BDD-BASED LOGIC OPTIMIZATION SYSTEM

Congguang Yang Maciej Ciesielski

Feburary 2000

TR-CSE-00-1

cyang,ciesiel@ecs.umass.edu

Department of Electrical and Computer Engineering
University of Massachusetts
Ambherst, MA 01003

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

BDD-BASED LOGIC OPTIMIZATION SYSTEM

Congguang Yang

Maciej Ciesielski

{cyang,ciesiel }@ecs.umass.edu
Department of Electrical & Computer Engineering
University of Massachusetts

[. INTRODUCTION

Logic synthesis plays a central role in the design
automation of VLSI circuits. Software tools for logic
synthesis are one of the most important tools ever
developed in the area of Computer-Aided Design (CAD).
With the help of those tools, a designer is freed from
tedious and error-prone low-level circuit design, and can
focus on architectural and algorithmic level issues.

Logic synthesis is composed of three main steps. First,
a circuit described in high-level language (hardware
description languages, such as VHDL or Verilog) is
transformed into a Boolean network. Then, the Boolean
network is optimized using logic optimization tools.
Finally, the optimized Boolean network is mapped to a
library of logic cells. The entire process is directed in such
a way as to optimize certain design objectives (such as
delay, area, power, etc) and meet users’ specifications and
constraints. Among these three steps, logic optimization is
the most important. Because the quality of final synthesis
results is mainly determined by it. As a result, intensive
research has been done in this area.

A. Traditional Multi-Level Logic Optimization

The main theme in multi-level logic optimization is
factorization. In a typical logic synthesis environment,
a Boolean function is initially represented as a sum-of-
product (SOP) or cube form. This form is transformed by
factoring out common algebraic or Boolean expressions.
In an algebraic factorization, logic functions are treated
as polynomials, in which rules of Boolean algebra are
not applied. Boolean factorizations, based on Boolean
division, apply Boolean algebra rules, hence can produce
better results in terms of the resulting logic complexity
(number of terms, literals, etc).

Traditional logic optimization methodology, based on
algebraic factorization for Boolean networks [1], [2], has
gained tremendous success in logic optimization and
emerged as the dominant method. However, while
near optimal results can be obtained for those Boolean
functions which can be represented with AND/OR
expressions, results are far from satisfactory for functions
which can be compactly represented as a combination of
AND/OR and XOR expressions.

This work has been supported by a grant from NSF under contract No.
MIP-9613864.

Although logic optimization methods based on Boolean
factorizations, can potentially offer better results than
algebraic methods, they failed to compete with algebraic
methods due to their high computational complexity.
We believe that the failure of Boolean optimization is
caused by inappropriate data structure used to represent
Boolean functions. Cube representation, which is derived
from two-level AND/OR form (PLA), naturally favors
algebraic-based methods. This representation, however,
is not suitable for Boolean operations. Consequently,
Boolean operations such as MUX and XOR received less
attention from the beginning of logic synthesis research.

B. New Opportunity

Through the continuously intensive research and devel-
opment in logic synthesis area for the last twenty years,
the general framework for logic synthesis has been well
established. While the space for further improvement of
the synthesis flow seems to be limited, there is still poten-
tial for significant improvement in many procedures in a
synthesis process [3]. This is especially true when more ef-
ficient ways to represent Boolean functions become avail-
able.

A brief review of logic synthesis history is shown
in Fig. 1. It can be roughly divided into three
periods, represented by three most famous methods:
Quine-McCluskey and ESPRESSO for two-level logic
minimization, and SIS for multi-level logic optimization.
Quine-McCluskey method requires a Boolean function
to be represented in the minterm form. Since the size
of minterm representation is exponential in the number
of inputs, this method is of theoretical importance only.
ESPRESSO [4], the first practical logic minimization tool,
works on the sum-of-product (SOP) form which is much
more compact than minterm-based representation. The
synthesis method in this category was later pushed to the
limit by Coudert [5] by incorporating implicit enumeration
techniques. Finally, SIS [2] is the most successful synthesis
tool developed so far. It forms the backbone of most
modern academic and commercial logic synthesis tools.
The central theme in SIS is algebraic factorization in which
factored form' was used as a Boolean logic representation.
Compared with the SOP form, factored form is much more
concise and closer to the final gate-level implementation.

18IS still depends on two-level forms to carry out logic minimization
of individual nodes of a Boolean network.

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

The history of logic synthesis demonstrates a simple,
yet clear fact that the Boolean logic representation plays
a central role in the evolution of synthesis methods. It
seems quite natural that logic synthesis methods will
keep evolving with the emergence of newer and more
efficient Boolean logic representations. We believe that the
pace of this evolution is increasing with the accumulation
of expertise in Binary Decision Diagrams (BDDs). Our
research is trying to address this new opportunity.

| Karnaugh map |
! |

| minterms ———————*~ Quine-McCluskey
| Sum-of-product | Espresso
: Cubes \
i ., ___— SIS
3 Factored form |
" BDDs ' @

Fig. 1. A brief history of logic synthesis.

C. Main Contribution

A new BDD decomposition theory is presented in this
paper. We show that logic optimization can be efficiently
carried out through iterative BDD decomposition and
manipulation. Our approach proves to be efficient for
both AND/OR- and XOR-intensive functions. This is the
first unified logic optimization methodology that allows to
optimize both classes of functions.

We also propose a practical, complete, BDD-based logic
optimization system, BDS, that can handle arbitrarily
large circuits. A general framework which incorporates a
typical logic synthesis procedures has been implemented
in BDS. A number of new BDD manipulation techniques,
which proved very efficient at manipulating BDDs in
the partitioned Boolean network environment, are also
presented.

II. BACKGROUND AND TERMINOLOGY
A. Boolean Function

A completely specified Boolean function with n-inputs
and 1 output is a mapping f : B — B, where B =
{0,1}. A completely specified Boolean function can be
uniquely defined by its on-set X°", defined as X" = {z :
f(z) = 1}. Or off-set, defined as X°f = {z : f(z) = 0}.
For completely specified Boolean functions f and g, f is
covered by g, if X" C X7

An incompletely specified Boolean function with n-inputs
and 1 outputis a mapping ff : B* — Y, whereY={0, 1,

*1, where * stands for don’t care. The don’t care set (dc-set) of
an incompletely specified Boolean Boolean function f(x)
is defined as X% = {z : f(z) = *}. An incompletely
specified Boolean function can be uniquely defined by its
set (X, X4°), (X°ff X 1), or (X, XIT).

In the context of this work, we are only concerned with
completely specified Boolean functions. In the sequel, a
Boolean function is referred to as a completely specified
Boolean function.

A.1 Representation of Boolean Functions

A Boolean function can be represented in many
different forms. A form = is said to be canonical if the
representation of a Boolean function f by 7 is unique.

An expression representing a Boolean function can be
derived from its truth table by finding the sum of rows
(terms) for which the function assumes value 1. The
expression based on the sum of minterms is also referred
to as canonical sum-of-product form.

Minterms are commonly used to represent Boolean
functions. However, due to the exponential nature of
this representations, which requires 2" terms for a n-
input function, its application is limited to simple Boolean
functions, and mainly used for illustration purposes only.

A more practical representation of a Boolean function
is the sum-of-product (SOP) form, which can be obtained
by simplifying the minterm-based representation using
rules of Boolean algebra. Each term in a SOP form is
referred to as a SOP term (or a product term). Practically the
number of product terms required to represent a function
is much smaller than the number of minterms. However,
because the simplification is not unique, the SOP form is
not canonical.

In multi-level logic synthesis, a product term is also
called a cube, and a SOP representation is referred to as a
set of cubes. Formally, a cube is a product of literals, where a
literal is a variable or its complement. Cube representation
forms the backbone of all the logic synthesis systems.

However, in the era of complex, multi-million-gate
designs, cube representation of a Boolean function
becomes more and more impractical. In the following
sections, we shall discuss some other, more efficient forms
to represent Boolean functions.

A.2 Functional Expansion and Decision Diagrams

A canonical representation of a Boolean function can be
obtained through various functional expansions.

Definition 1 (Shannon expansion) 2 A Boolean function
f(z1,2a, -, 24, -+, Ty can be expressed as

f($1;$2;"'7xi7"'7xn) = xlle-’_x:fz())

where f} and fQ are referred to as the positive and negative
cofactor of f w.r.t. variable x;.

Shannon expansion provides the most fundamental
way to decompose a Boolean function. Many other, more

21n 1854 Boole [6] first described this type of expansion that was later
incorrectly credited to Shannon.

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

general decomposition methods can be derived from it.
For example, it can be verified easily that the traditional
minterm representation can be obtained through iterative
Shannon expansion. Shannon expansion also provides
an important theoretical foundation for Binary Decision
Diagrams (BDDs) [7], [8], which are the main theme of this
paper. BDD’s will be introduced in Section II-B.

Definition 2 (Orthonormal Expansion) A Boolean func-
tion can be expanded using an orthonormal basis [9]. Let
¢i, i = {1,2,...,k}, be a set of Boolean functions such that
Sk gi=1,and d;-d; = 0, Vi #j € {1,2,...,k}. Then
any Boolean function f can be expanded as,

k
f = Z¢z . f¢i
i=1

The term fgy, is called the generalized cofactor of f w.r.t. ¢;.

Note that the Shannon expansion is a special case
of orthonormal expansion when ¢; is a single variable.
It will become clear in the following chapters that the
decomposition based on Shannon expansion is limited to
a single BDD node, while the decomposition based on an
orthonormal expansion is based on a group of BDD nodes.
The latter one, in most cases, will produce more efficient
decompositions. This issue will be discussed in detail in
Section IV-F.

A.3 Functional Decomposition

The purpose of functional decomposition is to break a
large Boolean function into smaller parts, each of which
can be implemented by a Boolean logic of manageable
complexity. While, according to Kohavi [10], “functional
decomposition is an intrinsic property of switching
functions”, finding a good decomposition is not trivial.
Functional decomposition has been one of the most active
research topics for decades. The problem of functional
decomposition, as defined by Ashenhurst [11], Roth and
Karp [12], can be formulated as follows.

Definition 3: The goal of functional decomposition is to find
a Boolean function, ®(Y"), such that a Boolean function f(X)
can be expressed as

F(X) = F(@0(Y), ®1(Y), -+, ®x(Y), 2)

where X = {zg,z1, -,z };Y = {yo,y1, " ",Ys}; Z =
{z0,21," ", 2m}; Y, Z C X. IfY N Z =, the decomposition
is called disjunctive; otherwise it is conjunctive. Y is referred to
as bound set, and Z is referred to as free set.

Usually the decomposition can be dramatically simpli-
fied if a disjunctive decomposition can be found. There-
fore, disjunctive decomposition has been the target of in-
tensive research.

The first systematic approach to find disjunctive
decomposition was proposed by Ashenhurst [11]. In his
method, all variables are first partitioned into a bound
set (Y) and a free set (Z). The Boolean function is then
represented as a Boolean matrix (also called a decomposition
chart) by using the variables in the bound set and the free

set as column and row indices respectively. A disjunctive
decomposition, f(X) = F(®(Y),Z), whereY NZ = 0,
exists if the number of distinct columns (called column
multiplicity) 4 = 2. A decomposition chart for function
F =w'z'2' + wz'z+w'yz+wyz' is shown in Fig. 2(a), with
the bound set Y = {w, z}, and the free set Z = {z,y}. It
can be found easily that the number of distinct columns
is 2. As a result, F' can be disjunctively decomposed as
F = f(®(w,z2),z,y) = ®z' + ®'y, where & = wz + w'z’.
However, if the variables are partitioned such that the
bound set Y = {y,z}, and the free set Z = {z,w},
the disjunctive decomposition will not be found. The
decomposition chart corresponding to the latter case is
shown in Fig. 2(b).

Wz yz
Xy 0 1 2 3 X 0O 1 2 3
0,1 0 0 1 0/1 0 1 1
171 1 1 1 170 1 1 1
210 0 0 O 210 0 0 1
3]0 1 1 O 3]0 0 1 O
(@u=2 b)pu>2

Fig. 2. Two decomposition charts for function F = w'z'2' + wz'z +

w'yz + wyz'.

Ashenhurst’s approach was extended by several other
researchers [13], [14]. All these approaches are hence clas-
sified as Ashenhurst/Curtis decomposition methods. The
common characteristics of these methods is that they all
depend on Boolean matrix representation or on decompo-
sition charts [14]. The drawback of these approaches is
obvious. For an n-input Boolean function, there are O(2")
matrices or charts. Therefore, these methods are not prac-
tical from the engineering perspective.

