BDDs:
&

Richard Rudell

Synopsys, Inc.

Implementation Issues

Variable Ordering

CAD Apotications of BOO's: Theory and Practice

9 1993 Richard Rudell

OBDD Package Interface

typedef struct bdd_manager_struct °bdd_manager:
typedef struct bdd_formula_struct *bdd_formula;

bdd_manager bdd_start{);
void bdd_endibdd_manager bdd): *

bdd_formula bdd_create_variablebdd_manager bdd):
bdd_formula bdd_seroibdd) ;

bdd_formula bdd_oneibdd) ;

bdd_£formula bdd_assigaibdd_formula £):

bdd_formula bdd_notibdd_formula £);

bdd_formula bdd_and(bdd_formula £, bdd_fcrmula g);
bdd_formula bdd_oribdd_formula £, bdd_focrmula gi;
bdd_%ormula bdd_xoribdd_formula £, bdd_fcrmula g¢):

bdd_formula bAd_ite(bdd_formula £, bdd_fcrmula g, bdd_formula h):
bdd_formula bdd_existsbdd_formula £, bdd_fcrmula @)

bdd_formula bdd_forallibdd_formula €. bdd_£fcrmula ¢);

bdd_<formula bdd_cofactortbdd_formula £, bdd_formula g);

bdd_£fcrmula bdd_composelbdd_formula €, bdd_formula g, bdd_£formula h):

void bdd_freebdd_formula f):

int bdd_equibdd_formula £, bdd_formula g}

int bdd_leqibdd_formula £, bdd_formula g);

inc bdd_disjointbdd_fsrmula £, bdd_formula g):
int bad_ite_tautologybdd_formula £, bdd_formula g,
int bdd_satibdd_formula £, bdd_formula <lits):

bdd_formula h):

CAD Agppiications of B0OD's: Theory and Practice 4

$ 1993 Richard Rudell

OBDD Package Example

e¢. £ 49, h, anct, 7ne:

cdd_start ()

2 cdd_:cneibdd);

odd =
e

a s bdd_~reate_variable/bdd);

b = bdd_craace_variablei(bdd);

anot = bdd_not(a); b £

€ = bdd_and(anot, b):

bdd_£ree(anct);

¢ = bdd_creacte_variable(bdd);

g = bdd_andta, c); ¢ g

h = bdd_xnor(€, g);

if (bdd_equth, one)) (
<< do something >>

Y

}

bdd_free(f);
bdd_frea(g);
bdd_frae(h);

bdd_and (bdd) ;

CAD Applications of BOO's: Theory and Practice 5 & 1993 Richard Rudel

C 3

Review: Chained Hash Table

Insert the pair (key, value) into the hash table
void hasb_insertthash_table *hash_table, void *key, void *value);

Return the value associated with the given key (if it exists)
int bash_lookup hash_table *hash_tabla, void *key, void **value);

key

‘ hash table entries

vaAlue value

Hash
Function _>_‘_. ¥4 _I_. key —r

naxs

nexs

array of
hash table entry pointers

+ density = # entries / # bins
* resize array to maintain constant density (e.g., 4 entries per bin)
* constant-time lookup operation (assuming good hash tunction)

CAD Appiications of BOO's; Theory and Practice 8 £ 1993 Richard Rudet!

no memory function,
exponential complexity

ine fibtinz)
int ¢;

if (n <= 2) (
T3 1

} aise {

}
return t:

Review: Memory Function

* Store table of values (x. Fiv); for a pure function F.

* Before computing £rx), check table for stored vaiue
- avoid re-computing Fx, if value is already known
- when F(x) is computed, save (. F(x), in the table

with memory function,
linear complexity

int fiblfine ny

t = fib(n-1) + fib(n-2);

statis int memory(lGO];

ine t:

if (n <= 2) {
t =1

} else if (memory{n] i= 0) (
t = memory(al;

) else {
t = fiblin-1) + fikl(n-21;
memory(n)] = t;

}

recurn =

CAD Apphications of 800's: Theory and Practice

© 1993 Richard Rudell

Muiti-Rooted (Shared) OBDD

* A DAG node F is represented by a tuple (x,.G.H)
- x; is called the top variable of F .
- node (x,.G.H) represents the function ite(x,.G.H)=x,G+% H
* DAG contains both extenal functions (user functions) and internal functions

