Zchaff: A fast SAT solver

* We'd like to build a complete decision procedure for SAT which is efficient.
Generalized D-P-L algorithm:

while (true) {
if (! decide()) /* no unassigned variables*/
return (sat)
while (! bep () {
if (! resolved_conflict ())
return (not sat);

}

bool resolve _conflict () {
d= most recent assignment which is not exhausted,;

if (d==Null)

return (false);
ese {

flip value of d;

mark d as exhausted:;
undo invalidated assumptions; (i.e., u_bcp(d))
return (true)

ECE 256B — Spring 2002 lof 12 RCFB256B3450 - Zchoff

Zchaff: A fast SAT solver

* Decide () chooses an unassigned variable and setsit to avalue. Keep alist of current assignments of length
(the decision depth). (Returnsfalse only if al variables are exhausted.)

* bep () Boolean Constraint Propagation
bep () identifies unit clauses and trosetively sets forced literals until:
a) conflict isfound (i.e., current assignments are not consistent)
b) all unit clauses are assigned.
O aunitclause isonewhich every literal but oneisfase O to satisfy clause that literal must be true.
Eg: (' +b+c)a+b+c)(a+d)
if a - false last clause forces d — true.

orif a - true, b - false; first clause must set ¢ — true.

bep is apowerful 1ook-ahead mechanism since the forced literals can create additional unit clauses O run
to transitive closure.

* On the other hand: such implications are based only on the set of current variable decisions. O if a
decision is backtracked, we must also remove all the implied assignments made by bep (). It istypical to
record the decision values by the level /.

O Thusif we associate each implied assignment by it level, we need only remove those implications higher
than ¢' for anew assignment at level ¢'. Thisiswhat u_bcp () does.

ECE 256B — Spring 2002 20f 12 RCFB256B3450 - Zchoff

Zchaff: A fast SAT solver

Observation (Zhang): Majarity of run time of solver isin bep.

To make an efficient solver, we must have an efficient bep. It seems that we need to check each clause to see

if itisaunit clause, but thisis not so:
(weonly careif the clause has all but oneliteral set.)

O choose any two variables (not zero) in each clause. Then need only check the clauses that have
one of these values assigned to zero. O inany other case, the clause has two non-zero

or unassigned values and is not unit.
So to make bep, we visit only clauses with changed to zero watched variables.

a) Clause may till not be unit O there isanother literal in clause which is not zero and
isnot one of the watched variables. O chooseit to replace the watched variable just

assigned.
b) Clauseisunit [I other watched variable isimplied to be true.

¢) Note: if some clause variableistrue, remove it from bep table since it cannot be made
false by implications.

ECE 256B — Spring 2002 3of 12 RCFB256B3450 - Zchoff

Zchaff: A fast SAT solver

Note that when we backtrack, we need not change the watched literals
0 undoing an assignment is very fast.
better: if avariableisassigned and unassigned, re-assignment is likely to be faster since number of
clausesin which the variable iswatched is likely to decrease.

i f f r.
Eg: 8/1 +V, +V, Vg, FVE
Val ue # v1v4v7V11V12v15
w w
watched ptn—» AV, <1

w W,
0 00 & Vs~ OV -1vy -0

w w
T Ny, c00v,e 1
000010)4 w

wow .
—_—)confllct backtrack v;s =v,; =v, =v, =X

O —_————

w w

ECE 256B — Spring 2002 40f 12 RCFB256B3450 - Zchoff

Zchaff: A fast SAT solver

decide () heuristic

Tradeoff between time and accuracy is very strong here...
Chaff/Zchaff usesthis one:

1) Each literal has a counter assigned

2) For each added clause, the counter for each contained literal isincremental.
3) Choose largest unassigned literal at each decision point.

4) Ties broken randomly

5) Rescale al counts periodically.

0 ldeaisto concentrate effort on set of recent conflict clauses. They claim 10x (1000%)
improvement over random in hard problems.

ECE 256B — Spring 2002 50f 12 RCFB256B3450 - Zchoff

Zchaff: A fast SAT solver

Problem L earning and Conflict Clauses (Chaff, Grasp, Sato, Rel-SAT)
Idea: Use the set of trials as a means to derive constraints on the search by adding new clauses which
prevent re-searching some parts of the space.

o
N

When resolving the conflicts, back track to best level, regardless of chronology of search. i.e., non-
chronological backtrack.

DPL - with learning:

while (1) {
if (choose_next_branch ()) {
while (deduce () ==conflicts) {
bk_level = analyze conflicts ();

if (bk_level =0)
return (unsat);
else backtrack (bk_level)
}
} ese
return (sat);

}

choose_next_batch () = heuristic to select next literal

deduce = bep (), but now if aconflict is created, we analyze it to see the reason.

ECE 256B — Spring 2002 6 of 12 RCFB256B3450 - Zchoff

Zchaff: A fast SAT solver

analyze_conflicts () adds some new clauses to the database based on state of current search and
determines the level to be backtracked to to avoid redoing the problems.

* How to determine what caused the conflict?
Consider the unit implications which lead to a conflicting assignment: if we add a vertex for each
literal with avalue; i.e., assigned then implications from unit conflicts provide directed edges to new
literal valuations.

