) =0 then
_ cnd if ¢nd #0
§ = { 2 otherwise

if OJ(c,d)#1 then €= JL

If 3(1(c),1(d))=005(0(c),0(d)) =1 -
¢ nd 1<l<n :

e=314 ifcord =4forn<l<n+m j
3 otherwise :

mEaEaa.1m
2560 45

Theorem: The consensus of 2 cubes a and b, P =aob
is containedin ga0b .If a®b#0 ,itcontains minterms
of both a and b. p is the largest cube contained in allb .

X, Oy, X,y p, xOa, yOb.

|
o
|
- |
- |
.|
.
|
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Example ¥
/ 5
6
3
‘_rl’/
> 7
cubes
consensus :
c, =¢,0c, c,0c, =0 n
¢, =¢,0c, c.ec, =% j
_ = a
010—05904 T mEaEaaaam
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The complement of a set of cubes C, C covers the
complement of logic corresponding to C.

The difference: C-H covers Cn H .

A cube is an implicant of ff=(f,d,r) if it has an empty
intersection with the cubes of a representation of r.
Example.

F=M(C)=[2 02 43 n
120 43 d
212 34 a
020 34 d
(1,2,0,4,3) is an implicant of ff. (0,2,1,3,4) is not since it contains (0,0,1) 4
in the Boolean space representing ff2 that is in the off-set of ff2. :
mEaEaOaaJ0m
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