%= .T..T)

) } External functions

Internal Functions

CAD Appiications of B00’s: Theory and Practice

T 1993 Richard Ruaen

Unique Table

Hash Table Mapping

(5. .=V,
(0. T;.T)) > U,
(x,. ;1) > T,
(x,.0.,) > T,
(5;.0.)> T,
(x .0.0)>|
(X,.3.0)=0

* Unique table: hash table mapping tuples(x,.G.H) into a node in the DAG
- before adding a node to the DAG, check to see if it already exists
- avoids ever creating two nodes with the same function
- strong canonical form: pointer equality determines function equality
~ resize unique table array to maintain constant density of 4 entries/bin

CAD Apphcations of BDD's: Theory and Practice 12 9 1993 Richard Rudeit

Shannon Cofactors of an OBDD Function

Computing the Shannon Cofactor (Restriction) on an OBDD function
is trivial when the variable is at or above the top variable of the node.

Let F=(x,.G.H) and let x, be a variable at level i or above (i.e., j < i).
Then,

t

.f. . ® . c . 3 . N
F ={F l]<1 and F;={F ifj<i
G fj=i ‘

H itj=i

x, is top variable of 7,
(rl).: =1—|!l:l| =T3 .
(T)y, =T,

o =1

x, is above top variable of 7,
(Tl).' = Tl' el = 7.I
(T)y =T} =T,

CAD Applications of BDO's: Theory and Practice 13 © 1993 Richara Rudel

ITE Recursive Formulation

Let Z=ite(F.G.H)= FG+ FH. Let x be the top variable of F.G, H.

Z=xZ, +3Z,
=x(FG+FH), +¥(FG+FH),
=x(FG,+F H)+X(F,G;+F,H;)
=ite(x.ite(F,.G, ,H,).ite(F;.G; . H;))
= (~.ite(F,.G,.H,).ite(Fy.Gq. H;))

S ite(F.G.H)=(x.ite(F,.G, . H ,)ite(F; .G, . Hy)).
Because x is the top variable of F.G.H, the cofactors F,.F,, etc. are trivial
Terminal cases:

ite(1.G.H)=G

ite(0.G.Hy=H
ite(F.1.0)=F

CAD Apphcatons of B0D's: Theory and Practice 14 © 1993 Richarg RudeH

Computed Table

» Computed table: hash table to implement a memory function for ITE
- Maps ITE arguments (F.G.H) into the result ite(F.G.H)

* Computed table is persistent
~ Computed table resuits remain valid across top-level calls to ITE

— allows resuits computed from previous ITEs to improve performance
of subsequent ITEs

~ no need to initialize and free the computed table every ITE
initialize computed table once when the OBDD is created
saves linear time cost of allocating and freeing the table every ITE

CAD Applications of B0D's. Theory and Practice 15 2 1993 Richard Rudel!

ITE Algorithm

ite(F.G.H)Y {
if (terminal case) (
R = trivial answer:
} else if (hash_lookup(computed_table, (F.G.H). &resulce))
R = result;
} else (
X = top variable from F, G, H:
(F1,FQ) = trivial_cofaczor(F, x):
(G1.G0} = trivial_cofactor(G, xi:
(H1,HO) = trivial_cofactor(H, x);
Rl = jite(Fl1,.Gl, Hl);
RO = ite(F0,GO0,HQ):;
1€ (Rl == RO) ¢
R = R1:
} else if (hash_lookup (unique_table, (x.Ri.R0), &resuls))
R = resulct;
} else {
R = new_node(x,R1l,R0O);
hash_insert(unique_table, (x.R1,R0), PR};