Roth and Karp [12] proposed the first practical func-
tional decomposition method which was later referred
to as the Roth-Karp decomposition. In their method, a
Boolean function is represented as a set of cubes. Com-
pared with the representation based on Boolean matrix,
cube representation is much more compact and has a ca-
pability to represent larger Boolean functions. The tech-
nique used in Roth-Karp decomposition is based on the
partitioning of cubes into compatible classes. It should be
noted that there is a one to one relation between the num-
ber of distinct columns in a decomposition chart and a
compatible class. Therefore, there is no fundamental dif-
ference between Ashenhurst and Roth-Karp decomposition.
However, due to a more efficient way to represent Boolean
functions, Roth-Karp decomposition is much more efficient
than Ashenhurst decomposition.

In view of the development of functional decomposi-
tion, it is interesting to note that the efficiency of a decom-
position approach is well correlated with the representa-

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

tion of Boolean functions. This simple observation can be
extended to note that a more efficient functional decom-
position method, may become available when a Boolean
representation form, more compact than cube representa-
tion, can be found.

In the following section, the most efficient representa-
tion of a Boolean function to date, a Binary Decision Dia-
gram (BDD), is introduced.

B. Binary Decision Diagrams

The concept of binary decision diagrams (BDDs) was
first proposed by Lee [7] in 1959. Lee demonstrated that
a switching function can be efficiently implemented as a
series of local decisions (T z; A, B), where A is “taken”
if variable z is 0; and B is "taken” if x is 1. Lee pointed
out the advantage of binary decision programs over an
algebraic representation. He also pointed out that binary
decision programs can be used for circuit synthesis °.

In 1978, Akers [8] first adopted the term ”binary
decision diagram”. He also presented the first set of
rules to reduce a BDD. However, BDDs had not been
widely acknowledged until a set of efficient operators
were proposed by Bryant [15] in 1986. Since then,
the research and development of BDDs have achieved
tremendous advance. Thousands of technical papers,
research projects, and BDD packages contribute to the
understanding and efficient manipulation of BDDs. BDDs
have been applied to almost every aspect of VLSI
CAD. They proved to be the most efficient Boolean
representation to date.

B.1 Construction and Reduction of a BDD

In the fundamental work of Lee and Akers, no explicit
assumption has been made about the variable reordering.
Bryant [15] showed that under a fixed variable order,
efficient algorithms can be devised to manipulate BDDs.
A BDD under this restriction is generally referred to as an
ordered BDD (OBDD). The OBDD for a Boolean function
can be constructed using iterative Shannon expansion. For
example, Fig. 3(a) shows the OBDD of a Boolean function,
F = ac + bc + a'b'c', with the variable order a, b, ¢. Each
node of the OBDD corresponds to a Shannon expansion
w.r.t. a single variable. The positive co-factor computed at
a given node is generally represented by a 1-edge (solid),
while the negative co-factor is represented by a 0-edge
(dashed).

An OBDD is said to be reduced OBDD (ROBDD) if the
following two reduction rules have been applied: 1) node
v is removed if its 1-edge and 0-edge point to the same node;

3Quoted from [7]: “It has been amply clear that, although Boolean
representation of switching circuits has been the foundation on which
switching theory had been built, the inherent limitations in the
Boolean language seem to be difficult hurdles to surmount. Boolean
representation is algebraic and highly systematic, but so inflexible that it
is powerless against all but series-parallel circuits. [...] Binary-decision
programming is our attempt of a way to get beyond these limitations. It
works well for computation. Further studies will be required to find
efficient ways of minimizing binary-decision programs and to make
binary-decision programming an instrument for circuit synthesis.”

Fig. 3. BDD Reduction Rules. (a) The OBDD obtained through Shannon
expansion. (b) ROBDD. (c) ROBDD with complement edges.

2) a subgraph is removed if it is isomorphic to another
subgraph. The ROBDD for function F in Fig. 3(a) is shown
in Fig. 3(b). It should be noted that these two reduction
rules are implicitly related to Boolean operations. Rule
1 corresponds to Boolean simplification, af + a'f = f;
Rule 2 corresponds to a simple factorization, af + bf =
(a + b)f. Therefore, the OBDD reduction provides a
natural means for implicit Boolean simplification and
factorization. As a result, a ROBDD is an implicitly
factored Boolean representation. Bryant [15] proved that
the Boolean representation based on ROBDD is canonical.
In the rest of this thesis, ROBDD is referred to as a BDD
for short.

In addition to the above reduction rules, the size of a
BDD can be further reduced using a concept of complement
edges. This concept was first introduced by Akers [8],
and was efficiently implemented by Brace, Rudell and
Bryant [16]. Basically, a complement edge points to the
complementary form of a function (BDD node).

B.2 Variable Reordering

It is known that the size of a BDD is very sensitive
to the variable order. A random, or carelessly chosen
variable order will frequently result in an exponential
size of the BDD. A common procedure to construct a
BDD is as follows. First, an initial variable order is
determined and the BDD is constructed according to that
order. Then, a variable reordering algorithm is invoked to
further minimize the size of BDDs.

Several heuristics have been proposed to provide an
initial variable order. They mainly depend on the
topological and variable dependence analysis in a Boolean
network [17], [18]. Although these heuristics achieved
a significant improvement over random ordering, the
size of a BDD can be further reduced through variable
reordering. Many heuristic variable reordering algorithms
have been proposed. Most of these algorithms depend on
a fundamental operation, adjacent variable swapping [19],
[20], [21]. The most efficient algorithm, sifting, was
proposed by Rudell [21]. He also proposed a mechanism
called dynamic variable reordering, which allows a BDD to
be reordered during the process of its construction. This

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

approach partially relieves the so-called memory blow-up
problem, which is caused by large intermediate BDDs.

B.3 Don’t Care Minimization

The problem addressed by BDD don’t care minimization
can be stated as follows. Given two completely specified
Boolean functions f and ¢, with the off-set of ¢ being don’t
care to f, find a Boolean function, denoted f /¢, defined in
the range [f - ¢, f + '], such that the size of BDD of f/c
is minimum.

This problem has been proved to be NP-complete [22].
Among all the proposed heuristics to perform such
operation [23], [22], [24], [25], RESTRICT operator
proposed by Coudert [23], is the most efficient one.

C. Boolean Network

A Boolean network is a directed acyclic graph (DAG); the
representation of its structure is straightforward. Various
Boolean network presentations differ mainly in the way
they represent the local function pertaining to each Boolean
node. Fig. 4(a) shows the Boolean network representation
of SIS [2], in which the functionality of each Boolean node
is represented as a set of SOP terms. This representation is
commonly referred to as multi-level SOP representation.

(a) Multi-level SOP rep-
resentation

(b) Local BDD represen-
tation

Fig. 4. The cube and BDD representations of Boolean nodes in the
Boolean network.

The functionality of a Boolean node can also be
represented as a BDD, as shown in Fig 4(b). This
representation is known as a local BDD representation.
Compared with the multi-level SOP representation, local
BDD representation is relatively free of redundancy,
because the redundancy inherent in the SOP form has
been removed during the process of BDD construction.
It also allows for a possible sharing between different
Boolean nodes. Therefore BDD representation may
potentially consume less memory than SOP.

A Boolean network can be also represented in a global
form. In a global representation, Boolean network is
collapsed into a set of global nodes, one node per primary
output. Each global node depends only on primary
inputs.

Fig. 5 shows two different global representations. In
Fig. 5(a), each global node is represented in a two-level
from. In Fig. 5(b), each global node is represented
as a monolithic BDD. We refer to this representation

as a global BDD representation. The advantage of
BDD form becomes now obvious. Usually the logic
redundancy embedded in a multi-level configuration
can be completely removed by collapsing the Boolean
network into two-level SOP or global BDD forms.
However, such representation is not amenable to large
Boolean networks, in which the size of representation
may blow up. This issue will be further discussed in
Chapter VL

(a) Two-level SOP repre-
sentation

(b) Global BDD repre-
sentation

Fig. 5. Two-level cube and monolithic BDD representation of a Boolean
network.

III. TERMINOLOGY

To facilitate the discussion in the sequel, we need
to define a fundamental terminology and develop basic
theorems related to the different operations on a BDD.

Definition 4 (BDD) A BDD is a directed acyclic graph
(DAG) representing a Boolean function. It can be uniquely
defined as a tuple, BDD = (®,V,E, {0,1}), where ® is the
function node (root), V is the set of internal nodes, E is a set of
edges, and 0, 1 are the terminal nodes. O

Definition 5 (Leaf edges) The leaf edge is an edge e € E
which is directly connected to a terminal node of the BDD. The
set of leaf edges, denoted 33, can be partitioned into 3¢, the set of
leaf edges connected to 0, and X4, the set of leaf edges connected
to1. O

Definition 6 (Paths) Ilg is the set of all paths from the root
to terminal node 0. Ilq is the set of all paths from the root to
terminal node 1. TI = Il |J I1; is the set of all paths. O

An obvious, but important property of a BDD is that
its set IIy (ITg) defines the on-set, X°™ (off-set, X°//) of
function f. Specifically, each path p € II; (p € Ilo)
represents a disjoint cube in the on-set X °" (off-set X °/7)
of f.

Theorem 1 (Internal Edge Property) Every internal edge
e € (E — X) belongs to at least one path p; € Il and one path
po € Ip. O

Proof: The theorem is proved by contradiction. Since
BDD is a connected graph, every edge must belong to
either Il or IT;. For an edge e € (E — X), if every
path p passing through e belongs to I1;, then all the nodes
below e can be collapsed into 1, so that e € 3. Hence the
contradiction. Same reasoning applies to Ilg.

Definition 7 (Cut) A cut (D,V —-D) of a BDD is a
partition of its nodes V into disjoint subsets D and (V — D)

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

such that root € D and terminals 0, 1 C (V-D). A cut cannot
cross any path p € II more than once. A horizontal cut is a cut
in which the support* of D and (V - D) are disjoint. O

Fig. 6 shows a BDD with several possible cufs. As
described in the next chapter, horizontal cuts will be
useful in performing the BDD decomposition.

Fig. 6. Valid cuts on a BDD.

IV. THEORY OF BDD DECOMPOSITION

BDDs have drawn a lot of attention from the logic
synthesis and verification research community. This can
be attributed to their excellent capability for the concise
representation and efficient manipulation of Boolean
functions. However, most known BDD decomposition
methods employ BDD as an efficient platform to carry out
traditional decompositions, such as Ashenhurst [11] and
Roth-Karp [12] decompositions, and do not utilize the full
capability of BDDs.

BDDs are fundamentally different from traditional cube
forms. In a cube form, a Boolean function is represented
as a set of individual cubes. The relationship between
different cubes is not clear until certain rules of Boolean
algebra are applied. For example, the fact that exists
a literal ¢ common to two cubes {ac} and {bc} is not
aaparent until some sort of factorization is applied. In
contrast to that, BDDs have a collective power to represent
Boolean functions, and the relationship between different
paths in a BDD (i.e. cubes) is obvious. Therefore, instead
of performing traditional functional decomposition using
BDDs solely as a platform, decomposition methods
specifically tailored for BDDs should be developed. Since
BDD is a directed acylic graph, in order to uncover the
decomposition encoded in such collectively represented
Boolean function, some kind of graph traversal or
structural analysis techniques are necessary.

In this chapter, a BDD decomposition theory which is
based on BDD structural analysis is presented.

A. Previous Work

The majority of current BDD decomposition methods
relies on two important properties of BDDs: 1) BDD
is used as an efficient representation of a Boolean

4support is defined as the set of variables a Boolean function depends.

function; 2) The structure of a BDD is implicitly
related to the decomposition chart used by Ashenhurst
decomposition [11]; specifically, the partitioning of
variables into a bound set and a free set is directly related to
the variable ordering in the BDD. The following example
illustrates this idea.

Example 1: Consider function F = w'z'z' + wa'z +
w'yz + wyz'. The decomposition chart (Fig. 2(a)), leading
to a disjunctive functional decomposition of this function, is
re-drawn in Fig. 7(a). For the purpose of comparison, the
reordered BDD for function F' is shown in Fig. 7(b). A cut
in the BDD partitions the variables into a bound set and a
free set. Notice that the variable partitioning is exactly the
same as that in Fig. 7(a), with the bound set {z,w} and
free set {y,x}. This means that a good variable partitioning
for disjunctive Ashenhurst decomposition can also be obtained
implicitly through a BDD variable reordering. O

Xy

Bound set

Free set

w N B O

o O B B, | O
R O B O R
R O =B O DN
o O B kP W

(a) (b)
Fig. 7. Decomposition chart and BDD of a Boolean function.

