
1

256d 1

ECEECE--256d256d

Malgorzata MarekMalgorzata Marek--SadowskaSadowska

Electrical and Computer Engineering DepartmentElectrical and Computer Engineering Department

Engineering I, room 4111Engineering I, room 4111

mms@ece.ucsb.edu.mms@ece.ucsb.edu.

256d 2

CAD for semiCAD for semi--custom custom ASICsASICs

�� ASIC = ASIC = application specific integrated circuitapplication specific integrated circuit

�� SemiSemi--Custom = try to design reusing some already Custom = try to design reusing some already
designed partsdesigned parts

�� CAD = flow through a sequence of design steps and CAD = flow through a sequence of design steps and
software tools.software tools.

Fully custom means everything SemiFully custom means everything Semi--custom means try tocustom means try to

Done by hand, mostly at the desigDone by hand, mostly at the design using existing parts.n using existing parts.

transistor and layout level.transistor and layout level.

Spectrum of design approaches

Example : microprocessors. Example: ethernet chip,hard disk controller.

2

256d 3

Example of modern systemExample of modern system--onon--aa--chip ICchip IC

�� Many big chunksMany big chunks

RISC
CPU
Core

Random logic

Memory

Datapath

256d 4

Useful Components in Semi-Custom

�� Logic gatesLogic gates
�� Maximally useful components you can reuseMaximally useful components you can reuse
�� Can design without knowing exactly what gates (type, speed, Can design without knowing exactly what gates (type, speed,

power, size) you have : technology independent design.power, size) you have : technology independent design.
�� Later, can map technology independent design onto specific Later, can map technology independent design onto specific

gate library (technology) : technology mapping problem.gate library (technology) : technology mapping problem.

�� MemoriesMemories
�� Module generator transforms specs on size (bits, words, Module generator transforms specs on size (bits, words,

speeds) into final layout.speeds) into final layout.
�� Very structured designs.Very structured designs.

�� DatapathsDatapaths
�� Well structured (adders, multipliers)Well structured (adders, multipliers)
�� Often designed at gate and transistor levelOften designed at gate and transistor level
�� Produced by module generators.Produced by module generators.

3

256d 5

SemiSemi--custom ASICcustom ASIC

�� Made out of standard cellsMade out of standard cells

RISC
CPU
Core

Random logic

Memory

Datapath

Standard cell = one gate (complex)

256d 6

ASIC CAD Tool FlowASIC CAD Tool Flow

Behavioral synthesis

Logic synthesis

Technology mapping

Verification, test

Timing and power estimation

Partitioning

Row based layout

Design rule checking and extraction

4

256d 7

High level (behavioral synthesis)High level (behavioral synthesis)

�� Input :Input :
�� High level description of desired system function, usually as High level description of desired system function, usually as

a program in a hardware description language (a program in a hardware description language (VerilogVerilog, ,
VHDL).VHDL).

�� Output:Output:
�� Register transfer level structure: Register transfer level structure: FSMsFSMs, logic, , logic, ALUsALUs, ,

memory, busses.memory, busses.

256d 8

Logic synthesisLogic synthesis

�� Input:Input:
�� Boolean equations, state diagrams, etc.Boolean equations, state diagrams, etc.

�� Output:Output:
�� Gates and connections, called Gates and connections, called netlistnetlist, a structural , a structural

design.design.

Boolean Logic
equations synthesis

5

256d 9

Technology mappingTechnology mapping

�� Input:Input:
�� Technology independent gate level design (unTechnology independent gate level design (un--

commitedcommited design)design)

�� Output:Output:
�� Gate level design using specific technology library.Gate level design using specific technology library.

