UNIVERSITY OF CALIFORNIA
Santa Barbara

Symbolic Scheduling Techniques

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in
Electrical and Computer Engineering
by

Ivan Radivojevic

Committee in charge:
Professor Forrest D. Brewer, Chairman
Professor Malgorzata Marek-Sadowska
Professor Kwang-Ting Cheng
Professor P. Michael Melliar-Smith

Doctor Barry Pangrle

March 1996

The dissertation of lvan Radivojevic
is approved:

Committee Chairman

March 2, 1996

March, 1996

Copyright[] 1996
Ivan Radivojevic

All Rights Reserved

To my Mother.

Acknowledgments

First, | would like to thank my advisor, Professor Forrest Brewer, for his guid-
ance and support throughout my graduate studies at University of California, Santa
Barbara. This work would not have been possible without the most inspiring dis-
cussions we have had in the past four years.

Also, | would like to thank the Committee members: Professor Margaret
Marek-Sadowska, Professor Kwang-Ting Cheng, Professor Michael Melliar-
Smith, and Dr. Barry Pangrle for helpful suggestions and comments helping to
improve the presentation of this work.

| would like to gratefully acknowledge contributions from Dr. A. Seawright
who took part in early discussions and developed the original C++ BDD package
extensively used throughout this project. My special thanks go to A. Crews, C.
Monahan, and A. Stornetta for recent efficiency improvements while re-imple-
menting the package.

This work was sponsored in part by fellowship donations from Mentor Graph-
ics Corporation as well as UC-MICRO program. It would not have been possible
without their generous support and willingness to help academic research.

| want to use this opportunity to express my thanks, one more time, to all of my
teachers and colleagues at: University of California, Santa Barbara, Drexel Univer-
sity, Philadelphia, and University of Belgrade, Yugoslavia, for their contributions
to my knowledge and enthusiasm over the fifteen year period.

Finally, my deepest gratitude goes to my mother Miroslava and to April

Funcke. Their love, care and patience words cannot express.

VITA
Born[J Belgrade, Yugoslavial August 28, 1962.
EDUCATION

M. S. Electrical Engineering, 1990.

Department of Electrical and Computer Engineering
Drexel University

Philadelphia, PA, U.S.A.

B. S. Electrical Engineering, 1987.
University of Belgrade
Belgrade, Yugoslavia

FIELDS OF STUDY
Major Field: Computer Engineering

Specialization: System Level Computer-Aided Design
Professor Forrest Brewer

PROFESSIONAL EXPERENCE

Graduate Student Research&epartment of Electrical and Computer Engineer-
ing, University of California, Santa Barbdra September 1994.

Teaching AssistanDepartment of Electrical and Computer Engineering, Univer-
sity of California, Santa Barbafd September 1991.

Teaching Fellow Department of Electrical and Computer Engineering, Drexel
University, Philadelphial January 1991.

Teaching AssistanDepartment of Electrical and Computer Engineering, Drexel
University, Philadelphid] September 1989.

Research EnginegfFaculty of Electrical Engineering, University of Belgrade,
Yugoslaviall November 1987.

\Y

PUBLICATIONS
Journal papers:

|. Radivojevic and F. Brewer, “A New Symbolic Technique for Control-Dependent
Scheduling” IEEE Trans. Computer-Aided Design of Integrated Circuits and Sys-
tems vol. 15, no.1, pp. 45-57, January 1996.

|. Radivojevic and F. Brewer, “Symbolic Scheduling TechniqueZICE Trans.
Information and Systemeol. e78-d, no. 3, pp. 224-230, March 1995.

|. Radivojevic and J. Herath, “Executing DSP Algorithms in a Fine-Grained Data-
flow Environment”,IEEE Trans. Software Engineeringol. 17, no. 10, pp. 1028-
1041, October 1991.

|. Radivojevic, J. Herath, and W. S. Gray, “High-Performance DSP Architectures
for Intelligence and Control ApplicationsTEEE Control Systems Magvol. 11,
no. 4, pp. 49-55, June 1991.

Conference papers:

|. Radivojevic and F. Brewer, “Analysis of Conditional Resource Sharing using a
Guard-based Control RepresentatioRtoc. Int. Conf. Computer Desig/ustin,
Texas, pp. 434-439, October 1995.

|. Radivojevic and F. Brewer, “On Applicability of Symbolic Techniques to Larger
Scheduling Problems’RProc. European Design and Test Corgp. 48-53, Paris,
France, March 1995.

|. Radivojevit and F. Brewer, “Incorporating Speculative Execution in Exact Con-
trol-Dependent SchedulingRroc. 31st ACM/IEEE Design Automation Comifp.
479-484, San Diego, CA, June 1994.

|. Radivojevic and F. Brewer, “Ensemble Representation and Techniques for Exact
Control-Dependent SchedulingProc. 7th Int. Symp. High-Level Syntrespp.
60-65, Niagara-on-the-Lake, Ontario, Canada, May 1994.

|. Radivojevic and F. Brewer, “Symbolic Techniques for Optimal Scheduling”,
Proc. 4th Synthesis and Simulation Meeting and International Interchange
(SASIMI) pp. 145-154, Nara, Japan, October 1993.

|. Radivojevic and J. Herath, “DSP Architectural Features for Intelligence and
Control Applications”,Proc. 5th Int. Symp. Intelligent ContrdPhiladelphia, PA,
September 1990.

Vii

Symbolic Scheduling Techniques

by

lvan Radivojevic

ABSTRACT

This thesis describes an exact symbolic formulation of control-dependent,
resource-constrained scheduling. The technique provides a closed-form solution
set in which all satisfying schedules are encapsulated in a compressed Binary
Decision Diagram (BDD) representation. This solution format greatly increases
the flexibility of the synthesis task by enabling incremental incorporation of addi-
tional constraints and by supporting solution space exploration without the need
for rescheduling. The technique provides a systematic treatment of speculative
operation execution for arbitrary forward-branching control structures. An iterative
construction method is presented along with benchmark results. The experiments
demonstrate the ability of the proposed technique to efficiently exploit operation

level parallelism not explicitly specified in the input description.

Keywords: Binary Decision Diagrams; Control Dominated Circuits; High-

Level Synthesis; Operation Level Parallelism; Scheduling.

viii

Contents

Chapter 1. Introduction 1
1.1 Operation Scheduling............cooiiiiiiiiiiiiiiiii s 1
1.1.1 Complexity of the Scheduling Problem............ccccccvvveneen. 5
1.2 PreViOUS WOIK......uu oot e e e e e e e e eeeeeneennnes 6
121 Control Dominated CirCUILS...........uuuuueiiiiiiieeeeeeeeeeeeeeeeiiiieens 8
1.2.2 Symbolic TEChNIQUES.........cvvviiiiiiiiieieiie e 10
1.2.3 Relation to Research in Compilersccccccvivviiiinnnnn. 12
1.3 Overview of the ThESISuuuiiiiiiiiei e 15
Chapter 2. Control-Dependent Behavior 18
2.1 High-Performance Scheduling ISSuescccvvvviiieeeevennnn. 18
211 Speculative Operation EXeCUtioN............cceevvieieeeeeieinneneee. 20
2.1.2 Out-of-Order Execution of Conditionals 22
2.1.3 Irredundant Operation Scheduling............ccccceiiiiiinnnnnnnn. 22
214 Parallel and Correlated Control Structures...........ccc........ 23
2.2 OUI GOAIS ..ot 24
Chapter 3. Formulation 26
3.1 Control Representation...............c.cuuvuiiiiiiiiiieiiee e 26
3.2 Speculative Execution Model............ccoooovviiiiiiiiiiiiiii e, 30
3.2.1 Restrictions of the Proposed Model............cccoooovvviiinnen. 31
3.3 Derivation of CONSLraintScooeeeeiiiiiiiiiiiiii e 33
3.3.1 UNIQUENESS ...ttt ettt e e e e e e e eaeas 34
3.3.2 PreCeUENCES... ..o 34
3.3.3 TerMiINALIONcuueeiiiii e 36
3.34 Resource COoNSraintsooovvveiiiiiiiiiiiiiine e eeeeeeeeeeiiinns 37
3.3.5 Removal of Redundantly Scheduled Operations.............. 40
3.3.6 TimiNg CONSLraiNtSccooiiiiiiiiiiiiiii e 40
3.3.7 Additional Remarks ... 41

iX

G A I = o S I £ [To F= 11 o o
3.4.1 Proof of Correctness
3.4.2 Convergence ANAlYSISccccieeeeiiiiiiie
3.4.3 Extracting One Ensemble Schedule

3.5 Cyclic Control

3.6 Scheduling Procedure

3.7 Relationto ILP

Chapter 4. Construction 57

4.1 Ilterative Construction Process
4.2 BDD Form of Constraints
4.3 Variable Ordering
4.4 Speed-Up Techniques
4.4.1 INterior CONSIIAINTS ...
4.4.2 Implicit Application of Complex Constraints
4.4.3 Symbolic Heuristics
4.5 Alternative Representations
45.1 Zero-Suppressed BDDs
4.5.2 Log Compression

Chapter 5. Conditional Resource Sharing Analysis 80

5.1 Acyclic CDFGs
5.2 Pipelining of cyclic CDFGs
5.3 Probabilistic interpretation

Chapter 6. Experimental Results 93

6.1 Acyclic DFGs
6.2 CYCHC DFGS....oiiiiiiiiiiite ettt
6.3 ACYCHC CDFGS ...covviiiiiiiiiiiiie et e e e e

6.3.1 Speculative Execution Model Performance
6.4 Larger DFGS.....oiiiiiiiiii e
6.5 Cyclic CDFGs

Chapter 7. Discussion 117

7.1 SUMMAIY ..ot e e e 117
7.2 Future ReSearcCh AVENUES........ccoviiiieieeeeeeeeeeeeeen e 118
7.2.1 Complex Operation Mappingcccceeeeeeeeeeeeeeeeneeeeeeennnnnns 119
7.2.2 Generalized Speculative Execution Model..................... 120
7.2.3 General Forms of Cyclic Control...............cceevvvviviiiinnnnnns 121
7.2.4 CDFG Scheduling HeuUriStICS........uueeiiiiieiieeeeeeeeeeeeeeeiias 121
7.2.5 Tightening of Operation Boundscccevvvvvvevvinnnnnns 122
7.2.6 Lower Level Hardware Implementation Issues.............. 122
Bibliography 124
Appendix A. Binary Decision Diagrams A.l

Xi

List of Figures

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:
Figure 1.5:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 3.10:
Figure 3.11:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:
Figure 4.10:
Figure 5.1:
Figure 5.2:

Control flow dependenCIEScooviiiiiiiiiiii e 1
XMAC €XAMPIE ...t a e e e e e eeeeeaees 3
XMAC SCHEAUIE.......euiiiiiiiiiiiiiiiieeeee s 4
Conditional DENAVION.......ccooei i 9
Resource management examples.............uueeiiiiiiiniiieeiieieieeeeeeiiiiis 14
Example CDFG and its schedules.........ccccooviviiiiiiiiiiieeeceee e 19
Example of speculative operation eXecCutionccccceeeeeeeeeeeeeeennnn. 21
Operations redundant on certain control pathscccccccciiiiienennn. 23
CDFG with correlated CoNtrolcoooeeiiiiiiiiiiiiiiiiieeeeeeee e 24
KIim’'s @XampPle......oooo i 27
Pseudo-code fragment............eeeeiiiiiniieieeeeeeeee e 28
CDFG transformation for Maha example.........cccccccvcciciiiiiiie e, 31
Speculative execution MOdel ... 32
Treatment Of PreCedENCESiiii i 36
Example register CoNStraint..............cooovvvvieiiiiiiiiiiiiiee e e 39
Ensemble schedule counterexample ..., 42
Trace Validation algorithm ... 44
CoNVergence analySiS...........uuuuuuuiiiiiiiiee e ee e 49
Ensemble schedule extraction..............oovvvveiiiiiiiiiiiie e 51
Symbolic scheduling proCedure ... 55
SOlUtION CONSIIUCTION ...t 59
Uniqueness constraint (4 time Steps SPan)eevveeeeeeeeeieiieeeeeeeenn. 60
At-most-k-of-n constraint (K=4, N=7)ccooiiiiiiiiiiii e, 62
BDD representation of the solutioncccccoeeeeiiiiiiieeicceee e, 63
Effects of BDD variable ordering...........ccccueeeeeeiiiiiiiis 64
Utility-based Set-NeUNISHICccovvuiiiiieieece e, 69
BDD reducCtion TUIESoooiiiiiiiiiiie e 71
Elliptic wave filter (EWF) benchmark.............ccccooiiiiiiiiiiiin. 72
Path SNariNg.......ccooiiiii e 75
More path SNarNGueeiiiiii e 76
Example CDFG fragmentcooeiiiiiiioiiiiiiiiiiieeeeeee e 82
Overlapping of l00p iterationsSceeeeeiiiiiiiiieeeeee e, 85

Xii

Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:
Figure 6.9:
Figure A.1:

Unfolded execution pattern for Kim’s example.........cccccccvvviiinnnnnnnn. 86
Example CDFG to be folded............ooooiiiiiiiiiiiiieeiiiie 87
Folded CDFG from FIgure 5.4...........ooovviiiiiiiiciieee e, 90
Infeasibility deteCtion...............uuviiiiiiiiiiiiii 96
ROTOR €XamPle ..o 100
ROTOR eXPEIMENTSccceeiiiiiiieeiiiiiccee s e e e 102
8-cycle ROTOR sChedule ... 103
S2R @XaMPIE ... 103
28-cycle EWF: exact and heuristic constructions...........ccccccccvvveee. 106
54-cycle EWF: exact and heuristic constructions..............ccccoeee..... 107
19-cycle FDCT with pipelined multiplier.............cccvviiiiiiiinnnnn. 114
SC example and its schedule...............ccoceeiiiiiiiiiieii, 115
ROBDD forms of f=AB+C using different orderings.................... A.2

Xiii

List of Tables

Table 3.1:
Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:
Table 6.6:
Table 6.7:
Table 6.8:
Table 6.9:
Table 6.10:
Table 6.11:

Symbolic vS. ILP formulation..............ciiiieeeniiiiiieeeeee 56

EWFE @XPEIMENTS......utiiiiiiiiii et e e e e e e eeeeeeeeennnns 94
EWF With 100p WINAINGuiiiiiiiiiccccceeeeeeeees e 96

Benchmarks with branChing ..o 98

Comparison with others: average (longest) path ..., 98
S2R EXPEIMENTSccoiiiiiiieiieiiiere e e e e e e e e e e e e eaaes 104
Speculative execution model performance.............cccccciviiviiinnenen. 105
Robustness analysis of the heuristic scheduler...................cc.......... 108
EWF-2 eXPerMENTISccco et 109
EWF-3 @XPerimMeNtScooiiiiiiiiiiie et 111
FDCT XPeIMENTS ...ttt e s 112
Throughput COMPArISONSvvviiiiiiiee e 116

Xiv

Chapter 1

Introduction

1.1 Operation Scheduling

Two types of dependencies exist between the operations from a program
specification. Data-flow dependenciesmpose precedence (execution order)
between the operations. For example, operatinhas to be executed after
operationO,, if a result computed b, is used byO,. Control-flow dependencies
arise when some portions of the specification are executed conditionally. An
example of such conditional behavior is illustrated by a code fragment shown in
Figure 1.1. The code indicates that conditiGris computed and its outcome is
used to determine a flow of control of the programClfs “True”, operationA is
executed; otherwise (whebis “False”) operatiorB is executed. All data-flow and
control-flow dependencies have to be satisfied to ensure a correct execution of the

specified behavior.

if (C)
A,
else
B;

Figure 1.1 Control flow dependencies

1

Additional constraints arise due to finite hardware resourdé&ssource
constraintsimpose bounds on a number of functional units available for the task
execution. For example, a microprocessor implementation may incorporate two
adder circuits and, consequently, not more than two additions can be executed

simultaneously.

Another set of restrictions comes from thming constraintsIn many time-
critical applications (e.g. aircraft engine control) computer hardware has to react to

a recognition of a specific event within a strictly prescribed time interval.
Now we define theperation schedulingroblem addressed in this thesis:

Definition 1.1 Operation scheduling is the process of determining the assign-
ment of operations to time steps of a synchronous system, subject to data/control

flow dependencies and resource/timing constraints.

The goal of operation scheduling is to find an execution order of operations
that optimizes specific objective function. In particular, we are interested in
applications of scheduling to computer-aided design (CAD) of digital circuits. For
example, given bounds on available hardware resources, a goal of finding the
fastest possible execution schedule can be set. Alternatively, we can look for a
schedule that requires the minimal implementation cost while meeting a pre-
specified bound on number of execution steps. Such goal reflects a trade-off
between the task’s execution time and circuit complexity of VLSI (very large scale

integration) integrated circuits.

When program includes conditional behavior, some operations may be
“mutually exclusive”. Operation®,; andO, are mutually exclusive if, during the

program execution, eithed; or O, (but not both) is going to be executed. In

Figure 1.1, once the conditio@ is computed, operation& and B are mutually

exclusive and can use the same hardware resource during the execution.

Very frequently, however, it happens that execution order of the condiion
and operationsA and B is not pre-specified. In such cases, given sufficient
hardware resources, operatichgandB can be executed at the same time or even
beforethe computation o€. This kind of program execution is callepeculative
operation executiont has been shown that speculative execution can significantly
improve execution time by using otherwise idle hardware resources
[100][105][119][122]. This, however, increases the complexity of the scheduling
task in a dramatic fashion since use of hardware resources has to be determined

dynamically during the scheduling process.

Example

Figure 1.2 shows the XMAC example corresponding tdblack-matrix-
multiply-and-accumulateomputation. Assume that the XMAC is to be executed
on a data-path consisting of a four-cycle pipelined multiplier and a four-cycle
pipelined adder. All of the input operands as well as four final output values are to

be stored in a multiport general-purpose register file with a single-cycle access

|:a11 alj + |:b11 blj X |:c11 clj — |:r11 r12:|
a2l a2 b21 b2 c21 c2 r21 r22

Figure 1.2XMAC example

3

time. However, to avoid such single-cycle performance penalty, two bypass paths
(bypass registers) are available for a direct transfer of operands between the
functional units. Figure 1.3 shows the optimal execution schedule for the XMAC

in which all of the intermediate results are forwarded using two bypass paths.

Although we intentionally modeled the underlying data-path after a floating-
point portion of a recent high-performance commercial microprocessor [34], the
XMAC example is, admittedly, very simple and somewhat contrived. In particular,

the example does not exhibit conditional behavior. A presence of conditional

Figure 1.3XMAC schedule

4

constructs dramatically increases complexity of the scheduling task. To further
elaborate on this point, we will introduce several simple but illustrative examples

in Section 1.2, Chapter 2 and Section 6.3.

1.1.1 Complexity of the Scheduling Problem

Throughout this thesis we will assume an input in the form obatrol/data
flow graph(CDFG) specification that describes both data-flow and control-flow
dependencies between the operations. Acyclic data-flow graphs (DFGs) are
straight-line operation sequences without branching control statementdf{e.g.
then-else case gota exif) and loops constructs (e.gvhile, do-whilg. Cyclic
DFGs include loop statements but no other forms of branching. Branching
statements are present in CDFGs. A CDFG is acyclic if it does not include loop

constructs. Otherwise, we say that a CDFG is cyclic.

We discuss a complexity of the scheduling problem using the concephef

optimality as defined in [108]:

Definition 1.2 A programP is said to be time optimal if for every instructidrof
P, executed at some cycte there exist at least one operatiopin | and a depen-

dence chain of lengthending app .

Intuitively, this means that every possible execution path runs in the shortest
possible time. Time optimal scheduling of both acyclic and cyclic DFGs [2] is
achievable in polynomial time assuming unlimited resources. However, even the
problem of acyclic DFG scheduling becomes NP-complete for finite resources
[40]. Time-optimal schedule for an acyclic CDFG is always achievable by

scheduling all possible execution paths individually and executing them in parallel.

1. For the purpose of a discussion relevant to this thesis, the word “program” can be sub-
stituted by “schedule”, and “instruction” corresponds to a set of operations executed at the
same cycle (time step).

Unfortunately, this, in general, requires an exponential number of operations as

indicated in [105].

Recently, in particular in the area of parallelizing compilers, there has been a
considerable interest in software pipelining techniques for cyclic CDFGs [100]. In
[108], time optimal scheduling of arbitrary loops is investigated. In that work, the
authors consider a theoretical parallel machine with finite but unlimited number of
resources. Notice that such an assumption does have practical implications:
although a number of resources may grow arbitrarily large in the future, it must be
finite in any real-life hardware implementation. For such a machine, it can be
demonstrated that, in general, time optimal scheduling of arbitrary loops is

impossible.

1.2 Previous Work

High-level synthesis(HLS [31][74][121]) is an automated process that
transforms an algorithmic specification of the behavior of a digital system into a
hardware structure that implements the behavior. Resource-constrained operation
scheduling is one of the crucial tasks in HLS. We say that scheduling is control-
dependent if some operations from the control/data flow graph (CDFG) are
executed conditionally due to the presence of control-flow constructs sudh as:

then-elsegoto, case, exietc.

There are two difficult issues in a formal treatment of control-dependent,

resource-constrained scheduling:
« concise formulation of the conditional behavior

» treatment of resources.

An efficient formulation should not generate an excessive number of
constraints and formulation variables. Moreover, a formal evaluation of resource
availability in the face of conditional execution is required. This is particularly
difficult when movement of operations across basic code block boundaries is not
prohibited. It has been demonstrated that the ability to perform speculative

operation execution leads to superior schedules [20][100][105][119].

Current practical methods for solving the scheduling problem involve two

basic approaches:
* heuristics
* integer linear programming (ILP).

Priority-based heuristic scheduling (e.g. [18][30][84][87]) can accommodate a
variety of control-dependent behaviors, but may fail to find an optimal solution in
tightly constrained problems. The reason for this is that heuristic schedulers cannot
recuperate from early suboptimal decisions which typically preserve only one

representative from a possibly very large pool of qualified candidates.

Conventional ILP methods [49] can solve scheduling exactly but suffer from
exponential time complexity and the inability to efficiently formulate control
constraints. General applicability of these ILP methods has been improved by re-
mapping the constraints [41][42], a mixed ILP/BDD method [127], and heuristic
approaches based on ILP [48][59]. However, with the exception of [26] (discussed
below), no ILP-based technique provides support for conditional behavior.
Similarly, a recent branch-and-bound technique [116] based on execution interval

analysis [115] has been applied only to acyclic DFGs.

Finally, we observe that the current scheduling techniques typically produce a
single representative solution among those which are feasible within the
constraints 2. In subsequent HLS tasks, (e.g. binding and interconnection
synthesis) additional constraints that conflict with a particular scheduling solution
may arise and the scheduling must be redone to accommodate these new
constraints. Using heuristic scheduling, additional constraints can be introduced to
help avoid these conflicts (e.g. [25]). However, these additional constraints may

adversely affect the heuristic scheduling quality and performance.

1.2.1 Control Dominated Circuits

Many HLS systemgrohibit code motion in order to avoid problems related to
evaluation of resource availability and causality of the solutions. An alternative
strategy is teexplicitly write constraints describing global movement of operations,
but such approaches reduce to exhaustive enumeration of potential execution
scenarios. In the formulation described in this paper, code motion is allowed
implicitly -- there is no need to describe freedom already available (although
implicit) in a CDFG.

As an example, we consider the formal approach based on algebra of control-
flow expressions (CFEs) [26]. In that work, the timing and synchronization
requirements for communicating machines are encapsulated in finite-state machine
(FSM) description. From this, scheduling constraints are derived and subsequently
solved using a BDD-based O/1 ILP solver. The FSM description is constructed

from an algebraic CFE specification which implicitly restricts code motion.

2. However, it has been shown that certain HLS benchmark instances have literally bil-
lions of optimal solutions ([94], Chapter 6).