Consider a cut in a BDD, which partitions a set of BDD
nodes V into two sets, D and (V — D). A node v €
(V — D) which is connected to an edge in the cut in called
a cut-node. A set of cut-nodes associated with a given cut
is called cut-node-set. In Fig. 7(b), cut-node-set = {y,x}. An
important observation is that the cardinality of the cut-
node-set determines the total number of distinct columns
in the decomposition chart. This can be explained as
follows. In Fig. 7(b), any path from the root to terminals
must go through either y or z. Therefore, if z, w are treated
as column indices and y, z as row indices, the number of
distinct columns is exactly two.

The decomposition process begins by encoding the
BDD nodes in the cut-node-set. This is shown in Fig. 8.
The number of bits (variables) required for the encoding
is loga(n), where n is the cardinality of the cut-node-set.
For this example, one bit (variable) is sufficient. A new
variable, g, is introduced. The BDD of g can be obtained
by substituting y and z with their respective codes, as
shown in Fig 8(a). This results in the final Ashenhurst
decomposition, F' = gz + ¢'y, where g = zw + 2'w'.

Although an optimal decomposition for the above
function can be found by the methods, it is not the case
for general, complex Boolean functions. Due to lack of
a criterion for a good cut, a cut is usually performed
when the number of variables above the cut is less

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

Fig. 8. Ashenhurst decomposition using BDD.

than some fixed value, k. The application of these
methods are hence restricted to Look-Up-Table (LUT)-
based FPGAs, with k being the number of inputs to an
FPGA block [26], [27]. We believe that, with the help of
structural analysis of BDDs, this type of decomposition
can be extended to decompositions leading to efficient
multi-level implementations.

We are also aware of an approach in which a BDD is
used as an indirect form to uncover good decompositions.
In [28], a subset of spectral coefficients of a Boolean
function, represented as a BDD, is calculated. The BDD
is then decomposed through the examination of certain
properties of the subset. Since the calculation of spectral
coefficients is very expensive, this method is potentially
computationally intensive.

Finding an efficient multi-level representation of a
Boolean function by analyzing the structure of its BDD
was first studied by Karplus [29] at the early ages of BDDs.
He introduced the concept of a 1- and 0-dominator®, which
lead to an algebraic AND/OR decomposition. Fig. 9
illustrates the concept of a 1- and a 0-dominator. Basically,
a 1-dominator (0-dominator) is a node which belongs to
every path p € IT; (p € Ilp). The existence of 1-dominator
(0-dominator) allows the BDD to be decomposed into two
parts conjunctively (disjunctively).

) o) 5 o)

@ (b)

Fig. 9. Example of 1- and 0-dominators introduced by Karplus. (a) 1-
dominator leads to an algebraic conjunctive decomposition, F' =
(a + b)(c + d). (b) 0O-dominator leads to an algebraic disjunctive
decomposition, F' = ab + cd.

5Both 1- and 0-dominators are special cases of our generalized dominator,
discussed in Section IV-C

Since Karplus [29], very little work has been reported
in this area. As far as we know, there have been
at least two attempts to perform logic optimization
targeting multi-level representations by analyzing BDD
structures. Bertacco et al. [30] proposed a method which
performs hierarchical disjunctive decomposition directly
on a BDD. This method basically annotates disjunctive
decomposition inherent in the BDD structure. Compared
with SIS, their method is faster and generates much better
results on some circuits. However, their method fails to
generate good decompositions on BDDs with complement
edges. Stanion et al. [31] proposed a generalized cofactor-
based Boolean division and factorization method. Given
a divisor D, a function F can be written as F =
D - cof(F,D) + D' - cof (F,D'). Consequently, Boolean
division is performed by setting @ = cof(F,D) and
R = D' - cof(F,D'). The result can be further improved
by realizing that), D and R imply don’t care sets to
each other. However, due to a lack of efficient way
to generate Boolean divisors, the improvement of this
method over SIS is marginal. Neither of the above-
mentioned methods address a general decomposition of
BDDs onto expressions involving XOR logic.

B. Fundamentals

Before diving into the details of different types of BDD
decompositions, let us first provide a theoretical analysis
of two fundamental decompositions, namely Boolean
division and Boolean subtraction. All other types of
decompositions can be derived from these two.

Definition 8 (Boolean Division) Function D is a Boolean
divisor of F' if there exists a function @), called quotient, such
that F = QD.

In [32], a Boolean division is defined as F' = @D + R,
and D is called a Boolean factor. In our decomposition
scheme, we always assume R = (. To comply with the
terms “division”, we call D a Boolean divisor, instead of
a factor. In this paper, we shall use the terms Boolean
division, conjunctive Boolean decomposition, and Boolean
AND decomposition, interchangeably.

Definition 9 (Boolean Subtraction) Function D is a Boolean
subtractor of F if there exists a function R, called remainder,
suchthat F = D + R.

In the sequel, we shall use the terms Boolean subtraction,
disjunctive Boolean decomposition, and Boolean OR decompo-
sition, interchangeably.

Theorem 2: [33] Function D is a Boolean divisor of F' if
andonly if F C D.

Proof: If D is a Boolean divisor of F', then there exists @
such that F = QD; QD # § = F C D. On the other hand,
F CD= F=DF =D(F+R) = DQ. Here R is any
function R C D'.

Example 2: Consider two functions F' = e + bd and
D = e+ d. Since the on-set of F' is covered by that of
D,ie. FF C D, D is a Boolean divisor of F. Function F
can be decomposed as F' = (e + d)(e + b). The BDDs for
function F' and D are shown in Fig. 11. O

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

Theorem 3: A function D is a Boolean subtractor of F' if
andonly if F D D.

Proof: The proof is dual of that of Theorem 2.

Definition 10 (Co-factoring sequence) Consider a node v
in a BDD. The path from root to v can be uniquely defined
as a set of variables, where each variable may appear in true
or complemented form. Such a set of variables is called a co-
factoring sequence. If v is a terminal node, the list is called a
terminal co-factoring sequence.

Let us now study the properties of Boolean functions
D and @ in order to satisfy F' @D. Since BDD
is a graphical representation of a sequence of Shannon
expansions of the Boolean function, the process can be
readily demonstrated by using a sequence of co-factoring
operations. F' can be expanded using Shannon expansion
as:

F=2'F, +zF, (1)

(@)D can be expanded in the same way, we obtain

QD = (lez" + xQz)(mlDac’ +$Dz) = lez’Dx’ +2Q2 Dy

@

Then F' = QD if the following two conditions are satisfied,
Qz’ Dw’ = Fa:’

®)

By induction, the above conditions can be generalized to
any co-factoring sequence w. That is, if

Qwa = Fw

4
is true for any co-factoring sequence w, then F' = @) D.

When F,() and D are represented as BDDs, to check
whether F = @D is true, only terminals need to be
checked to see if condition Q,,D,, = F,, is satisfied. When
w is a terminal co-factoring sequence, for condition F,, =
QD to be true, D,, and Q,, must satisfy the following
two conditions,

Fo=1 = Dy=1,
F,=0 = D, =0,

Qu=1.
Qw:*

where * stands for don’t care.

Theorem 4 (Boolean divisor condition) D is a conjunc-
tive Boolean divisor of F, if for every terminal co-factoring se-
quence w for a given variable ordering,

®)
(Dy = *,Qw = 0).(6)

F,=1 = D,=1
Dy=0 = F,=0

Proof: Since F, = 1 = D,, = 1 for any terminal co-
factoring sequence w, X' O Xg". Hence D is a Boolean
divisor of F'. O

Theorem 4 provides an efficient way to check whether
a Boolean function D is a divisor of another Boolean
function F. As will be become clear in the following

@)

sections, Theorem 4 provides the theoretical foundation
for generalized dominator.

In the same manner, the condition for a Boolean
subtractor can also be formulated.

Theorem 5 (Boolean subtractor) D is a disjunctive Boolean
subtractor of F, if every terminal co-factoring sequence w for a
given variable ordering,

Dy,=1 = F,=1
®)
Fy=0 = D,=0
Proof: The proof is dual of that of Theorem 4. O

C. AND/OR Decomposition

In this section, different types of BDD decompositions
targeting AND/OR logic decomposition are presented.

C.1 Boolean Decomposition

First, the most general structure leading to a Boolean
AND/OR decomposition is examined. This structure is
referred to as a generalized dominator.

Definition 11 (Generalized Dominator) Consider a cut
partitioning the set of BDD nodes of function F' into D and
(V-D). The portion of the BDD defined by D is copied to form
a separate graph. In that graph, an edge e is connected to 0
if e € Xg in the original BDD of F, and it is connected to 1
if e € X4 in the original BDD of F. All the internal edges
e € (E — X) are left dangling. The resulting graph is called a
generalized dominator A.

Fig 10 shows the construction of a generalized dommator.
In Fig. 10(a), a cut is performed on the BDD. Then the
portion above the cut is copied to a separate graph, which
is shown in Fig. 10(b). The construction is completed by
connecting ¥ edges of the graph to the corresponding
terminals in the original BDD. Note that because of the
dangling edges, a generalized dominator A is not a BDD. By
assigning the dangling edges to different constant value (1
or 0), A can be used to decompose a BDD conjunctively or
disjunctively. Let be a set of all dangling edges.

Fig. 10. Generation of a Boolean divisor based on generalized dominator.

The following theorem shows how to obtain a Boolean
divisor and perform the division® by redirecting the
dangling edges 7 of a A to constant node 1.

Theorem 6 (Construction of), D) Given a generalized
dominator A of function ¥, the Boolean divisor D is obtained

6We also refer to it as a Boolean AND decomposition

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

from A by redirecting dangling edges e € n of A to 1. The
quotient Q) is obtained by minimizing F with the off-set of D as
a don’t care set.

Proof: According to Theorem 1, there is at least one path
p € Iy passing through each internal edge of A. By redirecting
these internal edges of A to 1, the obtained BDD (function) D
covers all paths p € I, i.e. X DO Xg". Therefore, D is a
Boolean divisor for function F (see Theorem 2).

The quotient @) can be verified by checking whether the
condition Fy, = QD is true for all possible paths w in the
BDD. Recall that @) is a copy of F, except for the edges which
correspond to the off-set of D. Therefore, the on-set of non-
minimized Q, X&' = X¢". Since X7* D Xg", QuDy = Fy
whenever F,, = 1. By construction, D,, = 0 = F,, = 0,
and @, is set to don't care, so that Xg)" D X¢*. Therefore,
QuwDy = Fy, when Fy, = 0. Q is the quotient of this Boolean
division. O

Example 3: To illustrate the Theorem 6, a simple example is
shown in Fig. 11. The BDD of function F' = e + bd is shown
in Fig. 11(a). First, a cut is performed on the BDD. Then, a
generalized dominator is constructed based on the cut. Since
a Boolean division is anticipated, the dangling edges on the
generalized dominator are redirected to constant 1. The Boolean
divisor D is easily evaluated as D = e + d. The quotient () of
this division can be obtained from F by setting the off-set {e'd'}
of D as a don't care. After minimization of F with this don’t
care, Q = e + b. Notice that (D = e+ d) D (F = e+ bd), and
(@=e+b)D(F=e+bd).

Fig. 11. A simple example of Boolean division.

In the following, a more complex example is provided.

Example 4: A complete conjunctive (AND) decomposition,
including the construction of a quotient @, is shown in Fig. 12.
In Fig. 12(a), a cut is performed in the BDD. In Fig. 12(b), the
generalized-dominator is obtained by copying the portion above
that cut to a graph. Then a Boolean divisor is built by redirecting
all the dangling edges of that graph to 1. The reduced BDD
of D is also shown in Fig. 12(b). As indicated in the figure,
this decomposition exposes a 0-dominator in D, which was not
present in the original BDD of F. Therefore, D can be easily
decomposed as D = (af + b+ ¢). In Fig. 12(c), quotient Q

10

is obtained from F by minimizing function F using function
D as a don't care. This resultsin Q = (ag +d +€). Asa
result of this process, the whole function can be decomposed as
F=(af+b+c)lag+d+e). |

Boolean subtraction is the dual case of Boolean division.
The following is the fundamental theorem for Boolean
subtraction.