Technology
mapping

256d 10

Formal verificationFormal verification

�� Input:Input:
�� A specification for a design (Boolean A specification for a design (Boolean eqnseqns) and an) and an

implementationimplementation

�� Output:Output:
�� Decision yes/no: is specification == implementationDecision yes/no: is specification == implementation

Verification Yes/no

6

256d 11

Timing estimationTiming estimation

�� Input:Input:
�� A gate level design, timing info about gates and A gate level design, timing info about gates and

wireswires

�� Output:Output:
�� Delay estimate Delay estimate –– critical path lengthcritical path length

Timing est.
d=1

d=3

d=2

d=1

d=3

d=2

d=4

256d 12

Convergence problems between Convergence problems between
synthesis and layoutsynthesis and layout

d=8

Design spec

Logic synthesis

Row-based layout

Failure
d=14

After layout timing violated due to wires

Gate network designed without real
Knowledge of wire delays

7

256d 13

Incompletely specified functionsIncompletely specified functions

For incompletely specified function ff we build 3 completely
specified functions: .,, offdcon ffffff

on off dc

on off

off on off

off on

ff

onff

dcff

offff

On-set the same as On-set of ff

On-set the same as Off-set of ff

On-set the same as DC-set of ff

rdf ∪∪ is a tautology

f

r

d

256d 14

MotivationMotivation

�� Commercial success Commercial success -- used almost everywhere VLSI is doneused almost everywhere VLSI is done

�� More general treatment of discrete functions of discrete value More general treatment of discrete functions of discrete value
variables.variables.

�� Body of useful and general techniques Body of useful and general techniques -- can be applied to other can be applied to other
areas.areas.

�� Foundation for:Foundation for:
�� combinational and sequential synthesiscombinational and sequential synthesis

�� testingtesting

�� timing and false pathstiming and false paths

�� formal verificationformal verification

�� optimal clocking schemesoptimal clocking schemes

�� power estimationpower estimation

�� general combinatorics.general combinatorics.

8

256d 15

Outline of the classOutline of the class

�� IntroductionIntroduction

�� 22--level combinational circuitslevel combinational circuits

�� Binary decision diagramsBinary decision diagrams

�� Synthesis of multiSynthesis of multi--level level

circuitscircuits

�� Technology mappingTechnology mapping

�� Delay in multiDelay in multi--level circuitslevel circuits

�� Testability of multiTestability of multi--level level

circuitscircuits

�� Boolean matchingBoolean matching

�� Automatic test pattern Automatic test pattern

generation techniques in generation techniques in

logic synthesislogic synthesis

256d 16

GradingGrading

�� Homework assignments : 20%Homework assignments : 20%

�� Final project : 70%Final project : 70%

�� Class presentation of the project : 10%Class presentation of the project : 10%

�� You need to do one project for both 256b and 256d.You need to do one project for both 256b and 256d.

9

256d 17

TextsTexts

�� Suggested books:Suggested books:
�� R.K.R.K.BraytonBrayton, G.D., G.D.HachtelHachtel, C.T.McMullen and , C.T.McMullen and

A.A.SangiovanniSangiovanni--Vincentelli, “Logic Minimization Vincentelli, “Logic Minimization
Algorithms for VLSI Synthesis”, Kluwer Algorithms for VLSI Synthesis”, Kluwer
Academic Publishers, Boston, MA, 1984.Academic Publishers, Boston, MA, 1984.

�� G.D. Hachtel and F.Somenzi, “Logic Synthesis G.D. Hachtel and F.Somenzi, “Logic Synthesis
and Verification Algorithms”, Kluwer Academic and Verification Algorithms”, Kluwer Academic
Publishers, Boston/Dordrecht/London, 1998.Publishers, Boston/Dordrecht/London, 1998.

256d 18

Logic SynthesisLogic Synthesis

�� Goal:Goal:
�� Map a high level functional description of logic function into aMap a high level functional description of logic function into a

set of primitives in a given technology.set of primitives in a given technology.

�� Automation:Automation:
�� Predominantly for random logicPredominantly for random logic

�� Automatic logic synthesisAutomatic logic synthesis
�� Functional design (functional specification of the system, Functional design (functional specification of the system,

transformed into a logic description in terms of Boolean transformed into a logic description in terms of Boolean
variables)variables)

�� Logic design (manipulation of the logic representation without Logic design (manipulation of the logic representation without
modification of functionality).modification of functionality).