}
hash_insert(computed_takble, (F.3.H). R):
}

] return R;
CAD Appicatons of 8BDO's: Theory and Practce 18 < 1993 Richard Rudeit
C |
ITE Algorithm Trace’
F H
B : D
(5) O ‘
”ﬂ‘ .H"" | m"
I I
..l" \ Ml" "'l"
0 1 l 0 1
F=x +x, CG=xx, H=x,+x,
!
I =ite(F.G.H)
=(x.ite(F, .G, . H,).ite(F;, .Gy . Hy)
=(x,.ite(1.C. H).ite 8.0. H)))
=(%.C.lx.ite(B, .0, . H,)ite(By .0, .Hy) ! .
=(x,.C.(x;.ite(1.0.1).ite(0.0. D)) o
¥
=(x.C.(x,.0.D) D 0

CAD Appiications ot BOD's: Theory and Practice 17 9 1993 Richard Audell

ITE Algorithm Improvements

* Improve computed table performance - equivalent forms

ite(F.G.0) =ite(G.F.0) = ite(F.G.F)=ite(G.F.G) = FG
ite(F.1LH)=ite(H I.F)=ite(F.F.H)=ite(tH.H.F)= F+ H

- store only 1 of 4 equivalent forms in the computed table

map to a canonical form (e.g., ite(F.G.0) with addr(F) < addr(G))
~ easy to detect because of strong canonical form

if (F==H || H == 0 {
/* function is F G v~
H=20;
if (address(F) > address(G)) ({
swap (&F, &G) ;
}

if (F==G || G == 1) {
/* function is F « H *~
G = 1;
if (address(F) > address(H}) {
swap (&F. &H) ;
}
}

CAD Appiications of BDD's: Theory and Practice 18 9 1993 Richard Rudsll

Computed Table Cache

* Replace computed table hash table with a hash-based cache
— store only one entry per bin (no collision chain)
overwrite existing entry at insert
check against only one entry at lookup

- introduce_s possibility of cache miss which forces redundant
computation (affects performance, but not correctness)

manage impact by sizing the cache proportional to the number of
nodes in the unique table

(F,G.H)
Hash
runceion [ER—> s
3
4
Tasiit
compuzad single
table cinmpuced
bins takle
ancry
CAD Appilications of 800's: Theory and Practice 19

£ 1993 Richard Ruaei

Reusing Memory

* New nodes are added to the DAG during ITE
- minimum number 2! nodes to represent the result are created!

* The user discards old computation results using bdd_frae ()
- problems with deleting the nodes immediately .
1.need to know if the nodes are shared by other roots
2. computed table entries are never deleted
3. computed table entries may point at the node
back-pointers would take too much memory
sweeping entire computed table would be too slow

CAD Appications of B0D's: Theory and Practice 20 2 1993 Richarg Audeit

Garbage Collection

¢ Solution - Garbage Collection
- = maintain reference count for each node

includes user references and internal references
does not count references from the computed table
reference count is incremented when nodes are reused in the DAG
reference count is decremented when a root is freed by the user

- nodes with reference count of 0 are called dead
they remain in the DAG until the next garbage collection

- periodic garbage collection o
delete all computed table entries which point to a dead node
remove all dead nodes from the unique table

CAD Appiicatons of BDD's: Theory and Practice 21 © 1993 Richard Rudeit

Reference Counting Example

* Freeing formula U, reduces reference count on nodes below U,
reduce count of U, to 0; it becomes dead so free its children
reduce count of T, to |
reduce count of 7, to 0; it becomes dead so free its children
reduce countof 7; to 1
* Nodes U, and T, have ref count 0
they will be made available for re-use at the next garbage collection

CAD Apphcations ot B00's: Theory and Practice 22 © 1993 Richara Rudell

Effect of Variable Ordering

by + ayby + ayby
Good Ordering Bad Ordering

&

Linear Growth Exponentlal Growth

Fep. & Algos.

OBDD Variable Ordering

* Goal: Form OBDD functions for all nets of a combinational circuit
- represent function of every net in terms of primary inputs
cailed the global functions '
- first step of verification and optimization algorithms

OBDDs for all nets or just primary outputs?
- comb. and seq. verification require only primary output OBDDs
- optimization algorithms require OBDDs for all nets

* Consistent variable order for all nets?
- comb. verification can handle different order for each primary output
- seq. verification and optz aigorithms need same order for all nets

* Why worry about variable ordering?
— using a random variable order almost always fails

e.?.. OBDDs cannot be formed for 23 of the 35 largest circuits from
WLS'91 benchmark set when using a randomly generated order
and 100,000 node limit

