
Zchaff: A fast SAT solver

ECE 256B – Spring 2002 1 of 12 RCFB256B3450 - Zchoff

* We’d like to build a complete decision procedure for SAT which is efficient.

Generalized D-P-L algorithm:

while (true) {
if (! decide()) /* no unassigned variables */

return (sat)
while (! bcp ()) {

if (! resolved_conflict ())
return (not sat);

}
}

bool resolve_conflict () {
d= most recent assignment which is not exhausted;
if (d==Null)

return (false);
else {

flip value of d;
mark d as exhausted;
undo invalidated assumptions; (i.e., u_bcp(d))
return (true)

}
}

Zchaff: A fast SAT solver

ECE 256B – Spring 2002 2 of 12 RCFB256B3450 - Zchoff

* Decide () chooses an unassigned variable and sets it to a value. Keep a list of current assignments of length
(the decision depth). (Returns false only if all variables are exhausted.)

* bcp () Boolean Constraint Propagation

bcp () identifies unit clauses and trosetively sets forced literals until:
a) conflict is found (i.e., current assignments are not consistent)
b) all unit clauses are assigned.

 ⇒ a unit clause is one which every literal but one is false ⇒ to satisfy clause that literal must be true.

Eg: ′ + +() + + ′() +()a b c a b c a d

if a → false; last clause forces d → true.

or if a → true, b → false; first clause must set c → true.

bcp is a powerful look-ahead mechanism since the forced literals can create additional unit clauses ⇒ run
to transitive closure.

* On the other hand: such implications are based only on the set of current variable decisions. ⇒ if a
decision is backtracked, we must also remove all the implied assignments made by bcp (). It is typical to
record the decision values by the level l.

⇒ Thus if we associate each implied assignment by it level, we need only remove those implications higher
than ′l for a new assignment at level ′l . This is what u_bcp () does.

Zchaff: A fast SAT solver

ECE 256B – Spring 2002 3 of 12 RCFB256B3450 - Zchoff

Observation (Zhang): Majority of run time of solver is in bcp.

To make an efficient solver, we must have an efficient bcp. It seems that we need to check each clause to see
if it is a unit clause, but this is not so:

(we only care if the clause has all but one literal set.)

⇒ choose any two variables (not zero) in each clause. Then need only check the clauses that have
one of these values assigned to zero. ⇒ in any other case, the clause has two non-zero
or unassigned values and is not unit.

So to make bcp, we visit only clauses with changed to zero watched variables.

a) Clause may still not be unit ⇒ there is another literal in clause which is not zero and
is not one of the watched variables. ⇒ choose it to replace the watched variable just
assigned.

b) Clause is unit ⇒ other watched variable is implied to be true.

c) Note: if some clause variable is true, remove it from bcp table since it cannot be made
false by implications.

Zchaff: A fast SAT solver

ECE 256B – Spring 2002 4 of 12 RCFB256B3450 - Zchoff

Note that when we backtrack, we need not change the watched literals
⇒ undoing an assignment is very fast.

better: if a variable is assigned and unassigned, re-assignment is likely to be faster since number of
clauses in which the variable is watched is likely to decrease.

Eg: v v v v v v1 4 7 11 12 15
′ + + ′ + + +

 :

value
v v v v v v1 4 7 11 12 15

− − − − − −

watched ptn.
w w

v

0

11− − − − −
←

 0 0 0

w w

v v v
0

0 1 015 7 11← ← ←, ,

 0 0 0 1 0

w w

v v
0

0 14 12← ⇒ ←

 conflict backtrack
w w

v v v v x
w w

0 15 11 7 4−− −−−
= = = =

Zchaff: A fast SAT solver

ECE 256B – Spring 2002 5 of 12 RCFB256B3450 - Zchoff

decide () heuristic

Tradeoff between time and accuracy is very strong here…

Chaff/Zchaff uses this one:

1) Each literal has a counter assigned
2) For each added clause, the counter for each contained literal is incremental.
3) Choose largest unassigned literal at each decision point.
4) Ties broken randomly
5) Rescale all counts periodically.

⇒ Idea is to concentrate effort on set of recent conflict clauses. They claim 10x (1000%)
improvement over random in hard problems.

Zchaff: A fast SAT solver

ECE 256B – Spring 2002 6 of 12 RCFB256B3450 - Zchoff

Problem Learning and Conflict Clauses (Chaff, Grasp, Sato, Rel-SAT)
Idea: Use the set of trials as a means to derive constraints on the search by adding new clauses which

prevent re-searching some parts of the space.

