

CAD for semi-custom ASICs

ASIC = application specific integrated circuit

- Semi-Custom = try to design reusing some already designed parts
- CAD = flow through a sequence of design steps and software tools.

Spectrum of design approaches

Fully custom means everything Done by hand, mostly at the transistor and layout level.
Example : microprocessors.

Semi-custom means try to design using existing parts.

Example of modern system－on－a－chip IC

－Many big chunks

」
」
」
」
」
256d
3

Useful Components in Semi－Custom

－Logic gates
Maximally useful components you can reuse
－Can design without knowing exactly what gates（type，speed， power，size）you have ：technology independent design．
－Later，can map technology independent design onto specific gate library（technology）：technology mapping problem．
－Memories
Module generator transforms specs on size（bits，words， speeds）into final layout．
－Very structured designs．
－Datapaths
Well structured（adders，multipliers）
Often designed at gate and transistor level
－Produced by module generators．

Semi-custom ASIC

Made out of standard cells
Standard cell = one gate (complex)

\square
\vdots
\vdots

ASIC CAD Tool Flow

High level (behavioral synthesis)

- Input:

High level description of desired system function, usually as a program in a hardware description language (Verilog, VHDL).

- Output:

Register transfer level structure: FSMs, logic, ALUs, memory, busses.

Logic synthesis

- Input:

Boolean equations, state diagrams, etc.

- Output:

Gates and connections, called netlist, a structural design.

Technology mapping

- Input:

Technology independent gate level design (uncommited design)

- Output:

Gate level design using specific technology library.

Formal verification

- Input:
- A specification for a design (Boolean eqns) and an implementation
- Output:

Decision yes/no: is specification == implementation

Timing estimation

- Input:

A gate level design, timing info about gates and wires

- Output:

Delay estimate - critical path length

Convergence problems between synthesis and layout

Incompletely specified functions

For incompletely specified function ff we build 3 completely specified functions: $\int f_{o n}, f f_{d c}, f f_{\text {off }}$.

$\mathrm{f} \quad$ on | off | $f f_{\text {on }} \quad$ On-set the same as On-set of ff |
| :---: | :---: |

r

$f f_{o f f}$
On-set the same as Off-set of ff
d

$$
f \cup d \cup r \text { is a tautology }
$$

256d

Motivation

- Commercial success - used almost everywhere VLSI is done
- More general treatment of discrete functions of discrete value variables.
- Body of useful and general techniques - can be applied to other areas.
- Foundation for:
- combinational and sequential synthesis
- testing
- timing and false paths
- formal verification
- optimal clocking schemes
- power estimation
- general combinatorics.

Outline of the class

- Introduction
- 2-level combinational circuits
- Binary decision diagrams
- Synthesis of multi-level circuits
- Technology mapping
- Delay in multi-level circuits
- Testability of multi-level circuits
- Boolean matching
- Automatic test pattern generation techniques in logic synthesis

」
256d

Grading

- Homework assignments : 20\%
- Final project : 70\%
- Class presentation of the project : 10\%
- You need to do one project for both 256b and 256d.

Texts

- Suggested books:
- R.K.Brayton, G.D.Hachtel, C.T.McMullen and A.Sangiovanni-Vincentelli, "Logic Minimization Algorithms for VLSI Synthesis", Kluwer Academic Publishers, Boston, MA, 1984.
$_$G.D. Hachtel and F.Somenzi, "Logic Synthesis and Verification Algorithms", Kluwer Academic Publishers, Boston/Dordrecht/London, 1998.

Logic Synthesis

- Goal:
- Map a high level functional description of logic function into a set of primitives in a given technology.
- Automation:
- Predominantly for random logic
- Automatic logic synthesis
- Functional design (functional specification of the system, transformed into a logic description in terms of Boolean variables)
- Logic design (manipulation of the logic representation without modification of functionality).

