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CAD for semiCAD for semi--custom custom ASICsASICs

�� ASIC = ASIC = application specific integrated circuitapplication specific integrated circuit

�� SemiSemi--Custom = try to design reusing some already Custom = try to design reusing some already 
designed partsdesigned parts

�� CAD = flow through a sequence of design steps and CAD = flow through a sequence of design steps and 
software tools.software tools.

Fully custom means everything                           SemiFully custom means everything                           Semi--custom means try tocustom means try to

Done by hand, mostly at the                                desigDone by hand, mostly at the                                design using existing parts.n using existing parts.

transistor and layout level.transistor and layout level.

Spectrum of design approaches

Example : microprocessors.                           Example: ethernet chip,hard disk controller.
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Example of modern systemExample of modern system--onon--aa--chip ICchip IC

�� Many big chunksMany big chunks

RISC
CPU
Core

Random logic

Memory

Datapath
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Useful Components in Semi-Custom

�� Logic gatesLogic gates
�� Maximally useful components you can reuseMaximally useful components you can reuse
�� Can design without knowing exactly what gates (type, speed, Can design without knowing exactly what gates (type, speed, 

power, size) you have : technology independent design.power, size) you have : technology independent design.
�� Later, can map technology independent design onto specific Later, can map technology independent design onto specific 

gate library (technology) : technology mapping problem.gate library (technology) : technology mapping problem.

�� MemoriesMemories
�� Module generator transforms specs on size (bits, words, Module generator transforms specs on size (bits, words, 

speeds) into final layout.speeds) into final layout.
�� Very structured designs.Very structured designs.

�� DatapathsDatapaths
�� Well structured (adders, multipliers)Well structured (adders, multipliers)
�� Often designed at gate and transistor levelOften designed at gate and transistor level
�� Produced by module generators.Produced by module generators.
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SemiSemi--custom ASICcustom ASIC

�� Made out of standard cellsMade out of standard cells

RISC
CPU
Core

Random logic

Memory

Datapath

Standard cell = one gate (complex)
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ASIC CAD Tool FlowASIC CAD Tool Flow

Behavioral synthesis

Logic synthesis

Technology mapping

Verification, test

Timing and power estimation

Partitioning

Row based layout

Design rule checking and extraction



4

256d 7

High level (behavioral synthesis)High level (behavioral synthesis)

�� Input :Input :
�� High level description of desired system function, usually as High level description of desired system function, usually as 

a program in a hardware description language (a program in a hardware description language (VerilogVerilog, , 
VHDL).VHDL).

�� Output:Output:
�� Register transfer level structure: Register transfer level structure: FSMsFSMs, logic, , logic, ALUsALUs, , 

memory, busses.memory, busses.
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Logic synthesisLogic synthesis

�� Input:Input:
�� Boolean equations, state diagrams, etc.Boolean equations, state diagrams, etc.

�� Output:Output:
�� Gates and connections, called Gates and connections, called netlistnetlist, a structural , a structural 

design.design.

Boolean                     Logic 
equations               synthesis
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Technology mappingTechnology mapping

�� Input:Input:
�� Technology independent gate level design (unTechnology independent gate level design (un--

commitedcommited design)design)

�� Output:Output:
�� Gate level design using specific technology library.Gate level design using specific technology library.

Technology
mapping
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Formal verificationFormal verification

�� Input:Input:
�� A specification for a design (Boolean A specification for a design (Boolean eqnseqns) and an ) and an 

implementationimplementation

�� Output:Output:
�� Decision yes/no: is specification == implementationDecision yes/no: is specification == implementation

Verification Yes/no
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Timing estimationTiming estimation

�� Input:Input:
�� A gate level design, timing info about gates and A gate level design, timing info about gates and 

wireswires

�� Output:Output:
�� Delay estimate Delay estimate –– critical path lengthcritical path length

Timing est.
d=1

d=3

d=2

d=1

d=3

d=2

d=4
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Convergence problems between Convergence problems between 
synthesis and layoutsynthesis and layout

d=8

Design spec

Logic synthesis

Row-based layout

Failure
d=14

After layout timing violated due to wires

Gate network designed without real
Knowledge of wire delays
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Incompletely specified functionsIncompletely specified functions