8

p;
if (c)r;
elses;

Figure 1.4 Conditional behavior

Consider, for example, the code segment shown in Figure 1.4. A possible CFE
specification for this fragment is:

p(c:r +C:s) (EQ 1.1)

This requires thap be executed beforg andc before either or s. An alterna-

tive specification is:

c.pr+c:ps (EQ 1.2)
which allowsc to be executed before If c depends o only the first statement is
correct. However, it and p are independent, thdmoth behaviors (described by
Equation (1.1) and Equation (1.2)) are legal. It is possible to crespeefication
which lists all correct execution scenarios, but the number of such scenarios and
the size of the specification grow dramatically as the program complexity
increases. In contrast, in our approach, only data dependencies are used to impose
the execution order gf andc. In fact, if the data dependencies allow such motion,
r and/ors may be executed beforeand potentially beforg as well. These poten-

tial execution scenarios are implicitly supported by the formulation.

Since operation level parallelism may not be explicit in the input description,
some heuristic schedulers focus on detection of mutual exclusiveness in CDFGs.
Tree scheduling (TS) [47] uses a tree-representation of the execution paths to
enable movement of operations. In that approach, sub-trees induced by a branch

are considered to be mutually exclusive and, consequently, can share resources.

Conditional vector list scheduling (CVLS) [119] usesndition vectord120] to
dynamically track mutual exclusiveness of the operations that can be executed in a
speculative fashion (i.e. pre-executed). Transformation of a CDFG with
conditional branches into one without conditional branches is performed in [55],
but there is no support for speculative execution. Furthermore, these heuristics are
restricted to nested conditional branche®r(ditional tree control structure).
Multiple conditional trees are addressed by Wakabayashi [119], but the trees are
either scheduled sequentially (using a priority scheme) or conditional tree

duplication is performed.

Some synthesis systems emphasize treatment of behavioral level timing
specifications. However, either a predefined order of operation is enforced before
the scheduling [18] or the treatment of resource constraints is not fully considered
[60]. The PUBSS system [124] forms a product machine of individual behavior
FSMs (BFSMs) to statically schedule /O communication between the
components. PUBSS supports a variety of timing constraints. However,
parallelism increasing techniques [36] are applied in a static fashion (before BFSM
collapsing and scheduling). The issue of resource constraints is either not formally
discussed [114][128] or the formulation of exclusivity constraints requires an

excessive number of 0/1 ILP variables [113].

1.2.2 Symbolic Techniques

To our knowledge, the first attempt to address the scheduling problem using
symbolic computations was made by Kam in [54]. There, several CAD
applications of MDDs (multi-valued decision diagrams) were described.
Scheduling of acyclic DFGs with function unit constraints was formulated using

multi-valued variables, but the approach seemed to be practicable only for tightly

10

constrained problems. Unfortunately, too few experimental results were left

documented to make a critical assessment of that approach.

In the mixed ILP/BDD approach [127], data dependencies were captured in an
ROBDD (Reduced Ordered Binary Decision Diagram [12], Appendix A) form to
simplify the ILP execution. Inclusion of resource constraints and all other steps
towards the final solution were applications of standard ILP techniques. As in the

case of [54], the question of control-dependent behavior was not addressed.

An exact symbolic formulation of theontrol-dependentesource-constrained
scheduling problem was introduced in [92] and represents a foundation for the
work presented in this thesis. In that work, all scheduling constraints are
formulated in a Boolean equation form. Unlike other approaches in which a single
representative solution is generated, in [8R}feasible schedules are encapsulated
in a compressed ROBDD representation. This is advantageous since the exact
effect of additional constraints derived during subsequent synthesis steps is
incrementallycomputable. Also, there is the additional benefit of being able to
explore the solution space without the need to reschedule the problem instance.

However, the formulation presented in [92] does not support code motion.

An alternative symbolic formulation [125][126] uses finite automata to capture
resource/timing/synchronization constraints. A product automaton is built that
satisfies the specified behavior. Its ROBDD representation is then traversed to find a
minimum-latency schedule. However, similar to [26], the technique lacks support

for various forms of a operation-level parallelism to be described in Chapter 2.

In this thesis, we describe a symbolic technique for exact resource-constrained
scheduling of arbitrary forward-branching control structures. Scheduling is

performed with the assumption that allocation of resources is known. The technique

11

supports speculative operation execution and global treatment of parallel control
structures. To allow a systematic treatment of the problem, a flexible control
representation based gunard variablesguard functionsandtracesis introduced.

A novel trace validation algorithm is proposed to enforce causality and

completeness of the set of all feasible solutions.

The scheduling technique presented in this thesis supports arbitrary Boolean
constraints as well as conventional timing constraints. Scheduling of multi-rate
interacting FSMs is not addressed in this work. Similarly, we do not discuss
optimizations based on algebraic and retiming transformations [1][64][68][81][90]

nor do we discuss scheduling of multi-dimensional applications [85].

1.2.3 Relation to Research in Compilers

Steady advances in VLSI manufacturing technology have made it possible
(and economically justifiable) to implement superscalar, superpipelined and VLIW
architectures [45][52]. This has had a large impact on research in compilation
techniques for instruction-level parallel processing [100]. To find substantial
amounts of instruction-level parallelism, it has been demonstrated in numerous
experimental studies that optimizing compilers have to be able to schedule code
beyond the basic code block boundaries [105]. For the purpose of this discussion,

we adopt Fisher’s definition of a basic block [37].

Definition 1.3 A basic block is a sequence of instructions having no jumps into
the code except at the first instruction and no jumps out of the code except at the

end.

Very generally, compilers can be classified based on their ability to perform
“linear” or “non-linear” code motions [38]. Typical representatives of the former

group are compilers based oftrace scheduling ([35][37][70]) and their

12

“superblock” derivatives ([19][20][50]). A trace is a loop-free linear fragment of
code that might include several basic blocks. A profiling information or the
programmer’s directives are used to assign probabilities to outcomes of conditional
branches. Based on that information, traces are formed and scheduled sequentially
using a priority based on the likelihood of their execution. Since traces span a
number of basic blocks, global code motions are possible. However, these code
motions are essentially limited to a particular trace being scheduled (thus they are
referred to as “linear”). When lower-priority traces are scheduled, this restriction
leads to very limited (and unlikely to be very useful) code motions that can
potentially “fill the holes” in the machine code already generated for the higher-
priority traces. Moreover, to preserve a correct program behavior, trace scheduling
may require very complex book-keeping and introduction of additional code
blocks in the traces that are yet to be scheddleBince traces cannot cross back-
edges of the loop, loop optimizations are done by means of an aggressive
unrolling. To simplify the book-keeping, superblock scheduling introduces a
further restriction of a single entry per trace (superblock). Tail-duplication is used

to provide the compiler with sufficiently large portions of code.

More global compilation techniques allow “non-linear” code motions. For
example, operations from both “then” and “else” branches of an “if-then-else”
statement can be simultaneously considered for a speculative execution. These
global motions are performed on clusters of code blocks [38] or whole programs
[3][80].

Ability to perform global code motions is very useful for software pipelining
techniques [3][9][21][32][33][62][80][101][112][118][123]. To maximize

throughput, such techniques schedule a number of loop iterations to execute in an

3. For an in-depth analysis of numerous implementation challenges, see Chapter 4 of [35].

13

+ | + +
+ +
() (b)

Figure 1.5Resource management examples

overlapped fashion. Typically, however, these techniques do not perform exact

conditional resource sharing analysis.

Shown in Figure 1.5 is a schedule for a CDFG fragment having a siifiple
then-elsestructure.Modulo schedulind32][101] converts control dependencies
into data dependencies using tleconversion[5]. Such approach essentially
flattens a CDFG and leads to overestimation of resource requiremenssim-af-
resourcesfashion. This is indicated in Figure 1.5(a), where two adders are
allocated for execution of mutually exclusive operations at the second step. In
hierarchical reductior{62], “then” and “else” branches are individually scheduled
and encapsulated into a larger node with composite resource usage indicated in
Figure 1.5(b). Resource usage is evaluated umian-of-resourcegashion. It has
been reported that such an approach tends to create nodes with complex and
irregular resource usage patterns imposing severe restriction on scheduling of the
remaining nodes [123]. Moreover, resource evaluation is still not exact. Observe
that in Figure 1.5(b) one adder is allocated at the third time step regardless of the
path taken. This leaves a “hole” (NO-OP) that could possible be used to schedule
other nodes for parallel execution (e.g. operations belonging to different iterations

of a software pipelined loop).

14

All of the compilation techniques referenced in this section are invariably
heuristic and allow very limited (if any) backtracking during scheduling. However,
it is unfair to use such an argument as a disqualifying flaw -- in reality, compilers
have to deal with programs consisting of thousands of lines of a source code! As a
consequence, a premise on impracticality of exact compilation techniques is
unlikely to be challenged any time soon. On the other hand, many user applications
from a hardware synthesis domain are of a relatively moderate size but have to deal
with the underlying hardware intricacies and/or to guarantee that hard real-time

throughput constraints are unconditionally met.

Moreover, to our knowledge, all of the competitive compiler implementations
do impose significant restrictions on a repertoire of global code motions. Under
such circumstances, a strong argument can be made that practical compilation
techniques could see benefit from exact techniques capable of handling program
fragments under scheduling consideration. In some general-purpose hardware
implementations it is undesirable (or even prohibited) to enable speculative
transactions potentially resulting in false arithmetic exceptions and memory faults
[20][100]. This makes exact techniques even more attractive because of their
potential to maximally expose and extract any residual instruction-level

parallelism.

1.3 Overview of the Thesis

So far, in Section 1.1 and Section 1.2, the scheduling problem was introduced
and related research surveyed. It was our intention not only to provide a necessary
background for the reader, but to clearly state the motivation for pursuing a

particular research avenue. The rest of the thesis is organized as follows:

15

In Chapter 2, we describe several approaches to resource-constrained con-
trol-dependent scheduling, as well as a number of features desirable to
improve scheduling quality. In particular, we focus on speculative operation

execution and treatment of parallel/correlated control structures.

The formulation is presented in Chapter 3. First, a flexible control represen-
tation based omuard variables guard functionsandtracesis described.
Next, a speculative execution model is introduced and discussed. A Boolean
equation formulation of scheduling constraints follows. Thetraee vali-
dation algorithm is proposed to enforce causality and completeness of the
set of all feasible solutions. Finally, we discuss extensions to cyclic control
and clarify the differences between our formulation and related ILP formu-

lations.

Aspects related to the ROBDD construction process are considered in
Chapter 4. These include: a discussion of the iterative solution construc-
tion, ROBDD variable ordering strategies, and techniques employed to

improve the run-time efficiency.

Chapter 5 presents an alternative approach to conditional resource sharing
analysis. The approach is not explicitly used in the techniques described in
the rest of the thesis. However, it is transparent to a particular scheduling
implementation and has relevance to software pipelining techniques. The
reader may postpone reading Chapter 5 and the corresponding experimen-

tal results (Section 6.5) and treat them as an extra Appendix.
Experimental results are presented and discussed in Chapter 6.

Finally, in Chapter 7, conclusions are presented, as well as the questions to
be addressed in future.

16

Although we assume that the reader has a basic understanding of Binary
Decision Diagrams, some necessary background is provided in Appendix
A. Most of the results presented in this thesis are derived using reduced
ordered binary decision diagrams (ROBDDs [12]). Abbreviations ROBDD,
OBDD and BDD will be used interchangeably whenever the correct mean-
ing can be implied from the context of the presentation. When a clear dis-
tinction has to be made, more specific abbreviations will be used: for
example, O-sup BDDs or ZBDDs (for Zero-suppressed Binary Decision

Diagrams [75]) and MDDs (for Multi-valued Decision Diagrams [54]).

17

Chapter 2

Control-Dependent Behavior

2.1 High-Performance Scheduling Issues

Our scheduling technique assumes an input in the form of a CDFG
specification. The CDFG describes both data-flow and control dependencies
between the operations and is similar to the one used by Wakabayashi [119].
Figure 2.1 contains an pseudocode example and its CDFG representation.
Operation nodes are atomic actions potentially requiring use of hardware resources
(e.g. arithmetic/logical operations, read/write cycles). Conditional behavior is
specified by means of fork and join nodes. An operation node generating a control
signal for a fork/join pair is called aonditional Directed arcs establish a link
between the conditional and a related fork/join pair. In Figure 2.1, the conditional
labeled op_2 tests the result of the addition (op_1) and determines the flow of
control (i.e. whether “True” (T) or “False” (F) branches should provide operands

for op_6).

Figure 2.1 (a), (b), and (c) show three different ways to schedule the example
assuming that only one resource of each type is available. The schedule in Figure

2.1(a) uses the knowledge that after a conditional (op_2) is executed, operations

18

CDFG source

in XYy,
out z;
if (x+y)>2) {
X=X+3;
y=y+5;
} else
X=X+ 4;
Z=XxY,
CDFG sink Z
op_1®H op_1® op_1H
op_2>> op_2>> op_3® op_2>>
03D Lop 4D opID lopAD pED opaD
op_&® | op_§P iop €5 0op_&H | op_&D

op_&*) op_6®) |

(&) (b) ()
[long/average/short] [long/average/short] [long/average/short]
=[5, 5, 5] =[5, 4.5, 4] =[4,4,4]

Figure 2.1Example CDFG and its schedules

belonging to “T” and “F” branch arcs are mutually exclusive. However, the join
node is treated as a synchronization point: op_6 cannot be scheduled until both the
“T" and “F” branch are executed. This leads to inefficient schedules, since the
execution times for alternative branch arcs may differ widely. Consequently, in this
example, it takes 5 cycles to execute the schedule no matter what decision is made
by the conditional. This approach corresponds to that used by traditional ILP

schedulers (e.g. [49]).

19

The schedule shown in Figure 2.1(b) improves the “average” execution time to
4.5 cycles by scheduling op_6 on the fourth cycle at the “F” branch. Note that the
operation execution order is predetermined before scheduling (e.g. op_2 before
op_3, although no data dependency exists between these two operations in the
CDFG). This approach is supported by a number of heuristic schedulers (e.g. [18])

one recent exact technique [26].

The schedule from Figure 2.1(c) not only further improves the average
execution time, but reduces the longest execution path to 4 cycles as well. This is
done by scheduling op_3 on the second cycle in a speculative fashion (i.e. before
the corresponding conditional, op_2, is resolved). Note that the resource
requirements cannot be predicted in a static fashion. For example, if more adders
are available, op_4 can be executed in a speculative fashion as well. The mutual
exclusion of op_3 and op_4 must be evaluated dynamically by taking into account
when the corresponding conditional (op_2) is scheduled. This kind of scheduling
is supported by several heuristics ([47][89][104][119]).

Several ways to improve the scheduling quality by exposing and exploiting oper-
ation-level parallelism implicit in the CDFG representation are discussed in Sec-
tions 2.1.1 through 2.1.4.

2.1.1 Speculative Operation Execution

It is often beneficial to determine the control value simultaneously with branch
execution. Operations from branch arcs that are executed before the corresponding
conditional value is evaluated are said to pee-executed Such speculative
operation execution allows more flexibility in using given hardware resources. A
conditional is a scheduled operation that generates a control value. Figure 2.2

shows a CDFG where the control dependencies between the conditionals

20

resources:
- 2 adders (white)

- 1 subtracter (black)
- 1 comparator

execution time:
- 3 cycles (SPECULATIVE)
- 6 cycles (NON_SPECULATIVE)

NOTE: 4 cycles if conditiondl is
scheduled before conditional

Figure 2.2Example of speculative operation execution

(comparatorsl and 2) and the corresponding fork/join pairs are explicitly
indicated. Speculative operation execution is not possible if the control precedence
between the conditional and the fork node is enforced. In this case, at least six time
steps are necessary to execute the CDFG, since the longest dependency chain
includes six operations. However, if precedence between the conditional and the
fork node is removed, operations from the branch arcs can be pre-executed. Figure
2.2(b) shows a schedule executing in three cycles using the indicated resources. In
general, precedence between a conditional and join node need not be enforced
either. In this case, the execution time is bounded only by data dependencies (given

sufficient resources).

21

2.1.2 Out-of-Order Execution of Conditionals

It can happen that a faster schedule is obtained if the top-level conditional (in
the input specification) is evaluatedter some other nested conditional. A simple
example of this behavior is shown in Figure 2.2(b). The schedule executes in three
cycles with the conditional left unresolved until the end of the very last cycle.
The knowledge that conditionalis resolved during the first cycle is essential to
properly interpret resource usage. Since conditi@hial resolved during the first
time step, there are only two distinct execution scenarios for the second time step
(corresponding to still unresolved value of conditiobplThus, at the second time

step, only two adders are needed.

There is still a considerable discussion on how beneficial conditional re-
ordering option is in general-purpose programs, practical compilers and
commercial microprocessor architectures ([35][52][71][80][105][111][123]). We
do not hope to provide a definitive answer. It should be noted, however, that
dynamic re-ordering of conditionals is inherent in a guard representation and
comes “for free” in our formulation (Chapter 3). Bofis[47] andCVLS[119] rely
on a conditional-tree representation of the control and cannot accommodate out-
of-order execution of the conditionals without dynamically modifying the tree

structure.

2.1.3 Irredundant Operation Scheduling

Another way to improve scheduling quality is to identify operations that are
not redundant in the input description, but are redundant for certain control paths.
The importance of such information has been observed and the algorithms to
detect such operations have been discussed in the literature [47][120]. Shown in

Figure 2.3 is an example whemp_1 is redundant on “F” path andp_2is

22

Figure 2.30perations redundant on certain control paths

redundant on “T” path -- this knowledge can be used to reduce resource

requirements during scheduling.

2.1.4 Parallel and Correlated Control Structures
Control structures that are either fully parallel or have correlated control

introduce additional scheduling challenges. As the number of control paths
increases, it becomes difficult to keep track of the mutual exclusiveness among the
operations. Ideally, the scheduler should evaluate and maintain this information for
all control paths. In Figure 2.4, a CDFG is shown in which two parallel trees have
a correlated control (shaded comparator). The reader can verify that, given one
adder (“white” operation), one subtracter (“black” operation) and one comparator
(single-cycle units assumed), a 6-cycle schedule can be found only if the control
correlation is properly interpreted (i.e. “false paths” are not scheduled). As
indicated in Figure 2.4, speculative execution (and additional or more versatile

resources) can further improve the execution time.

Although not typical for conventional structured programs, parallel control
structures are likely to result from program transformations performed by
parallelizing compilers (e.g. loop unrolling where a conditional behavior is present

within the loop body [100]).

23

no speculative execution
- 6 cycles (3ALU or ladd/lsub/1comp)

speculative execution
- 5 cycles (3ALU or 2add/1sub/1comp)
- 4 cycles (5ALU or 3add/2sub/2comp)

Figure 2.4CDFG with correlated control

2.2 Our Goals

The formulation presented in this thesis supports all of the advanced
scheduling features discussed above. In fact, the approach described in the thesis is
the only exact technique for resource-constrained scheduling with speculative

operation execution.

Definition 2.1 Minimum latencyof the schedule is the minimum execution delay

of the longest path of a scheduled CDFG.

Our goal is to findall minimum-latency schedules, given a CDFG specification
and resource constraints. By using BDDs we can implicitly (symbolically) capture

all feasible solutions to a particular problem instance. This solution format

24

introduces significant flexibility to a circuit design process by enabling
incremental incorporation of additional constraints and by supporting solution
space exploration and incremental engineering change without the need for
rescheduling. This is potentially very important for practical CAD systems, since
some of the relevant issues cannot be always predicted accurately during the early

stages of a design process.

25

Chapter 3

Formulation

In this Chapter, a Boolean formulation of scheduling problem is developed. It

consist of four major parts:

control representation based aguard variables guard functions and

traces
* speculative execution model,
* Boolean equation formulation of scheduling constraints, and

* a newtrace validationalgorithm that enforces causality and completeness

of the set of all feasible solutions.

3.1 Control Representation

In this formulation, all scheduling constraints are represented as Boolean
functions and an OBDD corresponding to the intersection is built. Each variable
Csj describes operatiop occurring at time stes. Cg; is true iff operation; is
scheduled at time stepin a particular solution. We assume a unique mapping
from operation type to function unit type. To represent control-dependent behavior,
a set ofguard variablesis introduced. Each guar@ represents a control-flow

26

| source

from C1

sink
Guards: G1 (corresponding to C1 decisions)
G2 (corresponding to C2 decisions)

Figure 3.1Kim’'s example

decision by a particular conditional -- the guard is true for one branch and false for
the other. Every control path through an arbitrary combination of fork/join pairs is
described by a product of the corresponding guard variables. For each opgration
a Booleanguard function[’; (defined on the guard variables) encodes all the

control paths on whichmustbe scheduled.

Shown in Figure 3.1 is a CDFG fragment of Kim’s example [55] in which two
guards G4, G,) encode the conditional behavior. There are three possible
execution paths(G;G,, G,G,, G;) . Indicated blockg, G, G,G,, G,G,, G,)
correspond to operations that share the same guard furicti@perations which

must be scheduled on all control paths Havé.

27

if (Cl) a;
else if(C2) b;

else gotdd;
c; d;

Figure 3.2Pseudo-code fragment

Computation of I' functions -- Assume that operationhasn successorg{,
j2, ... ,Jp) and that none of the successors is a join node. Then a guard fufigtion
can be simply computed as a Boole@n of the successors’ guard functioﬁﬁ
(k=1,2, ..., n). This means that operatidnhas to provide operands to all of its
successors. If a successoria$ a join node, then its contribution {q is equal to
[joinGk OF I’joinék (depending whethdrbelongs to the “T” or “F” branch). Guard
functions corresponding to all of the nodes can be computed by a one-pass
traversal of the CDFG that starts from a sink node whose guard function is

initialized to ‘1’ (tautology).

We observe thalt’s are not restricted to product terms (thus, they can handle
constructs such agoto, exit, casg. In the pseudo-code fragment shown in Figure
3.2, the execution condition for statement is described as:
M= GC1+G_C1GCz = G¢, + G¢,. Guard-based representation also applies to
parallel or correlated control structures. If two copies of Figure 3.1 are executed in
parallel, only two more guard variables are introduced, while the number of
control combinations (nine) grows much faster. The number of guards is not
proportional to the number of control paths, but is determined by the number of
conditionals. For example, in Figure 2.4 (Section 2.1.4), only five guard variables

encode 18 possible control path.

28

In many aspects, the guard-based model is similar to execution conditions from
path analysig8]. In that approach, however, Boolean conditions are used in the
hardware allocation phase (after AFAP scheduling is performed). Nevertheless,
that research demonstrated that BDDs efficiently represent control signals in large
scale problems. Similarly, Boolean functions are used to label conditionals in

several other recent techniques for control-dependent scheduling [26][126].

In fact, guard representation was used in areas other than HLS -- for example,
to perform “IF-conversion” in experimental vectorizing compilers [5] and simplify
code generation for VLIW and superscalar machines supporting predicated

execution [32][71][88][102].

The technique presented in this thesis generates a solution in the form of a
collection oftraces A traceis a possible execution instance for a particular control
path. In BDD form, traces correspond to product terms of the Boolean function.
Each trace includes the guard variables (identifying a control path) and operation
variables (indicating a schedule for the path). For example, in Figure 3.1, each
trace corresponding to the “False” branch of conditi(IEL_ad:ontainsCT1 ,aswell as
0/1 assignment o€g; variables. Operations Witﬁz(?1 or '=1 must be scheduled

on that trace. If other operations are scheduled on this trace, they are pre-executed.

The ensemble scheduls a set of traces forming a complete deterministic
schedule. Conditions for the existence of such a schedule are discussed in Section
3.4. The solution BDD includes only traces belonging to at least one ensemble
schedule and implicitly incorporates all feasible ensemble schedules. Note that the

number of ensemble schedules can be much larger than the number of traces.

29

3.2 Speculative Execution Model

In our speculative execution model, only the control precedence between the
conditional and join node is enforced. CDFG operations can be scheduled at
different time steps on distinct control paths, but cannot be scheduled more than
once per trace. Each operation from the CDFG is executed at most once regardless
of the actual control decisions made when the schedule is executed. For example,
this means that in the current model the following scenario is prohibii@d: (
operation executes in a speculative fashion using operandsdB and generates
resultR, (ii) a control decision is made aits discarded,iii) operationj executes
using a different set of input operands (€dgandD) and a correct value dR is re-

computed.