Theorem 7 (Construction of D, R) Given a generalized
dominator A of function F, the Boolean subtractor D of F' can
be obtained by redirecting dangling edges e € 1 of A to 0. The
remainder R is obtained by minimizing F using the on-set of D
as a don't care set.

Proof: According to Theorem 1, there is at least one path
p € Xlg passing through each internal edge of A. By redirecting
these internal edges of A to 0, the BDD of the resulting function
D covers all paths p € Ty, ie. X7 o X9 (xy
X{¢™). Therefore, D is a Boolean subtractor for function F' (see
Theorem 2). The rest of the proof is dual of that of Theorem 6. O

During the process of finding an optimal Boolean
AND/OR decomposition, all possible cuts should be
exercised. Obviously, the number of possible cuts could be
very large even for a medium size BDD. Therefore, some
filtering mechanism to reduce the number of candidate
cuts should be developed. In the following, several filters
have been identified to disqualify cuts which are invalid or
redundant.

Definition 12 (Valid cut) A cut is called valid if it contains
at least one edge e € 3. Otherwise, a cut is invalid. O

Theorem 8: Only valid cuts lead to nontrivial Boolean
decomposition.

Proof: Consider an invalid cut in the BDD. By definition, the
generalized dominator generated from the invalid cut does not
have any X edges. Hence all terminal edges are dangling. Since
all dangling edges are redirected to 1 (0), the Boolean divisor
(Boolean subtractor) D = 1 (D = 0). These cases are shown in
Fig. 13(b) and (c). Now consider a valid cut. Since £1(Zo) # 0,
some of the terminal edges of the generalized dominator are
connected 0 (1), while others (n) are connected to 1 (0). Hence
the resulting D and @) (R) is nontrivial, leading to nontrivial
decomposition. O

Definition 13 (0-Equivalent Cuts) Two cuts are O-equivalent
if they contain the same subset of 3o edges. O

Definition 14 (1-Equivalent Cuts) Two cuts are 1-equivalent
if they contain the same subset of 31 edges. |

Theorem 9 (Distinct Cuts) All Boolean divisors obtained
from O-equivalent cuts are identical.

Proof: Consider two cuts, a and b, which are 0-equivalent.
In each of the Boolean divisors generated by those cuts, edges
e € Xg are connected to 0. All other edges are connected to 1.
Hence, both Boolean divisors have the same paths from root to 1
(on-set) and the same paths from root to 0 (off-set). Hence, both
Boolean divisors are identical. O

This is illustrated in Fig. 13(d), (e), which showing that
cut 2 and cut 3 belong to 0-equivalent class, and hence lead
to identical Boolean divisors.

Theorem 10 (Distinct Cuts) All Boolean subtractors ob-
tained from 1-equivalent cuts are identical.

Proof: The proof is similar to that of Theorem 9. O

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

(a) Original function F

0-dominator

[o]

(b) Generalized dominator and Boolean divisor

11

Q=ag+d+e

0-dominator

(c) Minimizing F with off-sets in D as don’t care

Fig. 12. Obtaining a factored form on a BDD.

(a) Various cuts on a BDD

reduce

o]
@

(b) Trivial Boolean divisor generated from cut 1

(d) Boolean divisor generated from cut 2

reduce

(a2, 2]
o] o] o]

(c) Trivial Boolean subtractor generated from cut 1

reduce

(e) Boolean divisor generated from cut 3

Fig. 13. Effect of a cut on the generation of Boolean divisor/subtractor.

In conclusion, finding a cut can be viewed as a
partitioning of ¥y and 3 edges, rather than partitioning
of BDD nodes. Therefore, the total number of all possible
cuts is 2(1@11+1Zol) ' An in-depth analysis of BDD structure
reveals that the actual number of valid cuts is much
smaller. The number of valid cuts is further limited by
the following cut property.

Theorem 11 (Transitive Cut Property) Consider a node v,
and its 1-edge (or 0-edge) e € X. A cut containing edge e must

also contains all other ¥ edges spanning’ from a path from root
tow.

Proof: The transitive property is guaranteed by the fact that
a cut cannot cross the same path more than once. As shown
in Fig. 13(a), three 3¢ edges, x,y and z originate (span) from
nodes which are on the same path p to node v. Therefore, any
cut crossing edge x must also cross edge y and z. O

7 An edge is said to span from a path if it is incident to a node on the
path.

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

The transitive cut property dramatically decreases the
number of possible cuts in a BDD. However, since the
actual number of valid cuts depends on a specific BDD
structure, it is difficult to a give a concrete formula for the
total number of valid cuts.

In our approach we limit our attention to horizontal cuts.
Our experience shows that horizontal cuts work well on
most BDDs. Under the worst case, the total number of
horizontal cuts is |V|, where V is the number of variables
(levels of a BDD). In practice, the total number of valid
horizontal cuts is much smaller than |V|, because many
cuts are either 1-equivalent or 0-equivalent.

C.2 Algebraic Decomposition

Algebraic decomposition is a special case of Boolean de-
composition. Due to the importance of the algebraic de-
composition and easiness with which it can be identified
on a BDD, algebraic AND/OR structures are readily iden-
tified independently of generalized dominators. Two basic
structures leading to an algebraic AND/OR decomposi-
tion were found by Karplus [29]. Here we review these
structures and show that they are special cases of our gen-
eralized dominator.

Definition 15 (1-Dominator) Node v € V which belongs
to every path p € Iy is called a 1-dominator. O

It should be noted that the above definition applies only
to BDDs without complement edges above node v. A BDD
with a I-dominator has been shown in Fig. 9(a).

Theorem 12 (Algebraic AND decomposition) The BDD
which contains a 1-dominator can be algebraically decomposed
into two conjunctive parts, i.e., F' = f - g, where the supports
of f and g are disjoint.

Proof: Fig. 14(a) shows the structure of a 1-dominator, in
which node v lies on all path I14. If a cut is be performed directly
above node v, the Boolean divisor generated from the generalized
dominator is structurally identical to the portion of the BDD
above the cut. This is shown in Fig. 14(b). The quotient of this
division can be obtained by redirecting the 3¢ edges to don't
care, which can then be redirected to node v. Then all BDD
nodes in part f have the same transitive child, v, and the whole
f part collapses into node v. This is shown in Fig. 14(c). Since
there is no common support between f and g, the decomposition

is algebraic. O
Definition 16 (0-Dominator) Node v € 'V which belongs
to every path p € Ilg is called a O-dominator. O

0-dominator is a dual of 1-dominator. An example of a
0-dominator is shown in Fig. 9(b).

12

Y edges provide an “early evaluation” of a Boolean
function. For example, the value of function f = ab
(f = a + b) can be determined when either a or b equals
to 0 (1). BDDs of functions that are mainly composed of
AND/OR logic tend to have many X edges. On the other
hand, BDDs of functions populated with XORs have very
few or no X edges. Therefore, the value of a function with
XORs is determined by the relative values of its variables.
For example, the value of function f = a @ b will only
be determined when values of both variables a and b are
given.

It is apparent that the decomposition which relies on
¥ edges will fail on a BDD with few ¥ edges. In this
section, the techniques targeting XOR-type decomposition
of a BDD are developed. In this case the complement edges
are used to uncover the underlying XOR decomposition.
The primary goal of introducing complement edges was
to reduce the memory usage. Interestingly, we find that
the presence of complement edges in a BDD is related
to XOR decomposition. In the sequel, we will use
XNOR (@) instead of XOR because XNOR has a more
straightforward representation on BDDs.

D.1 Algebraic XNOR Decomposition

Definition 17 (x-dominator) Node v € 'V which is
contained in every path p € IL is called an x-dominator. O

Fig. 16. Role of an x-dominator in XNOR decomposition.

A BDD with an x-dominator is shown in Fig. 16. Note
that the definition of x-dominator implies that there must
exists at least one complement edge above the x-dominator
v. Otherwise all the BDD nodes above v will collapse into
v. Therefore x-dominators do not exist on BDDs without
complement edges.

Theorem 13 (Algebraic OR decomposition) The BDD which Theorem 14 (Algebraic XNOR decomposition) Let v be

contains a O-dominator can be algebraically decomposed into
two disjunctive parts, i.e., F = f 4+ g, where the supports of
f and g are disjoint.

Proof: The proof is similar to that of Theorem 12. It is
illustrated in Fig. 15. O

D. XOR Decomposition

BDD decomposition based on generalized dominators,
described in the previous sections, relies on X edges. It is
interesting to note certain properties of ¥ edges. Namely,

an x-dominator of the BDD of function F. The BDD of F' can
be algebraically decomposed as F = u@®f, where f is a BDD
rooted at v, and w is the BDD rooted at the original function
with v replaced by constant 1.

Proof: Fig. 17(a) shows a generic BDD with x-dominator v.
By definition of complement edges, the BDD of f rooted at v
can be split into two parts, f and f', as shown in Fig. 17(b).
Then the BDD can be represented as a disjunction of two parts,
as shown in Fig. 17(c). Note that f and f' are the 1-dominators
in their respective BDDs. By defining u to be the BDD of F

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

(a) 1-dominator structure

(b) Generation of the divisor D

13

(c) Generation of quotient Q

Fig. 14. 1-dominator structure and its corresponding decomposition.

@ 5

(a) O-dominator structure

(1] [o]

(b) Generation of the subtractor

]
[
T T

LR
w0

(c) Generation of remainder

—_—

s
m

Fig. 15. 0-dominator structure and its corresponding decomposition.

uf u'f

c

[N— /]
\ VT

(v f f

/1)

@ (b) ©

Fig. 17. x-dominator and its decomposition

in which v is replaced with 1, function F' can be decomposed as
F=uf+u'f =udf. O
Example 5: An x-dominator is shown in Fig. 16. According
to Theorem 14, the BDD can be algebraically decomposed as
F=(@+ydW+r'+9q. O

D.2 Boolean XNOR Decomposition

The goal of Boolean XNOR decomposition of function F’
is to find a decomposition F' = f@g that will minimize the
cost of its implementation. Usually XNOR decomposition
is performed on a function in which good AND/OR
decompositions are unlikely to be found.

While exhaustive search for all possible functions f is
clearly prohibitive, a set of good candidates for f can be
detected directly form a BDD structure, called generalized
x-dominator, defined as follows.

Definition 18 (Generalized x-dominator) Node v € V
which is pointed to by both the complement and regular edges
is called a generalized x-dominator. The complement edges
associated with the generalized x-dominator are called XOR-
related complement edges. O

Let BDD of F' contains a generalized x-dominator f. By
performing transformation g = f@F, the regular edges
pointing to f are redirected to 1 (because f&f = 1),
and the complement edges pointing to f are redirected to
0 (f@&f' = 0). In the process, the transformation removes
the XOR-related complement edges pointing to f. The XNOR
core of a Boolean function can be efficiently extracted by
removing XOR-related complement edges from its BDD.

Example 6: Figure 18 shows the BDD for circuit rnd4-
1, a test case in the MCNC benchmark suite. According to
Definition 18, there are two generalized x-dominators in this
BDD, namely f = x1®x4, and h = xz4. We illustrate the
decomposition based on f. Its BDD is shown in Figure 18(b).
The BDD of ¢ = f®F is also shown in Figure 18(b). The
BDD of f consists of an x-dominator, and the BDD of g =

Theorem 15 (Boolean XNOR decomposition) Fora Booleanf g consists of 1- and 0-dominators. Therefore both of them

function F', given an arbitrary Boolean function f, there always
exists a Boolean function g, such that F = f & g.

Proof: The proof is trivial, using the following Boolean
transformation.

F=fa(foF)=foy ©)

where f is an arbitrary Boolean function, and g = f@F. O

can be further algebraically decomposed, resulting in F =
(21074)B (22 (73 + 2124)). O

E. MUX Decomposition

BDD is a graphical representation of a sequence of
Shannon expansions. Each node in a BDD can be
viewed as a simple multiplexor (MUX). Taking MUX

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

g=feF
&2
generalized x-dominators @
\ . D o
at @

(b)
Fig. 18. XNOR decomposition of function rnd4-1

decomposition regardless of the specific BDD structure
often leads to poor multi-level Boolean expressions.
Simple MUX decomposition w.r.t a single node is only
beneficial when the overlap between its two co-factors is
less than a certain threshold. This case is shown in Fig. 19.

L]

Fig. 19. Simple MUX decomposition

E.1 Functional MUX

The generalization of a simple MUX decomposition is
referred to as functional MUX decomposition. In this
decomposition, the control signal is a function, instead of
a single variable. Functional MUX decomposition often
leads to concise multi-level expressions.