Physical design

－Custom（macro－cells）
－high performance，highly optimized designs
－Standard cells
－Gate arrays
－Field programmable gate arrays

Do not support highly optimized designs
－Between macro cells and standard cell： algorithmically generated macros produced by module generators．
－PLA：effective for designing combinational circuits
－ROM：look－up table（large Si area）
\qquad

Optimization steps for PLA

- Logic optimization: reduction of the number of product terms needed to implement the given function.
- Topological: elimination of unused space; folding and partitioning.
- Layout and circuit optimization: optimal sizing and placement of drivers, devices and lines.
- Up to the definitions of the device and interconnect location, PLA is independent of implementation technology.
- Advantages:
regular structure, easy to automate
minimization is well understood
- Disadvantages:
- no shape control
- little control of speed
- little control of I/O placement

The Boolean n-cube

B^{n}

- $B=\{0,1\}$
$\cdot B^{2}=\{0,1\} \times\{0,1\}=\{00,01,10,11\}$

Basic definitions

- $B=\{0,1\}, Y=\{0,1,2\}$, a logic function ff.: $B^{\prime \prime}->Y^{m}$
$x \in B^{n}$ is an input, $y \in Y^{m}$ is an output.
2 - don't care value
ff - incompletely specified function
f - a completely specified function
$\mathrm{ff}=(\mathrm{ff} 1, \mathrm{ff} 2,,,, \mathrm{ff} \mathrm{m})$
$\forall i: 1 \leq i \leq m$:
- On-set: $X_{i}^{o n} \subseteq B^{n}:$ such x that $\mathrm{ff}(\mathrm{x})=1$
- Off-set: $X_{i}^{\text {off }} \subseteq B^{n}$: such x that $\mathrm{ff}(\mathrm{x})=0$
- Don't care set: $X_{i}^{d c} \subseteq B^{n}$: such x that $\mathrm{ff}(\mathrm{x})=2$ $\mathrm{m}=1$: single output function $m>1$: multiple output function

Example

X1	X2	X3	Y1	Y2	
0	0	0	1	1	$X 1^{\text {on }}=\{[0,0,0],[0,0,1],[1,0,0],[1,0,1]$,
0	0	1	1	0	[1,1,0]\}
0	1	0	0	1	$X 1^{\text {off }}=\{[0,1,0],[0,1,1]\}$
0	1	1	0	1	
1	0	0	1	0	$X{ }^{\text {DC }}=\{[1,1,1]\}$
1	0	1	1	2	
1	1	0	1	1	
1	1	1	2	1	

256d

Boolean functions

$f(x): B^{n} \rightarrow B$
$B=\{0,1\}, x=\{x 1, x 2, \ldots x n\}$

- Each vertex of B^{n} is mapped to 0 or 1 .

- The onset of f is $\{x \mid f(x)=1\}=f^{1}=f^{-1}(1)$
- the offset of f is $\{x \mid f(x)=0\}=f^{0}=f^{-1}(0)$
- if $f^{1}=B^{n}$, f is the tautology.
- If $f^{0}=B^{n}$, f is not satisfiable.
- If $f(x)=g(x)$ for all x in B^{n}, then f and g are equivalent.
- $x 1, x 2, \ldots$ are variables
- $x 1, x 1^{\prime}, x 2, x 2^{\prime} \ldots$ are literals

Literals

－A literal is a variable or its negation ：y, y^{\prime} ．
It represents a logic function
Literal $x 1$ represents the logic function f ，where $f^{1}=\{x \mid x 1=1\}$
Literal x 1 ＇represents the logic function g ，where $\mathrm{g}=\{\mathrm{x} \mid \mathrm{x} 1=0\}$

x1
レヒレレロロ

Boolean formulas

－Boolean functions can be represented by formulas defined as catenations of
parentheses－（，）
literals－ $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}$ ．
－Boolean operations－＋（or），＊（and）
－complementations（ $\mathrm{x}+\mathrm{y}$ ）＇
－Examples：
－$f=x 1^{*} x 2^{\prime}+x 1^{\prime *} x 2=(x 1+x 2)^{*}\left(x 1^{\prime}+x 2^{\prime}\right)$
－$h=a+b^{*} c=\left(a^{\prime} *\left(b^{\prime}+c^{\prime}\right)\right)^{\prime}$
－We will usually replace＊by catenation，e．g．a＊b－＞ab．

Operations on Boolean functions

Multiple output functions: the usual Boolean operations are performed component-wise on the outputs.