CAD Apgplications ot 800's: Theory and Practice 27 ¢ 1993 Richard Rudeil

OBDDs for Comblnafional Circuits

* Depth-first walk on combinational circuit from each primary output
- form logic function for net in terms of primary inputs only

=%
=T, =%x,
To=xT,=0

M =T5 =0
L=Ti=x+%
T.=%

To =T\ Tixy = 0 Xy xy + oty
I =L®T =x3x, +%,x,
= =x8.5 + 3,1,

CAD Appiicatons of BDD's: Theory ana Practice 28 9 1993 Richard Rudel!

Heuristic Variable Order

Use circuit topology to find a good variable order
- [Fujita-ICCAD88], [Malik-ICCADB88], [Minato-DAC90]
- vanations on the following idea

» Define depth of each node n:
dim) = {mgx,‘,,,,, d(f)+1 if n not a primary input

0 if n is a primary input

Starting from deepest output, traverse network in depth-first fashion
- order fanin at each node by decreasing depth
explore deep fanins first _
- break ties arbitrarily (or with more heuristics)

Order of traversal of primary inputs defines OBDD variable order
- first variable visited is at the top of the OBDD

CAD Applications of 800's: Theory and Practice : 29 © 1993 Richard Rudelt

L 3

Heuristic Variable Order Example

—J :
X& . 2 — 5
X, 3 -_-)D—Zz

e Deepest 6utput is z,
¢ Depth-first traversal, ordered by depth, visits inputs in order:

R) L3 .x.‘

¢
i

CAD Appiications of BDD's: Theory and Practice 30 © 1993 Richard Rudeil

~

L

{(u)1eaey eandwod
“i uy u epou yoewe 103}
/* 2TASTINGY J20d] o/

!syeae] Burseedep UT Pe3IIOS SEPOU = 3ISTT IBPIO

£

Oq 0p O
.74

0¢2+%Pp + ¢ al /S °

lq p

194+ (o + 1glo=ty) 0

YIOMIIN [FAFT-NINN

aad

Rationale for Depth-First Heuristic

* Primary inputs which feed deep cones of logic get ordered near the top
- heuristic: they are the more important decision makers

* Theorem: If F = G(F,.F,.....F,) where each pair of functions F,and F, (i)
share no variables in common, then there exists an optimum OBDD variable
order for F which consists of a noninterleaved concatenation of the optimum
variable orders of the £, (for some ordering of the functions F,.F,.---F,).

X, F
. G
X, F,

X, is optimum variable order for F,

Optimum variable order for F is
(xam-xac:»-'"-xa«n))
for some permutation o.

CAD Appucations of BOO's: Theory and Practice

3 © 1993 Rchard Rudeti

Lemma 1 If a function f can be written in the form:

f= QA_.Q.A\N.Q»A. Ot fu, \.:..._v -)))

where the g;s are any two argument Boolean Junctions, and each
fi has support that is disjoint from that of the others, then the
optimum ordering for f is the concatenation of the optimum or-
derings for the f;s in the order 1, 2 ...n+1.

/* fanin heuristic »/
order_list = null;
faninOrder(n, order_list);

faninOrder(node, order_list)

{ if(node ¢ order_list)
foreach fanin

compute TFI DAG depth;

sorted fanin_list = fanins sorted in
aonzwuw:m TFI DAG depths; .
foreach fanin in sorted_fanin_list
’ faninOrder(fanin, order_list);
append(order_list, node);

Special Case: Fanout Free Circuits

for F which consists of an arbitrary (order -independent) noninterleaved

* Theorem: If G is AND or OR, then there exists an optimum variable order
concatenation of the optimum variables orders of the F,.