Since aliteral can have only one value, each vertex corresponds to asingle literal, except for the
conflicting assignment literal.

R A1
ol 1y .'-..l.,l .
. Va3) "
" el
_'--"-.I"- ‘:'-'Z‘|
LT, B -f- s Y V5 o1 &
e @ PO PV
M- '1._ AR Wl S Condlcheg
Loy ry W .
. . *.l mmable
Wil 51
F = 5
. LITF Vil 51 Vol 51
Vil 2l
% |_:\.|.
{Ii!ﬂ'.-\.ll_"le{:-'.lll"d."' IV %+ |
ECE 256B — Spring 2002 70of 12 RCFB256B3450 - Zchoff

Zchaff: A fast SAT solver

def: adominator of avertex isanode OO path from the decision node of the dominator to the vertex must
traverse the dominator.
def: auniqueimplication pt. (UIP) isavertex at the current level which dominates both conflicting

variable nodes.

Eg: Inthegraph, weareat level 5, so decision nodeis v,,. —Vv,, dominates both v,; and —v,,.
O v,isUIP

(the decision variable is always a UIP)
note: v,,,—v,, and —v, al UIP's.

Intuitively, a UIP is athe reason for the conflict.

- (toimplement, we point each implied variable to the unit clause which implied it.)

ECE 256B — Spring 2002 8of 12 RCFB256B3450 - Zchoff

Zchaff: A fast SAT solver

Consider cut 1 in the figure below: Every implication crossing the cut contributes to the conflict.

*] note we can write this condition as follows:

r r ID
5/17+V1 +V3 +V5+V19 O

Vil e -1..”'
Val3) o :
® . . e ®.
=Wy A 5) s
ViS5 | "‘ua-_!_ £ \ : / ".'; %) H“x } i
s O [PTO—@—3 VO
i

Cut 3: cut does not

involve conflict . I- '

V3] Cunt 2 Cut |

ECE 256B — Spring 2002 9of 12 RCFB256B3450 - Zchoff

Zchaff: A fast SAT solver

Thus we need never search this subspace again. By adding the new clause, it will imply variable settingsto
avoid this subspace in the future.

Two problems:
1) Size of added clause may make the implication very weak; i.e., hard to make unit.

2) Number of such clauses growsrapidly [1 size of CNF can exceed memory limits.

note: we could choose cut 2 O

%/17 + V8’ + V4’ TV, +V19' E
which involves variables (except v,) all from early decision levels. Since we must backtrack, the

earlier we can backtrack and the larger clause (earlier variables), the larger subspace of the current
search isremoved.

note: we can generalize UIP for agiven cut by making avertex at level ¢ UIP iff any path from the
vertex decision variable for level ¢ to the conflict must either go through a or avertex at a
higher level than a.
It turns out that this new def. is actually independent of the cut...
note: cut 3 picks out the antecedentsfor —v, [

%/2' +v, + vlzg (this clause is consistent with the current set, possibly shorter...)

Such learning is very powerful since we can now backtrack to any level (even the start) and still not
repeat this search.

ECE 256B — Spring 2002 10 of 12 RCFB256B3450 - Zchoff

Zchaff: A fast SAT solver

Rel-sat scheme:

rel-sat recurses until only the conflict variable and lower level variables remain. (last UIP cat below)

r I r r
+V6+V13 +V4 +VB +v17+v195

this adds:

11

note: when we backtrack v, O thisclauseisunit O
forces v, into another subspace

ECE 256B — Spring 2002 110of 12 RCFB256B3450 - Zchoff

Zchaff: A fast SAT solver

One could add all these decision nodes on any subspace of acut, ... (too small a subspace)

It seems clear that we should exploit the reconvergence at UIP' s to cover larger subspace, however there are
lots of UIP's.

zChaff: (1-UIPscheme) [0 makethe conflict as close to the conflict as possible (i.e., make it relevant) then
removeit later to some space.

i.e, putal variables assigned after first UIP (that one closest of conflict) with paths to
conflict on the conflict side of the cut, everything also on other side.

(i.e., first UIP cut above)

Fvliw_bp_mo longmaltio salitrw_large.d.onf
{ wneat, 10148 vars | { urisat, 4852 vars | | mat, B335 wars)
ILIF rel_sal sl ASF 1L rel_sal | CEASE L LI rel_sat | CeHASE |
B ranches(x1 D) 1.9 471 1,007 1y {19 1] 01 Gns 0027
A did Clausasixi0esh) 01,28 371 1 10 11 {1.17] (LR ol R | PR |
Audded Literals [x10e6) 713 INI0N 61 W 17,14 2EO7] 1747 1, 5i L.l 1]
Added litsicks 405 = R4 SET.41 ISE1T] 1625 I13.43 50.E7] 521.948 LR |
urm. bmplicatio :l:“l-ll_lz [p i | THA el e L R LE Ta4.RY .23 17.58 Itxﬂa
Ui A2ihe WA TH 21Thad] Mo0s) il Tedod %4l Slod 1R

ECE 256B — Spring 2002 12 of 12 RCFB256B3450 - Zchoff