10

256d 19

Physical designPhysical design

�� Custom (macroCustom (macro--cells)cells)
�� high performance, highly optimized designshigh performance, highly optimized designs

�� Standard cellsStandard cells

�� Gate arraysGate arrays

�� Field programmable gate arraysField programmable gate arrays
�� Between macro cells and standard cell: Between macro cells and standard cell:

algorithmically generated macros produced by algorithmically generated macros produced by
module generators.module generators.

�� PLA: effective for designing combinational circuitsPLA: effective for designing combinational circuits

�� ROM: lookROM: look--up table (large Si area)up table (large Si area)

Do not support
highly optimized designs

256d 20

22--level functionslevel functions

�� PLA are the most popular structures for implementation of 2PLA are the most popular structures for implementation of 2--level logic level logic
functions.functions.

+ + +

. . .

inputs

OR plane

AND plane

Input matrix Output matrix

X1 x2 x3 x4 x5 x6 y1 y2 y3 y4

* * 1 * * 0 1 0 0 0
* 1 * 0 * * 0 1 0 0
1 * * * * 0 0 0 0 1
1 * * * 1 * 0 1 0 0
0 * * * * * 0 0 0 1

x1 x2 x3 x4 x5 x6
y1 y2 y3 y4

y1=x3x6’

y2=x2x4’+x1x5

y3=x1’

y4=x1x6’+x6

11

256d 21

Optimization steps for PLAOptimization steps for PLA
�� Logic optimizationLogic optimization: reduction of the number of product terms needed to : reduction of the number of product terms needed to

implement the given function.implement the given function.

�� TopologicalTopological: elimination of unused space; folding and partitioning.: elimination of unused space; folding and partitioning.

�� Layout and circuit optimizationLayout and circuit optimization: optimal sizing and placement of drivers, devices : optimal sizing and placement of drivers, devices
and lines.and lines.

�� Up to the definitions of the device and interconnect location, PUp to the definitions of the device and interconnect location, PLA is independent LA is independent
of implementation technology.of implementation technology.

�� Advantages:Advantages:
�� regular structure, easy to automateregular structure, easy to automate

�� minimization is well understoodminimization is well understood

�� Disadvantages:Disadvantages:
�� no shape controlno shape control

�� little control of speedlittle control of speed

�� little control of I/O placementlittle control of I/O placement

256d 22

PLA (2PLA (2--level) vs Multilevel) vs Multi--levellevel

�� Well developedWell developed

�� Technology independentTechnology independent

�� MultiMulti--valuedvalued

�� Control logicControl logic

�� Constrained layoutConstrained layout

�� Automatic layoutAutomatic layout
�� MatureMature

�� Relatively undevelopedRelatively undeveloped

�� ??

�� ??

�� All (control and data flow)All (control and data flow)

�� Flexible, no layout styleFlexible, no layout style

�� ++-- Automatic layoutAutomatic layout
�� Not soNot so

12

256d 23

The Boolean nThe Boolean n--cubecube
Bn

B 4

B 3

B2B 1B 0

• B = 0 , 1

0 , 1• B = 0 , 1 x
2

= 00, 01, 10, 11

256d 24

Basic definitionsBasic definitions

�� B = { 0,1}, Y = {0,1,2} , a logic function ff.: B B = { 0,1}, Y = {0,1,2} , a logic function ff.: B --> Y> Y

x B is an input, y Y is an output.x B is an input, y Y is an output.

2 2 -- don’t care valuedon’t care value

ff ff -- incompletely specified functionincompletely specified function

f f -- a completely specified functiona completely specified function

ff = (ffff = (ff11,ff,ff22,,,,ff,,,,ffmm))