Figure 2.2 (Section 2.1.1) shows an example where precedences between the
conditionals and forks are removed. The critical path length of 6 in the original
CDFG is reduced to just 3. All four possible control paths may start executing

simultaneously.

Application of the proposed speculative execution model to kha&ha
benchmark [86] is shown in Figure 3.3 (directed arcs represent control
dependencies and undirected lines correspond to data dependencies). Notice that a
great deal of freedom is added to the schedule: e.g. operations A8 and S8 can be
executed during an arbitrary time step subject only to resource constraints. Given
sufficient resources, a critical path length of 8 in the original graph can be reduced
to just 4 (operations: S6, A6, S7, A7). The current formulation does not allow for
operations following the join to be executed in a speculative fashion before the
corresponding conditional is resolved (e.g. S7 cannot be scheduled in the second

cycle due to a dependency from A2). Notice, however, that there is still a lot of

30

dependency
to
join

dependency
to
fork

Figure 3.3CDFG transformation for Maha

freedom to exploit instruction level parallelism: since there are no dependencies

left among the conditionals, all 12 control paths can start execsimgltaneously

3.2.1 Restrictions of the Proposed Model

The technique we develop in this thesis is exact. Misguidingly, exact methods
are frequently referred to as “optimal” as well. However, the exactness implies
optimality only up to the extent of generality of the underlying model used in a
particular exact method. Thus, it is important to clearly state an answer to the

following question:

“Is the speculative execution model described in Section 3.2 capable of

generating time optimal schedules?”

31

(a) Current model (b) Generalized model

Figure 3.4 Speculative execution model

Since the proposed model does not provide a full repertoire of code motions,
the answer to this question is obviously: “No”. Figure 3.4(a) illustrates such a case
in which our current model cannot achieve time optimality. Although both
operationsl and2 are scheduled at the first step, execution of operaioas to be
delayed until the third step (since conditior@ls resolved at the second step). If
the precedence betwe&hand operatior8 is not enforced (Figure 3.4(b)), two
instances of operatiod (3" and3") can be scheduled at the second step, reducing
the execution time. In fact, both paths execute in two cycles as dictated by the
length of the corresponding chains of data-dependent operations. Thus, the

schedule in Figure 3.4(b) is time optimal.

To summarize, we do not allow code motions that can lead to a creation and
execution of multiple instances of the same CDFG operation on a control path (in

the rest of this discussion we will informally refer to this as “operation renaming”).

1. Time optimality is defined in Section 1.1.1.

32

Operation renaming may lead to an exponential explosion of operation’s instances
on a control path and poses a difficult implementation problem even in heuristic
schedulers. Since our goal is to develop the exact technique, operation renaming
would likely reduce its practicability. Exact amount of instruction level parallelism
that is lost due to the restrictions of our speculative execution model is, in general,
impossible to be determined. However, the results presented in Section 6.3 indicate
that our approach generates schedules that exhibit significant advantage over
scheduling without speculative execution. Furthermore, our approach generates
comparable or superior results when compared to the best known solutions for a

number of HLS benchmarks.

3.3 Derivation of Constraints

For brevity, we assume non-pipelined, unit-time operations. Pipelined and
multicycle functional units can be accommodated by incorporating execution
delay in the equations presented in Sections 3.3 and 3.4 [92]. Contrary to some
other approaches where such operations have to be modeled as chains of single
cycle operations (e.g. [3][26][125]), only one variable per multicycle/pipelined
operation is used in our formulation. To model operation chaining, a precedence

relation can be added between operations that cannot be chained [49].

(ASAP) (as-soon-as-possible) afALAP) (as-late-as-possible) bounds are
constructed to limit the time spans over which an operagioan be scheduled.
These bounds are not required for correctness, but improve the efficiency of the
constructionCg; denotes operatiofs instance at time step Fork (join) nodes are
not explicitly used in the formulation. Precedences to fork (join) nodes are
translated in a transitive fashion to the successor nodes of the fork (join). Symbols
“2" and “+” correspond to Boolea®r function, and f1” stands for Booleand

Product ‘ab’” implies “a And 3.
33

3.3.1 Uniqueness

Equations (3.1) and (3.2) enforce unique scheduling of operations from the
CDFG at time step. If (ASAP) < s< (ALAP):

; [Ck C D+ ﬂ C (EQ 3.1)
i ZKk

whereRg; is the range(RSAP) ... 4.

If time steps = (ALAP):

; ECk C D+ ﬂ C,JD' (EQ 3.2)
i £k

Equation (3.1) states that prior to stehL@P), operationj is not scheduled
more than once. On stepl(AP), Equation (3.2) ensures that operatjdras been
executed on all paths covered By On paths not covered Wy, operatiorj can be

either uniquely scheduled (pre-executed) or not scheduled at all.

The constraint formulated in Equation (3.1) can be simplified. An iterative
form of the Equation (3.1) that enforces uniqueness implicitly (by construction) is

formulated in the following equation:

C_Sj+g M C”E- 1 (EQ 3.3)

i Ris—1)j

whereRs_1);is the range(RSAP) ... (s1)].

3.3.2 Precedences

If operationi precedes operatign(i.e. there is a dependency arc frono j in
the CDFG) and'iDFj (T'j coversr;) then for every stegin the range ([ASAP}
(ALAP)] the following must hold:

34

ﬁﬁ)3 Cligzl (EQ 3.4)

ASARZI<s

Equation (3.4) states that either operatitras to be scheduled before stepr
operation cannot be scheduled at steprhe case FF; covers (but is not equal to)
M (FiDFj) occurs when the dependency franto j goes through a fork node.
WhenT; [[(T not contained in"; -- e.g. the dependency fromto j goes
through a join node), the precedence relation is enforced only on the paths covered
by i

?q*)3 C,Eﬂri =1 (EQ 3.5)
ASARZI<s
Effectively, Equation (3.4) ensures that the operation can be pre-executed only
if all of its predecessors have already been executed. In our model, an operation
after the join node cannot be pre-executed before the corresponding conditional is
resolved. Thus, according to Equation (3.5), the dependencies to its predecessors

are enforced only conditionally.

Figure 3.5illustrates the meaning of Equations (3.4) and (3.5). As indicated by
Equations (3.4), operatidhcannot be scheduled unless operafias scheduled at
some earlier time step, since operatibprovides an operand to operation 2. On
the other hand (Equations (3.5)), precedence between opegadint operationt
has to be enforced only on “True” path -- if a decision has been already been made
so that “False” path is executed, operatibrcannot be allowed to wait for an

operand coming from operati@n

Equation (3.5) requires a special attention. Since operatan be scheduled

on control paths not covered by its corresponding guard fun€tighseems that a

35

Figure 3.5Treatment of precedences

solution set may include some traces where a precedence between opéatibns

j is not enforced. However, notice that execution ofitside offl"; corresponds to

i's speculative execution. This means that, at a particular time step, decisions by a
certain subset of conditionals are yet to be made and that traces for all possible
control paths to be distinguished at some later step hawveatch (be identica)

prior to the moment such decisions are made. Since one of such traces inevitably
has to be covered bly; and, consequently, have all of the precedences properly
enforced, a trace not covered Bywill preserve all of the precedences as well. The
process enforcing trace matching will be described in Section 3Jrdcé¢

Validation).

3.3.3 Termination
A single sink variable is used in the OBDD representation to indicate that a
particular trace has concluded. It is initialized to ‘0’, and is set to ‘1’ when the

terminating condition for the trace is met. Equation (3.6) is used as a terminating
36

condition for all traces in parallel. The scheduling process can be terminated when
sink assumes the value ‘1’ on all paths of an ensemble schedule. In these
equations, operationg;(..J,) are immediate predecessors of the sink node in the
CDFG.

n
|‘| (st| + rh) =1 ,WhereRSjl = (EQ 3.6)

=1 k= (ASAP)

|
™M
xo

FunctionRSjl is true if operatiof) is scheduled prior to or at step The fact
that execution of), is mandatory only on paths covered by is reflected by

Equation (3.6).

3.3.4 Resource Constraints

If k resources of a certain type (e.g. multipliers, adders, ALUs, registers,

buses) are available, we formulatéganeralized resource boufidquation (3.7):

FsllFsIZ"'FsI(n o 1 (EQ3.7)
1=(1,%T) sng si™H

Fg is a Boolean function stating that resourgés needed during time step
Equation (3.7) is applied at each stefor each resourcg. It ensures that at least
(ngrkj) resources (among, potential candidates at stgpwill not be scheduled.
For functional unitsFg functions are simply the operation variables. For example,
if at step s operation instance@sml, Csmpy, Csmy and Csm, are candidate
multiplications and there are onky, = 2 multipliers available, Equation (3.7)

becomes:

Csmlemz + Csmleng + Csmlerm +CsmCsm * CsmCsm, * CsmCsm, = EQ38)
Equation (3.7) applies the resource constraint to all traces simultaneously.

Trace validation(Section 3.4) ensures that there are no resource violations in any

ensemble schedule.

37

Next we discuss how bus and register constraints are generated for acyclic

DFGs by a suitable choice B§,.

A bound on the number of available registers can be implemented using a
slightly more complex resource function and then simply plugging this new
function into the constructor for Equation (3.7). Equation (3.9) indicates that if an
operationi precedes the operations.(.j,) at a particular control steg a register
is required. This register is required to keep the value of the output of operation i if

the successor operations cannot use it immediately.

In
[l — [
. . . r
(i-> (-] O Fg = %ASi__Z BSJH (EQ 3.9)
J= 1
where
S
A= Y g (EQ3.10)
| = ASAR
S
By = z by (EQ 3.11)

| = ASAR
Notice that this formulation allows for possible chaining of operations since
the constraint predicts that no register is required if the operations are all assigned
to the same control step. Each Equation (3.9) constraint can be plugged into the
typed resource constraint equation Equation (3.7). Note that in this case¢he
number of registers allowed ang, is set to the number of candidate Equation

(3.9) functions at the®control step?. The construction of the register requirement

2. This approach verifies that the number of variables that are live at a particular time step
does not exceed a pre-specified bound. This is compatible with the classical register allo-
cation algorithm based on graph coloring [17].

38

Fs=As(Bs+Cy Bs As Cs
step_1 al 0 al 0
step_2 a2 0 al+a2 0
step_3 b3 a3 b3 al+a2+a3 0
step_4 ba 2 o b3+ ba al+a2:+]-a3+a4 ca
step_5 b5 ab c5 b3+b4+b5 c4+c5
b3 + b4 + b5 + b6 1 1
step_6 b6 c6
1 1 1
step_7 b7

Figure 3.6 Example register constraint

for an example operation with 2 successors is shown in the Figure Jtrke if

a register is required at time step

Busses can be treated in a similar fashion. If operatiprecedes operations
(1---Jn), Equation (3.12) indicates that at a particular control stepbus may be
needed to read an operand (upper part of Equation (3.12)) or write a result (lower
part of Equation (3.12)). Notice that the formulation allows a rather complicated
situation (same operand used as an input to a number of operations) to be modeled
in a simple fashion.

n
i = (i1in) 0 Fg = 3 Cg
I'=1 (EQ3.12)
i~ (jpJ) O Fg' = G

Given the Equation (3.12) constraints, we can again treat them as generic
resources and plug them into Equation (3.7) for each time step, sinc&Jmly of
the ng, functions can be active at each particular phase of the timessiége bus
constraints apply to for‘read” and “write” phases separately, making no
assumption that a number of writes is smaller than the number of read operations

at each control step. However, we do assume that read and write transfer phases are

39

interleaved. Similar constructions can be used to constrain the number of other
typed resources. It is important to note that this formulation of these constraints
does not require the addition of more implementation variables (as is the case for
ILP formulations of Bus constraints [49]). Implicit constraint application allows

these resource constraints to be efficiently constructed even for very complex

constraints functions (to be discussed in Section 4.4.2).

3.3.5 Removal of Redundantly Scheduled Operations

Assume that a conditional has executed and the “True” branch is selected.
Operations from the “False” branch may still be scheduled on the trace
corresponding to the “True” branch if there are available resources. Such traces are
identified and removed. Assume conditioog{whose corresponding guard@)
is resolved prior to time step Then all the variables that correspond to operation
|'s instances scheduled for time steps have to assume value ‘0’ on traces where

Gy is true if:
Fij =0 (EQ 3.13)

Similarly, on traces wheré& is false, all the variables that correspond to

operation’s instances scheduled for time stepshave to assume value ‘0’ if:

Fij =0 (EQ 3.14)

3.3.6 Timing Constraints

SinceCg; denotes operatiors instance at time steq) it is possible to describe
a variety of timing constraints using Boolean functions. For example, assume that
operationi precedes operationand that both of them execute in a single cycle.
Furthermore, assume that operatiorcan be scheduled at steps 1, 2, and 3

(corresponding variables ai€i;, C,; andCg;), and thaf can be scheduled at steps

40

2, 3, and 4 €y, Cgj, andCy)). Then, a constraintj*has to be scheduled exactly 1
cycle after” can be written as:
C1iCpj + CyC5 + C5Cy; = 1 (EQ 3.15)
Minimum/maximum constraints can be represented similarly. For example, a
constraint { has to be scheduled at least 2 cycles afteamounts to a Boolean
function:
C1iC3j+ CyiCy + C5Cy; = 1 (EQ 3.16)
An iterative formulation of the constraints is possible as well. For example,
Equation (3.15) can be applied at s¢dp=2,3,4) using:
Cis—n)i t C_sJ =1 (EQ 3.17)
Together with the uniqueness constraint (Equations (3.2) and (3.3)), Equation
(3.17) enforces the timing constraint implicitly (by construction). If a timing
constraint has to be conditionally enforced, a modification similar to that in
Equation (3.5) is necessary. Since we use Boolean functions to represent
constraints, more complex timing behavior can be conveniently described using

BDD manipulations.

3.3.7 Additional Remarks

The formulation described throughout Section 3.3 is also applicable to
scheduling without speculative operation execution. Essentially, a control
dependency between the conditional and fork node in the CDFG should be
enforced as a hard precedence relation. However, a slightly modified set of the
constraints is used to improve efficiency [94]. In addition, timing constraints can
be used to enforce precedence between the operations and prohibit speculative
execution on individual basis. This is because, in our formulation, precedence

constraints are simply a special case of timing constraints.

41

CDFG:

TRACES:

Figure 3.7Ensemble schedule counterexample

3.4 Trace Validation

A trace satisfying all of the constraints introduced in Section 3.2 may still not be
valid in the sense that it cannot be a member of any set of traces forming an
ensemble schedule. The example CDFG in Figure 3.7 demonstrates that resource-
constrained scheduling of all individual control paths is not sufficient for a proper
treatment of control-dependent behavior. Both the “True” and “False” control
paths can be scheduled individually in two time steps assuming one single-cycle
resource of each type (“white”, “black”, comparator). However, observe that the
execution traces shown in the figure cannot be combined into an executable
schedule meeting the stated resource constraints. Since a decision as to which path
to execute is not known until the end of the first step, the “True” and “False” paths
are indistinguishable during that cycle. This means that lopthl andop_5as

well as op_3 and op_6 must be executed simultaneously, thus violating the

42

resource constraint. (A decision to exclusively exeagtelandop_5or op_3and
op_6depends on knowledge not available until the end of the first cycle!) In fact,
no 2-cycle schedule is possible, although both control paths can be individually

scheduled in two time steps.

Definition 3.1 A valid ensemble scheduilea minimal set of traces which is both

causalandcomplete

The causalityrequirement dictates that the schedule cannot use knowledge of
the value of a conditional prior to the time when the conditional is executed
(resolved) Completenestequires that a trace must exist for every possible control
combination. An ensemble schedule is a minimal set in the sense that if any trace is

removed, the set is no longer complete.

Assume that the conditionaj is resolved at step Causality requires that the
traces corresponding to guard val®sand G, must be identical (match) for all
time steps prior to and including Completeness ensures that the ensemble

schedule includes traces for b@pandG,.

Observations from the previous paragraphs and Figure 3.7 illustrate that an
exact formulation of control-dependent, resource-constrained scheduling requires
more than the ability to:iY somehow label control paths and operation instances
belonging to them, andi} enforce precedences and resource bounds on individual
paths. This might be a reason why no such technique existed until very recently
[92], even for scheduling without code motion. In our formulation, the meaning of
guards is not only statically linked to conditionals and their decisions, but to the
actual moments when the decisions become available. Such a “dynamic” aspect is

introduced by means offaace Validationalgorithm.

43

(1) i=0;

(2) do{

(3) i++;

(4) S(i) = S(i-1);

(5) for each time step {

(6) S = Hv-vgyS(h

(7) for each conditionalc {

(8) S = SR(j) + Do (SRy(]))
9) if (S'==0) { S(i)=0; exit; }
(10) }

(11) S(i) = S(i)S’

(12) }

(13) } while (S(i)!=S(i-1));

Figure 3.8 Trace Validation algorithm

Trace Validation ensures that each validated trace is part of some ensemble
schedule. The validation is efficiently preformed by the iterative algorithm shown

in Figure 3.8. The following notation is used:

fy (fx) - positive(negativg cofactorof a Boolean functiori with respect to

a variablex

O f = f+fy - existential abstractign

O, f = ffx - universal abstraction

S - set of all traces

S(i) - set of traces at iteration

44

* S(0) - initial set of non-validated traces

* V- set of all variables not including guard variables

* V() - subset o¥ corresponding to time stegg

» S’ -set of traces from which all variablésV’(j)) are removed:

S = D(V_V.(D)S(i) (EQ 3.18)

« C=][c, ... G] - set of all conditionals
* G=[Gq, G, ... G] - set of guards corresponding to the conditionals
* R()) =[R1(), Rx(j) -.- Ry()] - resolution vector

The resolution vectorR(j) is a set ofn Boolean functions (one for each
conditional), where each function, & indicates whether a conditiona), was

scheduled prior to time stg¢p

Re(i) = 5 Cy . for (I <j) (EQ3.19)
S’ is partitioned byR(j) into a disjoint set of as many a2 families,

corresponding to the subset of guards that are resolved prior to timéGigyx
R(J) -~ SK(V'(i), G), (0<sk<(2"-1)) (EQ 3.20)

The guards fromG-G,9 (i.e. the unresolved guards) have todEn't cares
within the family since at time stegpthere is no knowledge about the future values

of the unresolved guards:

Sk(V'(1), G) = SK(V'(i): Greg) (EQ 3.21)

Traces must botmatchandexistfor all possible combinations fronS(Gey),

to ensure causality and completeness of the ensemble schedule.

45

Definition 3.2 We say that the traces belonging to families satisfying Equation

(3.21) ardocally valid at time step |
Definition 3.3 A valid traceis locally valid at every time step.

Trace validation algorithm checks for partial matching up to gtepall traces
in parallel. However, it is possible that a trace which matched up to timg step
invalidated in subsequent steps. Thus its set of matching traces may no longer be
complete. The Trace Validation algorithm iterates untfixed pointis reached.
The number of iterations cannot exceed the number of conditionals (to be
discussed in Section 3.4.2). Thus the algorithm generates a polynomial number of

constraints regardless of the number of traces.

The intuition behind the Trace Validation algorithm can be provided by means
of the schedule from Figure 2.2. Assume that the gu&gdandG, correspond to
the conditionals 1 and 2. There are four possible control paths:
(G,G,, G,G,, G,G,, G,G,) . At the first step resolution vector components
R1(1) and R(1) are both zero since neither conditional is scheduled prior to step 1.
To have a causal ensemble schedule, traces for all four control paths must match at
the first step. At the next step,,@) is still zero since conditional is not
scheduled prior to step 2. Howevery(®B) = c;, = 1 since conditional? is
scheduled at step 1. Thus, the matching of traces has to be performed only with
respect to conditiondl (i.e. traces for path{G;G., (?162) must match for the
first two steps, as well as the traces {&,G,, G;G,)). The same argument holds

for step 3.

Trace Validation implicitly verifies that the ensemble schedules do not violate
resource constraints. We indicated in Section 3.3.4 that Equation (3.7) prevents

such violations from occurring on individual traces. Since traces match before the

46

conditional is resolved, resource bounds are met. After the conditional is resolved,
the traces are mutually exclusive with respect to that particular conditional and no
verification is necessary. Chapter 5 discusses the alternative approach to
conditional resource sharing analysis using the guard-based control model (see

also [97]).

3.4.1 Proof of Correctness

Theorem 3.1 Results of two consecutive iterations of TV algorithm are same

(S(1)=S(i-1)) iff only valid traces are in S(i).
Proof

It is obvious that TV algorithm is not adding any new traces to the set S(i),
since at every iteration S(i) is being intersected (restricted) with the set of
constraints (see line (11)). The similar statement can be made for set S’: while

restricting S’ at a particular step no new traces are added (line (8)).

[part

In iteration i at stepj the initial value for S’ (Sitia) IS the existential
abstraction of S(i) w.r.t. set of variables (V-V'(j)) (line (6)). Notice that S’ is a
minimal superset of S(i) obtained by factoring out all the variables from (V-V'(j)):
if any product term is removed from {1, S(i) would cease to be a subset of
S'initial- Since new traces cannot be added to S(i), S(i) has to remain unchanged
after applying a restriction S’ corresponding to the current ptepteration. That
means that S(i) is a subset of the derived restrictigppat the end of stepas
well. Thus, S’ has to remain unmodified during the processing injsiégcording
to the previously introduced notation and Equation (3.20), S’ can be partitioned

into a set of disjoint families:

47

Sinitial = Z S (V'(j), G) (EQ 3.22)
Osks<(2"-1)

Application of the algorithm (lines (6)-(10)) results in:

Sfinal = > He- 6.)(Sk(V'(i), G)) (EQ 3.23)
O<k=g(2"-1)

For Sjnitas and Sjing to be same it must hold:
(Sk(V'(1). G)) = (SK(V'(i). Gred)) (EQ 3.24)

This is same as Equation (3.21). Thus, all the traces are locally valid gt step
Since the similar conclusion holds for every step within the iteration, only valid

traces exist in set S(i).

[part
The valid traces satisfy Equation (3.21). This constraint can be substituted in

Equation (3.22) and Equation (3.23), ahdl part) of the proof trivially holds.

3.4.2 Convergence Analysis

We have shown that Trace Validation algorithm removes all invalid traces.
However, to evaluate its practicality, it is important to demonstrate the existence of
the upper bound for the number of iterations necessary for the algorithm to
converge to a fixed point. Observe that for the set of all traces obtained from the
scheduler it is not possible to establish a temporal order (precedence) for the
execution of conditionals. This also cannot be done for a single ensemble schedule,
since the same conditional may be resolved at different time steps on different
control paths. For a single trace (validity of which we are checking), however, the

temporal order for the execution of the conditionals is well-defined. Assume that

48

Figure 3.9Convergence analysis

for trace T (shown in Figure 3.9) the last two conditionals to be resolved,gaad
¢, and that they are resolved at time stepad;j (i<j), respectively. During the first
iteration of TV algorithm the local validity of traces at time steps enforced
before the same thing is done at time gtefsssume that trace T’ (shown in Figure
3.9) is a matching trace for T at st¢pThis means that the following condition

must hold:

Qv-vonT = Hv-vnT (EQ 3.25)
It is possible that some traces that were locally valid at time istegy have to
be invalidated during the second iteration. However, notice that trace T and T’

must match up to stép:

Hv-vinT = Hv-vainT (EQ 3.26)

Thus, during the second iteration, trace matching at istelp either preserve
both T and T’ or remove both T and T'. In either case, no further matching is
necessary at stepat the second iteration. If removal of both traces causes a

solution to become incomplete, this will be identified in further iterations.

Consequently, the number of iterations cannot exceed the number conditionals

in a temporal chain of conditionals within the trace. In the worst case the number

3. In fact, as indicated in Equation (3.25), they match up tqg.step
49

of iterations is bounded by the number of conditionals (same as the number of
guards), since it can happen that all of the conditionals are resolved when
speculative execution is allowed. However, our experiments showed that TV
algorithm typically converged after only one or two iterations, even on rather
complex control structures discussed in Section 6.3. Obviously, a simple way to
speed up TV algorithm is to perform the inner loop of the algorithm for only first
(k-i+1) time steps at every iterationwhere k is the number of time steps of the
minimum latency schedule. If the number of time stéps smaller than the
number of conditionals (possible in case of multiple conditional trees executing in
parallel),k is the upper bound on the number of iterations. The efficiency of this
algorithm is quite surprising considering that the number of potential control paths
can grow very quickly even for relatively small problem instances. Trace
validation proceeds in parallel across all potential control paths using a
polynomially bounded number (@fsteps)(#conditionalg)) of BDD algorithmic

steps.