A complement of $f: B^{n} \rightarrow B^{m}$ is a function $\bar{f}: B^{n} \rightarrow B^{m}$ such that $\bar{f}_{1}, \bar{f}_{2}, \cdots, \bar{f}_{m}$ have their on-sets equal to the off-sets of f .

f

256d

The intersection: $h=f \cdot g(f \cap g): h_{i}$ has an on-set equal to the intersection of the on-sets of f_{i} and g_{i}.

The union: $\quad h=f+g(f \cup g)$

The tautology: off set is empty.

Incompletely specified functions

For incompletely specified function ff we build 3 completely specified functions: $\int f_{\text {on }}, f f_{d c}, f f_{\text {off }}$.

$\mathrm{f} \quad$ on off $\quad \mathrm{ff}$ on \quad On-set the same as On-set of ff
d

$f f_{\text {off }}$
On-set the same as Off-set of ff
off \quad on $\quad \int f_{d c} \quad$ On-set the same as DC-set of ff
$f \cup d \cup r$ is a tautology
」
33

Algebraic representation

$f f=\left(\int f f_{1}, f f_{2}, \cdots, f f_{m}\right) . f_{i}$ is an algebraic representation of $\int f_{i}$ if it is a Boolean expression that evaluates to 1 for all inputs in $X_{i}^{O N}$, to 0 for all inputs of $X_{i}^{\text {OFF }}$, and either to 0 or 1 for all inputs in $X_{i}^{D C}$.

Algebraic representation of $f f$ is denoted by $f, f(f f)$.

Example

x 1	x 2	x 3	y 1	y 2	
0	0	0	1	1	Can be simplified
0	0	1	1	0	$f=\bar{x}_{2}+x_{1} \bar{x}_{3}$
0	1	0	0	1	
0	1	1	0	1	$f_{2}=x_{2}+\bar{x}_{1} \bar{x}_{3}$
1	0	0	1	0	
1	0	1	1	2	1
1	1	0	1	1	2
1	1	1	2	1	
$f_{1}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}+\bar{x}_{1} \bar{x}_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+x_{1} x_{2} \bar{x}_{3}$					
$f_{2}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} x_{3}+x_{1} x_{2} \bar{x}_{3}+x_{1} x_{2} x_{3}$					

(Sum of products form)

$$
\begin{aligned}
& f_{1}=\bar{x}_{2}+x_{1} \bar{x}_{3} \\
& f_{2}=x_{2}+\bar{x}_{1} \bar{x}_{3}
\end{aligned}
$$

Each product term in the sum of products algebraic representation of f determines a logic function.

Cubes

P - a product term in an algebraic sum of products expression of a logic function of n inputs and m outputs

A cube p is specified by $c=\left[c_{1}, c_{2}, \cdots, c_{n+m}\right]$
$c_{i}=\left\{\begin{array}{llll}0 & \text { if } x_{i} \quad \text { appears complemented in } \mathrm{p} \\ 1 & \text { if } x_{i} \quad \text { appears not complemented in } \mathrm{p} \\ 2 & \text { if } x_{i}^{i} \text { does not appear in } \mathrm{p} \\ 3 & \text { if } \mathrm{p} \text { is not present in algebraic representation of } f_{\text {al }}^{i-n} \\ 4 & \text { if } \mathrm{p} \text { is present in the algebraic representation of } f_{i-n}^{i}\end{array}\right\} \quad \begin{aligned} & \mathrm{i}=\mathrm{n}+1 \ldots \\ & \mathrm{n}+\mathrm{m}\end{aligned}$
Example: $\quad f_{1}=\bar{x}_{2}+x_{1} \bar{x}_{3}$

$$
f_{2}=x_{2}+\bar{x}_{1} \bar{x}_{3}
$$

Input cube = compact form of the coordinates of the vertices of the cube corresponding to the product term.