For incompletely specified function ff we build 3 completely
specified functions: .,, offdcon ffffff

on off dc

on off

off on off

off on

ff

onff

dcff

offff

On-set the same as On-set of ff

On-set the same as Off-set of ff

On-set the same as DC-set of ff

rdf ∪∪ is a tautology

f

r

d
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MotivationMotivation

�� Commercial success Commercial success -- used almost everywhere VLSI is doneused almost everywhere VLSI is done

�� More general treatment of discrete functions of discrete value More general treatment of discrete functions of discrete value 
variables.variables.

�� Body of useful and general techniques Body of useful and general techniques -- can be applied to other can be applied to other 
areas.areas.

�� Foundation for:Foundation for:
�� combinational and sequential synthesiscombinational and sequential synthesis

�� testingtesting

�� timing and false pathstiming and false paths

�� formal verificationformal verification

�� optimal clocking schemesoptimal clocking schemes

�� power estimationpower estimation

�� general combinatorics.general combinatorics.
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Outline of the classOutline of the class

�� IntroductionIntroduction

�� 22--level combinational circuitslevel combinational circuits

�� Binary decision diagramsBinary decision diagrams

�� Synthesis of multiSynthesis of multi--level level 

circuitscircuits

�� Technology mappingTechnology mapping

�� Delay in multiDelay in multi--level circuitslevel circuits

�� Testability of multiTestability of multi--level level 

circuitscircuits

�� Boolean matchingBoolean matching

�� Automatic test pattern Automatic test pattern 

generation techniques in generation techniques in 

logic synthesislogic synthesis
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GradingGrading

�� Homework assignments : 20%Homework assignments : 20%

�� Final project : 70%Final project : 70%

�� Class presentation of the project : 10%Class presentation of the project : 10%

�� You need to do one project for both 256b and 256d.You need to do one project for both 256b and 256d.
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TextsTexts

�� Suggested books:Suggested books:
�� R.K.R.K.BraytonBrayton, G.D., G.D.HachtelHachtel, C.T.McMullen and , C.T.McMullen and 

A.A.SangiovanniSangiovanni--Vincentelli, “Logic Minimization Vincentelli, “Logic Minimization 
Algorithms for VLSI Synthesis”, Kluwer Algorithms for VLSI Synthesis”, Kluwer 
Academic Publishers, Boston, MA, 1984.Academic Publishers, Boston, MA, 1984.

�� G.D. Hachtel and F.Somenzi, “Logic Synthesis G.D. Hachtel and F.Somenzi, “Logic Synthesis 
and Verification Algorithms”, Kluwer Academic and Verification Algorithms”, Kluwer Academic 
Publishers, Boston/Dordrecht/London, 1998.Publishers, Boston/Dordrecht/London, 1998.
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Logic SynthesisLogic Synthesis

�� Goal:Goal:
�� Map a high level functional description of logic function into aMap a high level functional description of logic function into a

set of primitives in a given technology.set of primitives in a given technology.

�� Automation:Automation:
�� Predominantly for random logicPredominantly for random logic

�� Automatic logic synthesisAutomatic logic synthesis
�� Functional design (functional specification of the system, Functional design (functional specification of the system, 

transformed into a logic description in terms of Boolean transformed into a logic description in terms of Boolean 
variables)variables)

�� Logic design (manipulation of the logic representation without Logic design (manipulation of the logic representation without 
modification of functionality).modification of functionality).
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Physical designPhysical design

�� Custom (macroCustom (macro--cells)cells)
�� high performance, highly optimized designshigh performance, highly optimized designs

�� Standard cellsStandard cells

�� Gate arraysGate arrays

�� Field programmable gate arraysField programmable gate arrays
�� Between macro cells and standard cell: Between macro cells and standard cell: 

algorithmically generated macros produced by algorithmically generated macros produced by 
module generators.module generators.

�� PLA: effective for designing combinational circuitsPLA: effective for designing combinational circuits

�� ROM: lookROM: look--up table (large Si area)up table (large Si area)

Do not support 
highly optimized designs
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22--level functionslevel functions

�� PLA are the most popular structures for implementation of 2PLA are the most popular structures for implementation of 2--level logic level logic 
functions.functions.