3.4.3 Extracting One Ensemble Schedule

The technique presented in this thesis generates a solution in the form of a
collection of traces. As indicated before, a trace is a possible execution instance for
a particular control path. In BDD form, traces correspond to product terms of the
Boolean function. Each trace includes the guard variables (identifying a control
path) and operation variables (indicating a schedule for the path). Essentially, the
solution incorporates all possible execution instances (for all control paths) such

that they belong to at least one minimum-latency ensemble schedule.

The question that naturally arises is: “How can we extraceé ensemble

schedule from the solution?”. This is performed using the algorithm shown in

50

P =SetOfAllPathS);
while (P '=Zerd))) {
T = SelectOneTrad§,P);
C =Control(T);
P=P-C;
S =TraceValidatiofT+SP);

Figure 3.10Ensemble schedule extraction

Figure 3.10. First a Boolean functidhis formed that corresponds to a set of all
possible paths in the solution s&tThen one tracel)) belonging toSand from a
control pathC (CUP) is selected.C is then removed fronP, indicating the
remaining paths from which single traces are yet to be extracted. A new saution

is formed as a union of the selected tracand the set of all traces covered By

This set is further trace validated to preserve only the traces that match the selected

traceT. The process is iterated until sebecomes empty.

Individual trace selection is performed heuristically in a greedy fashion (i.e. we
do not allow backtracking and do not guarantee a minimal average execution time
for all paths). One possibility is to select the shortest possible trace form the set of
traces covered bl . Since such short traces belong to control paths with a very
large number of solutions, the size $fs reduced very quickly. This is important
since the number of iterations of the algorithm in Figure 3.10 can be as large as the

number of distinct control paths in the ensemble schedule. It is possible, however,

4. Whole sets of short traces can be selected as done in some of the experiments in Section
6.3.

51

to guide the selection heuristic using some other criteria: for example, short traces
for the paths with the highest likelihood of execution can receive a favorable

treatment.

3.5 Cyclic Control

In a pipelined hardware implementation of a data-path, multiple loop iterations
can be executed concurrently. Thatency is the period of timel between
initiations of two consecutive iterations. Loop pipelining optimizations have the
goal of increasing the throughput by overlapping the execution of loop iterations.
In the case ofunctional pipelining the assumption is that no inter-iteration data
dependencies exist. Given sufficient hardware resources, the latency of
functionally pipelined data-paths can be made arbitrarily smallodp winding
[43], this cannot be done since inter-iteration data dependencies do exist. The
delayis the number of cycled required to complete one iteration. The number of

overlapping iterations is usually referred to as the numbgipefine stages

If a loop body does not contain conditional behavior, our formulation can be
extended (similar to the ILP technique described in [49]) to incorporate loop
optimization techniques such as loop winding and functional pipelining. The
resource constraint procedure has to be modified to capture the fact that operations
at time stepss, s+l, s+2l... share resources Additional care has to be taken to

preserve inter-iteration data dependencies in case of loop winding..

Our technique can also accommodate the approach to cyclic control adopted in
path-based scheduling [18]. In that approach, loop cycles are broken, execution is

trapped in the last operation of a loop body and, after the scheduling is completed,

5. This approach, also known as “modulo scheduling”, was first described in [101].

52

transitions are added in the control finite state machine. However, the systematic
treatment of speculative execution for parallel branching control with cycles is an

open research problem.

In Chapter 5, we presents an alternative approach to conditional resource
sharing. The approach is not explicitly used in the techniques described in the rest
of the thesis. However, it is transparent to a particular scheduling implementation

and has relevance to software pipelining techniques.

3.6 Scheduling Procedure

Pseudocode in Figure 3.11 summarizes our symbolic scheduling procedure.

First, resource constraints (their type and number) are specified by the user.

* Next, a CDFG is analyzed to determine ASAP and ALAP bounds for indi-
vidual operations and the length of the critical CDFG path.

» The final pre-processing step determines variable ordering and initializes

guard variables.

» Solution construction is performed in iterative fashiéfo’ loop in Fig-
ure 3.11). At every time step (cycls)nly scheduling constraints relevant
to steps are generated. BDDs corresponding to these constraints are placed
on a sorted list in decreasing order of their BDD size. Next, a partial solu-
tion corresponding to previous-{) steps is intersected with the constraint

BDD<C. For efficiency reasons, it is usually beneficial to combine several

6. In reality, we actually build several lists corresponding to different constraint types. Our
experiments suggest that, for the variable ordering discussed in Chapter 4, the following
order of constraint application typically results in the most efficient construction: 1. func-
tional unit and bus constraints, 2. precedences, 3. uniqueness, 4. removal of redundantly
scheduled operations, 5. register constraints.

53

items from the constraint list into a medium-sized BDD before intersecting
it with the partial solution. Trace validation step has to be performed only
as a part of the termination test to verify that the set of terminated traces

indeed forms an executable schedule

Construction process is discussed in more detail in Chapter 4.

3.7 Relation to ILP

Table 3.1 illustrates some differences between our technique and ILP
formulations of resource-constrained control-dependent scheduling. In the
symbolic approachany Boolean functiowan be used as a constraint. Unlike ILP
techniques, we can efficiently generate and stalle feasible solutions to a
particular problem instance. More importantly, this requires a very little overhead in
terms of formulation variables when compared to the formulation of non-branching
scheduling. In the worst case, the number of variables in our formulation is
proportional to the product of the number of time steps and the number of
operations in the CDFG. In contrast, an identical problem instance formulated
using ILP [26] requires, in the worst case, an exponentially larger number of
variables. We observe that conventional ILP techniques [41][49] essentially do not
provide support for control-dependent scheduling. In such approaches, a CDFG

operation has to be scheduled onghmecycle on all appropriate control paths.

54

BDDnode*
SymbolicSchedulingint MAX_STEPS , directed_graph* CDFG) {
SpecifyResourceTypesAndBoubfgls
AnaylizeCDFE CDFG) ;
InitializeVariables() ;
BDDnode* SOLUTION = TRUE ;
BDDnode* TEMP ;
for (int step=1 ; step<=MAX_STEPS ; step++) {
BDD List ConstraintList BuildConstrainty step) ;
SOLUTION =And(SOLUTION , ConstraintList) ;
SOLUTION =TraceValidation(SOLUTION , step) ; // optional
if (SOLUTION == bdd->Zero())
break ;
if (step >= critical_path_length) {
TEMP =Trace Validatation (TerminationTe6SOLUTION) , step) ;
if ((TEMP != bdd->Zero()) || (step == MAX_STEP)){
SOLUTION = TEMP ;
break ; // solution (possibly empty) found at tlstep

}
return SOLUTION ;

Figure 3.11Symbolic scheduling procedure

55

Table 3.1: Symbolic vs. ILP formulation

constraint . .
type #solutions #variables
any
Symbolic Boolean all O[(#cycleg+ (#op9g] + (#cond
function
ILP linear 1 O[(#cycle3x (#opg »2(09]

#cycles- number of time stepgops- number of operationgcond- number of conditionals.

56

Chapter 4

Construction

Formulation of scheduling constraints presented in Chapter 3 is just a part of a
challenge to develop a practicable scheduling alternative. CPU run-times and mem-
ory requirements are critical to applicability of any technique (BDD-based, in par-
ticular) to “real-life” problems. In this chapter, aspects related to the BDD
construction process are considered. These include a discussion of the iterative
construction of a solution, BDD variable ordering strategies, as well as techniques

employed to improve the run-time efficiency.

4.1 lterative Construction Process

First we note that it is not necessary to generate uniqueness (Section 3.3.1) and
precedence (Section 3.3.2) constraints on a time-step-by-time-step basis. In fact, in
our initial formulation [92][93] all of the constraints were generated during pre-
processing before forming their intersection. In [93], a procedure to combine all of
the scheduling constraints was described. Essentially, the construction first com-
bined constraints for which “good” orderings were known and then sequentially
applied the other constraints. Using this technique, the final BDD typically has rel-

atively small size. However, the size of BDDs at intermediate stages can be rela-

57

tively large, resulting in slow construction and/or large memory requirements. In
particular, these problems were emphasized when the upper bound on execution

time used to generate equations was larger than the actual optimal execution time.

To improve the robustness of the algorithm, a new iterative construction is pro-
posed in [94]. The solution is built on a time-step-by-time-step basis: only those
constraints relevant to a particular time sieype generated and applied to the BDD
representing a valid partial solution for the previoj#d)(steps. In this way, only

partial time sequences of constraints need to be added at each step.
The iterative approach has several advantages:
* It prevents the construction of large set of spurious intermediate solutions.

» lIterative construction generates a larger number of smaller constraints than
the non-iterative version and can be slower for small examples. However,
for larger cases, it offers far more robust behavior in terms of memory man-
agement and allows tighter control over the computation. We observe that
the sizes of intermediate BDDs are typically smaller and that generation of

“garbage” decreases significantly.

» Using iterative construction one can detect when schedules have completed

obviating the need to accurately pre-specify the number of control steps.

» Furthermore, since the valid partial schedules are available after every iter-
ative step, it is possible to devise run-time efficient symbolic heuristic (to

be discussed in Section 4.4.3).

Iterative construction process is illustrated in Figure 4.1. During the construc-

tion process, some traces (e.g. trace labgjppresent afterk-1) steps may get

58

partial schedules
after -1) steps

partial schedules
afterk steps

trace validatio
constraints for stekp

(data/control flow dependencies, termination test
resource/timing constraints)

Figure 4.1 Solution construction

eliminated when constraints relevant to skegre applied. At the same time, some
partial solutions afterj{1) steps can generate several new partial solutions (e.g.

traces labelet; andt, are extensions of tra¢g.

To verify the existence of an ensemble schedule, trace validatimtbe done
when a termination test is performed on a set of traces that have concluded execu-
tion. Note that this set is typically significantly smaller than the set of all traces in
the intermediate solution. To reduce the number of traces (and thus, potentially
reduce the intermediate BDD size), it is possible to perform trace validation at the
end of every iteration. This can, however, lead to somewhat increased CPU time
and more intensive garbage collection. We enforced trace validation only when the
intermediate BDD size exceeded a pre-specified threshold. Similarly, the unique-
ness constraint for operatigrean be applied just at st€pLAP) (i.e. application

of only Equation (3.2), Section 3.3.1, is sufficient). This diminishes the number of

59

Figure 4.2Uniqueness constraint (4 time steps span)

constraints that have to be applied and typically increases the speed of construc-
tion. However, note that the speed-up techniques described in this paragraph may

produce intermediate solutions that temporarily contain invalid traces.

4.2 BDD Form of Constraints

It is of the utmost importance that the individual scheduling constraints have
small size and are amenable to an efficient construction. Assume that a particular
operation can be scheduled over a time span of four cycles and that the variables
corresponding to instances at individual time steps are labeled A, B, C and D. Then
a requirement that the operation has to be uniquely scheduled (i.e. at one time step
only) can be written as:

ABCD+ ABCD+ ABCD+ ABCD= 1 (EQ 4.1)

A BDD corresponding to Equation (4.1) is shown in Figure 4.2. Since the
equation is symmetric, BDD size is independent of a selected variable ordering
and the BDD size is guaranteed not to exce%@wheren is the number of vari-
ables) [12]. In fact, for the particular type of equation discussed above it can be

easily seen that the number of variables is exacthl}2.

60

However, since the CDFG to be scheduled contains more than one operation,
the variable ordering issue plays an important role. Assume that all of the variables
corresponding to each individual operation have consecutive BDD indices. In that
case, all BDDs corresponding to individual uniqueness constraints would have dis-
junctive variable support and the resulting overall constraint would be a simple
concatenation of individual constraints. On the other hand, if BDD indices corre-
sponding to each individual operation are not consecutive, the overall constraint
(intersection of individual constraints) tends to grow rapidly in terms of its BDD
size. In the extreme case, when variables corresponding to different operations are
completely interleaved, it may even become impossible to build the intersection of
the constraints. In one relatively small benchmark problem reported in [93], the

size of such constraint varied between 158 and 4,956 nodes.

The generalized resource bound constraint BDD shown in Figure 4.3 (intro-
duced in Equation (3.7), Section 3.3.4) is frequently used esnatruction tem-

platein symbolic scheduling. Some applications include:

» selection of solutions that satisfy a particular resource constraint at a partic-

ular time step,
* interior constraints (to be described in Section 4.4.1),
» scheduling heuristics (to be discussed in Section 4.4.3), and

* post-processing (after the scheduling is completed, the bounds can be itera-

tively tightened/identified).

1. For simplicity, we assume that there is no control-dependent behavior (i.e. the problem
can be described as a DFG and all guard funcfipase tautologies).

61

Figure 4.3 At-most-k-of-rconstraint (k=4, n=7)

Vertices in thisif-then-elsetemplate are not restricted to Boolean variables --
complex Boolean functions(ff,... f,;) can be inserted into the template. Note that
the number of product terms in a sum-of-products representation of Equation (3.7),
Section 3.3.4 is'ﬁ). However, its BDD form is compact (@K) nodes) and can be
built efficiently usingite [10][12] (if-then-else) calls. This is very important since,
due to its regularity, the constraint satisfies both desirable properties state at the

beginning of this section (i.e. it is both small and easy to con§truct)

Assume that all of the CDFG operations execute using single-cycle functional
units. In such case, functional unit resource constraints similar to the one shown in
Figure 4.3 have to be generated for each time step. This means that the ordering in

which variables corresponding to different CDFG operations are interleaved is the

2. This property of the template shown in Figure 4.3 can be utilized in developing efficient
“pseudo-polynomial” BDD algorithms for some hard combinatorial problems. For exam-
ple, in an unrelated set of experiments, we were able to find maximal clique(s) in undi-
rected random graphs with 100 nodes and edge-probability of 0.5. Such instances may
pose problems for heuristic algorithms, since for each node the expected number of inci-
dent edges is 50, while the expected size of the maximal clique is close to 10.

62

‘sharing’ between guard variables
the solution sets
for different contrg

paths

time ste
operation variables

.

Figure 4.4BDD representation of the solution

mcréaswllog

most desirable ordering as far as the construction and intersection of individual
resource constraints is concerned. Unfortunately, this is likely to be the worst case
ordering for the uniqueness constraint discussed previously. Several examples dis-

cussed in [93] provide experimental support for this intuitive observation.

4.3 Variable Ordering

As indicated in Section 4.2., although individual equations have efficient order-
ings, optimal orderings for different equations frequently contradict. In fact, the

optimal BDD variable ordering problem is known to be NP-complete [12][39][65].

Early in this research, numerous strategies were investigated and used to guide
non-iterative solution construction [92][93]. In this thesis, however, all of the pre-
sented results are generated using the variable ordering shown in Figure 4.4, where
non-guard variables are ordered by increasing time step and guard variables are
placed on top (i.e. closest to the root of BDD). Essentially, CDFG operations are
sorted based on theiis-soon-as-possibleme and operation variables correspond-

ing to the same time step are interleave@his ordering typically results in small

3. This is similar to heuristic ordering strategies discussed in [72].
63

improvement [%0]

100
753
|:| min
50
| avg
25
N
max
\
EWF FCDT control-dependent

benchmarks

Figure 4.5Effects of BDD variable ordering

BDDs, enables fast manipulations and accommodates iterative construction. An
intuitive explanation can be offered: using the implemented ordering, application of
constraints and BDD manipulations are usually localized to a relatively narrow hor-

izontal slices close to the root node of a partial BDD solution.

The effect of the implemented variable ordering using dynamic variable re-
ordering option from our BDD software package was investigated in numerous
experiments. Re-ordering algorithm is based on a “sifting” procedure described in
[106]. Although time-consuming, the algorithm is still not exact. However, the
algorithm’s effectiveness has been demonstrated in numerous large problems.
One-pass re-ordering was applied to the final solution only. The results are tabu-
lated in Figure 4.5 for three types of benchmarks studied in Chapter 6. The experi-
ments show that for, particular problem instances, BDD size can be improved as
much as three times. Thus, devising more complex heuristics (capable of taking
into account both the CDFG structure of the problem under consideration as well

as the hardware/timing constraints) can be beneficial. However, this leads to some

64

sort of a “circular” argument, since such ordering heuristics would likely have to

be able to resolve many very hard scheduling issues. Additionally, our experimen-
tal results from Chapter 6 reveal the solution sizes of the ordef)Ogheren is

the number of formulation variables. This is very encouraging since the theoretical
results from [65] demonstrate that the vast majority of general Boolean function

have exponentially expensive optimal ordering.

4.4 Speed-Up Techniques

In this section, several techniques improving the run-time efficiency of sym-
bolic scheduling techniques are discussed. Accompanying experimental result will

be presented in Chapter 6.

» To prevent partial solutions from becoming prohibitively large during the
iterative construction process a set of auxiliary scheduling constrantes (

rior constraintg is derived (Section 4.4.1).

* In Section 4.4.2, it is demonstrated how certain complex constraints can be

appliedimplicitly (i.e. without explicitly building a constraint BDD).

* Finally, for very large problems consisting of thousands of representation
variables,set-heuristicsare described that preserve whole sets of partial

solutions exhibiting desirable properties (Section 4.4.3).

4.4.1 Interior Constraints

In the current implementation, the solution is built iteratively and a termination
test is performed after all of the constraints relevant to a particular time step are
applied. Although the BDD size of the final solution is typically very moderate, the
intermediate solutions can become prohibitively large, resulting in a slower con-

struction and larger memory requirements. Ideally, the intermediate size should

65

never exceed the size of the final solution. In such a scenario, as long as the final
solution fits the memory limits of the run-time environment, the software tool

should be able to complete a scheduling task.

To alleviate the problems arising from the uncontrolled growth of the interme-
diate solution, we identify and discard a set of partial schedules that “hopelessly
lag behind” during the construction process and cannot contribute to the set of
optimal solutions. This means that at a particular time step such partial schedules
cannot terminate for given resources and a pre-specified upper bound on execution
time. This consideration leads to a setr@krior constraintswhich is dynamically

generated during the scheduling in order to prune the BDD.

The main strategy is illustrated by the following example: Assume that at the
beginning of stethere aren addition operations that have ALAP (as-late-as-pos-
sible) bounds in the ranges.[. (stk-1)] and that there are onlgn single-cycle
adders available. At least ¢ km) of these addition operations must be completed
prior to stepsin a feasible solution. Selection of a subset satisfying this property is
done efficiently using the constraint template shown in Figure 4.3. Such con-
straints can be derived for each functional unit type (including multicycle and
pipelined units). Interior constraints witbokahead lkenable an early detection of
many (not necessarily all) partial schedules that are destined to be discarded within
the nextk steps. Since the completeness of the solution set is preserved, this does
not impact optimality. Experimental results illustrating the benefits from interior

constraints application are presented in Section 6.1 and Section 6.4.

A further improvement in run-time efficiency can be expected if execution
interval analysis [115] is used for search space reduction. Interior constraints can

be viewed as a subset of such analysis.

66

4.4.2 Implicit Application of Complex Constraints

The generalized resource bound constraint BDD shown in Figure 4.3 is fre-
guently used as eonstruction template symbolic scheduling. Vertices in this if-
then-else template are not restricted to Boolean variables -- complex Boolean func-

tions (f;, fy,... f,) can be inserted into the template.

However, even when {ff,, ... f,) are rather simple, the overall constraint may
become extremely large. Consequently, it can happen that the partial scheduling
solution is of a very moderate size, but the constraint to be applied cannot be built.
However, the scheduling constraint need not be explicitly built. The following can

be done instead:

* Introduce a new set of auxiliary variables;(y>, ... yi,) corresponding to

the set of functions {f f,, ... f,).

* Build the template functio (shown in Figure 4.3) using only {yy>, ...
Yn)-

Compute:

P’ = And(P, T) (EQ4.2)

whereP’ is a partial solution to which the constraint is applied.

» Clearly, a new partial solutioR” can be obtained using the recursive for-
mula:
(i _ i-1)
P" = oy.(And(P' ™Y, Xnor(y, .))) (EQ4.3)
wherellf = f, + f; . This amounts to the standard BDD substitution operation:

pt) = pl Y] (EQ 4.4)

yi=f

67

Using this approach, in all of the benchmarks discussed in Section 6.4, we

were able to apply register constraints that could not be built explicitly.

4.4.3 Symbolic Heuristics

The main challenge for symbolic techniques can be summarized by Bryant’s

observation from [13]:

“... In many combinatorial optimization problems, symbolic methods using
OBDDs have not performed as well as more traditional methods. In these prob-
lems we are typically interested in finding only one solution that satisfies some
optimality criterion. Most approaches using OBDDs, on the other hand, derive all
possible solutions and then select the best from among these. Unfortunately, many

problems have too many solutions to encode symbolically...”.

It has been shown that some standard benchmark instances have billions of
optimal solutions ([94], Chapter 6). In such cases, the BDD representation can
become too large to be practical since both its size and CPU run-time increase sig-

nificantly.

Heuristic scheduling techniques [18][84][87] are applicable to large problems
but may fail to find an optimal solution in tightly constrained problems. This is pri-
marily because the heuristics cannot recuperate from early suboptimal decisions
which typically preserve only one representative from a possibly very large pool of

candidates.

Since valid partial schedules are available after each time step of our symbolic
construction, it is possible to devise heuristic scheduling techniques.The simplest

utility-basedheuristic [94] propagates only the subset of schedules with maximum

68

BDDnode
SetUtilizdBDDnode partial, BDDnode sink, int step, int utility) {
BDDnodexsubset;
if (step>=minimum_execution_time) { /* check for end */
subset “Andpartial, sink);
if (subset!9) return (subset);

}

do{
subset “Andpartial ChooseExactfytility));
if (subset=9) utility--;
else return(subset);

} while(utility>=0);

return (0);

Figure 4.6 Utility-based set-heuristic

utilization of resources (see Figure 4.6). Utilization is measured by the number of
operations active in each time step. The utility-based heuristic is implemented by
iterative application of the generalized resource bound. We enforce maximum uti-
lization of functional units, and then iteratively relax this constraint until satisfying
partial solutions are found. Sin@l such schedules are propagated, this simple
heuristic has good behavior. An additional (second-level) pruning stratety (
ity+CP) based on the AFAP (as-fast-as-possible) scheduling of the operations
belonging to the critical path(s) is possible as well. Essentially, the scheduler
favors the partial solutions where the largest number of operations belonging to the
critical path(s) have been scheduled. This strategy is effective when the number of

operations that can be scheduled simultaneously is very small or when the sched-

69

ule is expected to take very large number of steps (some of the problems in Section

6.4 execute in more than 100 cycles).

The algorithm can be made less greedy by applying it over a sliding window of
several time steps or over a range of utilizations. Finally, the BDD pruning can be
delayed behind the current scheduling step to create “look-ahead”. These manipu-
lations are surprisingly efficient and consist of repeated use of the construction

template shown in Figure 4.3.

An accurate estimate of the upper bound on scheduling latency may not be
available before scheduling. Unfortunately, the search space increases enormously
fast with relaxation of this bound. We show in Section 6.4 that set-heuristic sched-
uling is very robust: the construction pace shows very weak sensitivity to the upper
bound used to initialize the scheduler. It is very important that the heuristics be
robust, since they can be used to derive accurate bounds for the exact schedulers

whose run-time efficiency is more sensitive to the bound estimates.

4.5 Alternative Representations

This section describes alternative symbolic representations that were consid-
ered during this project: Zero-Suppressed BDDs [75] and “log encoding”. We
believe that our experience with these approaches may prove valuable for the

future implementations and extensions of our work.