Theorem 16 (Functional MUX Decomposition) Consider
a BDD structure, in which two nodes, u and v, cover all paths
p € IL. The BDD can then be decomposed as hg + h' f, where
h is obtained by redirecting node u to 1, and node v to 0, and f
and g are functions associated with nodes u and v, respectively.

Proof: The proof is similar to that of Theorem 14. The
decomposition is shown in Fig. 20. O

Fig. 20. Functional MUX decomposition. F' = hg + b’ f.

Similar to the definitions of the 0- and 1-dominator, this
theorem applies only to BDDs without complement edges
above v and v. While the functional MUX decomposition

14

exists in various Boolean functions, they are especially
common in arithmetic functions. They are frequently
associated with XNOR decomposition.

Example 7: Shown in Figure 21 is a simple example of a
functional MUX decomposition. Nodes w and v cover all paths
p € IL. Subsequently, function F can be decomposed as
F = gc+ g'd, where g = a' + b serves as a control signal
of the MUX. O

@ (b)

Fig. 21. Example of functional MUX decomposition: F = gc + ¢'d,
!
g=a +b.

F. Linear Expansion of BDDs

In this section, a generalization of different BDD
decompositions described in previous sections is studied.
It will be shown that all previous BDD decomposition
methods are special cases of linear expansion to be
presented here. Our objective is not to overrule all
special-case BDD decompositions; these decompositions
are of practical importance, because they are easy to
identify and their decompositions are straightforward.
The purpose of this section is to gain an understanding
of the fundamentals of Boolean decomposition.

Fig. 22(a) shows a generic BDD. Each f; represents
an arbitrary logic function, including constant functions
0 and 1. Any BDD could be represented in this
way without loss of generality. Let us examine the
decomposition of such structured BDD into a set of
disjunctive component BDDs (F,F,---,F}), shown in
Fig. 22(b). Each component BDD F; consists of a coefficient
BDD ¢; and a function BDD f;. Note that the root of
each function BDD f; plays a role of 1-dominator in the
respective component BDD. Therefore, each component
BDD F; can be further decomposed according to the 1-
dominator structure. The final decomposition is shown in
Fig. 22(c).

Now let us study the properties of coefficient BDDs
(c1,¢2,-+,¢;). The relation between those coefficients
are shown in Fig. 23. Since all coefficient BDDs are
generated from the same BDD, and differ only in their
terminals, all coefficient BDDs are graphically isomorphic.
According to the principle of APPLY operation [15], the
Boolean operations between those coefficient BDDs only
take place at the terminals. Therefore, the union of
all coefficient BDDs is equal to 1, which is shown in

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

15

f1

£...£+

(e o

fa

(b) Linear expansion of the BDD

(c) Decomposition of al components using 1-dominator

Fig. 22. Linear expansion of a BDD

Fig. 23(a). Similarly, the intersection between any two
different coefficient BDDs is equal to 0, which is shown
in Fig. 23(b). Mathematically the above analysis can be
formulated as follows.

Theorem 17 (Linear Expansion) A Boolean function can
be expanded w.rt. an orthonormal coefficient set, ¢ =
{c1,¢2,- -, ¢k}, as follows:

k
F=) ¢t
i=1

where Zle ci=1land c¢;-c; =0, Vi#j.

Proof: Any Boolean function can be represented as a BDD
with structure shown in Fig 22. This figure and Fig. 23 provide
the proof. O

We note that our linear expansion theory sounds exactly
like the Definition 2 (orthonormal expansion). However,
the way in which the two expansions are carried out
is different. When a Boolean function is represented
symbolically, in order to perform the orthonormal
expansion, an orthonormal set must be provided first.
Generation of such a symbolic orthonormal set is not
trivial. Also the generalized co-factors required for the
orthonormal expansion need to be calculated. Worst of
all, the effectiveness of a symbolic orthonormal expansion
will not be fully recognized until the whole decomposition
is completed. In contrast to that, the linear expansion
can be performed easily on a BDD, because the coefficient
BDDs ¢; and function BDDs f; are represented explicitly
by a BDD structure. The only thing that needs to be
done is to figure out which set of coefficients should be
used for the decomposition. Similarly, BDD structure
provides lots of hints for this type of decomposition; some
structural analysis of a BDD is required for this purpose.
The effectiveness of linear expansion can also be readily
estimated by the analysis of the BDD structure.

In summary, Theorem 17 provides further flexibility
to decompose an arbitrary BDD. The applicability of

this theorem relies on finding a BDD structure to which
this theorem can be applied efficiently. The special
cases, namely the 1-dominator, O-dominator, x-dominator,
simple MUX, and functional MUX decomposition, in
which the number of component BDDs is limited to
2, have been taken care of in the previous sections.
The structures more general than previously defined
dominators should be identified. We anticipate that this
generalization will further improve the performance of
our BDD decomposition scheme.

V. LOGIC SYNTHESIS BASED ON BDD DECOMPOSITION
- BDDLOPT

In this section, implementation details of the logic
optimization program, BDDlopt, which is based on our
BDD decomposition theory, are presented. Algorithmic
analysis of procedures in the proposed logic synthesis
flow is also provided.

It will be shown that all necessary procedures in a typ-
ical logic optimization flow can be implemented through
a series of BDD manipulations and decompositions. For
example, Boolean simplification can be efficiently carried
out through BDD variable reordering; factorization can be
done through recursive BDD decompositions; and logic
sharing can be efficiently detected on the final factoring
trees.

A. Synthesis Flow

The synthesis flow for BDDlopt is outlined in Fig. 24.
The flow consists of two major parts, BDD decomposition
and factoring tree processing. First, the global BDDs (see
Section II-C) are constructed for the Boolean network.
Then, the global BDDs are submitted to the decomposition
engine for logic decomposition. Along with the BDD
decomposition, a set of factoring trees are constructed
to record the decomposition. In the process of BDD
decomposition, a large BDD is recursively decomposed
into smal parts. The decomposition process stops when

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

16

(b) Intersection between any two different coefficients equals 0.

Fig. 23. Coefficient properties

e ——
Boolean Network

Construct Global BDDs

i

‘ BDD Decomposition Engine ‘

l

Construct One Node on the Factoring Tree

BDD has
one node ?

Factoring Tree Processing

l

‘ Synthesis Result Presentation

|

Technology Mapping

Fig. 24. Synthesis flow of BDDI opt

a BDD has one node. Finally, an important procedure,
sharing extraction, takes place in the factoring tree
processing phase.

Because of its iterative nature, the overall complexity is
difficult to characterize. In the experiment, we will focus
on the run time comparisons with the state-of-the-art logic
synthesis program, SIS.

B. BDD store/load Mechanism

In this section, a BDD manipulation technique, which
is crucial to performing logic simplification in BDDlopt, is

explained.

In our BDD-based logic optimization scheme, BDD
variable reordering algorithm serves as an implicit logic
simplification. It should be emphasized that, in a typical
BDD package, variables are reordered with respect to a
BDD manager, and not w.r.t. a specific BDD. Hence, if
there is more than one BDD in the manager, variable
reordering may not result in the desired simplification
for a specific BDD. In order to achieve maximum logic
simplification of a Boolean function (BDD), all other BDDs
must be freed from this BDD manager before performing
variable reordering. However, those freed BDDs must
be present in the BDD manager when they are needed
for decomposition at a later time. Therefore, an efficient
store/load mechanism must be developed.

A naive way of storing a BDD is to dump it into a SOP
form. The advantage of SOP form is that the BDD can
be reconstructed under a variable order which is different
from the order in which the BDD is stored. This offers
some flexibility for the implementation. However, since
the number of SOP terms of a BDD can be exponential in
the number of BDD nodes, storing BDDs in SOP form is
not a feasible solution.

A new data structure, bddPool , has been devised to
perform BDD store/load operations. Basically, a bddPool
is a DAG which is graphically isomorphic to the BDD
it represents. A BDD is copied to a bddPool before
it is freed from the BDD manager. The BDD can be
reconstructed later by applying an ite® operation n times,
where n is the number of BDD nodes. Since an ite
operation takes constant time, the overall complexity of
our BDD store/load algorithm is O(n). The disadvantage
of bddPool is that the variable order of the BDD manager
into which a BDD is loaded must be the same as the order
in which a BDD is stored. Forcing a BDD manager to
a certain variable order could result in an exponential
increase in the BDD size if the manager is not empty.

8 An ite is short for if-then-else; it is defined as ite(x, g,h) = g + x'h

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

However, in our application, when a BDD is loaded
(built), the BDD manager is always empty.

Another important feature of our bddPool mechanism
is to allow the variable substitution during the process of
BDD reconstruction. This can be accomplished easily by
modifying the ite operator as f = ite(M(x), g, h), while M
is the mapping of variables. This feature plays a crucial
role in our efficient iterative eliminate paradigm (Section VI-
Q).

C. The BDD Decomposition Engine

Shown in Algorithm 1 is the main procedure for the
BDD decomposition. To make the BDD manager “clean”,
all BDDs are stored in the bddPool form. A BDD is
loaded into the BDD manager before it is decomposed.
The store/load process is realized by function st or eBdd
and | oadBdd. After a BDD f has been constructed in
the BDD manager, it is decomposed by deconposeBdd.
The decomposition results are presented as g ® h, where
© stands for a Boolean operator, such as AND, OR, XOR
or XNOR. The decomposition is stored in the form of
factoring tree, discussed in Section V-D. The intermediate
BDDs of g and h are then stored in the bddPool form
and enqueued if they have more than one node. The
decomposition process is iterated until the queue is empty.

bddPool = storeBdd(bdd);
Enqueue(Q bddPool);
whi | e(bddPool = Dequeue(Q) {

f = | oadBdd(bddPool) ;
(g, h, op) = deconposeBdd(f);

construct one node on factoring tree;

if (g != single node) {
gPool = storeBdd(Q);
Enqueue(Q gPool)

if (h!= single node) {
hPool = storeBdd(h);
Enqueue(Q hPool);

}
}

return (factoring tree);

Algorithm 1: Main BDD decomposition flow

The main BDD decomposition engine, deconposeBdd,
is a search process for the most efficient BDD decom-
position, from more efficient (algebraic) to less efficient
(Boolean). The dominators are empirically ordered in
terms of decomposition efficiency as follows: 1) simple
dominator (1-, 0- and x-dominator), 2) functional MUX, 3)
single MUX, 4) generalized dominator and 5) generalized x-
dominator. Finally, if all searches fail, the BDD is decom-
posed using cofactor w.r.t. the top variable. In practice, the

17

last step is rarely reached. It is put here to ensure the BDD
f will be decomposed when all other attempts fail.

A BDD decomposition process begins with the BDD
structural scan, in which the structural information of a
BDD is obtained. The information is used as a guidance
for all the following decompositions. In terms of criticality
of computational complexity, function bddScan is the
most important one, because it is called every time
the decomposition engine is invoked. The technique
developed for this purpose is based on edge marking. The
complexity of bddScan is O(n|V), where n is the number
of BDD nodes, |V| is the number of variables in the BDD.

C.1 Simple Dominator

All three simple dominators (I1-, 0- and x-dominator)
share a similar pattern, i.e., there is a node into which
all internal edges converge. Based on this observation,
efficient algorithms can be designed to unveil all simple
dominator structures. In fact, the BDD scan procedure
bddScan is devised to find out the structural information
of a BDD. The structures of simple dominators are
already encoded in the data collected by bddScan. The
complexity of this function is O(|V|).

In implementation, instead of returning the first
found simple dominator, all simple dominators are
obtained and the one closest to the middle height of
the BDD is returned. This helps to achieve a more
balanced decomposition, which is crucial to the delay
minimization.

C.2 Generalized Dominators and Generalized x-Dominators

If an algebraic decomposition does not exist for
a Boolean function, Boolean decomposition will be
performed. The BDD structures leading to Boolean
decompositions are generalized dominators and generalized
x-dominators. ~ Unlike the decompositions based on
simple dominators, whose decomposition results are
well-defined, the decompositions based on generalized
dominators rely on BDD minimization w.rt. a don't
care. Therefore, the decomposition result depends on the
efficiency of the BDD don’t care minimization algorithms.