* Corollary: The depth-first ordering algorithm returns an optimum order for

a combinational circuit with no reconvergent fanout composed from simple

gates (AND, OR, NOT).

e —_—
cOw
ocwwm.
mll.n [
O =1v
Poog
Cv & X
ELT
502
gLO
M.m_\z.w\.ﬁ.\

»

TrmTT

BOVDO—-O L~

© 1993 Richard Rudell

CAD Appications of BDO's: Theory ana Practice

—

{ Initially alt nets must be marked off)

§13 8= ¢}

(-3
-
-

sle
»
-

%

IHNENELEE,

v
HULOOHUL DS
viVviviv

procedure makeOrder(N); —zl. Toputs | Owput | Lavels
" begin S] 9
foreach 1 < Set of all input nets of the gate to which N is connected do o432 | 36 7 7
-an—l o9 | 41 2]
if 1 is marked them continwe; o880 | 60 26 U
if 1 is directly connected 10 a primal input them . cl3ss| 41 2| u
i I is connected more than one gate thea ’ cisos! 33 | 25 | @0
begin 260|233 | 40 | 1
FANOUT2UP := I; . asol 0 | 2 | ¢
if I is not in ORDER them ORDER := append(ORDER J; sus| m |] e
ead else FANOUTILIST := append(FANOUTILIST, I); sl 2 | n» |
else makeOrder(D); , DR\ m | e] @
end;
FANOUT2UP < undef then
begin ’ Originnt coder Mamval eoder
Insert FANOUTILIST into ORDER afier FANOUT2UP, ol) L
FANOUTILIST := NIL;
s $| 3
ead; | o#32] 109 1146
Mark N 9% | 9| s02
return; o880 | wabi>100000
end; c1355] 675/ . 9020
c1908]| 965| 2912
€2670 | wmeble} >, 100000
€3540 | waits |>100000
<915| 2140{ 11007
6288 | wnid>100000
7352 | w5 100000
Ckt. level fan
Tiwe | Max. | Time
BDD
C432 Iﬁ.faﬂ:lj
No undef NIL NIL 1 1476 | 6719 |
N7 undef NIiL NIL ﬁ%l 374 | 5840 | 205]
N5 undef NLL NIL M“w"" s _asu %
N1 undef A NIL [C2670 . -
N2 | undef AB NIL Mﬁ 1
N3 Cc NIL C To788 . "
7552 N N
N8 c NL | CASB e wE]
N6 c NL CAB des 1773 | 340
N4 C D CAB
c NL _o.?w.c

~—

Heuristic Variable Ordering Limitations

Random orders almost always fail
— fails for 23 of 35 largest examples in IWLS'91 benchmark set

Depth-first heuristic order also fails for many examples
— fails for 11 of 35 largest examples in.IWLS'91 benchmark set

Is this inherent OBDD exponential complexity or just bad orders?

Many functions exhibit behavior that some orders produce large OBDDs
while other orders produce small OBDDs
- e.g., n-bit adder
(@p_y Dpy@poy bpyoooe.ay . by .ay.by) linear
(@,.,.@py. @y .Gy.b,_.b,_,.--.b, . b,) exponential
- e.g., Achilles Heel function: f = x,x, + taxy - +X, 5%,
(X Xp X2 Xy X1 X,y) linear
(XyeXa.Xgerosa Xz X)Xy 0 X,y) €XPONENtial

CAD Apphications of BDO’s: Theory and Practice a3 . © 1993 Richard Rudeil

Dynamic Variable Ordering

¢ Motivation:
- many OBDD operations run out of memory using heuristic ordering

— programmer must devise application-specific ordering algorithms for
ear%?\ OBDD appilication ' 9 2igo

can be complex for some applications
expend effort on better heuristics or finding a non-OBDD solution?

* Solution: Dynamic Variable Ordering
- allow the OBDD package to modify the order on the fly
- OBODD package hides all variable ordering details from user

OBODD order is no longer static
Allow OBDD order to change in-between operations

- maintain consistent order for the OBDD before & after each ITE
modify the order as a side-affect of OBDD processing
use current OBDD functions to determine new variable order

CAD Appiications ot BDD's: Theory and Practice 34 © 1993 Richard Rudei!

Dynamic Variable Ordering Paradigm

» General solution paradigm with many choices

- when to modify the order?
e.g., every time the OBDD DAG doubles in size
e.g., when memory limit is exceeded
e.g., every 10 ite operations
e.g.. every 100,000 ite steps

- how to choose a new order
e.g., variety of OBDD minimization algorithms

* Logically perform variable ordering in-between operations, but:
- F and G are small, but F+G is too large to be represented
need to make all 3 functions (F.G.F+G) small simultaneously
- solution: reorder variables deep in ITE recursion
include partial result for F+G

CAD Appiications of 8DD's: Theory ang Practice as £ 1993 Richard Rudst!