4.5.1 Zero-Suppressed BDDs

Zero-Suppressed Binary Decision Diagrams (0-sup-BDDs or ZBDDs) are data
structure optimized for an implicit set representation in combinatorial problems
[75]. The major difference between 0-sup-BDDs and ROBDDs is the reduction

rule shown in Figure 4.7. In ROBDDs, reduction is performed through “don’t

70

ROBDDs . 0-sup-BDDs
(don’t care eliminatioh (zero suppressujn

& A&J

Figure 4.7BDD reduction rules

care” elimination -- a graph node is eliminated if its both sons are isomorphic (see
left-hand side of Figure 4.7). In 0-sup-BDDs, a graph node is eliminated if its
“True” son points to a “0” terminal (empty set). Since solutions of many combina-
torial problems are rather sparse, this reduction rule allows an implicit representa-
tion of the majority of variables that correspond to the elements not present in the
final solution. Recently, a 0-sup-BDD were applied to representation/manipulation

of polynomials [76][98].

The advantage of using ZBDDs in exact symbolic schedulers is effectively
illustrated by the example of thelliptic Wave Filter(EWF) benchmark shown in
Figure 4.8. The 28-cycle EWF instance (using one adder and one 2-cycle non-
pipelined multiplier) has only 34 operations but 437 variables are used to fully
describe the problem. Every solution (a path to “True” node in ROBDD represen-
tation) consists of 437 variables out of which only 34 are “1A vast majority of
variables are equal to “0” (i.e. a particular operation is not scheduled at a particular
time step), but are explicitly represented in the ROBDD. Consequently, the solu-

tion representation has more than 130,000 ROBDD nodes. Since the 0O-variables

4. Actually, 35, including the “sink” node used solely for termination testing.
71

in t2 t13t26 t18 38 t33 t39

B

O
O
O add
O multiply
C
D)
t2 t13t26 118 t38 t33 t39 out

Figure 4.8Elliptic wave filter (EWF) benchmark

that belong to the solution are implicit (suppressed) in 0-sup-BDDs (ZBDDs),
much larger compression of the solution set is possible. In fact, our experiments
showed that for a 28-cycle EWF, a nearly ten-fold reduction in size is achieved. A

15-fold reduction is observed when a 2-cycle adder is used (967 variables, 54-

72

cycle optimal solutions). This marked compression of the representation size offers
a potential for analysis of much larger problems than is possible using ROBDDs.

In fact, for some examples discussed in Chapter 6, the number of nodes in the opti-
mal solution sets is occasionally smaller than the number of variables describing

the problem.

We observed that, when applied to the scheduling problem, 0-sup-BDD manip-
ulations are slower than similar ROBDD manipulations. This seems to be caused
by the frequently simpler ROBDD form of constraints. The constraint equation
may involve only a few formulation variables and the corresponding ROBDD rep-
resentation is typically small. However, such constraint may become more com-
plex when converted to a 0-sup-BDD becadse’t-carevariables are not implicit
in the 0-sup-BDD representation. Another reason for a relatively lower efficiency
of 0-sup-BDDs may be due to the implementation specifics of the basic algo-
rithms. In ROBDDs, all of the basic Boolean operations (&gd, Or, Nof) are
implemented using a single (if-then-else) call [10]. For example

:And(F, G = ite(F, G 0) . (EQ 4.5)

This allows a very efficient hashing and cashing implementation policies that
drastically improve computation time [10]. In 0-sup-BDDs, there is no equivalent
to ite. In fact, separate algorithms are developed for different set operations (e.g.
Intersection Union, Differencg. Consequently, computational efficiency of a O-
sup-BDD package can be expected to be reduced compared to the ROBDD case.
Additionally, in the current scheduler implementation, all of the individual con-
straints are generated as ROBDDs and then converted to 0-sup-BDDs prior to their
intersection. This introduces a very small overhead for large problems, and is ben-

eficial since:

73

* the ROBDD form of constraints is well-understood and they can be built

efficiently,
* RO-to-0-sup BDD conversion is a simple one-pass algorithm, and

» a significant software infrastructure for ROBDD-based symbolic schedul-

ing was already available.

All of the larger DFG instances presented in Chapter 6 were solved using both
ROBDDs and 0-sup-BDDs. Not surprisingly, ROBDD implementation required
more run-time memory (although the requirements were not excessive). Neverthe-
less, CPU times for ROBDD version were still typically better. In addition to a dis-
cussion from the previous paragraph, it should be acknowledged that a
significantly larger amount of programming hours and experience was invested in

the ROBDD package implemented by our CAD group.

4.5.2 Log Compression

The formulation presented in Chapter 3 assumes that a variable is assigned to
particular instance of a particular operation (i.g; Gtands for: instance of opera-
tion j at time steps. This effectively corresponds to a “one-hot” encoding of time
and is an inherently redundant representation. In case of schedules where a number
of operations in CDFG is large, decreasing bounds on available resources lead to
large operation mobilities and, consequently, to large number of BDD variables.
For example, 28-cycle EWF benchmark requires 436 variables (on average, 12.8
variables per operation). The question that arises naturally is whether the schedul-
ing formulation can be modified to reduce the number of variables. One possibility

is to impose a logarithmic compression of time in the following fashion:

74

op; ~ (Xo1X11)
0P, ~ (Xg2X12)
(6 0p; —~ (XogX13)
0Py — (Xo4X14)
0ps — (Xos7)
opg —~ (--)

Figure 4.9Path sharing

» specify the upper bound on execution time for a problem instance to be

scheduled (), and
+ createllog(t) Ovariables for each operation from CDRG

For example, all benchmark instances with the upper bound less than 32 time
steps can be scheduled using at most 5 variables per operation. Potential asymp-
totic benefits are obvious: if the number of operations in a CDFG,jg than a
total number of variables is Ofpstyp) for the “one-hot” representation and
O(ngpg- og(t,p) D) for the “log” representation. No general claim can be made that
“log” compression leads to smaller BDD sizes, but it can be observed that more
than one solution to the scheduling problem can be represented in a single BDD

path. Figure 4.9 demonstrates this attractive property.

5. This resembles the formulation proposed in [54] and implemented using multi-valued
decision diagrams. At the time when we considered “log encoding” representation, we
were unaware of that work. Consequently, the approach presented in Section 4.5.2 has
unigue construction and constraint generation aspects. We thank T. Kam and R. Brayton
for referring us to [54] during our visit to Berkeley in February, 1995.

75

X11X12 + X1 X11X02X12 + X1 X11X02X 12

Figure 4.10More path sharing

Assume that the CDFG has to be scheduled in four time steps using infinite
resources. Thus 12 variables are needed in the formulation (two for each opera-
tion) ©. Xjj stands foii" variable of operation (0< i < Hog(t,p)0. There are eight
possible solutions (operatidncan be scheduled at steps 0 and 1, operdaioan
be scheduled at any step), but onlgiagleproduct term is needed to represent it.
Encoding that was used in the previous example was a simple binary one -- it can
be observed, however, that Gray’s encoding would lead to a similar compression of

the result.

Similarly, assume that four time steps are allowed to schedule operatants
2in Figure 4.10. In this case, there are six solutions represented by only three non-
intersecting cubes (paths in BDD). The first terky {X,,) corresponds to four
solutions: operation_1 scheduled at the first two steps (0 or 1) and operation_2

scheduled at the last two steps (2 or 3).

We decided to perform a simple translation from the “one-hot” formulation
using the notion of “minterm templates” that are pre-constructed before the actual
scheduling is performed. When a particular constraint has to be generated we can

use the necessary templates and shift them accordingly. The following example

6. In this simple example without resource constraints, a number of variables using the
“one-hot” representation is actually smaller (10).

76

illustrates the basic idea. Assume that operatigmecedes operationand that
both operations execute in one cycle. Then, at time, lseeprecedence constraint

has to be satisfied:

» (operation was scheduled before stkpor (operatiorj is not scheduled at

stepk).

To implement precedence constraint between arbitrary two operations in

CDFG, two kinds of templates can be generated for every tim& step;
» at[k] is an encoding (minterm) of a time step vaiue
» before[k]is a Boolean function that is equal to the sunatjf] for0<1<k.

Storing all of the templates causes very small memory overhead to the system
since there is a very large amount of sharing between the BDD representations of

the template$.

There are two obvious extreme cases we inspected for implementing variable

ordering:

* interleave the corresponding variables belonging to all operations (“inter-

leaved” ordering [54]) -- most significant bits closest to the BDD root

» assign consecutive BDD indices to all the variables corresponding to a par-

ticular operation (“natural” ordering [54])

When “one-hot” encoding of time is used, the iterative construction process

(Section 4.1) and the corresponding variable ordering (Section 4.3) are efficient

7. We used very simple and unique encodings for each time step (standard binary or
Gray’s encoding). Arguably better results might be expected if some redundancy is
allowed.

77

because BDD variables are gradually introduced on time-step-by-time-step basis
and manipulations are frequently localized close to the root of the BDD. When
“log” encoding is used, a similar idea can be applied (i.e. variables are introduced
on bit-per-bit basis). Effectively, the scheduling problem is solvedlog(t,,)

steps by dividing the time dimension into the “bins” of equal size and applying
gradually more restrictive constraints. We describe the basic principle very infor-
mally, using the following example. Assume that a solution is sought for EWF
with one 2-cycle non-pipelined multiplier and two single-cycle adders and that a
conservative upper bound of 22 time steps is specifigg. (Five variables per

operation are needed*2 t,, < 2).
STEP_O:
* Divide the problem in two bing{n_0andbin_1) of size 16

» Preserve the precedence constraint for every pair of operations fge.iif

precede®p_j, it is not legal to pubp_jin bin_0andop_iin bin_1)

* Analyze the CDFG and detect operations that cannot be placed (“chained”)
in the same bin (e.g. a critical path fraop_ito op_jis larger that the bin

size). Generate and apply the corresponding constraints.

* Apply ASAP/ALAP and resource bounds on both bins. The constraints use
only MSB variables: there are just two bins and the bits of lower signifi-

cance should obviously remain “don’t cares”.
STEP_1:

 Same as STEP_O, just 4 bins of size 8 are used.

78

STEP_4:

* There are 32 bins of size 1. Stop at the earliest time step when termination

(schedule completion) is detected.

Notice that only a portion of variables (one bit per operation) is introduced at

each step.

We performed experiments using the “log” encoding and both extreme variable
ordering (natural and interleaved) introduced earlier in this section. Only func-
tional unit resource constraints were applied. Once the solution was generated,
variable re-ordering was used to investigate potential improvements in the BDD
size. Somewhat surprisingly, the solutions were typically larger than those
obtained using the “one-hot” encoding. We observed that the number of BDD
paths decreases (typically, 2-3 times) in the “log encoding” representation due to
the ability to encode several solution in a single path. This, however, occurs at the

expense of a reduced sharing in a BDD data structure.

Section 4.5.2 illustrates an intriguing idea we considered in the early stages of
this project. Although experimental results did not live up to our expectations,
some caution should be exercised in labelling this previously undocumented work
as definitely impractical. More elaborate encodings and variable ordering schemes

may improve applicability of the described approach.

79

Chapter 5

Conditional Resource Sharing Analysis

Hardware resource optimization of control/data flow graphs (CDFGSs) is
particularly important when conditional behavior occurs in cyclic loops and
maximization of throughput is desired. In this section, an exact and efficient
conditional resource sharing analysis using a guard-based control representation

(Section 3.1) is presented.

Typical deficiencies observed with previously proposed HLS approaches to

conditional resource sharing in acyclic CDFGs include:

no support for code motion,

restriction to a fixed order of execution of conditionals,

restriction to nested if-then-else control structures, and

no support for parallel and correlated control structures.

Moreover, it has been reported [103] that some representations can
occasionally lead to incorrect conclusion on mutual exclusion between the

operations [120].

80

Numerous techniques for cyclic data-flow graph (DFG) optimizations have
been proposed, ranging from heuristics [22][63][90][107] to ILP methods
[42][49]. However, none of them discusses cases in which conditional behavior
occurs within the loop body. The BFSM-based approaches are applicable to cyclic
CDFGs, but they either lack a formal treatment of conditional resource sharing
[128] or introduce an excessive number of 0/1 variables to model resource and
exclusivity constraints [113]. Recentiygtation scheduling22] has been extended
to pipelining of CDFGs [110]. This technique is based otoadition flagrepre-
sentation restricted to cases where execution conditions can be represented as a
Boolean cube. Conditional resource sharing analysis is performed usagg
flagsassigned to individual functional units. Support fade dividing119] is not

discussed.

The guard-based analysis presented in this chapter is transparent to a scheduler
implementation. The proposed technique systematically handles complex
conditional resource sharing for cases when software pipelined loops include
conditional behavior within the loop body. Additionally, the analysis is exact, thus
avoiding over-estimation of resource requirements (for example, see Figure 1.5,
Chapter 1). Throughout this sectioht-most-k-of-n constrainta.k.a. “generalized
resource bound”) described elsewhere in this thesis (Equation (3.7), Figure 4.3)

will be referred to a8y |,

5.1 Acyclic CDFGs

Guard functions may be used to perform conditional resource sharing analysis
for anarbitrary number of CDFG operations. We illustrate the idea using a CDFG
fragment shown in Figure 5.1. Assume that the scheduling has been completed for

step_1land that operations and2 have been scheduled in teep 2 We want to

81

Figure 5.1Example CDFG fragment

analyze scheduling operati@in step_2assuming that only one “white” resource
is available. Evaluating aB; 3 using guard functiong; (i = 1, 2, 3) as arguments
we obtain:

By oMy Mo g) = T4+ T Mg+T,M3 =0 (EQ5.1)

Since the constraint evaluates to “0”, we conclude that the schedule is
infeasible on all paths. If two resources are available, the consBaixévaluates
to “1”:
By a(My Moy = T+, 4T3 =1 (EQ5.2)

indicating that operatio can be scheduled on all paths

Let us assume now that operati@nhas been scheduled for execution in a
speculative fashion istep_1 and that operatior2 is scheduled irstep_2 Can
operation3 be scheduled in step_2 with only one resource? We evaBge

constraint using; (i = 2, 3) and obtain:
By o(MpTg) =T,+T3 =G (EQ 5.3)
This result indicates that the resource bound is met only on path G. In general, the

following theorem holds:

1. This reduces to a pair-wise mutual exclusion tegt;0) as a previously observed spe-
cial case (e.g. [8][53][92]).

82

Theorem 5.1 Assume that n operation instances are candidates for scheduling
at a particular time step and that there are only k resources available. Then the
evaluation of B (I;, Iy, ..., Iy returns all paths where the resource constraint is

not violated.

The proof is straightforward since every individual control path is represented
as a product of guard variables. We can evaligg(l 1, I'p, ... , I for every
possible combination (minterm) of guard variables and obtain “1” (if the minterm
is covered by at motI'; functions) or “0” (if the minterm is covered by more than
k functions). Note that although the conceptual complexity of the test is very high,
it can be performed efficiently sindg functions are represented by BDDs -- the

computation amounts to insertion of guard functions into the tentflate

We define an operatigfs split-function $as a Boolean intersection:
Sj = FjBk,n(Fl,Fz,...,Fj,...,Fn) (EQ 5.4)
Remember thaf’; indicates all control paths where operatiprmust be
scheduled. Thu§ indicates all paths where operatiprean be scheduled at a
particular time step wheB, ,is evaluated. If§ is equal tol;, operation can be
completely scheduled at that time stepSlis a proper subset df; (I'jDﬁ), node
splitting (dividing) may be considered. In the previous exam@gG and

(F3JS;3). Thus, operatioB can be scheduled on path Gstep_2 On paths:
M3\S; = F3§3 =G (EQ 5.5)
operation3 has yet to be scheduled in the subsequentzsteps

To support code motion across the basic code bldgksinctions may have to

be modified during the scheduling. For example, if operatigRigure Fig.5.1) is

2. The scheduler, however, has to ensure that node dividing is done in a causal manner
(e.g. not to allow dividing of nodes with respect to a conditional whose value is still
unknown at a particular time step).

83

executed speculatively step_1J variable G has to be factored out frdm (i.e.
becomes “1”), since the corresponding conditional (shaded comparator) is
unknown at that time. This reflects the fact that duritgp] paths G ands are

indistinguishable.

The proposed approach is memory efficient. We observe that the number of
operations in a typical CDFG is significantly larger than the number of potentially
distinct guard functions. Only one pointer to a guard function need be stored for
each operation instance during the scheduling process. Furthermore, memory
overhead for storing guard functions is expected to be very low due to the sharing
property of the BDD data structure. Compared to the method proposed here,
condition vectors [119] are less efficient and have smaller expressive power since

in that approach:
» control paths are “one-hot” encoded,
* no sharing is possible between the vectors, and
» execution order of conditionals is pre-specified.

Guard-based analysis is not restricted to physical hardware resources, but can
be applied to modelling more general constraints. As indicated in [69], this
property is very important for industrial HLS tools. For exampteitual exclusion
of n signalsis tested by usin®; ("1, [, ... ,[). A condition forsynchronization
of n signalsis evaluated using the complement®&f, 1) {1, I'p, ... , ') -- this

identifies all control paths where all signals occur simultaneously.

5.2 Pipelining of cyclic CDFGs

In a pipelined hardware implementation of a data-path, multiple loop iterations

can be executed concurrently. Thatency is the period of timel between

84

LOOP K 3 2 1
ITERATION:

| - latency (iteration interval)
o d - delay (iteration time)

ne - number of pipeline stages

S

Figure 5.20verlapping of loop iterations

initiations of two consecutive iterations. Loop pipelining optimizations have the
goal of increasing the throughput by overlapping the execution of loop iterations.
In the case ofunctional pipelining the assumption is that no inter-iteration data
dependencies exist. Given sufficient hardware resources, the latency of
functionally pipelined data-paths can be made arbitrarily smallodp winding

this cannot be done since inter-iteration data dependencies do exisieleyas

the number of cycled required to complete one iteration. The number of

overlapping iterations is usually referred to as the numbgipefine stages

Figure 5.2 shows an example of overlapped execution of a loop usging
pipeline stages. Assume that the loop body exhibjtslistinct control paths. In

Figure 5.2, the number of paths may grow as:

(Step—1) | 41U
H[| J .
(ny) (EQ 5.6)

85

loop_iterations_(2k-1)

loop_iterations_(2k)
““““ :Q: [T, F]
'O [TF]
A A @ stage 2
3
c
g
©
3
(]
©
O, [TT. F]
Y 'O [TF]

Figure 5.3Unfolded execution pattern for Kim’'s example

For example, for time steds<step< 2l , the number of paths is potentially

(np)z, since two iterations co-execute.
Clearly, to have a finite state controller, the number of execution paths must be
bounded?®. This implies limiting state information available to the controller

implementing the schedule. At minimum, the state depends omgalbop

iterations in the pipeliné
The unfolded execution of a functionally pipelined versiorkah (Figure 3.1,
Chapter 3) is shown in Figure 5.3. We assume two adders (“white” operation), one

subtracter (“black” operation) and one comparator (single-cycle units assumed)

3. Some compilers use similar constraints to guarantee termination of the scheduling algo-

rithm [3].
4. Increasing the amount of state available for control generation may improve a schedule,

but is likely to lead to more complex controllers.
86

Figure 5.4Example CDFG to be folded

The example requires 8 cycles on these resources if loop pipelining is not
performecP. With loop pipelining, a schedule using 2 stages and having latency of

4 (using the same resources) can be found as indicated in the Figure 5.3 (delay
remains 8 cycles). One operation is divided as indicated by the values of the guards
corresponding to conditional€{, C2). The indicated block in the middle of the
figure shows a pipelined loop pattern. Although there are nine control paths, the
control is simple since the schedules for the two iterations are independent. In
general, this need not be the case: superior schedules may be achieved when a

control correlation is introduced among the overlapping iterations.

We now extend conditional resource sharing analysis to the more general case
of pipelining of cyclic CDFGs. Consider the CDFG shown in Figure 5.4.
Assuming that only one single-cycle resource of each type (comparator, “white”,
“black”) is available and that speculative operation execution is not enabled, the
CDFG from Figure 5.4 can be scheduled in 4 time steps without loop pipelining.

However, latency can be reduced to 2 time steps using three pipeline stages. For

5. Assuming no speculative execution, 8-cycle schedule can be found even using only one
single-cycle adder.

87

simplicity, we assume that the CDFG has to be executed an infinite number of
times and that no inter-iteration data dependencies exist. These assumptions do not

affect the generality of the approdch

Assume that the schedule is to be found usigpipeline stages. We specify a
bound on the information available to the controle(n;=ny), indicating that the
state of the last; iterations is preserved and used in decision making. Assume that
the CDFG to be scheduled hascontrol paths. Clearly, the bound on the number
of distinct control paths grows as (D[)Qni]. To accommodate all possible
scenarios, guard variables are doubly-indexe@dy; stands for “guard
corresponding to condition& in pipeline stage”, where (1<i < n;). Indexi is
called the pipe index’. Values ofi larger thamg correspond to loop iterations that
left the pipeline. Operations at different pipeline stages correspond to distinct loop
iterations. Thus, ¢; corresponds tanyloop iteration currently present at staige
Additionally, operationy is guarded by";; (the guard function for operationat
pipeline stage). The complexity of control representation growsws. (n. is the

number of conditionals).

The overlapping iterations are treated as parallel threads of computation,

leading to the following resource analysis proce&ure

1. For the original CDFG, assign guard variableg © the corresponding

conditionals and for each operatijpcompute its guard functidn,

6. In the general case, a loop test must be explicit in the CDFG specification and the
scheduler has to enforce inter-iteration precedences.

7. Some schedulers first generate a feasible pipelined schedule (in terms of dataflow
dependencies) and subsequently resolve resource violations by incremental partial
rescheduling [63][89]. Alternatively, the initial non-pipelined schedule can be free of
resource violations and the latency is then reduced through incremental operation rotation
[22][110].

88

2. Computel’j 1 by substituting G ; for each G in ;. Resource constraints are

evaluated as described for a CDFG without loop folding (Section 5.1).

3.a.If, during scheduling, operatigns moved from pipeline stageo pipeline
stage (+1), computel; .1y by incrementing the pipe indices by 1 for all guard
variables inl’j ;. Movement of operations that increase the pipe index beypisd

not allowed, since this would violate the pre-defined boynd

3.b.If, during scheduling, operatigns moved from pipeline stagdo stage i¢
1), computd; .1y by decrementing the pipe indices by 1 for all guard variables in
[;i- Operation movement decreasing the pipe index below 1 is illegal, since it
would imply non-causal solutions (i.e. control depends on iterations yet to be

initiated).

4. Repeat steps 3.a and 3.b for each time step and each pipeline stage.

Conditional resource availability is computed as described in Section 5.1.

Steps 3.a and 3.b preserve all inter-iteration and intra-iteration control
dependencies. They reflect the fact that overlapping loop iterations flow through

the pipeline stages in a synchronous fashion.

We now apply the procedure to the CDFG in Figure 5.4. A feasible schedule
using three pipeline stages, achieving latency of 2 is shown in Figure 5.5. Assume
nj = ng = 3 and that stage 1 has been scheduled as shown in Figure 5.5. Since
operation 4 is pushed from the first pipeline stage into the second pipeline stage, its
new guard function becomes:, , = G, , . If tH® , constraint at step 1 is

evaluated using, ; andl", ,we obtain:

By oMy 1742 =1+Gy ,=Gy 5 (EQ5.7)

89

pipeline_stage 1 . pipeline_stage_2 ; pipeline_stage 3

step.1 <& | e e o
M =1 : 1G1523 G123 G163
step 2@> g 3 _GD_
G11 Gi1 : G122 GyiGyp

Figure 5.5Folded CDFG from Figure 5.4

indicating the paths where the resource constraint is not violated. However, the
intersection 0B, ,andl 4 ,is empty (i.e.$,=0), indicating that operation 4 cannot
be scheduled istep 1 It is possible to schedule operation 4step_2 however,

since no other comparison is scheduled in that step in pipeline stage 1.