�� OnOn--set:set: such x that ffsuch x that ffii(x)=1(x)=1

�� OffOff--set:set: such x that ffsuch x that ffii(x)=0(x)=0

�� Don’t care set: Don’t care set: such x that ffsuch x that ffii(x)=2(x)=2

m=1 : single output functionm=1 : single output function

m>1 : multiple output functionm>1 : multiple output function

n m

∈ ∈n m

:1: mii ≤≤∀
:nBon

iX ⊆

:nBoff
iX ⊆

:nBdc
iX ⊆

13

256d 25

ExampleExample

�� Tabular representation Tabular representation

X1 X2 X3 Y1 Y2X1 X2 X3 Y1 Y2

0 0 0 1 1 X1 = {[0,0,0],[0,0 0 0 1 1 X1 = {[0,0,0],[0,0,1],[1,0,0],[1,0,1],0,1],[1,0,0],[1,0,1],

0 0 1 1 0 [1,1,0]0 0 1 1 0 [1,1,0]}}

0 1 0 0 1 X1 = {[0,1,0],[0,0 1 0 0 1 X1 = {[0,1,0],[0,1,1]}1,1]}

0 1 1 0 10 1 1 0 1
1 0 0 1 0 X1 = {[1,1,1]}1 0 0 1 0 X1 = {[1,1,1]}

1 0 1 1 21 0 1 1 2

1 1 0 1 11 1 0 1 1

1 1 1 2 11 1 1 2 1

on

off

DC

256d 26

Boolean functionsBoolean functions

f(x) : B f(x) : B --> B> B

B={0,1}, x={x1,x2,…xn}B={0,1}, x={x1,x2,…xn}
�� Each vertex of B is mapped to 0 or 1.Each vertex of B is mapped to 0 or 1.

�� The The onset onset of f is {x | f(x)=1} = f = f (1)of f is {x | f(x)=1} = f = f (1)

�� the the offsetoffset of f is { x | f(x) =0} = f = f (0)of f is { x | f(x) =0} = f = f (0)

�� if f = B , f is the if f = B , f is the tautologytautology..

�� If f = B , f is not If f = B , f is not satisfiable.satisfiable.
�� If f(x) = g(x) for all x in B , then f and g are If f(x) = g(x) for all x in B , then f and g are equivalent.equivalent.
�� x1, x2, … are x1, x2, … are variablesvariables
�� x1, x1’, x2, x2’ …are x1, x1’, x2, x2’ …are literalsliterals

n

n

0

1

1

1 1

0

1
0

1 -1

0 -1

1 n

0 n

n

14

256d 27

LiteralsLiterals

�� A literal is a variable or its negation : y, y’.A literal is a variable or its negation : y, y’.

It represents a It represents a logic functionlogic function
Literal x1 represents the logic function f, where f = { xLiteral x1 represents the logic function f, where f = { x | x1 = 1}| x1 = 1}

Literal x1’ represents the logic function g, where g = { x Literal x1’ represents the logic function g, where g = { x | x1 = 0}| x1 = 0}

1

0

1 0

1

1

0

1
0

0

1

1

1

0

1
0

0

x1 x1f = x1

g = x1’

256d 28

Boolean formulasBoolean formulas

�� Boolean functions can be represented by formulas defined as Boolean functions can be represented by formulas defined as
catenations ofcatenations of
�� parentheses parentheses -- (,)(,)

�� literals literals -- x, y, z, x’, y’, z’.x, y, z, x’, y’, z’.

�� Boolean operations Boolean operations -- + (or), * (and)+ (or), * (and)

�� complementations (x+y)’complementations (x+y)’

�� Examples:Examples:
�� f = x1 * x2’ + x1’ * x2 = (x1+x2) * (x1’ + x2’)f = x1 * x2’ + x1’ * x2 = (x1+x2) * (x1’ + x2’)

�� h= a + b*c = (a’ * (b’ + c’))’h= a + b*c = (a’ * (b’ + c’))’

�� We will usually replace * by catenation, e.g. a*b We will usually replace * by catenation, e.g. a*b --> ab.> ab.

15

256d 29

Operations on Boolean functionsOperations on Boolean functions

Multiple output functions: the usual Boolean operations
are performed component-wise on the outputs.