OBDD Minimization

Problem definition: Given a muiti-rooted OBDD DAG, reorder the
variables to minimize the number of nodes in the DAG needed to
represent all user functions (simultaneously) -

Complexity:
n' permutations (orders) for n variables
brute - force search O(n!2") _
~ dynamic programming search: O(n*3") (Friedman & Supowit]

Optimum ordering problem is NP-hard

Don't need optimum order! o
Just want to avoid exponentially-sized worst case when possible

CAD Appicatons of BDO's: Theory and Practice k. © 1993 Richard Ruasi

Adjacent Variable Swap

» Swapping the order of two adjacent variables
— affects only the nodes at the two levels!

* For a single OBDD function F, the nodes at level i represent the unique
functions from the set {F;: ot Fopoeo } which depend on v,

For all levels above x,,
the set of cofactors remains unchanged by variable
exchange because levels x, and x,,, are not involved

. For all levels below .,
the set of cofactors remains unchanged by variable

— exchange because of commutivity of cofactor
(Ft,)-‘..n =(F(,,)‘ = F(L 3
CAD Apphcatons or BOD's: Theory and Practice a7 2 1993 Richard Ruae
Adjacent Variable Swap

Before variable swap:
F=(x;.G.H)=(x;.(x,,,.A.B)(x,.,.C.D))

After variable swap:
F=(x,,.G'.H')=(x,,.(x,.A.C).(x,.B.D))

CAD Appications of BDO's: Theory and Practice 38 © 1993 Richard Rudell

Adjacent Variable Swap Comments

» Several special cases: .
G does not depend on x,_, implies A = 8
H does not depend on x,,, implies C =D
IfA=C, then G’ =(x,.A.C)=A
#B=D,thenH =(x,.8.D)=8

¢ Modification of F for the new variable order:
- removes, at most, nodes G and H from the DAG
these nodes may be deleted if they are referenced only by F
-~ adds, at most, nodes G’ and H’ to the DAG
these nodes may be redundant or may aiready exist in the DAG

CAD Apphications of BDO's: Theory and Practce 39 € 1993 Richard Rudetl

Complexity of Adjacent Variable Swap

* Overwrite each node at level i with a new node at IeVeI i+l

(x;.G.H)=—(x;,,.G’.H")
(%;.(Xisy, A. B).(x,,,,C. D)) = (x,,,,(x;.A.C).(x,,B. D))

* How to reach nodes at level i?
- walk DAG from the roots to reach level i (expensive in run-time)
= double-linked list for all nodes at each level (expensive in memory)
— replace unique table with an array of hash tables, one per level
replace
hash_lookup (unique_table, (i,G.H), &value)
with
hash_lookup (unique_table(i], (G,H), &value)
walk down the hash table array for each level to reach all nodes

* Adjacent variable swap complexity is proportional to the number of nodes
at level i and independent of the total DAG size!

CAD Apphcanons of BDD's: Theory and Practice 40 D 1993 Richard Ruaell

Window Permutation Algorithm

* Exhaustive search of all orders within a limited size window

e e.g., variables (x,.x,.x,.¥,.%. .Y,). window size 3 starting at «,

Start (X)X Xq,Xq,Xg.X4.X7)
swap (ry.x;) (X X:.X4,X3,Xg.Xq.X7)
swap (xy.x¢) (X, X3 XqyXgyXq.Xg.X7)
swap (x,.xg) (X, . X3 XgyXgyXq.X6,%7)
swap (x;.x;) (X).%2.Xg,Xg,Xq,X5.X7)
swap (x¢.x;3) (X, X3, Xy, XgoXq.Xg.X5)

» Repeat optimal search within the window at each variable position

Fujita et al. EDAC'91]
Ishiura et al. ICCAD'91]

CAD Appiicanons of B0O's: Theory and Practice 41 £ 1993 Richard Rudell

Window Permutation Algorithm

* Move window of size k to a spot in the DAG
- Explore all k! permutations using k!-1 adjacent variable swaps
- Record best permutation seen along the way
- Restore optimal permutation with at most k(k -1)/2 adjacent swaps

* lterate sliding window across the variables while DAG size decreases
- Local optimum conditiort a variable has to move at least k positions
to reduce the DAG size

* Key limitation: can only afford small windows (e.g., k< 5)

CAD Agplications of BDO's: Theory and Practice 42 9 1993 Richard Rudei!