Similarly, operation 7 is guarded Hy, , = (?2 when pushed into stage 2.
Although sufficient resources are available, it is clear that operation 7 cannot be
scheduled at step 1 if an overall latency of 2 is to be achieved. (Since computation
in the first and second pipeline stage are subject to uncorrelated decisions, it can
happen that no “white” resources are available for pipeline stage 3 where

additional “white” operations have to be scheduled). At step 2:

Bio(l2 1772 = Gy 1+(Gy) =Gy 146Gy 5 (EQ5.8)
indicating the paths free of resource violations. Since:
S; = T7,B1 o5 1,772 = Gy 4Gy (EQ5.9)

operation 7 cannot be scheduled at step 2 if the ‘T’ path is simultaneously taken in
the CDFG being executed in the first pipeline st@g, G, ,)

However, operation 7 can be split (see Figure 5.5). The guard function of 7°
can be set to:
M. ,=5=G; G, (EQ5.10)
90

Operation 7 has yet to be scheduled on paths:
M =T7 M7, =Gy .Gy, (EQ 5.11)
Since this part of operation 7 (7”) has to be pushed into pipeline stage 3, its
guard function is modified to:
M 3= Gy .Gy 5 (EQ5.12)
During the first step of stage 3, three candidate operations exist: 5, 6 and 7”. If
the By ,, constraint is evaluated at step 1 udiag, ' 3andl ;- 3, we obtain:
Bia(M53lMgalm3) =1 (EQ 5.13)
indicating that the resource constraint is satisfied on all paths. Computatgn of

for j=(5, 6, 7”) indicates that all operations (5, 6, and 7”) can be scheduled at

step_1(stage 3) and that a feasible schedule has been found.

5.3 Probabilistic interpretation

In a CDFG withn; conditionals, up t@"¢ control scenarios may occur. Each of
these distinct control paths can be represented using a minterm of guard variables.
Since the number of minterms covering a Boolean functimntypically referred

to ason-set sizef f, we define:

OnSetSizgl) = 2"° (EQ 5.14)
Assuming that all True/False decisions are equally likely, we offer a

probabilistic interpretation df functions:

OnSetSizd) _
OnSetSiz@l)

P(j) (EQ 5.15)

whereP(j) indicates the probability that operatipwill be conditionally executed.

Probability P(j) or its variations are frequently used in resource-constrained

schedulers to define heuristic priority functions (e.g. [120]). We observe that the

91

computation ofOnSetSize(famounts to a simple one-pass traversal of an BDD
representation of. When the probability of a conditional’s outcome is not uni-
form, behavioral description analysis/simulation can be performed to determine
probability values. In such cases, the BDD traversal algorithnOft8etSizg) can

be easily modified to take into account individual probabilRéS.) 8

It is also possible to assess the global effects of resource violations using the

complement 0By (I"y,...I p):

OnSetSize B,)
OnSetSizgl)

(EQ 5.16)

This ratio indicates the probability of a violation occurrence. Such information
is useful for schedulers that resolve resource violations through partial

rescheduling.

In Section 6.5 we will present preliminary experiments investigating benefits
from applying the proposed conditional resource sharing analysis to software

pipelining of cyclic CDGFs.

8. We still assume these probabilities correspond to independent events.

92

Chapter 6

Experimental Results

The technique described in this thesis was implemented in C++ and executed
on a Sun SPARCstation10 with 128 Mbytes of memory. ROBDD package was
custom designed. The package implementation follows the approach introduced in
[10]%. Reported CPU times correspond to the complete procedure: CDFG analysis,
constraint construction, and all OBDD manipulations leading to the reported

results. First, we apply the technique to three typical problem types:
» Section 6.1 presents experimental results of scheduling of acyclic DFGs.

» Section 6.2 demonstrates the ability of our technique to perform loop wind-

ing on cyclic DFGs.
» Section 6.3 discuss the scheduling of acyclic CDFGs.

The results are compared to the optimal or best known results. No other work
reports competitive results for all three problem types. Subsequently, we perform

two additional sets of experiments:

1. “Inverted edges” option was not implemented, however. “Dynamic re-ordering” option
was provided, but not used in experiments discussed in Chapter 6.

93

Table 6.1: EWF experiments

#cycles 17 1y 18 18 19 20 20 P1 28 28
#adders 3 3 3 2 2 Y, y. 2 1 1
#multipliers || 2(*) 3 1(» 2 1(» 2 1(» 1 1 1
#buses 6 6 6 6 6 4 4 4 4 4
#registers 1p 1o 10 10 10 10 (@0 (10 |10 10
#variables 68 68 97 97 181 1p5 165 199 437 437
#nodes 82 82 194 209 2,237 2,760 1,005 [704 4.9e4 3.2e4
#schedules 18 18 336 18 1.1e4 5.8e4 5|142 2,355 4.3e9 2.6e8
CPUtime[s] 0.2 02 05 0{6 34 140 125 [B.5624.7 3915

2-cycle multiplier and single-cycle adder except: (*) 2-cycle pipelined multiplier

* In Section 6.4, we discuss application of symbolic techniques (both exact

and heuristic) to larger DFGs.

* Finally, Section 6.5 presents preliminary experiments investigating benefits
from applying conditional resource sharing analysis approach (Chapter 5)

to software pipelining of cyclic CDGFs.

6.1 Acyclic DFGs

Table 6.1 summarizes theliptic wave filter(EWF) benchmark experiments
(See Figure 4.7, Section 4.5.1, for EWF data-flow graph). We falhdptimal
solutions of each instance using BDDs whose size was significantly smaller than
(#variableg?. To reduce the size of partial solutions, an auxiliary set of interior
constraints was generated (described in Section 4.4.1). The CPU times are rather
moderate for the exact technique generating all optimal solutions. In Section 6.4
we discuss some larger problems (EWF unfolded two and three times, Finite Dis-
crete Cosine Transfornk,DCT [73]) and demonstrate that efficient symbolic heu-

ristic techniques can treat problems requiring thousands of formulation variables.

94

Important property oexactscheduling techniques is that they are capable of
either generating optimal solution(s) or indicating that feasible solutiorexist
for a particular problem instance. On the downside, this requires that an exhaustive
search of a complete solution space has to be perforBradch-and-boundech-
niques are typically employed to speed up the solution space exploration. Unfortu-
nately, problems exist in which it is not possible to derive sufficiently tight bounds.
One such example (10-cyddDCT instance with 5 two-cycle non-pipelined multi-
pliers and 3 ALUs) was investigated recently [116]. Due to its very large symmet-
ric search space, thiEDCT instance is reported to be an extremely hard problem -
- both ILP and branch-and-bound techniques take more than 2 CPU hours to reach
the infeasibility conclusion. However, we were able to prove its infeasibility in
only 100 CPU seconds. This can be explained by the fact that in our technique a
very large number of potential solutions are explored in parallel on a time-step-by-

time-step basis.

Interior constraints (described in Section 4.4.1) are helpful not only to speed up
convergence to a solution set (when one exists), but to improve infeasibility analy-
sis as well. We demonstrate this in Figure 6.1. 54-cycle EWF instance (2-cycle
adder, 2-cycle multiplier) introduced in [115] is used as an example. The exact
scheduler was initialized with an infeasible execution time of 53 cycles. A loga-
rithm of CPU time elapsed before the infeasibility is detected is indicated as
(log)_CPU_TIME[s]. A step of iterative construction when the infeasibility con-
clusion is reached is labeléNFEASIBLE[cycle#]. It can be seen that the infeasi-
bility analysis is very fast (less than 0.6 CPU seconds) when interior constraints
are applied aggressively (LOOKAHEA£0). Almost no penalty is paid for being
extremely aggressive (LOOKAHEAES0).

95

INFEASIBLE[cycle#] (log)_CPU_TIME][S]

40| -

X - CPU_TIME
0 - INFEASIBLE

25 30 35 4045 50
LOOKAHEADI[#cycles]

Figure 6.1Infeasibility detection

6.2 Cyclic DFGs

Loop windingresults forEWF are indicated in Table 6.2. All optimal sched-
ules, both in terms of latency (iteration interval) and delay (iteration time), are con-
structed using very moderate computing resources. Several ILP techniques (e.g.

[42][49]) report results equivalent to those presented in Table 6.1 and Table 6.2,

Table 6.2: EWF with loop winding

non-pipelined multiplier pipelined multiplier
#multipliers 3 2 2 1 3 2 2 1 1
#adders 3 3 2 2 3 3 2 3 2
latency 16 16 1 19 16 16 17 16 17
delay 1§ 18 19 21 18 18 19 18 19
#variables qy 97 131 199 D7 o7 131 97 131
#nodes 776 465 689 1,788 799 776 878 [258 189
#scheduleg| 2,035 674 108 19,498 2,160 2,055 |144 77 19
CPU [s] 4.(1.2 9p 71 44 40 94 05 35

96

with the difference that we provide all optimal schedules. Direct comparison of
CPU times is misleading due to machine differences and to the fact that only ILP
execution times without preprocessing are typically reported. Similarly, the effi-
cient branch-and-bound technique [116] does not report the time for execution

interval analysis.

97

Table 6.3: Benchmarks with branching

Maha Parken Kim| Waka MulT

longest 5 4 4 g 1 3
#cycles(spec

average 3.31 225 213 5[/5 5.0 3.0
#cycles(non_spec) 8 8 8 8 1 4
#adders 1 2 2 2 1 2
#subtracters 1 3 3 1 1 1
#comparators - - - 1 2 1
#variables 6D 49 49 11 55 26
#nodes 428 325 220 543 271 116
#traces 15 43 12 124 21 15
CPU time [s] 5.9 3.6 a7 441 20 3.3

single-cycle adders, subtracters and comparators assumed

Table 6.4: Comparison with others: average (longest) path

Maha Parker| Kim Waka| MulT
Symbolic 3.31(5) 2.25(4) 2.13(4) 5.75(6) 5(7) 33
TS [47] 3.31(5 - - - 4.75 (7) -
CVLS[119] | 3.31(5) 2.38(4) 2.38 (4) 5.75 (6) - 2.88 (4)
Kim et al[55] | 4.62 (8 - - 6.25(7) 4.75(1) -

6.3 Acyclic CDFGs

Table 6.3 and Table 6.4 show experimental results for benchmarks exhibiting
conditional behavior. The row#cycles(spea@nd#cycles(non_specprrespond to
scheduling with and without speculative execution using the same set of resources
and demonstrate the benefits of performing such code motion. The scheduler ter-
minates when all minimum-latency ensemble schedules are found. The number of

cycles for the longest control path is indicatedlasgest’. To compare our results

98

with schedulers which minimize average path length, a subset of solutions with
small average path length is generated in a greedy fashion. Benchivahes

[86], Kim [55] andWaka[120] are conditional trees, amdulT [119] has two paral-

lel trees.Parkeris Mahawith additionA6 converted into a subtraction (Figure 3.3,
Section 3.2).

Our results (“Symbolic”) are compared to the best published resultsMEha
solution with one adder and one subtracter is the same as in [47][119]. Allowing
more resources (2 adders, 3 subtracters) an improvement of 0.125 (average path
length) is made over the best previous resultParker, this improvement was
0.25. In most previous work, it is assumed that the comparators incur a small delay
within a clock cycle and that the operations following the branch on “True” and
“False” paths are mutually exclusive during th@mecycle. This treatment of the
conditionals requires increased cycle time, additional multiplexing, and restricts
pipelining of the control. Our results reflect this modeMaha and Parker only,
but this assumption completely eliminates the need for speculative execution in the
Kim andWakabenchmarks. By default, we assume that a single-cycle comparator
is used and that its output becomes available for control only in the successive
cycle. Even with this assumption, our technique still derives the same result for
Kim as in [119]. InWakaone path is a cycle longer than that reported in [47]. In
MulT a one cycleshorter minimum-latency solution was found by exploiting
dynamic scheduling of operations belonging to parallel trees. There is no informa-

tion on execution times for the results reported in [47][55][3.19]

The ROTORexample (Figure 6.2) performs a rotation of coordinate axes by

angle®. This transformation is used in many applications (e.g. graphics applica-

2. More recent implementation of [55] reports CPU times comparable to those listed in
Table 6.3 [56].

99

X’

I
X = xxcoD + y«sinB

] : X Y = -x*Sind + yxcoP
' |
- i

a =1808;

if (a>=0) {

b = 906,
if (b>=0) {
sind = T©®);
cod = T(b):
}else {
sinB = T(a);
cod = -T(-b);
}
} else {
c = 2700,
if (c>=0
sir)le{ =-T(-a);
cod = -T(c);
} else {
sinB = -T(3608);
cod = T(-c);

} }

X = xxcod + y«sind;

Y = -xxsin@ + yxcoP:

Figure 6.2ROTOR example

tions and positional control systems). The example requires computation of trigo-
nometric functions (si& and co$). In high-performance applications, a typical

approach is to pre-compute the value of sine and cosine functions and store the
sampled values in corresponding tables. However, if high numerical accuracy is

required, the size of the storage tends to become rather large. A compromise

100

approach amounts to storing values for only a quadrant of one trigonometric func-
tion (e.g. sine values for arguments90 < 90°). It is straightforward to use such

a look-up table for obtaining values for both sine and cosine for all possible input
arguments (D< © < 360°).

A pseudocode description of the coordinate rotation using only the first quad-
rant of the sine function is presented in Figure 6.2. “T(angle)” corresponds to a
table read at a location ‘angle’. Similarly, “-T(angle)” corresponds to a table read
followed by a negation. We assume that only one single-port look-up table is avail-
able and that every ‘read table’ takes one cycle to complete. Although it is possible
to simultaneously perform subtraction and comparison of two operands, In the
example, we assumgipelined controlwhich introduces a two-cycle delay. For
example, if operation (a = 18@) is executed at step s, resalis available at the
beginning of step<+1), but control flow is affected by the comparison at the
beginning of stepsi-2) 3.

To simplify interpretation of the results, in Figure 6.3(a) we assume that the
available ALUs can perform all arithmetic/logical operations (add, subtract/negate,
multiply) in a single cycle. The minimum number of cycles to execute the schedule
is presented for cases with and without speculative execution. We observe that,
given the same resource constraints, speculative execution enables much faster
schedules. In Figure 6.3(b) a more realistic assumption is made. Single-cycle
ALUs perform addition and subtraction. Multiplication is performed by two 2-
cycle pipelined multipliers. In this case, adding more ALUs cannot improve the

performance unless speculative execution is allowed. In Figure 6.3, CPU run-times

3. This corresponds to a “parallel control model” as described in [91]. Data-path operation
updates a condition code register at stephe condition code register is inspected at step
(st+1) and the next state and a new control word are generated. Subsequently, that control
word governs data-path activities at stef).

101

#cycles .
O non_speculative

e speculative

[18.6 s]

#cycles

12 AiLos] [23s] _[23s] _[235]
11 1;I ° i "
ol [2.85] 1 \7\8.3 s]
9 I~ \\\ 9 B \ \\
. L \\\ gl \‘.[_1§'Z §]_ _._[1_9__5_5]_ _.['1_8_5 s]
\[12.3s] [22.85]
7 e o r
6 | | T~ [1.35] . : .
® > 6
1 2 3 4 yatus 1 2 3 4#ALUS
(a) (b)

- memory constraint: 1 single-port look-up table
- pipelined control delay = 2 cycles
- resource constraints:
(a) single-cycle ALU (+, -*)
(b) single-cycle ALU (+, -), 2 two-cycle pipelined multipliers

Figure 6.3ROTOR experiments

are indicated in brackets. By allowing speculative execution, an average improve-

ment in minimum latency of 25% is achieved using the same resources.

Figure 6.4 shows an 8-cycle ensemble schedule (2 ALUs, Figure 6.3(b)). Oper-
ations executed in a speculative fashion are represented using thick lines. If the
input angle® belongs to the first quadrant, the computation is performed in seven
cycles. However, since all ensemble schedules are implicitly encapsulated in an
OBDD, the user can search for solutions having other properties. It is relatively
straightforward to look for similarities among the traces in order to simplify the
control. For example, if the first-quadrant computation takes 8 cycles as well, it is
possible to have the same schedule for operations X’, X", Y’, Y’, X and Y for all
control paths during the fifth, sixth, seventh and eighth cycles. This sort of design

space exploration can be performed without rescheduling the problem instance.

102

______________________________ ;__r _________________ @

...

..

|
'
'
]

..................... .i.......................... U, S

0<®<90 | 90<©<180 § 180<© < 270 i 270< @ < 360
Figure 6.48-cycle ROTOR schedule
In Figure 6.5 we introduce th82Rexample that translates spherical coordi-

nates [R,©, @] into the Cartesian (rectangular) coordinate values [X, Y, Z]. The

problem includes computation of trigonometric functions (as described in the

Figure 6.5S2R example

103

Table 6.5: S2R experiments

. CPU time
execution_type #cycles [s]
_ parallel 8 108.8
speculative .
serial 10 177.9
| parallel 1P 56.2
non_speculative .
serial 16 135

- memory constraint: 1 single-port look-up table

- pipelined control delay = 2 cycles

- resource constraints: 3 single-cycle ALUs (+,-), 2 two-cycle
pipelined multipliers

a. can be achieved with 2 single-cycle ALUs as well (55.2 s)
b. can be achieved with 1 single-cycle ALU as well (12.4 s)

ROTORexample) for two input angless(®). There are 42 operations in the
CDFG representation and, if executed in a speculative fashion, as many as 64 exe-
cution paths. If a single-port look-up table is used, the scheduling of parallel trees
(corresponding to computations f@Brand®) has to be donsimultaneouslyThis

means that the schedwearanteesynchronization of the memory accesses with-

out busy/waiting hardware handshaking.

Shown in Table 6.5#cycle3 are S2Rlatencies using one single-port look-up
table, 3 ALUs and 2 two-cycle pipelined multipliers. All solutions are exact and
correspond to execution with and without speculative execution. In each case, two
values are included. An unconstrained versigrafallel ”) allows both trees to be
scheduled and executed in parallel. For comparison, we provide the latencies for a
“serial” version of the problem which imposes an execution ordbetrée executed
before®-tree). The results clearly indicate the benefit from being able to schedule
parallel computations in a speculative fashion. Note that none of the results can be
further improved by increasing hardware resources.

104

Table 6.6: Speculative execution model performance

#cycles Maha | Parker| Kinf | Waka | MulT| Rotor| S2R

longest chairf] 4 4 5 7 3 6 8
scheduled 4 4 5 7 3 6 8

a. previously unreported case -- requires 2 adders, 2 subtracters, 1 comparator

6.3.1 Speculative Execution Model Performance

As indicated in Section 3.2.1, the speculative execution model used in the cur-
rent formulation cannot, in general, guarantee time optimality. In Table 6.6, for all
of the benchmarks discussed in Section 6.3, experimental results are shown for
both the longest chain of data-flow dependencies and latencies of the scheduled
benchmarks. The results are encouraging, since they demonstrate that the restric-
tion in our current speculative execution model did not prohibit, given sufficient

resources, achieving theoretically minimum benchmark latencies.

6.4 Larger DFGs

In this section we discuss application of symbolic heuristics (Section 4.4.3) to

larger DFGs and perform a performance comparison to the exact approach.

First, in Figure 6.6 and Figure 6.7, we analyze two large instances of EWF
benchmark. Both exact and heuristic construction were performed. Two BDD rep-
resentations were used to generate results: reduced ordered BDDs (ROBDDs [12],
see Appendix A) and zero-suppressed BDDs (ZBDDs [75], see Section 4.5.1).
Exact results are derived using interior constraints that were applied as aggres-
sively as possible (i.e. all possible lookaheads were allowed at each scheduling

step).

105

Figure 6.6 and Figure 6.7 indicate that utility-based set-heuristics (curves
labeled heu_robddand _heu_zbddSection 4.4.3) are far superior to exact sched-
ulers both in terms of CPU time and memory requirements, while still finding rep-

resentative minimum-latency schedules.

When interior constraints are allowed (curves labeled with a pretx the
figures indicate controlled growth of the solution in which the intermediate size is
never greater than the final size. Although such ideal behavior is not always

achievable, our experiments indicate that the use of interior constraints has a dra-

(9]
it 4500 ———
3 40000 _zbdd<> , :
% 35000 Lic_zbddt
30000 _heu_robdd-] :
_heu_zbdgx
25000 ¢
20000 |
15000 b T
/ LA
10000 F

STEP

NOTE: siz€ic_robdd) > 130,000.

Figure 6.628-cycle EWF: exact and heuristic constructions

- resourcesl single-cycle adder, 1 two-cycle multiplier (> 10e+9 solutions)
- #variables 437

_zbdd exact solution (ZBDD), no interior constraints: ~ 18.5 min
_ic_zbdd exact solution (ZBDD) built using interior constraints: ~ 9.5 min
_heu_robdd utility-based set-heuristic solution (OBDD): ~ 17 s
__heu_zbddutility-based set-heuristic solution (ZBDD): ~ 102 s

_ic_robdd exact solution (OBDD) built using interior constraints: ~ 23 min

1. For optimal number of registers (10), the size of exact ZBDD solution decreases from ~14.5 to
~3.5 Knodes.
2. ~ 5 s if both utilization and critical path are used as heuristic criteria

106

matic effect on scheduler efficiency. Without interior constraints, the schedule in

Figure 6.7 (labeledzbdd failed to terminate in several CPU hours.

It is to be expected that heuristics based solely on utilization of the functional
unit resources will occasionally produce sub-optimal results in terms of register
requirements. For example, if the 28-cycle EWF (Figure 6.6) is scheduled heuristi-
cally with no pre-specified register bound, the solution requires at least 13 regis-
ters. However, if a register bound of 10 is enforced during the construction, the

utility-based heuristic still produces the fastest possible solutions (28 cycles). The

¢ 5000 ~
0 45000 /
O _zbdd © ;
£ 40000 _ic_zbdd + ;
35000 _heu_robdd[] .
30000 _heu_zbdd x

NOTE: sizdic_robdd) > 285,000. STEP

Figure 6.754-cycle EWF: exact and heuristic constructions

- resources1 two-cycle adder, 1 two-cycle multiplier (> 10e+13 solutions)
- #variables 967

_zbdd exact solution (ZBDD), no interior constraints: could not be constructed
_ic_zbdd exact solution (ZBDD) built using interior constraints: ~%h
_heu_robdd utility-based set-heuristic solution (OBDD): ~ 54 s
_heu_zbddutility-based set-heuristic solution (ZBDD): ~ 12 min

_ic_robdd exact solution (OBDD), not constructed (converted fragen zbdd

1. For optimal number of registers (10), the size of exact ZBDD solution decreases from ~18.5 to
~6.5 Knodes.
2. ~15 s if both utilization and critical path are used as heuristic criteria.

107

Table 6.7: Robustness analysis of the heuristic scheduler

utility-based utility + CP
cycles ggﬁr?él #Vars | max | CPU | max | CPU
#nodes [s] |#nodes [s]
54 54 967 14,328 51 2,210 15
55 1,001 14,839 52 2,292 16
56 1,035 15,559 58 2,392 17
59 1,137 17,150 65 2,616 18
64 1,307 19,378 81 2,914 20

2-cycle adder, 2-cycle multiplier

same behavior was observed in the 54-cycle case (Figure 6.7) and further experi-

ments described in Section 6.4.

An accurate estimate of the upper bound on scheduling latency may not be
available before scheduling. Unfortunately, the search space increases enormously
fast with relaxation of this bound. Set-heuristic scheduling is very robust: the con-
struction pace shows very weak sensitivity to the upper bound used to initialize the
scheduler. Although additional constraints are generated (due to an increase in
ALAP-ASAP spans for individual operations), the intermediate solution size
increases very mildly (Table 6.7). Furthermore, it is very important that the heuris-
tics be robust, since they can be used to derive accurate bounds for the exact sched-

ulers whose run-time efficiency is more sensitive to the bound estimates.
In the rest of this section three larger data-flow graphs are used to investigated:
* EWEF-2 (EWFunfolded two times, 68 operations, Table 6.8),

 EWF-3 (EWFunfolded three times, 102 operations, Table 6.9), and

108

Table 6.8: EWF-2 experiments

add | mul| bus|| cycles|optimal [ﬁg] #vars #nmoiixes C[SP]U CrZIU
3 3 6 || 33 | yes |11/11 135 178 0|3 0.938
3 | X 6 | 33 | yes |11/11 208 178 0|4 0.930
3 1191 6 34 | yes |11/11 208 203 0|8 0.435
3 2 6 | 35 |no(34)|11/11 271 291 17 0580
2 | X 6 35 | yes |11/11 271 661 2/4 0.171
2 2 6 | 35 | yes |11/11 271 639 2[2 0.171
4 || 39 | yes |12/11 543 1,770 10.9 0.004
2 |10 | 6 | 36 | yes |11/11 33 686 2/2 0.040
4 || 39 | yes |11/11 543 2,064 116 0.005
2 1 4 || 40 | yes |11/11 611 1,232 9.6 0.005
1 |10 | a4 56 2 |14/ - 1,699 2,603 290 -
2 68 2 |14/- 2,515 4,128 696 -
1 1 4 || 56 2 |14/ - 1,699 2,636 288 -
2 70 ?2 |14/ - 2,651 4,433 739 -

1-cycle adder, 2-cycle multiplier except: (*) 2-cycle pipelined multiplier

* FDCT (Fast Discrete Cosine Transfor#2 operations, Table 6.10).