Example: $I(c)=\left[\begin{array}{lll}2 & 0 & 2\end{array}\right]$ represents $(1,0,1),(0,0,0),(1,0,0)$ and $(0,0,1)$.
$O(c)=\left[\begin{array}{ll}4 & 3\end{array}\right]$ identifies the space where the cube belongs.
$C=\left\{c^{1}, c^{2}, \cdots, c^{k}\right\}$ is a cover of ff with n inputs and m outputs, if for
$j=1,2, \ldots . m$, the set of input parts of the cubes that have a 4 in the j-th position contain all the vertices corresponding to the on-set of $f f_{j}$ and none of the off-set of $f f_{j}$, i.e. a cover represents a union of the on-set and some arbitrary position of the don't cares.

There is a 1-1 correspondence between a cover and an algebraic representation of a function as a sum-of-products.

A matrix representation of a cover:

$\mathrm{M}(\mathrm{C})$ of $c=\left[c_{1}, c_{2}, \cdots, c_{n+m}\right]$ is a matrix obtained by stacking the row vectors representing each of the cubes of C.

Example: $\quad f_{1}=\bar{x}_{2}+x_{1} \bar{x}_{3}$

$$
f_{2}=x_{2}+\bar{x}_{1} \bar{x}_{3}
$$

$$
M(C)=\left[\begin{array}{lllll}
2 & 0 & 2 & 4 & 3 \\
1 & 2 & 0 & 4 & 3 \\
2 & 1 & 2 & 3 & 4 \\
0 & 2 & 0 & 3 & 4
\end{array}\right]
$$

$G=l(M(C))$ input matrix
$\mathrm{H}=\mathrm{O}(\mathrm{M}(\mathrm{C}))$ output matrix
Matrix representation and cover are used interchangeably. If C is a cover of a single output function, then $H=\varnothing$

256d

Let $c=\left[c_{1}, c_{2}, \cdots, c_{n+m}\right]$ and $d=\left[d_{1}, d_{2}, \cdots, d_{n+m}\right]$
be 2 cubes.
The cube c contains dif:
the cube represented by the input part of c contains all the vertices of d; and must be present in all Boolean spaces where d is present.

A minterm e^{i} is a cube whose input part does not contain any 2 s and whose output part contains (m-1) 3s and one 4 in position I.

The input cube is a vertex and this vertex is present only in one, I-th Boolean n -space. A minterm does not contain any other cube. If a cube contains a minterm e^{i} we say that e^{i} is an element of c.

Example: [1,1,1,4,3] is a minterm and an element of [2,2,1,4,4].
Each cube can be decomposed into a set of all minterms that are elements of the cube.

De Morgan's law:

$C=\left[c^{1}, C^{2}, \cdots, c^{n+m}\right]$

1. Express the cover in algebraic form
2. Exchange AND and OR
3. Change variables to complements
$f=x_{1} \bar{x}_{3}+\bar{x}_{2} x_{4}+x_{1} x_{2} \bar{x}_{4}$
$\bar{f}=\left(\bar{x}_{1}+x_{3}\right)\left(x_{2}+\bar{x}_{4}\right)\left(\bar{x}_{1}+\bar{x}_{2}+x_{4}\right)$

Multiply out using rules of Boolean algebra:
. $x \bar{x}=0$
2. $x x=x$

$$
\bar{f}=\bar{x}_{1} x_{2}+\bar{x}_{1} \bar{x}_{4}+x_{2} x_{3} x_{4}+x_{3} \bar{x}_{4}\left(\overline{x_{1}}+\bar{x}_{2}\right)
$$

3. $x+\bar{x}=1$

Intersection or a product of 2 cubes

$c \cap d$

\varnothing is an empty cube
If an output part of a cube has all 3 it is empty.
Intersection: input part corresponds to the vertices that are common to c and d. Output part specifies that the cube is present in the Boolean n-spaces in which both c and d are present.