+ + +

. . .

inputs

OR plane

AND plane

Input matrix Output matrix

X1   x2   x3   x4   x5   x6               y1   y2   y3   y4

*      *      1      *      *     0                1      0     0     0
*      1     *       0     *     *                 0      1     0     0
1     *      *       *      *     0                0      0     0     1
1     *      *       *      1    *                 0      1     0     0
0     *      *       *      *     *                0       0    0    1

x1    x2      x3     x4     x5     x6
y1 y2 y3 y4

y1=x3x6’

y2=x2x4’+x1x5

y3=x1’

y4=x1x6’+x6
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Optimization steps for PLAOptimization steps for PLA
�� Logic optimizationLogic optimization: reduction of the number of product terms needed to : reduction of the number of product terms needed to 

implement the given function.implement the given function.

�� TopologicalTopological: elimination of unused space; folding and partitioning.: elimination of unused space; folding and partitioning.

�� Layout and circuit optimizationLayout and circuit optimization: optimal sizing and placement of drivers, devices : optimal sizing and placement of drivers, devices 
and lines.and lines.

�� Up to the definitions of the device and interconnect location, PUp to the definitions of the device and interconnect location, PLA is independent LA is independent 
of implementation technology.of implementation technology.

�� Advantages:Advantages:
�� regular structure, easy to automateregular structure, easy to automate

�� minimization is well understoodminimization is well understood

�� Disadvantages:Disadvantages:
�� no shape controlno shape control

�� little control of speedlittle control of speed

�� little control of I/O placementlittle control of I/O placement

256d 22

PLA (2PLA (2--level)                vs           Multilevel)                vs           Multi--levellevel

�� Well developedWell developed

�� Technology independentTechnology independent

�� MultiMulti--valuedvalued

�� Control logicControl logic

�� Constrained layoutConstrained layout

�� Automatic layoutAutomatic layout
�� MatureMature

�� Relatively undevelopedRelatively undeveloped

�� ??

�� ??

�� All  (control and data flow)All  (control and data flow)

�� Flexible, no layout styleFlexible, no layout style

�� ++-- Automatic layoutAutomatic layout
�� Not soNot so
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The Boolean nThe Boolean n--cubecube
Bn

B 4

B 3

B2B 1B 0

• B = 0 , 1

0 , 1• B  = 0 , 1 x
2

= 00, 01, 10, 11
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Basic definitionsBasic definitions

�� B = { 0,1},  Y = {0,1,2} , a logic function ff.: B  B = { 0,1},  Y = {0,1,2} , a logic function ff.: B  --> Y> Y

x    B   is an input, y   Y   is an output.x    B   is an input, y   Y   is an output.

2 2 -- don’t care valuedon’t care value

ff ff -- incompletely specified functionincompletely specified function

f f -- a completely specified functiona completely specified function

ff = (ffff = (ff11,ff,ff22,,,,ff,,,,ffmm))

�� OnOn--set:set: such x that ffsuch x that ffii(x)=1(x)=1

�� OffOff--set:set: such x that ffsuch x that ffii(x)=0(x)=0

�� Don’t care set: Don’t care set: such x that ffsuch x that ffii(x)=2(x)=2

m=1 : single output functionm=1 : single output function

m>1 : multiple output functionm>1 : multiple output function

n m

∈ ∈n m

:1: mii ≤≤∀
:nBon

iX ⊆

:nBoff
iX ⊆

:nBdc
iX ⊆



13

256d 25

ExampleExample

�� Tabular representation    Tabular representation    

X1     X2    X3       Y1     Y2X1     X2    X3       Y1     Y2

0        0       0         1        1         X1  = {[0,0,0],[0,0        0       0         1        1         X1  = {[0,0,0],[0,0,1],[1,0,0],[1,0,1],0,1],[1,0,0],[1,0,1],

0        0       1         1        0                    [1,1,0]0        0       1         1        0                    [1,1,0]}}

0        1       0         0        1         X1  = {[0,1,0],[0,0        1       0         0        1         X1  = {[0,1,0],[0,1,1]}1,1]}