For uniformity and the reasons described in Section 4.5.1, all experiments to be
presented were run using solely ROBDDs. The results are compared Zotlee
SchedulingZS) [48]. This method subdivides a large problem in zones and solves

the subproblems using ILP (integer linear programming) techniques.

EWF-2

To compare our results, the scheduler was run with the same constraints on the
number of functional units and buses as in [48]. Register bounds (inputs and out-
puts included) were identified during the post-processing phase for both heuristic

and exact scheduler (column “reg[h/e]”). Maximum size of the partial ROBDD

109

solution at the end of each iteration step is reported (“max #nodes”), as well as the
CPU times (“CPU]Js]") of the heuristic ROBDD scheduler. Column “optimal” indi-
cates whether the result of the heuristic scheduler could be verified by the exact
scheduler. A question mark in that column means that we were not able to con-
struct all minimum-latency schedules before exceeding the time limit (one CPU
hour). Column “CPU rel” indicates the ratio of the execution time for the heuristic
and exact constructions. The CPU times for the exact constructions were generated
using interior constraints as aggressively as possible (i.e. all possible lookaheads

were allowed at each scheduling step).

110

Table 6.9: EWF-3 experiments

add | mul | bus|| cycles|optimal [L?g] #vars #nmoazjxes C:[;U CrZIU
3 3 6 || 49 | yes |12/12 207 293 0|6 0.800
3 120 6 || 49 | yes |12/12 20 293 06 0.923
3 (101 6 50 | yes |12/12 300 309 1|3 0.398
3 2 6 | 52 |no(50)|12/12 518 549 4{4 0.913
2 |20] 6 52 | yes |12/12 518 1,263 59 0.041
2 2 6 | 52 | yes |12/12 518 1,289 5.7 0.042

4 || 58 2 |13/- 1,125 3,450 301 -
2 |10 | 6 | 53 | yes |12/12 615 1,176 4.7 0.010

4 || 58 2 |12/- 1,125 4,065 315 -

2 1 4 || 59 2 |12/- 1,227 2,249 251 -

1 10| a4 84 ? |15/- 3,777 5,408 860 -

2 || 102 | 2 |15/- 5618 7,762 2162 -

1 1 4 || 84 2 |15/- 3,777 5,408 823 -

2 || 105 | ? |15/- 5919 8,010 2332 -

1-cycle adder, 2-cycle multiplier except: (*) 2-cycle pipelined multiplier

EWF-3

Benchmark instances with up to 615 variables were solved exactly, and up to
5,919 variables (105-cycle case) heuristically. The heuristic failed in one case to
find the optimal execution time (however, as in the casE\WF-2 that problem

instance was solved exacthlYWF-3results were not provided by [4%]

Pre-specified register bounds can be used during the construction to minimize
the number of registers needed in the heuristically scheduled results. We ran the

heuristics with fixed register bounds of 11 (BNWWF-2instances) and 12 (aHWF-

4. To our knowledge, the only reference to this problem is in [41], where a result for the
instance with 1 pipelined multiplier and 3 adders is presented. There is no information on
the number of registers and buses.

111

Table 6.10: FDCT experiments

add| sub| mul bug (:[;(;(L:JISS opt. [ﬁg] #vars #nmoezjxes; C:[SPJU Crzlu
Z9]

2 | 2 | 2 | 10|/10/10] yes | 11/100 251 1,490 329 0.332
2 | 2 20| 10| 12/-| yes | 9/9 229 2,252 26|12 0.117
1| 1| 2| 8 |13/14| yes | 12/11] 37F 3,988 26.1 0.018
1| 1 (20| 8 | 14/-| 2 | 11/-| 355 4,450 227 -

1| 1| 1| 6 (18720 yes | 11/100 58F 12,340 76.0 0.061
1| 1] 1| 4| 18/-| yes | 11/100 58F 5,486 40.3 0.054
1| 1109 6 || 19/-| yes | 10/9| 565 15,346 107.4 0.128
1| 1 20| 4 ||19/-| yes | 10/9| 565 7,216 605 0.114

single-cycle units assumed except: (*) 2-cycle pipelined multiplier

3instances) and in all cases the solutions that required the same number of cycles
as those presented in Table 6.8 and Table 6.9 were found. However, making an
accurate estimate on the register bound is a difficult problem, and a further work to
directly incorporate a register cost (not just a bound on the number) is needed. This
is important for exact scheduling as well, since register constraints can dramati-
cally reduce the solution space. For example, using ROBDDs, all schedules for the
28-cycle EWF with 10 registers can be found in 391.5 CPU seconds (approxi-

mately 3.5 times faster than the unconstrained version, Figure 6.6).

FDCT
AlthoughFDCT has a relatively moderate number of operations, we include it
in this report for two reasongi) it comes from a practical application, atig due
to its highly symmetric nature (which should lead to huge solution sets), it is likely
to be rather challenging task for exact schedulers. Table 6.10 presents the results
for some larger FDCT instances. As before, the scheduler was run with the same

constraints on the number of functional units and buses as in [48]. Register bounds
112

were determined during the post-processing phase for the approach which used
both utilization and critical path heuristic. To constrain the solution space, the
exact scheduler was run using a pre-specified register bound. The heuristic found
the fastest schedules in all cases and performed quite well in terms of the number
of registers (typically, off by 1). As can be seen in rows 3 and 5, our heuristic
scheduler outperformgS This can be explained by the fact that we preserve a
complete set of solutions satisfying the heuristic criteria. Even for 2-cycle pipe-
lined multipliers our results are equal (row 4) or better (row 7) that those reported
for single-cycle units irZS Moreover, in rows 6 and 8, we indicate that the prob-
lem can be solved with the reduced number of buses (4 instead of 6FDG&
instance with 1 adder, 1 subtracter, 1 pipelined 2-cycle multiplier and 4 buses (row
8) is frequently used to evaluate scheduling results for functional pipelining. How-
ever, to our knowledge, the best reported results so far required latency (iteration
interval) of 20 cycles [63]. One randomly selected optimal 19-cycle schedule is

shown in Figure 6.8.

6.5 Cyclic CDFGs

Two types of experiments are performed. First, we wish to investigate the
benefits of exploiting conditional resource sharing. Table 6.11 summarizes results
for three examples: theerySmall(Figure 5.4),Kim (Figure 3.1, Chapter 3), and
SC (Figure 6.9, [110]). As assumed in the previous sectidesySmalluses 1
resource of each type (add, subtract, compare)Xamouses 2 adders, 1 subtracter
and 1 comparatoSCschedule (using 1 multiplier and 2 ALUS) is shown in Figure

6.9. Cycles 3 through 8 form a repetitive pattern that can be pipélined

5. Solution in [110] has latency of 6 as well, but uses 4 pipeline stages.

113

@ subtract
O add

U multiply

F2 VF6 F4 Fo

Figure 6.819-cycle FDCT with pipelined multiplier

For all examples, we present three results for the same resource bounds.
Original corresponds to CDFGs without unrolling and pipeliningnrolled
corresponds to the unrolled versions of a CDFG (no pipelining), while loop
pipelining is allowed inpipelined The original andunrolled results are obtained
using exact symbolic techniques [92][94]. Tpipelinedresults were generated in
a semi-automated fashion. Essentially, symbolic techniques can be extended to
solve a relaxed version of the conditional pipelining by adding some necessary

conditions for existence of a repetitive pattern in a schedule of the unrollefloop

114

cycle: pipeline staged 1
1 1
2 2,14
3 3,15 3,17
4 11 4,16 11, 18 4,18, 19
5 12,16 8,9 5 12,19 8,9 5
6 13 10 6 20 10,20 6, 24
7 21 21 7 13 21 7 1
8 21 21 21 2,14
path [F-F1 | [TFFI| [T, T.F| [F-T1| [TFT]| [T.T,T]| [-,--]
[3,4,14]:

Figure 6.9SC example and its schedule

All of the presented results were generated using such an approach, but they were
manually verified for potential inter-iteration dependency violations. However,
although no claim on optimality of thgipelinedresults can be made, Table 6.11
shows that systematic treatment of resource sharing can expose additional
operation-level parallelism even in cases when the loop body exhibits conditional

behavior.

To investigate the computational and storage overhead of the approach,

“pipelined” results were verified for potential resource constraint violations. The

6. The basic idea is similar to the GURPR* compiler [9][112].
115

Table 6.11: Throughput comparisons

example #pverlgpped latency| delay | throughput
iterations | [cycles]| [cycles]| [1/cycles]
original 1 4 4 0.250
verySmalll - olled 3 7 7 0.429
pipelined 3 2 5 0.500
. original 1 8 8 0.125
KIm 1 Unrolled 2 11 11 0.182
pipelined 2 4 8 0.250
original 1 8 8 0.125
SC unrolled 2 14 14 0.143
pipelined 2 6 8 0.167

overhead due to guard variables and functions is very small: 14 OBDD nodes

(Kim), 18 nodes VerySmall, and 24 nodesSQ. In all examples, verification of

the resource bounds took less than 0.03 CPU seconds.

Preliminary experimental results form Section 6.5 are encouraging. In the

future, a scheduler based on the presented concepts should be implemented. This

requires that several additional issues be addressed (e.g. node unification,

incremental recalculation &f functions when conditionals are rescheduled, timing

model for operation chaining, etc.).

116

Chapter 7

Discussion

7.1 Summary

We described a symbolic formulation that allows speculative operation
execution and exact resource-constrained scheduling of arbitrary forward-
branching control/data paths. To our knowledge, no other work has been reported
on exact technigues supporting speculative execution. An advantage of the
formulation is that there is no need to explicitly describe freedom present in the
input CDFG description. The execution order of conditionals is not pre-determined
and is dynamically resolved allowing gains in scheduling quality. To allow a
systematic treatment of the problem, a flexible control representation based on
guard variables, guard functions, and traces is introduced. The trace validation
algorithm is proposed to enforce causality and completeness of the solution set. An
iterative construction method is presented along with benchmark results. The
results demonstrate the ability of the technique to efficiently exploit operation-

level parallelism implicit in the input description.

The presented techniques provide a closed-form solution set in which all
satisfying schedules are encapsulated in a compressed BDD-based representation.
This solution format greatly increases the flexibility of the synthesis task by

117

enabling incremental incorporation of additional constraints and by supporting
solution space exploration without the need for rescheduling. Assume that a
behaviorB has to be synthesized to satisfy some desired throughpat that a
designer uses a pre-designed and tested dataipa#is a starting point for
implementing a hardware solution. Scheduling B usdg resources (e.g. 2
adders, 1 multiplier, 32-entry register file) produ&s solution set encapsulating

all schedules meeting throughpdt Once this is done, the designer can
incrementally inspecS to determine whetheb can be further simplified (e.g
whether the number of adders or registers can be reduced). Similarly, the designer
can look for the schedules with some other specific properties. Assum® that
prescribes a data-flow precedence between two operaianslb. Designer can

then ask the following question: “Is it possible to find a schedule meeting the
performance constraifitsuch thab is scheduled at least 2 cycles aféé¥'. (Such

a property can be useful, for example, to simplify design of some interface
circuitry, relax clock cycle requirement imposed by layout/interconnect, or allow a
use of a slower unit on which is to be performed.) Instead of re-running the
complete scheduling procedure, all of the issues raised above can be exactly

resolved by incrementally applying additional constraints to the initial sol8tion

7.2 Future Research Avenues

Despite the advantages summarized in Section 7.1, to make our novel approach
more applicable to a wider variety of HLS applications, numerous open research
problems deserve further attention. In the following sections, we analyze some of
these problems and make an attempt to assess their complexity and possibly

suggest some answers.

118

7.2.1 Complex Operation Mapping

In practice, a designer frequently has an opportunity (and a difficult task) to
evaluate trade-offs related to a selection of a functional unit type(s) to use. For
example, given a target clock cycle, addition operations can be mapped to a fast
single-cycle adder or to a slower (and typically smaller) 2-cycle hardware
implementation. In such cases, the formulation presented in this thesis can be
extended by triple-indexing operation variabl€g; ; corresponds to an instance of
operation] executing on a functional unitat time steps. Formulation constraints
discussed in Section 3.3 (Chapter 3) have to be modified to exhibit the fact that
operationj can be scheduled using different resource types. For example, the
uniqueness constraint (Section 3.3.1, Chapter 3) has to include all of the variables

corresponding to operatigmegardless of a function unit type

However, this problem becomes extremely difficult if operation chaining is
allowed. For example, assume that a clock period is 40 ns, that a fast adder has a
delay of 10 ns and a slow adder has a delay of 25 ns. Remember that operation
chaining can be accommodated in our technique by adding precedence constraints
between the operations that cannot be chained. (In the example above, two data-
dependent additions cannot both use fast adders during the same cycle.) If the
mapping from an operation type to a functional unit type is unique, such
precedence constraint can be derived by a CDFG traversal in a straightforward
fashion. However, if operation mapping is more complex, both the number of
constraints as well as the time complexity of the procedure used to derive such
constraints increases drastically. Currently, we are not aware of a procedure to

perform this task in both a systematic as well as efficient fashion.

119

7.2.2 Generalized Speculative Execution Model

As indicated in Section 3.2 (Chapter 3), the current speculative execution
model imposes a restriction that operations following the join node cannot be
scheduled before the corresponding conditional is resolved. This essentially means
that at most one instance of a particular operation can exist on any trace. As

indicated, in general, this model cannot guarantee time optimal scheduling.

To allow multiple operation instances per trace, two approaches could be
considered. A seemingly straightforward extension would introduce a new index
for each operations: instead ©f ; we could useCg ; , corresponding to operation
J's instance on patlp at time steps. Unfortunately, aside form re-formulation
issues, this approach can result in the exponential increase of the number of
formulation variables (Ofcycled(#opg(2c°n9)], see Section 3.7, Chapter 3)
compared to the current model and is unlikely to be efficient even using the BDD-

based manipulations.

Another possibility is to first perform a resource-constrained scheduling of all
individual control paths with all control dependencies removed and every
operationj scheduled only on control paths covered by the corresponjng
function 1. Obviously, selecting the shortest execution instances for all possible
control paths produces a time optimal ensemble schedule. Unfortunately, as shown
in Figure 3.7 (Chapter 3), resource constraints met on individual control paths are
likely to be violated in the ensemble schedule. To properly interpret resource
usage, a more powerful version of Trace Validation algorithm has to be developed.
This, however, may be a very difficult task, since in the approach discussed in this

paragraph, original notion of trace as an execution instance for a particular control

1. As in the current implementation, this can be done simultaneously using the implicit
BDD representation.

120

path is modified. For example, on a trace corresponding to mapie-executed
operations from paths other thgmmay not be seen (again, see Figure 3.7).
Moreover, it can happen that the same operation is redundantly scheduled at
different time steps on two different control paths, even if these two paths are
indistinguishable in the ensemble schedule at the corresponding time steps.

Efficient solution for the above mentioned issues is an open research problem.

7.2.3 General Forms of Cyclic Control

In the current formulation, cyclic CDFGs are handled by loop breaking or loop
unrolling. For cyclic DFGs, additional optimizations (functional pipelining, loop
winding) are available. However, the most general case of multi-rate parallel loops
is not dealt with in the current formulation. Such behavior can result from
parallelism exposing transformations or the need to schedule a behavior of

interacting FSMs.

It is not clear how the techniques presented in this thesis can be expanded to
include such cases. The primary difficulty is that a notion of time is “linear” (i.e.
not related to FSM states) in our current formulation. On the other hand, we are not
aware of any FSM-based model capable of formally incorporating speculative

execution.

7.2.4 CDFG Scheduling Heuristics

In Section 6.4, we demonstrated that efficient, near-optimal symbolic
heuristics can be developed for larger DFGs. Development of symbolic set-based
heuristics for CDFGs is more challenging task, however. In particular, speculative
operation execution affects both efficiency and quality of such heuristics.
Efficiency is affected by the fact that a very large number of operations might have

to be considered for speculative execution at every scheduling step. Thus, in cases

121

exhibiting complex conditional behavior, partial solutions may grow prohibitively
large. Additionally, quality of some global iterative heuristic can be affected if
operations belonging to all control paths are treated uniformly at each scheduling
step. More promising approach to dealing with larger CDFGs is to apply heuristics
(similar to those described in Section 6.4) to individual traces. Similar to well-
known compilation techniques ([35][37][70]), the priorities of individual traces
can be derived using a profiling information, and the trace validation procedure can
be used to maintain the ensemble schedule consistency without the need for a

complex book-keeping.

7.2.5 Tightening of Operation Bounds

To further improve the efficiency, additional work is needed to identify tighter
operation bounds for the control-dominated case. In the current formulation, very
conservativeas-soon-as-possibkndas-late-as-possiblbounds assuming infinite
resources are used. Such bounds are rather loose when speculative operation
execution is allowed. Interior constraints (Section 4.4.1, Chapter 4) can be applied
to individual control paths, but aside of the critical path(s), they have a rather

limited effect.

7.2.6 Lower Level Hardware Implementation Issues

Although the techniques presented in this thesis can cope with certain very
difficult issues in control-dependent resource-constrained scheduling, they have a
rather global view of a data-path. The current implementation does not deal with
detailed layout models, but could possibly be incorporated in feedback-driven
closed-loop systems such as [11][58]. In a recent work [78][79], it was
demonstrated that symbolic techniques can efficiently and systematically handle

numerous hardware issues in existing data-paths (e.g. detailed interconnect

122

modeling, latches providing a temporary storage within a data-path, timing

evaluation etc.).

Furthermore, in this thesis, the cost of controller implementing a particular
schedule was not considered (e.g. FSM cycle time, implementation area, serial/
parallel/pipelined controller implementation [11][46][91]). Production-based
Clairvoyantsystem [109] generates very fast and area-efficient controllers using
non-minimal state encodings. However, other than preserving a prescribed input/
output behavior, Clairvoyant does not perform operation scheduling. It would be
very useful to investigate application of techniques described in this thesis to

optimization of cycle time and resource usage in the Clairvoyant system.

123

Bibliography

10.

11.

A. Aho, R. Sethi, and J. UllmarCompilers: Principles, Techniques, and
Tools Addison-Wesley, 1988.

A. Aiken and A. Nikolau, “Optimal Loop ParallelizationProc. ACM SIG-
PLAN’88 Conf. Programming Language Design and Implementatim
308-317, June 1988.

A. Aiken, A. Nikolau, and S. Novack, “Resource-Constrained Software Pipe-
lining”, IEEE Trans. Distributed and Parallel Systemsl. 6, no. 12, pp.
1248-1270, Dec. 1995.

S. B. Akers, “Binary Decision DiagramslEEE Trans. Computers/ol. C-
27, no. 6, pp. 509-516, June 1978.

J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of Con-
trol Dependence to Data Dependendeipc. 10th Ann. ACM Symp. Princi-
ples of Programming Languaggsp. 177-189, Jan. 1983.

P. Ashar and M. Cheong, “Efficient Breadth-First Manipulation of Binary
Decision Diagrams”Proc. IEEE Int. Conf. Computer-Aided Desjgpp.
622-627, 1994.

R. I. Baharet al,, “Algebraic Decision Diagrams and their Applications”,
Proc. IEEE Int. Conf. Computer-Aided Desjgp. 188-191, 1993.

R. A. Bergamaschi, R. Camposano, and M. Payer, “Allocation Algorithms
Based on Path Analysis'ntegration, the VLSI Journalvol.13, no.3, pp.
283-299, Sept. 1992.

J. W. Bockhaus, “An Implementation of GURPR*: A Software Pipelining
Algorithm”, Master’s thesis, Department of Electrical and Computer Engi-
neering, University of Illinois, Urbana, IL, 1992.

K. S. Brace, R. L. Rudell, R. E. Bryant, “Efficient Implementation of a BDD
package”Proc. 27th ACM/IEEE Design Automation Copp, 40-45, 1990.

F. Brewer and D. Gajski, “Chippe: A System for Constraint Driven Behav-
ioral Synthesis”|EEE Trans. CADvol. 9, no. 7, pp. 681-695, July 1990.

124

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipula-
tion”, IEEE Trans. Computersol. C-35, no. 8, pp. 677-691, Aug. 1986.

R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Deci-
sion Diagrams” ACM Computing Survey¥ol. 24, No. 3, pp. 293-318, Sep.
1992.

R. E. Bryant and Y.-A. Chen, “Verification of Arithmetic Circuits with
Binary Moment Diagrams”,Proc. 32th ACM/IEEE Design Automation
Conf.,pp. 535-541, 1995.

R. E. Bryant, “Binary Decision Diagrams and Beyond: Enabling Technolo-
gies for Formal Verification”Proc. Int. Conf. Computer-Aided Desigpp.
236-243, 1995.

J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill, “Sym-
bolic Model Checking for Sequential Circuit VerificationlEEE Trans.
CAD/ICAS vol. 13, no. 4, pp. 401-424, Apr. 1994.

G. A. Chaitin, M. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P.
W. Markstein, “Register Allocation via Coloring"Computer Languages
vol. 6, no. 1, pp.47-57, 1981.

R. Camposano, “Path-Based Scheduling for Synthe&&E Trans. CAD/
ICAS vol. 10, no. 1, pp. 85-93, Jan. 1991.

P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “The
Importance of Prepass Code Scheduling for Superscalar and Superpipelined
Processors”|IEEE Trans. Computersol. 44, no. 3, pp. 353-370, Mar. 1995.

P. P. Chang, N. J. Warter, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “Three
Architectural Models for Compiler-Controlled Speculative ExecutidBEE
Trans. Computers/ol. 44, no. 4, pp. 481-494, Apr. 1995.

A.E. Charlesworth, “An Approach to Scientific Array Processing: The Archi-
tectural Design of the AP-120b/FPS-164 Famil\BEE Computervol. 14,
no. 9, pp. 18-27, Sep. 1981.

L.-F. Chao, A. LaPaugh, and E. H.-M. Sha, “Rotation Scheduling: A Loop
Pipelining Algorithm”, Proc. 30th Design Automation Conpp. 566-572,
1993.

H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi, “Algorithms
for Approximate FSM Traversal'Rroc. 30st ACM/IEEE Design Automation
Cont, pp. 25-30, 1993.

E. M. Clarke, M. Fujita, P. C. McGeer, K. McMillan, J. C.-Y. Yang, and X.
Zhao, “Multi-Terminal Binary Decision Diagrams: An Efficient Data-Struc-
ture for Matrix Representationint. Workshop on Logic Synthesfgp. 6al-

125

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

6als5, 1993.

R.J. Cloutier, and D.E. Thomas, “The Combination of Scheduling, Alloca-
tion, and Mapping in a Single Algorithm’Proc. 27th ACM/IEEE Design
Automation Confpp. 71-76, 1990.

C. N. Coelho Jr. and G. De Micheli, “Dynamic Scheduling and Synchroniza-
tion Synthesis of Concurrent Digital Systems under System-Level Con-
straints”,Proc. IEEE Int. Conf. Computer-Aided Desigp. 175-181, 1994.

O. Coudert, C. Berthet, and J. C. Madre, “Verification of Synchronous
Sequential Machines Based on Symbolic Executidergc. Workshop on
Automatic Verification Methods for Finite State Systemp. 365-373,
Grenoble, France, 1989.

O. Coudert, and J. C. Madre. “A Unified Framework for the Formal Verifica-
tion of Sequential Circuits,Proc. Int. Conf. Computer-Aided Desigpp.
126-129, 1990.