To carry out these decompositions, all possible Boolean
decompositions are examined level by level. BDD scan
information is required for the application of various fil-
ters. On each level, two major steps, generalized domina-
tor generation and BDD minimization w.r.t. don’t care,
are involved in a single decomposition. The generation
of a generalized dominator is a process of copying the BDD
structure above the cut. The upper bound for this opera-
tion is O(n). The function used to calculate f/d (or f/d")
is based on RESTRICT operator [34] whose complexity is
O(|f]-|d]) (or O(|f]-|d']))- The upper bound for RESTRICT
is O(n?). Therefore, upper bound for function deconp-
Gener al i zedDoni nat or is (|V|n?).

D. Construction and Processing of Factoring Trees

A factoring tree is a way to record a BDD decomposition
process. For example, if a Boolean function f is

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

decomposed into g + h, then a new node, with operator
”+” and two siblings, g and h, will be created to record
this decomposition. A factoring tree will keep growing
until the BDD decomposition is completed. Subsequently,
several steps can be applied to the factoring trees to
further optimize the synthesis results. In particular,
sharing between different factoring trees can be efficiently
detected.

To identify the sharing between different factoring trees,
BDDs are constructed for all factoring trees in a bottom-
up fashion. The canonicity property of BDD is used to
identify functionally equivalent sub-trees. Fig. 25 shows
an example of sharing extraction on test case b1.blif from
MCNC benchmark set.

E. Experimental Results

The experiments were conducted on SUN UltraSPARC-
5/320M. They cover most of the combinational test
cases from the MCNC benchmark set. All the test
cases can be roughly categorized into two groups:
1) AND/OR-intensive functions, and 2) XOR-intensive
logic (arithmetic functions). The literal count for
decompositions generated by BDDIopt was compared
with the number of literals in the factored form obtained
by SIS-1.2 running script.rugged. The comparison also
includes results after technology mapping. Both tree-
based SIS mapper and Boolean matching-based ceres [35]
are used. ceres is based on Boolean matching rather than
tree matching. For this reason the XOR decompositions
found by BDDIopt are likely to be preserved.

The results for AND/OR intensive circuits are shown
in Table I. On average, BDDIopt uses slightly fewer gates
than SIS, and more area than SIS. The slight increase in
area is due to the higher cost of XOR gates implemented
in CMOS. On average, the final synthesis results using
BDDlopt and SIS on this class of functions are almost
the same. While near optimal results are obtained by
both SIS and BDDlopt, but BDDIlopt out-performs SIS
dramatically in CPU time. However, for the class of
arithmetic functions and XOR-intensive logic, shown in
Table II, BDDlopt outperforms SIS in all aspects. While,
in principle, ceres generates better mapping results that
SIS mapper, it was not stable on several circuits which
makes the complete comparison difficult. For this reason
only results of SIS mapper are presented. The results
of techniques targeting specifically XOR decomposition
by Tsai et al [36] are also listed for comparison purpose.
One can see that the performance of BDDlopt in terms
of the number of gates is comparable to that of Tsai
et al. [36]. It should be noted that many XORs in the
netlist synthesized by BDDlopt are lost after technology
mapping. As indicated in column XORs in Table II, only
33% XORs are preserved in technology mapping.

VI. BDD-BASED LOGIC SYNTHESIS SYSTEM - BDS

A very important feature of a logic synthesis system is
its scalability. The scalability requires that the size of the
representation of a problem be proportional to the size of the

18

problem itself. In our case, the size of a BDD should be
proportional to the size of a circuit (which is commonly
measured by the number of logic gates). However, the
size of global BDDs for a given Boolean network is
completely unpredictable. It strongly depends on the
type of the circuit, rather than on the total number of
gates. Representing the entire Boolean network by global
BDDs causes serious computational problems. Therefore,
proper partitioning of the Boolean network is required
prior to performing the BDD decomposition. Table III
shows the comparison of the size of global BDDs and local
BDDs (defined in Section II-C). It can be found that the
size of global BDDs could be as much as two orders of
magnitude larger than local BDDs.

The similar problem, large two-level representation,
has also been observed in traditional multi-level logic
synthesis. Fortunately, a proper way to handle it has
been found. Given a large Boolean network, its multi-
level structure should be preserved as much as possible.
The number of SOP terms could be too large for the logic
optimization algorithms if the entire Boolean network
is collapsed into two-level forms. From this point of
view, the network partitioning faced by BDD-based logic
synthesis is similar to the one faced by traditional multi-
level logic synthesis.

Circuits || Global BDDs || Local BDDs ||

C1355 33450 893
C1908 6734 1229
C2670 5554 1712
C3540 25828 2326
C432 1226 283
C499 26890 341
C5315 2942 3516
C7552 19322 5012
C880 15004 601
pair 4940 1808
rot 7340 934
TABLE III

COMPARISON OF NUMBER OF BDD NODES FOR GLOBAL AND LOCAL
CONSTRUCTION

In this section, a new logic synthesis system, BDS,
which has the capability to optimize arbitrarily large
circuits, is presented.

A. Synthesis Flow

Current multi-level logic synthesis flow exemplified
by SIS has drawn from over twenty years of intensive
research. We believe it has the capability to handle
very large circuits and it does grasp the essence of logic
synthesis in general. Therefore, BDS adopts the general
synthesis flow of SIS. Fig. 26 compares the synthesis
flow of SIS and BDS. The similarity between them is
obvious. The fundamental difference between SIS and
BDS is the way in which each system represents Boolean

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM 19

(@) (b) ©

Fig. 25. Sharing extraction through the BDD construction. (a) Original BDD. (b) Factoring trees after BDD decomposition. (c) Factoring trees after
sharing extraction.@= XNOR; A = XOR; dashed = negation.

Circuits SIS BDDlopt

Name In | Out || Lit. | gates | area | CPU || Lit. | gates | area | CPU
bl 3 4 10 5 144 0.2 9 4 128 0.0
b12 15 9 151 83 2384 | 194 77 45 1424 | 0.4
b9 41 | 21 122 92 2600 | 2.1 148 77 2328 | 1.3
c8 28 | 18 139 90 2440 | 19 140 75 2288 | 0.6
cc 21 | 20 58 32 920 1.1 74 46 1368 | 0.4
cht 47 | 36 165 48 2328 | 1.9 193 110 | 3008 | 1.2
cm138a 6 8 31 17 472 0.9 31 15 488 0.1
cml50a | 21 1 51 21 720 0.5 53 38 1200 | 0.5
cmlb5la | 12 2 26 17 528 0.4 26 15 424 0.3
cml52a | 11 1 22 16 512 0.2 22 13 360 0.1
cml62a | 14 5 49 26 816 0.7 52 27 872 0.2
cml63a | 16 5 49 31 832 0.7 37 20 672 0.1
cm42a 4 10 34 17 472 0.8 35 17 552 0.1
cm82a 5 3 24 9 296 0.2 16 9 336 0.1
cm85a 11 3 46 28 824 0.6 43 32 960 0.1
cmb 16 4 51 27 880 0.4 39 14 592 0.2
conl 7 2 20 13 368 0.2 21 12 368 0.1
count 35 | 16 143 96 2680 | 2.0 159 77 2824 | 14
cu 14 | 1 60 35 1016 | 1.0 72 35 1192 | 0.3
decod 5 16 52 31 840 1.1 60 30 824 0.2
frgl 28 3 136 | 107 | 3280 | 8.3 102 56 1760 | 1.3
majority | 5 1 10 6 200 0.2 10 5 184 0.1
misex2 25 | 18 106 65 1832 | 1.3 177 87 3016 | 0.7
064 130 | 1 - - - - 130 80 2312 | 24
pcle 19 9 69 44 1256 | 0.9 77 51 1560 | 0.4
pml 16 | 13 50 30 800 0.8 64 27 896 0.2
sct 19 | 15 79 48 1328 | 2.0 83 48 1488 | 0.4
tcon 17 | 16 32 9 400 0.3 40 24 576 0.1
ttt2 24 | 21 217 | 138 | 3952 | 59 201 121 | 3928 | 1.1
unreg 36 | 16 102 52 1512 | 1.5 130 66 1952 | 0.8
Total | 2104 | 1233 | 36632 | 57.5 || 2814 | 1196 | 37568 | 12.8
Average Ratio (BDDlopt/SIS) 137% | 104% | 105% | 37%

TABLEI
AND /OR-INTENSIVE CIRCUITS: RESULTS OF LOGIC OPTIMIZATION WITH BDDlopt-1.2.5 VS SIS. TECHNOLOGY MAPPING IS DONE BY ceres.
CIRCUITS ARE MAPPED TO LIBRARY msu cmos3.

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM 20
Circuits SIS BDDlopt Tsai [36]
Name Lit. | gates | area | CPU || Lit. | gates | area | CPU XORs gates
5xpl 132 81 195 | 4.1 95 67 172 0.4 4/16 66
9sym 274 | 152 | 396 | 22.0 70 42 109 1.0 0/4 64
9symml || 186 | 102 | 270 | 19.7 70 41 108 0.9 0/4 -
alu2 361 | 217 | 524 | 747 || 318 | 230 | 632 2.8 13/53 -
alu4 694 | 409 | 996 | 2863 | 930 | 582 | 1655 | 159 | 23/124 -
cordic 64 34 94 0.9 56 47 126 0.5 6/16 -
f5Im 98 58 139 | 9.0 73 56 174 0.3 5/11 63
my.add || 192 | 156 | 287 | 3.1 128 | 110 | 286 8.9 16/32 113
parity 60 15 75 0.6 16 15 75 0.1 15/15 15
rd53 34 22 47 1.3 38 25 72 0.2 3/6 25
rd73 189 | 106 | 258 | 12.1 80 45 133 0.8 5/8 41
rd84 348 | 192 | 468 | 42.8 || 115 62 189 1.4 6/12 66
481 881 | 407 | 1023 | 208.6 | 16 15 45 0.3 5/5 23
z4ml 41 20 59 22 24 20 53 0.1 3/6 21

Total [[3554 [1971 | 4831 | 687.4 || 2029 | 1357 | 3941 | 33.6 | 104/312
Average Ratio (BDDlopt/SIS) 60% | 77% | 86% | 15.6% 33%
TABLEII

XOR-INTENSIVE CIRCUITS: RESULTS OF LOGIC OPTIMIZATION WITH BDDIlopt-1.2.5 VS. SIS AND TSAI [36]. SINCE ceres IS NOT STABLE ON THIS
CLASS OF FUNCTIONS, ONLY SIS MAPPER IS USED. CIRCUITS ARE MAPPED TO mcnc.genlib. THE NUMBER OF XORS AFTER /BEFORE TECHNOLOGY
MAPPING IS SHOWN IN COLUMN XORs.

nodes and carries out all individual synthesis procedures.
In BDS, after a Boolean network has been built, all Boolean
nodes are represented as local BDDs. All the following
procedures are carried out based on the local BDDs.

Although the space for further improvement of the
synthesis flow seems to be limited, there is still a potential
for significant improvement in its many procedures [3].
This is especially true for our BDD-based logic synthesis,
in which all procedures are formulated in the BDD
domain. It should be mentioned that all procedures
in the synthesis flow are heavily influenced by the
underlying Boolean representation. Logic representation
based on BDDs is significantly different from traditional
SOP forms. Therefore, while retaining a similar synthesis
flow, new algorithms, specially tailored for BDDs, have
been developed for all the procedures.

In the following sections, essential procedures in the
synthesis flow are reviewed, and the corresponding
implementations in the BDD domain are presented.

B. Sweeping Operation

sweep is the first step in the proposed synthesis flow.
It removes some obvious redundancy from the Boolean
networks. Although there is no real logic optimization
involved in this procedure, for certain multi-level Boolean
networks, sweep plays an important role in removing
redundancy from the networks.

B.1 Constant and Single-Variable Nodes Removal

Constant nodes in a Boolean network are caused by
the way a Boolean network is represented. For example,
a primary input might be connected to the ground or

e ——
Boolean Network
SIS BDS

X Sweep. Constant propogation.
Sweep. Constant propogation

|

Functionally equivalent nodes removal

‘ Eliminate based on factored form ‘

‘ Eliminate based on BDD statistics

|

l

Logic simplification using two-level

techniques.

Logic simplification through

BDD variable reordering

Factorization, resubstitution, etc.

Recursive BDD decomposition
Sharing extraction from multi-BDDs

Sharing extraction on factoring trees

Technology mapping

Fig. 26. Synthesis flow of SIS and BDS

power permanently. A logic optimization program should
take advantage of constant and single-variable nodes to
reduce the complexity of a Boolean network. It should
be noted that the removal of one constant or single-
variable node may create another, and such nodes may
be produced during the process of logic optimization.
Therefore, sweep is iterative.