0        1       1         0        10        1       1         0        1
1        0       0         1        0        X1   = {[1,1,1]}1        0       0         1        0        X1   = {[1,1,1]}

1        0       1         1        21        0       1         1        2

1        1       0         1        11        1       0         1        1

1        1       1         2        11        1       1         2        1

on

off

DC
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Boolean functionsBoolean functions

f(x) : B   f(x) : B   --> B> B

B={0,1},  x={x1,x2,…xn}B={0,1},  x={x1,x2,…xn}
�� Each vertex of B   is mapped to 0 or 1.Each vertex of B   is mapped to 0 or 1.

�� The The onset onset of f is {x | f(x)=1} = f   = f   (1)of f is {x | f(x)=1} = f   = f   (1)

�� the the offsetoffset of f is { x | f(x) =0} = f   = f  (0)of f is { x | f(x) =0} = f   = f  (0)

�� if f   = B   , f is the if f   = B   , f is the tautologytautology..

�� If f  = B   , f is not If f  = B   , f is not satisfiable.satisfiable.
�� If f(x) = g(x) for all x in B   , then f and g are If f(x) = g(x) for all x in B   , then f and g are equivalent.equivalent.
�� x1, x2, …  are x1, x2, …  are variablesvariables
�� x1, x1’, x2, x2’ …are x1, x1’, x2, x2’ …are literalsliterals

n

n

0

1

1

1 1

0

1
0

1 -1

0 -1

1 n

0 n

n
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LiteralsLiterals

�� A literal is a variable or its negation : y, y’.A literal is a variable or its negation : y, y’.

It represents a It represents a logic functionlogic function
Literal x1 represents the logic function f, where f   = { xLiteral x1 represents the logic function f, where f   = { x | x1 = 1}| x1 = 1}

Literal x1’ represents the logic function g, where g = { x Literal x1’ represents the logic function g, where g = { x | x1 = 0}| x1 = 0}

1

0

1 0

1

1

0

1
0

0

1

1

1

0

1
0

0

x1 x1f = x1

g = x1’
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Boolean formulasBoolean formulas

�� Boolean functions can be represented by formulas defined as Boolean functions can be represented by formulas defined as 
catenations ofcatenations of
�� parentheses parentheses -- ( , )( , )

�� literals literals -- x, y, z, x’, y’, z’.x, y, z, x’, y’, z’.

�� Boolean operations Boolean operations -- + (or), * (and)+ (or), * (and)

�� complementations (x+y)’complementations (x+y)’

�� Examples:Examples:
�� f = x1 * x2’ + x1’ * x2 = (x1+x2) * (x1’ + x2’ )f = x1 * x2’ + x1’ * x2 = (x1+x2) * (x1’ + x2’ )

�� h= a + b*c = (a’ * (b’ + c’))’h= a + b*c = (a’ * (b’ + c’))’

�� We will usually replace * by catenation, e.g. a*b We will usually replace * by catenation, e.g. a*b --> ab.> ab.
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Operations on Boolean functionsOperations on Boolean functions

Multiple output functions: the usual Boolean operations
are performed component-wise on the outputs.

A complement of 
mn BBf →: is a function 

mn BBf →:
such that                           have their on-sets equal to the 
off-sets of f. 

mfff ,,, 21 L

on off

f

off on

f

256d 30

The intersection:                                        has an on-set
equal to the intersection of the on-sets of  

ihgfgfh :)( ∩⋅=
.ii gandf

on off

on offoff

offoff on

f

g

fg
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The difference: gfgfgfh ∩=−= )#(

on off

on offoff

f

g

off onon

offon

g

h=f#g
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The union: )( gfgfh ∪+=

on off

on offoff

f

g

offon h

on

The tautology: off set is empty.

f
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Incompletely specified functionsIncompletely specified functions

For incompletely specified function ff we build 3 completely
specified functions: .,, offdcon ffffff

on off dc

on off

off on off

off on

ff

onff

dcff

offff

On-set the same as On-set of ff

On-set the same as Off-set of ff

On-set the same as DC-set of ff

rdf ∪∪ is a tautology

f

d

r
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Algebraic representationAlgebraic representation

im fffffffff ).,,,( 21 L= is an algebraic representation

of  iff if it is a Boolean expression that evaluates to 1 for

all inputs in           , to 0 for all inputs of           , and either
to 0 or 1 for all inputs in          . 