A complement of
mn BBf →: is a function

mn BBf →:
such that have their on-sets equal to the
off-sets of f.

mfff ,,, 21 L

on off

f

off on

f

256d 30

The intersection: has an on-set
equal to the intersection of the on-sets of

ihgfgfh :)(∩⋅=
.ii gandf

on off

on offoff

offoff on

f

g

fg

16

256d 31

The difference: gfgfgfh ∩=−=)#(

on off

on offoff

f

g

off onon

offon

g

h=f#g

256d 32

The union:)(gfgfh ∪+=

on off

on offoff

f

g

offon h

on

The tautology: off set is empty.

f

17

256d 33

Incompletely specified functionsIncompletely specified functions

For incompletely specified function ff we build 3 completely
specified functions: .,, offdcon ffffff

on off dc

on off

off on off

off on

ff

onff

dcff

offff

On-set the same as On-set of ff

On-set the same as Off-set of ff

On-set the same as DC-set of ff

rdf ∪∪ is a tautology

f

d

r

256d 34

Algebraic representationAlgebraic representation

im fffffffff).,,,(21 L= is an algebraic representation

of iff if it is a Boolean expression that evaluates to 1 for

all inputs in , to 0 for all inputs of , and either
to 0 or 1 for all inputs in .

ON
iX OFF

iX
DC
iX

Algebraic representation of ff is denoted by f, f(ff).

18

256d 35

ExampleExample

x1 x2 x3 y1 y2

0 0 0 1 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 2
1 1 0 1 1
1 1 1 2 1

3213213213213211 xxxxxxxxxxxxxxxf ++++=

3213213213213212 xxxxxxxxxxxxxxxf ++++=

(Sum of products form)

3121 xxxf +=

3122 xxxf +=

Can be simplified

256d 36

x1 x2 x3

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

3121 xxxf +=
3122 xxxf +=

Each product term in the sum of products algebraic representation of f determines
a logic function.

2x

2-D cube

x1 x2 x3

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

31 xx

1-D cube

19

256d 37

3121 xxxf +=
3122 xxxf +=

],,,[21 mncccc += L

nif −

Cubes

P - a product term in an algebraic sum of products expression of a logic
function of n inputs and m outputs

A cube p is specified by

ic =

0 if appears complemented in p
1 if appears not complemented in p
2 if does not appear in p
3 if p is not present in algebraic representation of
4 if p is present in the algebraic representation of

ix
ix
ix

nif −

i=1,2, …,n

i=n+1…
n+m

Example:

2xP= C=[2 0 2 4 3]

Input cube

output cube

256d 38

Input cube = compact form of the coordinates of the vertices of the cube
corresponding to the product term.

Example: I(c) = [2 0 2] represents (1,0,1), (0,0,0), (1,0,0) and (0,0,1).

O(c) = [4 3] identifies the space where the cube belongs.

},,,{ 21 kcccC L= is a cover of ff with n inputs and m outputs, if for

j=1,2,….m, the set of input parts of the cubes that have a 4 in the j-th position
contain all the vertices corresponding to the on-set of and none of the
off-set of , i.e. a cover represents a union of the on-set and some
arbitrary position of the don’t cares.

jff jff

There is a 1-1 correspondence between a cover and an algebraic
representation of a function as a sum-of-products.

20

256d 39

],,,[21 mncccc += L

A matrix representation of a cover:

M(C) of

3121 xxxf +=
3122 xxxf +=

Example:

is a matrix obtained by stacking the row

vectors representing each of the cubes of C.

M(C)= 2 0 2 4 3
1 2 0 4 3
2 1 2 3 4
0 2 0 3 4

G=I(M(C)) input matrix

H=O(M(C)) output matrix

Matrix representation and cover are used interchangeably.
If C is a cover of a single output function, then H=0

256d 40

],,,[21 mncccc += L
Let

ie

and

be 2 cubes.

The cube c contains d if:

the cube represented by the input part of c contains all the vertices of d;
and must be present in all Boolean spaces where d is present.

A minterm is a cube whose input part does not contain any 2s and whose
output part contains (m-1) 3s and one 4 in position I.

The input cube is a vertex and this vertex is present only in one, I-th Boolean
n-space. A minterm does not contain any other cube. If a cube contains a
minterm we say that is an element of c.

],,,[21 mndddd += L

ie ie
Example: [1,1,1,4,3] is a minterm and an element of [2,2,1,4,4].

Each cube can be decomposed into a set of all minterms that are elements of
the cube.