Idea 2: When resolving the conflicts, back track to best level, regardless of chronology of search. i.e., non-
chronological backtrack.

DPL - with learning:

while (1) {
if (choose_next_branch ()) {

while (deduce () ≡=conflicts) {
bk_level = analyze_conflicts ();
if (bk_level = 0)

return (unsat);
else backtrack (bk_level)

}
} else

return (sat);
}

choose_next_batch () = heuristic to select next literal

deduce = bcp (), but now if a conflict is created, we analyze it to see the reason.

Zchaff: A fast SAT solver

ECE 256B – Spring 2002 7 of 12 RCFB256B3450 - Zchoff

analyze_conflicts () adds some new clauses to the database based on state of current search and
determines the level to be backtracked to to avoid redoing the problems.

* How to determine what caused the conflict?
Consider the unit implications which lead to a conflicting assignment: if we add a vertex for each
literal with a value; i.e., assigned then implications from unit conflicts provide directed edges to new
literal valuations.

Since a literal can have only one value, each vertex corresponds to a single literal, except for the
conflicting assignment literal.

Zchaff: A fast SAT solver

ECE 256B – Spring 2002 8 of 12 RCFB256B3450 - Zchoff

def: a dominator of a vertex is a node ∋ ∀ path from the decision node of the dominator to the vertex must
traverse the dominator.

def: a unique implication pt. (UIP) is a vertex at the current level which dominates both conflicting
variable nodes.

Eg: In the graph, we are at level 5, so decision node is v11. −v10 dominates both v18 and −v18.
⇒ v10 is UIP

(the decision variable is always a UIP)
note: v v11 10,− and −v2 all UIP’s.

Intuitively, a UIP is a the reason for the conflict.

 → (to implement, we point each implied variable to the unit clause which implied it.)

Zchaff: A fast SAT solver

ECE 256B – Spring 2002 9 of 12 RCFB256B3450 - Zchoff

Consider cut 1 in the figure below: Every implication crossing the cut contributes to the conflict.

 * ⇒ note we can write this condition as follows:

v v v v v17 1 3 5 19+ ′ + ′ + + ′

Zchaff: A fast SAT solver

ECE 256B – Spring 2002 10 of 12 RCFB256B3450 - Zchoff

Thus we need never search this subspace again. By adding the new clause, it will imply variable settings to
avoid this subspace in the future.

Two problems:
1) Size of added clause may make the implication very weak; i.e., hard to make unit.
2) Number of such clauses grows rapidly ⇒ size of CNF can exceed memory limits.

note: we could choose cut 2 ⇒

v v v v v17 8 4 2 19+ ′ + ′ + + ′

which involves variables (except v2) all from early decision levels. Since we must backtrack, the
earlier we can backtrack and the larger clause (earlier variables), the larger subspace of the current
search is removed.

note: we can generalize UIP for a given cut by making a vertex at level l UIP iff any path from the
vertex decision variable for level l to the conflict must either go through a or a vertex at a
higher level than a.

It turns out that this new def. is actually independent of the cut…

note: cut 3 picks out the antecedents for − ⇒v2

v v v2 16 12
′ + ′ +

 (this clause is consistent with the current set, possibly shorter…)

Such learning is very powerful since we can now backtrack to any level (even the start) and still not
repeat this search.

Zchaff: A fast SAT solver

ECE 256B – Spring 2002 11 of 12 RCFB256B3450 - Zchoff

Rel-sat scheme:

rel-sat recurses until only the conflict variable and lower level variables remain. (last UIP cat below)

this adds: v v v v v v v11 6 13 4 8 17 19
′ + + + ′ + ′ + + ′

note: when we backtrack v11 ⇒ this clause is unit ⇒
forces v11 into another subspace

−v6

v11

−v13

−v12

v6

−v2

v4

−v10

v8 −v17

v1

v3

−v5

−v18

v19

Rel sat cut

1st UIP cut

v18

Zchaff: A fast SAT solver

ECE 256B – Spring 2002 12 of 12 RCFB256B3450 - Zchoff

One could add all these decision nodes on any subspace of a cut, … (too small a subspace)

It seems clear that we should exploit the reconvergence at UIP’s to cover larger subspace, however there are
lots of UIP’s.

zChaff: (1-UIP scheme) ⇒ make the conflict as close to the conflict as possible (i.e., make it relevant) then
remove it later to some space.

i.e., put all variables assigned after first UIP (that one closest of conflict) with paths to
conflict on the conflict side of the cut, everything also on other side.

(i.e., first UIP cut above)