ON
iX OFF

iX
DC
iX

Algebraic representation of ff is denoted by f, f(ff).
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ExampleExample

x1    x2    x3          y1       y2

0       0      0           1         1
0       0      1           1         0
0       1      0           0         1 
0       1      1           0         1
1       0      0           1         0
1       0      1           1         2
1       1      0           1         1
1       1      1           2         1

3213213213213211 xxxxxxxxxxxxxxxf ++++=

3213213213213212 xxxxxxxxxxxxxxxf ++++=

(Sum of products form)

3121 xxxf +=

3122 xxxf +=

Can be simplified

256d 36

x1    x2    x3

0       0      0           1
0       0      1           1
0       1      0           0
0       1      1           0
1       0      0           1
1       0      1           1
1       1      0           1
1       1      1           2

3121 xxxf +=
3122 xxxf +=

Each product term in the sum of products algebraic representation of f determines
a logic function. 

2x

2-D cube

x1    x2    x3

0       0      0           1
0       0      1           1
0       1      0           0
0       1      1           0
1       0      0           1
1       0      1           1
1       1      0           1
1       1      1           2

31 xx

1-D cube
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3121 xxxf +=
3122 xxxf +=

],,,[ 21 mncccc += L

nif −

Cubes

P - a product term in an algebraic sum of products expression of a logic
function of n inputs and m outputs

A cube p is specified by 

ic =

0     if           appears complemented in p
1     if           appears not complemented in p
2     if           does not appear in p
3     if  p is not present in algebraic representation of
4     if  p is present in the algebraic representation of  

ix
ix
ix

nif −

i=1,2, …,n

i=n+1…
n+m

Example:

2xP= C=[2    0    2    4    3]

Input cube

output cube
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Input cube = compact form of the coordinates of the vertices of the cube
corresponding to the product term.

Example:  I(c) = [2   0    2 ]    represents  (1,0,1), (0,0,0), (1,0,0) and (0,0,1).

O(c) = [4    3]  identifies the space where the cube belongs. 

},,,{ 21 kcccC L= is a cover of ff with n inputs and m outputs, if for

j=1,2,….m, the set of input parts of the cubes that have a 4 in the j-th position
contain all the vertices corresponding to the on-set of          and none of the
off-set of          , i.e. a cover represents a union of the on-set and some 
arbitrary position of the don’t cares.

jff jff

There is a 1-1 correspondence between a cover and an algebraic
representation of a function as a sum-of-products.
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],,,[ 21 mncccc += L

A matrix representation of a cover:

M(C) of  

3121 xxxf +=
3122 xxxf +=

Example:

is a matrix obtained by stacking the row 

vectors representing each of the cubes of C.

M(C)=   2   0   2   4   3
1   2   0   4   3
2   1   2   3   4 
0   2   0   3   4

G=I(M(C))   input matrix

H=O(M(C))  output matrix

Matrix representation and cover are used interchangeably.
If C  is a cover of a single output function, then H=0
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],,,[ 21 mncccc += L
Let  

ie

and

be 2 cubes. 

The cube c contains d if:

the cube represented by the input part of c contains all the vertices of d;
and must be present in all Boolean spaces where d is present.

A minterm        is a cube whose input part does not contain any 2s and whose
output part contains (m-1) 3s and one 4 in position I.

The input cube is a vertex and this vertex is present only in one, I-th Boolean
n-space. A minterm does not contain any other cube. If a cube contains a
minterm       we say that        is an element of c.

],,,[ 21 mndddd += L

ie ie
Example:   [1,1,1,4,3]  is a minterm and an element of [2,2,1,4,4].