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

B.2 Removal of Functionally Equivalent Nodes

Traditionally, when a multi-level Boolean function is
represented as a cube form, only constant and single-
variable nodes can be identified and removed from the
Boolean network during sweep. When a Boolean network
is represented in the BDD form, there is an added
bonus. Since BDD is canonical, the functional equivalence
between different Boolean nodes can be detected easily.
Therefore, in addition to removing constant and single-
variable nodes, all functionally equivalent nodes can be
also be removed from a Boolean network during sweep.

Although the functionally equivalent Boolean nodes
in a Boolean network can also be removed by later
optimization procedures (e.g. eliminate, re-substitution)
in the traditional synthesis flow, it is always beneficial
to remove such redundancy before the actual logic
optimization. Table IV lists the number of functionally
duplicated nodes for some well-known testcases. We
were surprised to find so much redundancy in those
testcases. This is the first time ever that functionally
duplicated Boolean nodes can be removed before actual
logic optimization.

Circuits || Total Nodes || Duplicated Nodes ||

C1908 441 118
C2670 787 72
C3540 956 247
C5315 1467 197
C6228 2353 30
C7552 2165 355
880 302 10
dalu 985 249
i8 1183 186
i9 329 22
i10 1634 84
pair 830 16
vda 123 3
TABLE IV
NUMBER OF FUNCTIONALLY DUPLICATED NODES IN A BOOLEAN
NETWORK

Since the removal of one functionally equivalent node
may create another, the duplication removal in BDS is
iterative. The numbers shown in Table IV are just the
numbers of duplicated nodes found in the first iteration.
The actual number is even larger. Removing functionally
duplicated Boolean nodes helps BDS to reach the final
optimized netlist. This also contributes to the runtime
advantage over traditional approaches, because logic
optimization algorithms are generally more expensive
than sweep.

C. Boolean Network Partitioning by Iterative Node Elimina-
tion

Due to the size of most industrial designs and the
limited computational capacity of logic optimization
algorithms, it is not practical to apply logic optimization

21

algorithms on global representations. It can also be shown
that, on the other extreme, applying logic optimization
algorithms to completely local representations does not
work either. In a typical logic synthesis flow, since
a Boolean network is obtained through the direct
translation from HDL languages (Verilog, VHDL, efc.),
most components of the network are simple gates.
Therefore, it is an overkill to apply logic optimization
algorithms on simple gates. A reasonable trade-off in
this global vs. local scenario should be found. A Boolean
network should be allowed to be partially collapsed into a
set of super Boolean nodes and each represented as a BDD;
then logic optimization algorithms can be applied to each
super node. It is obvious that the procedure to carry out
the partial collapsing is critical to a logic synthesis system.

In multi-level logic synthesis, in addition to providing
a trade-off between local and global representations,
partial collapsing also helps to remove logic redundancy
embedded in a multi-level configuration. The most
frequent cause of redundancy in a multi-level Boolean
network is the so-called re-convergence. This type of
redundancy can be easily removed by partial node
collapsing.

To carry out partial collapsing, procedure such as
el i mi nat e comes into play. el i mi nat e attempts to find
a partially collapsed Boolean network such that Boolean
nodes are not too large for logic optimization algorithms.
On the other hand, Boolean nodes should not be too fine,
otherwise some redundancy may remain in the network.
A properly designed el i m nat e scheme will provide a
better starting point for logic optimization algorithms.

el imnate has been successfully implemented in
SIS [2], in which an implementation cost is associated
with each Boolean node. The decision whether a Boolean
node is collapsed into its fanout depends on the cost gain,
measured as a difference in the number of BDD nodes
before and after an attempted collapse of the Boolean node
into its fanouts.

Two approaches have been proposed for el i mi nat e
through BDD manipulation. The first one is based on
progressive elimination [37]. In this approach, BDDs are
constructed from primary inputs to primary outputs. At
any point, if the size of a BDD is larger than a pre-
defined threshold, an intermediate variable is introduced
and the BDD construction process continues until primary
outputs are reached. This approach ignores the specific
structure of a Boolean network. As a result, the
elimination often stops at boundaries which are not
natural to the specific Boolean network. This approach
may also cause memory blow-up. The second approach
is based on iterative elimination [38] which is quite similar
to the el i m nat e procedure in SIS [2]. In the process,
BDD node count is used as the cost function to guide the
elimination.

To comply with the mainstream synthesis flow, an
approach similar to that of SIS [2], [38] has been adopted.
However, due to the efficiency of described techniques
for BDD manipulations, our el i m nate is orders of

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

magnitude faster than [38].

Example 8: Fig. 27 shows an example of node elimination.
The initial Boolean network is shown in Fig. 27(a). The number
shown next to each Boolean node is the cost (number of BDD
nodes) associated with the Boolean node. The cost of the initial
network is 16. The BDD of node z is composed into the BDDs
of x and y. The new cost is 10. The difference between new
and initial cost is -6. If the difference is less than a pre-specified
threshold, node z is eliminated from the network and the inputs
of x and y are modified accordingly, as shown in Fig. 27(b). If
the difference is larger than the threshold, the network will be
left unchanged. O

-

(&) Initial Boolean network (b) Network after node elimination

Fig. 27. An example of node elimination.

A generic algorithm for iterative elimination is shown
in Algorithm 2. In col | ect, all Boolean nodes which are
eligible for collapsing into their fanouts are collected. In
execut e, the Boolean network is modified to lock the
recent changes. The BDD manager is reordered before
the next col | ect. The whole process is iterated until no
Boolean node can be eliminated any further.

22

candi date = col | ect (bddnyr,
whi | e(candi date) {
execut e(bddngr, candi dat e) ;
newbddngr = bddMappi ng(bddngr,
r eor der (newbddngr) ;
free(bddngr);
bddngr = newbddnyr;
candi date = col | ect (bddnyr,

net wor k) ;

net wor k) ;

net wor k) ;

candi date = col | ect (bddnyr,
whi | e(candi date) {
execut e(bddngr, candi date) ;
reor der (bddmgr) ;
candi date = col | ect (bddngr,

net wor k) ;

net wor k) ;

Algorithm 2: Eliminate

In practice, a straightforward implementation of this
process is not efficient. This is mainly because of the
abuse of BDD variable reordering. When local BDDs
are constructed for a Boolean network, an intermediate
variable is created for each Boolean node. Therefore,
in addition to all primary inputs, a BDD manager also
contains all intermediate variables. The number of
such variables could be huge even for a medium-size
circuits. Since the complexity of variable reordering could
be exponential, reordering a BDD manager with large
number of variables will severely degrade the overall
runtime performance.

In BDS, new BDD manipulation techniques are devel-
oped to make the approach feasible in practice. Algo-
rithm 3 shows the modified version of Algorithm 2. In this
algorithm, instead of using a single BDD manager for all
the operations, a new BDD manager is initialized in each
iteration. All BDDs after one iteration are mapped into the

Algorithm 3: Efficient Iterative Eliminate Paradigm

new BDD manager. A variable reordering is performed
for the new BDD manager. The old BDD manager is aban-
doned. The process is iterated until no Boolean nodes can
be eliminated.

The need for a new BDD manager and the BDD
mapping operation can be justified as follows. A typical
approach for variable reordering is based on adjacent
variable swapping. To find the optimal position for a
variable, a bulk of unique table of a BDD manager will be
traversed. During the process of eliminate, the removal of
one Boolean node from the Boolean network corresponds
to the demise of one variable in the BDD manager, so
the variable will not be used again. Let us refer to these
variables as unused variables. After the termination of
one iteration many Boolean nodes have been removed,
and the BDD manager contains large number of unused
variables. Table V shows the reduction in the number of
Boolean nodes after first iteration. It can be found that
about 63% variables in the BDD manager become unused.
It is obvious that performing variable reordering in a BDD
manager with large number of unused variables is very
inefficient.

Circuits || Before || After || Reduction ||

C1355 474 60 88 %
C1908 325 94 72 %
C2670 656 281 58 %
C3540 793 344 57 %
C432 123 63 49 %
C499 162 57 65 %
C5315 1228 387 69 %
C6288 2338 704 70 %
C7552 1829 455 76 %
C880 296 122 59 %
dalu 764 241 69 %
des 681 294 57 %
mult32 5507 2467 56 %
pair 818 450 45 %
|| Total || 15994 || 6019 || 63 % ||
TABLE V

NUMBER OF BOOLEAN NODE REDUCTION AFTER FIRST eliminate

Instead of reordering the BDD manager with large
number of unused variables, a new BDD manager with

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM

set of used variables is initialized. @ BDDs are then
transfered into the new BDD manager using our bddPool

mechanism (see Section V-B). During the process,
variables are substituted according to M, where M is
the mapping of variables between the old and new BDD
managers. When all BDDs are reconstructed in the
new BDD manager, a set of BDDs which are graphically
isomorphic to the original ones, but much more compact
in the range of indices, are obtained. This process is
referred to as a BDD mapping.

Table VI shows the results of our iterative eliminate
paradigm. The results of Chaudhry [38] are also listed
for comparison. On average, our el i mi nat e is 85 times
faster than [38]. The runtime advantage of BDS becomes
stronger for larger test cases. Although BDS is targeting
multi-level implementation, it is obvious that the iterative
eliminate paradigm in BDS will also be useful for PTL
synthesis. Due to an efficient way of handling BDD
variable reordering, our iterative eliminate paradigm has
the capability to handle arbitrarily large circuits.

D. Experimental Results

The experiments have been conducted on a Pentium-
III/500MHz machine running Linux. Most large combi-
national circuits in MCNC test case suite are covered in
the experiment. All test cases are synthesized by both BDS
and SIS (script.rugged). The results are then mapped by the
SIS mapper.

Table VII shows the experimental results. Two testcases,
dalu and vda, have been singled out from this table for
special illustration. In summary, the synthesis results
of BDS uses about 3% more area than that of SIS. The
delay of circuits synthesized by BDS is 13% smaller. The
memory required by BDS is 30% smaller than SIS. It
should be noted that the memory usages reported for
SIS in Table VII only include the memory used by logic
optimization procedures in script.rugged. Memory used
by ful | sinmplify is not included. Since global BDDs
are constructed during ful | _sinplify, which is not
used by BDS, it is unfair to compare the total memory
used by script.rugged with BDS. In terms of runtime, BDS
demonstrates superior advantage over SIS; it is more than
8 times faster than SIS. We must mention that compared
with real industrial circuits, all the test cases used in this
experiment are relatively small. To prove the potential of
BDS to optimize large circuits, we run both BDS and SIS
on a set of large circuits generated by a proprietary HDL
to BLIF translator. The results are shown in Table VIIIL. It
is obvious that the runtime of BDS is significantly lower
than that of SIS.

There are two causes which contribute to the larger
circuit area obtained by BDS. First is due to BDS’s
capability to perform XOR and MUX decompositions.
XOR and MUX operators have been represented explicitly
on the factoring trees and in the final BLIF netlist
generated by BDS. However, due to the weak capability
of tree-based technology mapper to identify XORs and
MUXes, only a small fraction of XORs and MUXes

23

synthesized by BDS can be mapped to XOR and MUX
gates. The same problem has been observed in our
previous experiment [39].

Second, currently BDS does not have the capability
of simplifying a Boolean network by using the don’t
cares embedded in a multi-level configuration. If the
redundancy can not be removed by el i mi nat e, it will
most likely remain in the final synthesized circuits. Lack
of such capability is the major hold-back for the current
version of BDS. Shown in Table IX are the synthesis
results for circuits dalu and vda. The results can be
greatly improved by applying ful | _si nplify on the
circuits synthesized by BDS. However, the area and
delay of circuit dalu is still 50% more than SIS. Extensive
comparison between BDS and SIS should be done for dalu.

VII. CONCLUSIONS

In this paper, a BDD-based logic optimization system,
based on a new BDD decomposition theory, is presented.
The new BDD decomposition theory has a great potential
to significantly improve the existing logic optimization
methods. A new logic optimization system, BDS, has been
successfully developed. Detailed implementation of the
overall synthesis strategy, including network partitioning
by partial node collapsing, BDD-based Boolean decom-
position, factorization, and sharing extraction have been
presented in the paper. The experimental results clearly
demonstrate that BDS has a superior runtime advantage
over traditional approaches.