21

256d 41

],,,[21 mncccC += L

1e2e3e

Example

c=[2, 2, 1, 4, 4]

= [0, 0, 1, 4, 3]
= [0, 0, 1, 3, 4]
= [1, 0, 1, 4, 3]
= [1, 0, 1, 3, 4]
= [0, 1, 1, 4, 3]
= [0, 1, 1, 3, 4]
= [1, 1, 1, 4, 3]
= [1, 1, 1, 3, 4]

4e
5e 6e
8e
7e

A set of cubes covers

a cube c if each of the minterms of c
is covered by at least one cube of C.

)(Cc ⊆

Special cubes:
ju - the universe of the j-th Boolean space

ju =
1,2,……,j….n, n+1, …, n+j, …, n+m
2,………2…2, 3, ….3,…4, ….3….3

1,2,……,j….n, n+1, …, n+j, …, n+m
2,………2…2, 4, ….4,…4, ….4….4

U=

U is the total universe

jx : the positive half-space of
jx

1,2,……,j….n, n+1, …, n+j, …, n+m
2,………1…2, 4, ….4,…4, ….4….4

256d 42

],,,[21 mncccC += L

De Morgan’s law:

1. Express the cover in algebraic form

2. Exchange AND and OR

3. Change variables to complements

4214231 xxxxxxxf ++=
))()((4214231 xxxxxxxf ++++=

Multiply out using rules of Boolean algebra:

1.3

.2

0.

=+
=
=

xx

xxx

xx

Example

)(21434324121 xxxxxxxxxxxf ++++=

22

256d 43

dc ∩
Intersection or a product of 2 cubes

ic
id

0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

3 4

3 3 3
4 3 4

ic

id
1<=i<=n n<i<=n+m

0 is an empty cube If an output part of a cube has all 3 it is empty.

Intersection: input part corresponds to the vertices that are common to c and d.
Output part specifies that the cube is present in the Boolean n-spaces in which both
c and d are present.

If 2 cubes have no common vertices or no common Boolean space:

dc ∩ =0, c and d are orthogonal. 0=∩ ff

256d 44

The union of 2 cubes: (c+d): the set of vertices
covered by the input part of either c or d in the Boolean
n-space where they are present.

In matrix representation: is the matrix formed by 2
rows corresponding to c and d, respectively.

The distance between 2 cubes:

dc ∪

dc ∪

))(),(())(),((),(dOcOdIcIdc δδδ +=
where

|}0|{|))(),((=∩= jj dcjdIcIδ

otherwise

dcif
dOcO jj

1

40
))(),((

=∩
=δ

Some j>n

(# of conflicts)

23

256d 45

The consensus of 2 cubes: dce Θ=

1),(≠dcδ

0))(),((1))(),((=∧= dOcOdIcIIf δδ

2),(0

0),(

≥
=∩

=
dcif

dcifdc
e

δ
δ

If then

then

otherwise

dcifdc
e llll

l 2

0≠∩∩
=

1))(),((0))(),((=∧= dOcOdIcIIf δδ

otherwise

mnlnfordorcif

nldc

e ll

ll

l

3

44

1

+≤<=
≤≤∩

=

256d 46

Theorem: The consensus of 2 cubes a and b,

is contained in . If , it contains minterms

of both a and b. p is the largest cube contained in .

bap Θ=
0≠Θbaba ∪

ba ∪
.,,,,, byaxpyxyx ∈∈∈∃∃

24

256d 47

ExampleExample
4

5

2

1
3

6

9

7

8
10

cubes
consensus

527 ccc Θ=
628 ccc Θ=
319 ccc Θ=

4510 ccc Θ=

032 =Θcc
021 =Θcc
063 =Θcc
065 =Θcc

256d 48

HC ∩

The complement of a set of cubes C, C covers the

complement of logic corresponding to C.

The difference: C-H covers .

A cube is an implicant of ff=(f,d,r) if it has an empty

intersection with the cubes of a representation of r.

Example.

F=M(C)= 2 0 2 4 3
1 2 0 4 3
2 1 2 3 4
0 2 0 3 4

(1,2,0,4,3) is an implicant of ff. (0,2,1,3,4) is not since it contains (0,0,1)
in the Boolean space representing ff2 that is in the off-set of ff2.