If 2 cubes have no common vertices or no common Boolean space:
$c \cap d=\varnothing, \mathrm{c}$ and d are orthogonal. $f \cap \bar{f}=\emptyset$

The union of 2 cubes: $c \cup d(\mathrm{c}+\mathrm{d})$: the set of vertices covered by the input part of either cord in the Boolean n -space where they are present.

In matrix representation: $c \cup d$ is the matrix formed by 2 rows corresponding to c and d, respectively.

The distance between 2 cubes: (\# of conflicts)

$$
\delta(c, d)=\delta(I(c), I(d))+\delta(O(c), O(d))
$$

where

$$
\delta(I(c), I(d))=\left|\left\{j \mid c_{j} \cap d_{j}=\emptyset\right\}\right|
$$

$\delta(O(c), O(d))=\left\{\begin{array}{l}0 \text { if } c_{j} \cap d_{j}=4 \quad \text { Some j>n } \\ 1 \text { otherwise }\end{array}\right.$

The consensus of 2 cubes: $e=c \Theta d$
If $\delta(c, d) \neq 1$ then $e=\left\{\begin{array}{l}c \cap d \text { if } \delta(c, d)=0 \\ \emptyset \text { if } \delta(c, d) \geq 2\end{array}\right.$
If $\delta(I(c), I(d))=1 \wedge \delta(O(c), O(d))=0$ then
$e_{l}=\left\{\begin{array}{c}c_{l} \cap d_{l} \text { if } c_{l} \cap d_{l} \neq 0 \\ 2 \text { otherwise }\end{array}\right.$
If $\delta(I(c), I(d))=0 \wedge \delta(O(c), O(d))=1$
$e_{l}=\left\{\begin{array}{c}c_{l} \cap d_{l} 1 \leq l \leq n \\ 4 \quad \text { if } c_{l} \text { or } d_{l}=4 \text { for } n<l \leq n+m\end{array}\right.$ 3 otherwise

Theorem: The consensus of 2 cubes a and $\mathrm{b}, p=a \Theta b$ is contained in $a \cup b$. If $a \Theta b \neq \emptyset$, it contains minterms of both a and b . p is the largest cube contained in $a \cup b$.
$\exists x, \exists y, x, y \in p, x \in a, y \in b$.

256d

cubes
consensus

$$
\begin{array}{ll}
c_{7}=c_{2} \Theta c_{5} & c_{2} \Theta c_{3}=\emptyset \\
c_{8}=c_{2} \Theta c_{6} & c_{1} \Theta c_{2}=\emptyset \\
c_{9}=c_{1} \Theta c_{3} & c_{3} \Theta c_{6}=\emptyset \\
c_{10}=c_{5} \Theta c_{4} & c_{5} \Theta c_{6}=\emptyset
\end{array}
$$

The complement of a set of cubes C, \bar{C} covers the complement of logic corresponding to C .
The difference: C-H covers $C \cap \bar{H}$.
A cube is an implicant of $\mathrm{ff}=(\mathrm{f}, \mathrm{d}, \mathrm{r})$ if it has an empty intersection with the cubes of a representation of r.

Example.

$$
\mathrm{F}=\mathrm{M}(\mathrm{C})=\left[\begin{array}{lllll}
2 & 0 & 2 & 4 & 3 \\
1 & 2 & 0 & 4 & 3 \\
2 & 1 & 2 & 3 & 4 \\
0 & 2 & 0 & 3 & 4
\end{array}\right]
$$

($1,2,0,4,3$) is an implicant of ff . ($0,2,1,3,4$) is not since it contains ($0,0,1$) in the Boolean space representing ff2 that is in the off-set of ff 2 .