~—

Sifting Algorithm
e Find the-optimum position for a variable assuming other variables remain fixed

* e.g., 7 positions for v, (including its current position)

Il by ¢ x5dx, dr, d

* Use pairwise adjacent swap to exhaustively search all 7 positions
start (X X3 X3, X q,Xg.K6.59)
SWap x . ts (X010, . X g, X0 . Xq)
SWap x;.%, (X.X3.%3,%,%.Xq,X7)
SWapP x;.X; (X6.X:.Xy, e X6, X7.Xq)
SWap ..ty (X 0.5, 8. . Xq.Xy)
SWaP xX,. Xy (X).01.05, X Xgq.X.X9)
SWaP e X, (X6.00.X3, X g X5, Xg.Xq)
SWap x3.x, (XX . Xg Xy, X X, X))
SWap xy.x; (6. Xgq.X3.%3,X.%c.X9)
SWap x,.x; (X4.%.X:.X3,X5,%.%q)

CAD Agpplications ot BOO's: Theory and Practice 43 < 1993 Richarg Rudetl

T 3

Sifting Algorithm Comments

* Sift each variable from its current position
— down to the bottom of the DAG, then up to the top
— record best position seen
— restore best position after completing search

* Advantages:
— variables can move an arbitrarily long distance
independent of intermediate increases in the DAG size
— solves Achilles heel ordering problem optimally starting with bad order
~ solves adder ordering problem optimally starting with bad order

CAD Agplications of BDD's: Theory and Practice 44 : T 1993 Richarg Rudeil

Dynamic Variable Ordering - Results

* Experiment #1: Window Permutation Algorithm vs. Sift Algorithm

- 35 largest examples from IWLS'91 benchmark set

- 100,000 node limit placed on the OBDD package
if memory limit exceeded, example is unsolved

- Attempt to form OBDD for all primary outputs
start with heuristic depth-first variable order .

(11 of 35 circuits are unsolved without dynamic ordering)

apply BDD minimization every time DAG doubles in size

e Results:
window permutation algorithm:
k=2: solves 2 of 11 unsolved problems
k=3: solves 3 of 11 unsolved problems
k=4: solves 3 of 11 unsolved problems
sift algorithm:
solves 9 of 11 unsolved problems

CAD Applications of BDD’s: Theory and Practice 45 ¢ 1993 Richard Rudeli

Dynamic Variable Ordering — Results

* Experiment #2: Heuristic order vs. random order starting point

- 35 largest examples from IWLS'91 benchmark set

- 100,000 node limit placed on the OBDD package
it memory limit exceeded. example is unsoived

~ Attempt to form OBDD for all primary outputs
start with random variable order

(23 of 35 examples are unsolved without dynamic ordering)

apply BDD minimization every time DAG doubles in size

e Compare heuristic ordering start from random order start
sift algorithm:
solves 32 of 35 examples
random fails for 1 example which succeeds with heuristic order
2x longer run-time starting from random order
slightly larger DAG sizes when starting from random order

CAD Agphcatons of 8D0's: Theory and Practice 46 S 1993 Richarg Rudell

Dynamic Variable Ordering Summary

Effective technique to increase utility and application of OBDDs
- allows OBDD computation to complete in many cases
- classic space vs. time trade-off
no memory increase
run-time increases up to 10x

(Almost) removes need for heuristic ordering algorithms

Sifting algorithm superior to window permutation
- produces smalier DAG sizes
— allows more examples to complete

Dynamic variable ordering future work
~ — need to explore other applications to demonstrate utility
- need faster and more effective BDD minimization algorithms

CAD Applications ot 800's: Theory and Practice 47 £ 1993 Richara Rudeli