The capacity of current BDS can be further enhanced by
incorporating the following future work:

1. A general BDD decomposition should be developed
based on linear expansion theory.

2. BDD-based don't care minimization, similar to full simplify
in SIS, should be developed.

3. Recently, we found that BDS is also amenable to FPGA
synthesis. In-depth analysis of the synthesis results of
BDS should be performed to understand the reason for
its applicability to FPGAs. We anticipate that our BDD-
based logic optimization will also be applicable to FPGA
synthesis. Very encouraging initial results have been
already obtained [40].

Compared with the state-of-the-art logic synthesis
methodology, which has evolved from continuous re-
search and development for the last twenty years, the
BDD-based logic synthesis is brand new but much less
mature. Extensive fundamental research has to be done to
make this approach a truly successful synthesis method.
It is too soon to conclude whether BDD-based logic syn-
thesis approach will become a practical alternative to the
widely accepted traditional methods. We hope this re-
search will initiate a new round of research in logic syn-
thesis area in the years to come.

REFERENCES

[1] RK. Brayton, G.D. Hachtel, and A. Sangiovanni-Vincentelli,
“Multilevel Logic Synthesis,” in Proc. IEEE, Feb. 1990, pp. 264-300.

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM 24

Circuits Chaudhry et al [38] BDS
BDD nodes | CPU (s) || BDD nodes | CPU (s)
C1355 211 270 207 0.3
C1908 310 25.4 276 0.6
C2670 615 197 527 1.7
C3540 974 101.7 901 3.2
C432 181 45 183 0.5
C499 196 24 228 0.2
C5315 1008 307.6 918 4.0
C6288 1677 540.7 1507 44
C7552 1592 382.1 1227 6.4
C880 298 7.5 300 04
| Total]| 7066 | 1838.9 | 6274 | 217 |
TABLE VI

RESULTS OF ITERATIVE ELIMINATE PARADIGM. BOTH EXPERIMENTS ARE CARRIED OUT ON PENTIUM-200.

Circuits SIS BDS

Area | Delay | CPU (s) | Mem | Area | Delay | CPU (s) | Mem
C1355 689 | 39.40 6.6 1.2 711 | 45.60 0.4 1.0
C1908 695 | 68.60 8.1 1.2 730 | 65.00 0.8 1.0
C3540 1695 | 81.40 16.1 33 1713 | 81.20 3.6 1.9
C432 290 75.90 46.1 0.7 357 | 78.40 0.2 0.5
C499 689 | 39.40 6.8 0.9 708 | 43.60 0.6 0.5
C5315 2286 | 68.60 10.2 3.1 2402 | 70.50 53 3.0
C6288 4631 | 237.8 21.8 41 4677 | 178.3 3.8 1.1
C7552 3038 | 115.70 54.2 49 3112 | 83.30 4.2 4.8
C880 567 | 56.10 1.9 1.0 563 | 43.20 0.7 0.8
pair 2274 | 74.30 16.1 2.5 2466 | 52.60 2.1 2.0
rot 965 | 51.60 45 2.0 1025 | 51.90 1.0 0.9

[Total][17819 [908.8 | 1924 | 249 [18464] 7936 | 227 | 175 |
TABLE VII

COMPARISON BETWEEN BDS AND SIS. THE MEMORY REPORTED FOR SIS DOES NOT INCLUDE THE MEMORY USED BY f ul | _si nplify.

Circuits SIS BDS Speed
Name gates | cost | delay(ns) | CPU(s) || gates | cost | delay(ns) [CPU(s) up
bshiftl6 158 406.0 19.0 3.9 145 376.0 21.8 1.0 3.9
bshift32 292 774.0 27.5 19.1 255 704.0 31.1 2.3 8.3
bshift64 653 1796.0 349 100.2 570 1656.0 47.2 6.5 15.4
bshift128 1478 | 4237.0 55.5 643.9 1193 3750.0 75.3 229 28.1
bshift256 3683 | 9981.0 95.3 8666.4 2782 8614.0 132.6 28.9 300.0
bshift512 - - - | >15hrs 7367 | 22598.0 240.0 95.1 || > 560.0
m2x2 8 17.0 9.1 0.2 11 22.0 5.7 0.1 2.0
m4x4 97 220.0 56.1 2.7 112 256.0 375 0.4 6.7
m8x8 514 1224.0 121.2 424 561 1351.0 81.8 2.2 19.3
ml6x16 2312 | 5678.0 264.0 110.8 2517 6111.0 186.5 9.7 114
m32x32 9941 | 24213.0 531.3 1215.4 || 10511 25787.0 387.9 48.0 25.3
mo64x64 41040 | 99787.0 1069.8 | 23881.7 || 42947 | 105749.0 789.3 321.8 74.2
[Total | 60176 | 148333 | 2073.7 | 347192 || 61604 | 154376 | 17967 | 4433 |
TABLE VIII

RESULTS OF BDS AND SIS ON A SET OF LARGE CIRCUITS.

YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION SYSTEM 25
Circuits SIS BDS-1.3
no full_simplify | full_simplify
Area | Delay || Area | Delay | Area | Delay
dalu 1307 | 58.40 || 2680 | 103.5 | 1927 | 93.3
vda 837 | 39.8 || 1380 32.6 1049 | 432
TABLE IX

(2]

(31
(4]

(5]

6]
(71

(8]

(9]
(10]

(1]

(12]
(13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

THE EFFECTOFful | _sinplify.

E. Sentovich et al., “SIS: A System for Sequential Circuit Synthesis,”
Tech. Rep. UCB/ERL M92/41, ERL, Dept. of EECS, Univ. of
California, Berkeley., 1992.

R. Rudell, “Tutorial : Design of a logic synthesis system,” in Proc.
33rd Design Automation Conference, 1996, pp. 191-196.

R K. Brayton, C. McMullen, G.D. Hachtel, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis,
Kluwer Academic Publishers, 1984.

O. Coudert and J.C. Madre, “New ideas for solving covering
problems,” in Proc. Desigh Automation Conference, 1995, pp. 641-
646.

G Boole, An Investigation of the Laws of Thought on Which are Founded
the Mathematical Theories of Logic and Probabilities, 1854.

C. Y. Lee, “Representation of switching circuits by binary decision
programs,” Bell System Technical Journal, vol. 38, no. 4, pp. 985-999,
June 1959.

S. B. Akers, “Functional Testing with Binary Decision Diagrams,”
in Eighth Annual Conference on Fault-Tolerant Computing, 1978, pp.
75-82.

E. Brown, Boolean Reasoning, Kluwer Academic Publishers, Boston,
MA, 1990.

Z.Kohavi, Switching and Finite Automata Theory, McGraw-Hill Book
Company, 1970.

R.L. Ashenhurst, “The Decomposition of Switching Functions,”
in Proc. of an International Symposium on the Theory of Switching,
Cambridge, MA, 1957, vol. XXIX of The Annals of the Computation
Laboratory of Harvard University, pp. 74-116, Harvard University
Press, Published in 1959.

J.P. Roth and R.M. Karp, “Minimization Over Boolean Graphs,” in
IBM J. Res. Dev., April 1962, pp. 227-238.

H.A. Curtis, A New Approach to the Design of Switching Circuits, D.
Van Nostrand Company, Inc, 1962.

T. Singer, “Some uses of truth tables,” in International Symposium on
the Theory of Switching, pt. I, 1959, pp. 125-133.

Randal E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. on Computer, vol. 35, no. 8, pp. 677-691,
August 1986.

K. Brace, R. Rudell, and R. Bryant, “Efficient Implementation of
a BDD Package,” in Proc. Design Automation Conference, 1990, pp.
40-45.

M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and
Improvements of Boolean Comparison Method Based on Binary
Decision Diagrams,” in Proc. Intl. Conf. on Computer-Aided Design,
1988, pp. 2-5.

S.Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Logic Verification using Binary Decision Diagrams in a Logic
Synthesis Environment,” in Proc. Intl. Conf. on Computer-Aided
Design, 1988, pp. 6-9.

M. Fujita, Y. Matsunaga, and T. Kakuda, “On variable ordering
of binary decision diagrams for the application of multi-level logic
synthesis,” in Proceedings of the European Conference on Design
Automation, Amsterdam, 1991, pp. 50-54.

N. Ishiura, H. Sawada, and S. Yajima, “Minimization of binary
decision diagrams based on exchanges of variables,” in Proc. Intl.
Conf. on Computer-Aided Design, Santa Clara, CA, Nov. 1991, pp.
472-475.

R. Rudell, “Dynamic Variable Ordering for Ordered Binary
Decision Diagrams,” in IEEE International Conference on Computer-
Aided Design, 1993, pp. 42-47.

M. Sauerhoff and I. Wegener, “On the Complexity of Minimizing
the OBDD Size for Incompletely Specified Functions,” IEEE Trans.
on CAD, vol. 15, pp. 1435-1437, Nov. 1996.

O. Coudert and J.C. Madre, “A Unified Framework for the Formal

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]
[34]

[35]

[36]

[37]

(38]

[39]

[40]

Verification of Sequential Circuits,” in Proc. ICCAD, 1990, pp. 126-
129.

T. Shiple, R. Hojati, A. Sangiovanni-Vicentelli, and R. Brayton,
“Heuristic Minimization of BDDs Using Don’t Cares,” in Proc.
Design Automation Conference, 1994, pp. 225-231.

Youpyo Hong, Peter Beerel, Jerry Burch, and Kenneth McMillan,
“Safe BDD Minimization Using Don’t Cares,” in Proc. Design
Automation Conference, 1997.

Shih-Chieh Chang, M. Marek-Sadowska, and T. Hwang, “Technol-
ogy Mapping for TLU FPGA'’s Based on Decomposition of Binary
Decision Diagrams,” IEEE Trans. on CAD, vol. 15, no. 10, pp. 1226-
1235, October 1996.

Yung-Te Lai, Kuo-Rueih Pan, and Massoud Pedram, “OBDD-Based
Function Decomposition: Algorithms and Implementattion,” IEEE
Trans. on CAD, vol. 15, no. 8, pp. 977-990, August 1996.

M. A. Thornton and V. S. S. Nair, “Behavioral Synthesis of
Combinational Logic Using Spectral Based Heuristics,” ACM
Transactions on Design Automation of Electronic Systems, vol. 4, no.
2, pp- 219230, April 1999.

Kevin Karplus, “Using if-then-else DAGs for Multi-Level Logic
Minimization,” Tech. Rep. UCSC-CRL-88-29, University of
California Santa Cruz, 1988.

V. Bertacco and M. Damiani, “The Disjunctive Decomposition of
Logic Functions,” in IEEE International Conference on Computer-
Aided Design, 1997, pp. 78-82.

Ted Stanion and Carl Sechen, “Boolean Division and Factorization
Using Binary Decision Diagrams,” IEEE Trans. on CAD, vol. 13, no.
9, pp. 1179-1184, September 1994.

R K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang,
“MIS: A Multiple-Level Logic Optimization System,” in IEEE Trans.
on CAD, June 1987, vol. 6, pp. 1062-1081.

R. K. Brayton, ,” University of California, Berkeley. Notes on Multi-
level Logic Synthesis, 1988.

O. Coudert, C. Berthet, and J. C. Madre, “Verification of Sequential
Machines Based on Symbolic Execution,” in Proc. of the Workshop on
Automatic Verification Methods for Finite State Systems,]. Sifakis, Ed.,
Grenoble, France, June 1989, vol. 407 of Lecture Notes in Computer
Science, pp. 365-373.

F. Mailhot and G. De Micheli, “Algorithms for technology mapping
based on binary decision diagrams and on boolean operations,”
IEEE Trans. on CAD, vol. 12, no. 5, pp. 599-620, May 1993.

C. Tsai and M. Marek-Sadowska, “Multilevel Logic Synthesis for
Arithmetic Functions,” in Proc. Design Automation Conference, 1996,
pp- 242-247.

P. Buch, A. Narayan, R. Newton, and A. Sangiovanni-Vincentelli,
“On Synthesizing Pass Transistor Logic,” in Intl. Workshop on Logic
Synthesis, 1997.

R. Chaudhry, T. Liu, A. Aziz, and]. Burns, “Area-Oriented
Synthesis for Pass-Transistor Logic,” in International Conference on
Computer Design, 1998, pp. 160-167.

C. Yang, V. Singhal, and M. Ciesielski, “BDD Decomposition for
Efficient Logic Synthesis,” in International Conference on Computer
Design, 1999, pp. 626—-631.

Russell Tessier and Nemuri Navin, ,” University of Massachusetts,
Ambherst. Personal communication, 1999.