Each cube can be decomposed into a set of all minterms that are elements of
the cube.
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],,,[ 21 mncccC += L

1e2e3e

Example

c=[2, 2, 1, 4, 4]

= [0, 0, 1, 4, 3]
= [0, 0, 1, 3, 4]
= [1, 0, 1, 4, 3]
= [1, 0, 1, 3, 4]
= [0, 1, 1, 4, 3]
= [0, 1, 1, 3, 4]
= [1, 1, 1, 4, 3]
= [1, 1, 1, 3, 4]

4e
5e 6e
8e
7e

A set of cubes covers

a cube c                       if each of the minterms of c
is covered by at least one cube of C. 

)( Cc ⊆

Special cubes:
ju - the universe of the j-th Boolean space

ju =
1,2,……,j….n, n+1, …, n+j, …, n+m
2,………2…2, 3, ….3,…4, ….3….3

1,2,……,j….n, n+1, …, n+j, …, n+m
2,………2…2, 4, ….4,…4, ….4….4

U=

U is the total universe

jx : the positive half-space of 
jx

1,2,……,j….n, n+1, …, n+j, …, n+m
2,………1…2, 4, ….4,…4, ….4….4
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],,,[ 21 mncccC += L

De Morgan’s law:

1. Express the cover in algebraic form

2. Exchange AND and OR

3. Change variables to complements

4214231 xxxxxxxf ++=
))()(( 4214231 xxxxxxxf ++++=

Multiply out using rules of Boolean algebra:

1.3

.2

0.

=+
=
=

xx

xxx

xx

Example

)( 21434324121 xxxxxxxxxxxf ++++=
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dc ∩
Intersection or a product of 2 cubes

ic
id

0   1   2

0    0   0   0
1    0   1   1
2    0   1   2

3   4

3    3   3   
4    3   4

ic

id
1<=i<=n n<i<=n+m

0 is an empty cube If an output part of a cube has all 3 it is empty.

Intersection: input part corresponds to the vertices that are common to c and d.
Output part specifies that the cube is present in the Boolean n-spaces in which both
c and d are present.

If 2 cubes have no common vertices or no common Boolean space:  

dc ∩ =0, c and d are orthogonal. 0=∩ ff
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The  union of 2 cubes:           (c+d): the set of vertices
covered  by the input part of either c or d in the Boolean 
n-space where they are present.

In matrix representation:             is the matrix formed by 2
rows corresponding to c and d, respectively.

The distance between 2 cubes:  

dc ∪

dc ∪

))(),(())(),((),( dOcOdIcIdc δδδ +=
where

|}0|{|))(),(( =∩= jj dcjdIcIδ

otherwise

dcif
dOcO jj

1

40
))(),((

=∩
=δ

Some j>n

(# of conflicts)
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The  consensus of 2 cubes: dce Θ=

1),( ≠dcδ

0))(),((1))(),(( =∧= dOcOdIcIIf δδ

2),(0

0),(

≥
=∩

=
dcif

dcifdc
e

δ
δ

If then

then

otherwise

dcifdc
e llll

l 2

0≠∩∩
=

1))(),((0))(),(( =∧= dOcOdIcIIf δδ

otherwise

mnlnfordorcif

nldc

e ll

ll

l

3

44

1

+≤<=
≤≤∩

=
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Theorem: The   consensus of 2 cubes a and b,

is contained in              . If                     , it contains minterms

of both a and b. p is the largest cube contained in             . 

bap Θ=
0≠Θbaba ∪

ba ∪
.,,,,, byaxpyxyx ∈∈∈∃∃
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ExampleExample
4

5

2

1
3

6

9

7

8
10

cubes
consensus

527 ccc Θ=
628 ccc Θ=
319 ccc Θ=

4510 ccc Θ=

032 =Θcc
021 =Θcc
063 =Θcc
065 =Θcc
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HC ∩

The complement of a set of cubes C, C  covers the

complement of logic corresponding to C.

The difference: C-H covers              .

A cube is an implicant of ff=(f,d,r) if it has an empty

intersection with the cubes of a representation of r.

Example.

F=M(C)=   2  0  2    4  3
1   2  0   4  3
2   1  2   3  4
0   2  0   3  4

(1,2,0,4,3) is an implicant of ff.  (0,2,1,3,4) is not since it contains (0,0,1) 
in the Boolean space representing ff2 that is in the off-set of ff2.