O. Coudert, “Two-level Logic Minimization: An Overviewlhtegration the
VLSI journal 17-2, pp. 97-140, Oct. 1994.

S. Davidsoret al., “Some Experiments in Local Microcode Compaction for
Horizontal Machines” |IEEE Trans. Computersvol. ¢-30, no. 7, pp. 460-
477, July 1981.

G. De Micheli,Synthesis and Optimization of Digital CircuitdcGraw-Hill,
Inc., 1994.

J. C. Denhert and R. A. Towle, “Compiling for the Cydrak"Supercomput-
ing, vol. 7, no. 1, pp. 181-227, Jan. 1993.

K. Ebcioglu and T. Nakatani, “A New Compilation Technique for Paralleliz-
ing Loops with Unpredictable Branches on a VLIW Architecturejn-
guages and Compilers for Parallel Computjrigy Gelernter, A. Nikolau, and
D. Paduakds), Pitman/The MIT Press, pp. 213-229, 1990.

J. H. Edmondson, P. Rubenfeld, R. Preston, and V. Rajagopalan, “Supersca-
lar Instruction Execution in the 21164 Alpha MicroprocessteEE Micro,
pp. 33-43, Apr. 1995.

J. R. Ellis,Bulldog: A Compiler for VLIW ArchitecturgsThe MIT Press,
1986.

J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program Dependence
Graph and Its Use in OptimizationACM Trans. Programming Languages
and Systemwol. 9, no. 3, pp. 319-349, July 1987.

J. A. Fisher, “Trace Scheduling: A Technique for Global Microcode Com-

126

38.

39.

40.

41].

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

paction”,IEEE Trans. Computersol. C-30, no. 7, pp. 478-490, July 1981.

J. A. Fisher,Global Code Generation for Instruction-Level Parallelism:
Trace scheduling-2Hewlett Packard Laboratories Technical Report HPL-
93-43, June 1993.

S. J. Friedman and K. J. Supowit, “Finding the Optimal Variable Ordering
for Binary Decision Diagrams”EEE Trans. Computersol. 39, no. 5, pp.
710-713, May 1990.

M. R. Garey and D. S. Johnsd@pmputers and Intractability: A Guide to the
Theory of NP-Completened4/.H. Freeman and Co., 1979.

C. H. Gebotys and M. I. EImasry, “Global Optimization Approach for Archi-
tectural Synthesis’lEEE Trans. CAD/ICASvol. 12, no. 9, pp. 1266-1278,
Sep. 1993.

C. H. Gebotys, “Throughput Optimized Architectural SynthesIEEE
Trans. VLSI Systemeol. 1, no. 3, pp. 254-261, Sep. 1993.

E. Girczyc, “Loop Winding -- A Data Flow Approach to Functional Pipelin-
ing”, Proc. ISCASpp. 382-385, 1987.

K. Hamaguchi, A. Morita, and S. Yajima, “Efficient Construction of Binary
Moment Diagrams for Verifying Arithmetic CircuitsRroc. Int. Conf. Com-
puter-Aided Designpp. 78-82, 1995.

J. L. Hennessy and D. A. Patters@gmputer Architecture: A Quantitative
Approach Morgan Kaufmann Publishers Inc., 1990.

S. C.-Y. Huang and W. Wolf, “Performance-Driven Synthesis in Controller-
Datapath SystemslEEE Trans. VLSI Systemsol. 2, no. 1, pp. 68-80,
March 1994.

S. H. Huang, Y. L. Jeang, C. T. Hwang, Y. C. Hsu, and J. F. Wang. “A Tree-
Based Scheduling Algorithm for Control Dominated CircuitBtoc. 30th
ACM/IEEE Design Automation Conpp. 578-582, 1993.

C.-T. Hwang and Y.-C. Hsu, “Zone SchedulinggEE Trans. CAD/ICAS
vol.12, no.7, pp. 926-934, July 1993.

C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A Formal Approach to the Schedul-
ing Problem in High Level SynthesislIEEE Trans. CAD/ICASvol. 10, no.
4, pp. 464-475, Apr. 1991.

W.-M. Hwu et al., “The Superblock: An Effective Technique for VLIW and
Superscalar Compilationd, Supercomputingol. 7, no. 1, pp. 229-248, Jan.
1993.

S.-W. Jeong and F. Somenzi, “A New Algorithms for the Binate Covering

127

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Problem and its Application to the Minimization of Boolean Relations”,
Proc. IEEE Int. Conf. Computer-Aided Desigp. 417-420, 1992.

M. JohnsonSuperscalar Microprocessor Desigarentice Hall, 1991.

H.-P. Juan, V. Chaiyakul, and D.D. Gajski, “Condition Graphs for High-
Quality Behavioral Synthesis’Proc. IEEE Int. Conf. Computer-Aided
Design pp. 170-174, 1994.

T. Y. K. Kam and R. K. BraytonMulti-valued Decision Diagramsviemo.
no. UCB/ERL M90/125, UC Berkeley, Dec. 1990.

T. Kim, J. W. S. Liu, and C. L. Liu, “A Scheduling Algorithm for Conditional
Resource Sharing'Rroc. IEEE Int. Conf. Computer-Aided Desjgmp. 84-
87, 1991.

T. Kim, N. Yonezava, J. W. S. Liu, and C. L. Liu, “A Scheduling Algorithm
for Conditional Resource Sharing- A Hierarchical Reduction Approach”,
IEEE Trans. CAD/ICASvol. 13, no. 4, pp. 425-438, Apr. 1994.

S. Kimura, “Residue BDD and Its Application to the Verification of Arith-
metic Circuits”, Proc. 32th ACM/IEEE Design Automation Corgp. 542-
545, 1995.

D. W. Knapp, “Fasolt: A Program for Feedback-Driven Data-Path Optimiza-
tion”, IEEE Trans. CADvol. 11, no. 6, pp. 677-695, June 1992.

H. Komi, S. Yamada, and K. Fukunaga, “A Scheduling Method by Stepwise
Expansion in High-Level SynthesisProc. IEEE Int. Conf. Computer-Aided
Design pp. 234-237, 1992.

D. Ku, G. De Micheli, “Relative Scheduling under Timing Constraints”,
Proc. 27th ACM/IEEE Design Automation Copp, 59-64, 1990.

Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula, “EVBDD-Based Algorithms
for Integer Linear Programming, Spectral Transformation, and Function
Decomposition” IEEE Trans. CAD/ICASvol. 13, no. 8, pp. 959-975, Aug.
1994.

M. Lam,A Systolic Array Optimizing CompileKluwer Academic Publish-
ers, 1989.

T-.F. Lee, A. C.-H. Wu, Y.-L. Lin, and D. D. Gajski, “An Effective Methodol-
ogy for Functional Pipelining”|EEE Trans. CAD/ICASvol. 13, no. 34, pp.
439-450, Apr. 1994.

C.E. Leiserson, F.M. Rose, J.B. Saxe, “Optimizing Synchronous Circuits by
Retiming”, Proc. Third Conf. VLSI1983.

H.-T. Liaw and C.-S, Lin, “On OBDD-Representation of General Boolean

128

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

Functions” |IEEE Trans. Computersol. 41, no. 6, pp. 661-664, June 1992.

B. Lin, Synthesis of VLSI Designs with Symbolic TechnigB&® thesis,
memo. no. UCB/ERL M91/105, UC Berkeley, Nov. 1991.

B. Lin and S. Devadas, “Synthesis of Hazard-Free Multi-level Logic under
Multiple-Input Changes from Binary Decision Diagram®toc. IEEE Int.
Conf. Computer-Aided Desigpp. 542-549, 1994.

D. Lobo and B. M. Pangrle, “Redundant Operation Creation: A Scheduling
Optimization Technique”Proc. 28st ACM/IEEE Design Automation Cgnf
pp. 775-778, 1991.

T. Ly, D. Knapp, R. Miller, and D. MacMillen, “Scheduling using Behavioral
Templates”,Proc. 32th ACM/IEEE Design Automation Cgnpp. 101-106,
1995.

P. G. Lowney et al., “The Multiflow Trace Scheduling Compilek” Super-
computingvol. 7, no. 1, pp. 51-142, Jan. 1993.

S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W. W. Hwu,
“A Comparison of Full and Partial Predicated Execution Support for ILP
Processors‘Proc. 22th Int. Symp. Computer Architectupp. 138-150, June
1995.

S. Malik, A. R. Wang, R. K. Brayton, A. Sangiovanni-Vincentelli, “Logic
Verification using Binary Decision Diagrams in a Logic Synthesis Environ-
ment”, Proc. IEEE Int. Conf. Computer-Aided Desjigp. 6-9, 1988.

D. J. Mallon and P. B. Denyer, “A New Approach To Pipeline Optimisation”,
Proc. European Design Automation Compip. 83-87, 1990.

M. C. McFarland, A. C. Parker, and R. Camposano, “The High-Level Syn-
thesis of Digital Systems”Proc. IEEE vol. 78, no. 2, pp. 301-318, Feb.
1990.

S.-l. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinato-
rial Problems”,Proc. 30th ACM/IEEE Design Automation Cqonpp. 272-
277, 1993.

S.-l. Minato, “BDD-Based Manipulation of Polynomials and Its Applica-
tions”, Proc. Intl. Workshop on Logic Synthegg. 5.31-5.43, 1995.

S.-1. Minato,Binary Decision Diagrams and Applications for VLSI CAD
Kluwer Academic Publishers, 1995.

C. Monahan and F. Brewer, “Symbolic Modeling and Evaluation of Data
Paths”, Proc. 32th ACM/IEEE Design Automation Cardp. 389-394, 1995.

C. Monahan and F. Brewer, “STEM: Concurrent Analysis Tool for Data Path

129

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Timing Optimization”, Proc. 33th ACM/IEEE Design Automation Caqrtb
appear.

S.-M. Moon and K. Ebcioglu, “An Efficient Resource-Constrained Global
Scheduling Technique for Superscalar and VLWI Processétsic. 25th
Ann. Int. Symp. Microarchitecturpp. 55-71, 1992.

A. Nikolau and R. Potasman, “Incremental Tree Height Reduction For High
Level Synthesis”Proc. 28st ACM/IEEE Design Automation Cqrdp. 770-
774, 1991.

S. Panda, F. Somenzi, and B. F. Plessier, “Symmetry Detection and Dynamic
Variable Ordering of Decision DiagramsProc. IEEE Int. Conf. Computer-
Aided Designpp. 628-631, 1994.

S. Panda and F. Somenzi, “Who Are the Variables in Your Neighborhood”,
Proc. Int. Conf. Computer-Aided Desjgp. 74-77, 1995.

B. M. Pangrle and D. D. Gajski, “Design Tools for Intelligent Silicon Compi-
lation”, IEEE Trans. CADvol. cad-6, no. 6, pp. 1098-1112, Nov. 1987.

N. L. Passos and E. H.-M. Sha, “Push-Up Scheduling: Optimal Polynomial-
Time Resource-Constrained Scheduling for Multi-Dimensional Applica-
tions”, Proc. Int. Conf. Computer-Aided Desjgp. 588-591, 1995.

A. C. Parker, J. T. Pizarro, and M. Mliner, “MAHA: A Program for Datapath
Synthesis”,Proc. 23th ACM/IEEE Design Automation Canpp. 461-465,
1986.

P. G. Paulin and J. P. Knight, “Force-Directed Scheduling for the Behavioral
Synthesis of ASIC’s”JEEE Trans. CAD/ICASvol. 8, no. 6, pp. 661-679,
June 1989.

D. N. Pnevmatikatos and G. S. Sohi, “Guarded Execution and Branch Predic-
tion in Dynamic ILP ProcessorsRroc. 21st Ann. Symp. Computer Architec-
ture, pp. 120-129, 1994.

R. Potasman, J. Lis, A. Nicolau, and D. Gajski, “Percolation Based Synthe-
sis”, Proc. 27th ACM/IEEE Design Automation Copp, 444-449, 1990.

M. Potkonjak and J. Rabaey, “Optimizing Resource Utilization Using Trans-
formations”, IEEE Trans. CAD/ICASvol.13, no.3, pp. 277-292, March
1994,

U. Prabu and B. Pangrle, “Superpipelined Control and Data Path Synthesis”,
Proc. 29th ACM/IEEE Design Automation Compip. 638-643, 1992.

|. Radivojevt and F. Brewer, “Symbolic Techniques for Optimal Schedul-
ing”, Proc. 4th SASIMI Workshopp. 145-154, Nara, Japan, 1993.

130

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

|. Radivojevt and F. BrewerA New Symbolic Technique for Control-Depen-
dent Scheduling;CE Tech. Report #93-16, UC Santa Barbara, Sep. 1993.

|. Radivojevt and F. Brewer, “Ensemble Representation and Techniques for
Exact Control-Dependent Scheduling’toc. 7th Int. Symp. High Level Syn-
thesis,pp. 60-65, 1994.

|. Radivojevt and F. Brewer, “Incorporating Speculative Execution In Exact
Control-Dependent SchedulingProc. 31st ACM/IEEE Design Automation
Conf, pp. 479-484, 1994.

I. Radivojevt and F. Brewer, “On Applicability of Symbolic Techniques to
Larger Scheduling ProblemsRroc. European Design and Test Corp.
48-53, 1995.

I. Radivojevt and F. Brewer, “Analysis of Conditional Resource Sharing
using a Guard-based Control Representatiétfgc. IEEE Int. Conf. Com-
puter Designpp. 434-439, 1995.

|. Radivojevt , “Experiments in BDD Aplications to Algebra of Galois
Fields”, seminar talk, UC Santa Barbara, June 1995.

|. Radivojext and F. Brewer, “A New Symbolic Technique for Control-
Dependent SchedulingTEEE Trans. CAD/ICASvol. 15, no. 1, pp. 45-57,
Jan. 1996.

B. R. Rau and J. A. Fisher, “Instruction-Level Parallel Processing: History,
Overview and Perspectived, Supercomputingvol. 7, no. 1, pp. 9-50, Jan.
1993.

B. R. Rau and C. D. Glaeser, “Some Scheduling Techniques and an Easily
Schedulable Horizontal Architecture for High Performance Scientific Com-
puting”, Proc. 14th Ann. Workshop on Microprogrammjngp. 183-198,
1981.

B.R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, “The Cydra 5 Departmen-
tal Computer: Design Philosophies, Decisions and Trade-dE€E Com-
puter, vol. 22, no. 1, pp. 12-34, Jan. 1989.

M. Rim and R. Jain, “Representing Conditional Branches for High-Level
Synthesis Applications'Proc. 29th Design Automation Conpp. 106-111,
1992.

M. Rim, Y. Fan, and and R. Jain, “Global Scheduling with Code Motions for
High-Level Synthesis Applications’lEEE Trans. VLSIvol. 3, no. 3, pp.
379-392, Sept. 1995.

E. Riseman and C. C. Foster, “The Inhibition of Potential Parallelism by
Conditional Jumps’|lEEE Trans. Computerpp. 1405-1411, Dec. 1972.

131

106

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119

. R. Rudell, “Dynamic Variable Ordering for Binary Decision Diagrams”,
Proc. IEEE Int. Conf. Computer-Aided Desjgp. 42-47, 1993.

F. Sanchez and J. Cortadella, “Time-Constrained Loop PipeliniPrgt,.
IEEE Int. Conf. Computer-Aided Desigmp. 592-596, 1995.

U. Schwiegelshohn, F. Gasperoni, and K. Ebciouglu, “On Optimal Parallel-
ization of Arbitrary Loops”,J. Parrallel and Distributed Computind.1, pp.
130-134, 1991.

A. Seawright and F. Brewer, “Clairvoyant: A Synthesis System for Produc-
tion-Based SpecificationlEEE Trans. VLSI Systemeol. 2, no, 2, pp. 172-
185, June 1994.

J. Siddhiwala and L.-F. Chao, “Scheduling Conditional Data-Flow Graphs
with Resource SharingRroc. 5th Great Lakes Symp. VL$lp. 94-97, 1995.

M. D. Smith, M. S. Lam, and M. Horowitz, “Boosting Beyond Static Sched-
uling in a Superscalar Processdptoc. 17th Ann. Symp. Computer Architec-
ture, pp. 344-354, 1990.

B. Su and J. Wang, “GURPR*: A New Global Software Pipelining Algo-
rithms”, Proc. 24th Ann. Int. Symp. Microarchitectypp. 212-216, 1991.

A. Takach and W. Wolf, “Scheduling Constraint Generation for Communi-
cating ProcesseslEEE Trans. VLSI Systemgol.3, no.2, pp. 215-230, June
1995.

A. Takach, W. Wolf, and M. Leeser, “An Automaton Model for Scheduling
Constraints in Synchronous Machinel2EE Trans. Computersol. 44, no.
1. pp. 1-12, Jan. 1995.

A. H. Timmer and J. A. G. Jess, “Execution Interval Analysis under
Resource ConstraintsRroc. IEEE Int. Conf. Computer-Aided Desjgop.
454-459, 1993.

A. H. Timmer and J. A. G. Jess, “Exact Scheduling Strategies based on
Bipartite Graph Matching’Proc. European Design and Test Corgp. 42-
47, 1995.

H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincen-
telli. “Implicit State Enumeration of Finite State Machines using BDD's,”
Proc. Int. Conf. Computer-Aided Desjgp. 130-133, 1990.

R. F. Touzeau, “A Fortran Compiler for the FPS-164 Scientific Computer”,
Proc. ACM SIGPLAN’'84 Symp. Compiler Constructi®GPLAN Notices,
vol. 19, no. 6, pp. 48-57, 1984.

. K. Wakabayashi and H. Tanaka, “Global Scheduling Independent of Control

132

120.

121.

122.

123.

124.

125.

126.

127.
128.

Dependencies Based on Condition VectoRfpc. 29th ACM/IEEE Design
Automation Confpp. 112-115, 1992.

K. Wakabayashi and T. Yoshimura, “A Resource Sharing and Control Syn-
thesis Method for Conditional BranchesProc. 26th ACM/IEEE Design
Automation Conf pp. 62-65, 1989.

R. A. Walker and R. Camposamo Survey of High-Level Synthesis Systems
Kluwer Academic Publishers, 1991.

D. W. Wall, “Limits of Instruction-Level Parallelism”, RR-93/6, DEC/WRL,
Nov. 1993.

N. J. Warter, G. E. Haab, J. Bockhaus, and K. Subramanian, “Enhanced
Modulo Scheduling for Loop with Conditional Branche#toc. 25th Ann.
Int. Symp. Microarchitecturgop. 170-179, 1992.

W. Wolf, A. Takach, C.-Y. Huang, R. Manno, and E. Wu, “The Princeton
University Behavioral Synthesis SystenProc. 29th ACM/IEEE Design
Automation Confpp. 182-187, 1992.

J. Yang, G. De Micheli, and M. Damiani, “Scheduling with Environmental
Constraints based on Automata RepresentatioRgjc. European Design
Automation Conf.1994.

J. C.-Y. Yang, G. De Micheli, and M. Damiani, “Scheduling and Control
Generation with Environmental Constraints based on Automata Representa-
tions”, IEEE Trans. CAD/ICAS0 appear.

L. Yang and J. Gu, “A BDD Model for Schedulin§toc. CCVLS|1991.

T.-Y. Yen and W. Wolf, “Optimal Scheduling of Finite-State Machines”,
Proc. IEEE Int. Conf. Computer Desigmp. 266-369, 1993.

133

Appendix A

Binary Decision Diagrams

Binary Decision DiagramgBDDs) are one of the biggest breakthroughs in
CAD in the last decade. BDDs arecanonicalandefficientway to represent and
manipulate Boolean functions and have been successfully used in numerous CAD
applications. Although the basic idea has been around for more than 30 years (e.g.
[4]), it was Bryant who described a canonical BDD representation [12] and
efficient implementation algorithms [10]. References [13][15][77] are very

readable introductions to BDD representations and applications.

Ordered Binary Decision Diagram of a Boolean functiaan be obtained by
iterative application of the Shannon decomposition with respect to a specified
variable ordering:

= xf, +xf (EQA.L)

A decision tree obtained in such a manner is reduced using two rujes: (
eliminate all nodes that have isomorphic sons (“don’t care” elimination), &nd (
identify and share all isomorphic subgraphs. This process results in a Reduced
Ordered BDD which is a canonical representation of a Boolean function for a

specific variable ordering.
Using theite (if-the-else) terminology, the Equation (A.1) can be re-written as:

Al

1 0 1 0
b A C 0 lc A
12 Jo 12 Jo
1 0 1 0
(a) (b)

Figure A.1 ROBDD forms of f=AB+C using different orderings

fo=ite(x f,, fg (EQA.2)
All basic Boolean function manipulations can be described usgtgmplates.
For example:
And(g H = ite(g, h0) (EQA3)
and:
Not(g) = ite(g 0, 1) (EQ A.4)
The property that all Boolean manipulations can be treated in a unigue manner
(usingite calls) enables efficient implementations using computer hashing/ cashing

techniques [10].

Figure A.1 illustrates ROBDD forms df = AB+ C for two different variable
orderings. An edge labeled by “1” (“0”) corresponds to a variable’s pkgggin
the decomposition formula above. The problem of finding the ordering that results
in the smallest ROBDD (in terms of the number of nodes in the graph) is NP-

complete. An exact variable ordering algorithm was developed in [39], but found a

A2

very limited application due to its computational complexity. Moreover, theoretical
analysis of general Boolean functions [65] indicates that, for the majority of
functions, “good” orderings do not exist (i.e. the best ordering still leads to
exponentially complex graphs). However, ROBDDs have performed extremely
well in many practical CAD applications. Typically, the underlying structure of the
problem solved using ROBDDs allows development of efficient heuristic ordering

strategies (e.g. [72]).

Decision diagrams and their applications are a very active research area. Some

interesting, more recent developments include:
» algebraic decision diagrams [7],
» asynchronous circuit synthesis [67],
* binate covering problem (BCP) solver [51],

» BDDs for implicit set representation in combinatorial problems [75] and

applications to polynomial algebra [76],

» efficiency improvements through dynamic variable reordering
[82][83][106] and breadth-first manipulations [6],

» exact and approximate FSM traversal techniques [23][27][28][117],

» formal verification of arithmetic circuits [14][44][57],

* integer linear programming (ILP) solver based on edge-valued BDDs [61],
* implicit prime generation and two-level minimization [29],

* matrix representation and manipulations using multi-terminal BDDs [24],

» multi-valued decision diagrams [54],

A3

* symbolic model checking [16],
* symbolic synthesis techniques [66].

This list isby no meansomplete!

A4

	UNIVERSITY OF CALIFORNIA Santa Barbara
	Symbolic Scheduling Techniques
	A Dissertation submitted in partial satisfaction of the requirements for the degree of
	Doctor of Philosophy in Electrical and Computer Engineering by Ivan Radivojevic
	March 1996

	The dissertation of Ivan Radivojevic is approved: __ ______...
	March 2, 1996
	March, 1996
	Copyright „ 1996 Ivan Radivojevic All Rights Reserved
	To my Mother.
	Acknowledgments
	VITA
	EDUCATION
	FIELDS OF STUDY
	PROFESSIONAL EXPERENCE
	PUBLICATIONS
	Journal papers:
	Conference papers:

	Symbolic Scheduling Techniques by Ivan Radivojevic¢ ABSTRACT
	Contents
	Chapter 1. Introduction 1
	1.1 Operation Scheduling 1
	1.1.1 Complexity of the Scheduling Problem 5

	1.2 Previous Work 6
	1.2.1 Control Dominated Circuits 8
	1.2.2 Symbolic Techniques 10
	1.2.3 Relation to Research in Compilers 12

	1.3 Overview of the Thesis 15

	Chapter 2. Control-Dependent Behavior 18
	2.1 High-Performance Scheduling Issues 18
	2.1.1 Speculative Operation Execution 20
	2.1.2 Out-of-Order Execution of Conditionals 22
	2.1.3 Irredundant Operation Scheduling 22
	2.1.4 Parallel and Correlated Control Structures 23

	2.2 Our Goals 24

	Chapter 3. Formulation 26
	3.1 Control Representation 26
	3.2 Speculative Execution Model 30
	3.2.1 Restrictions of the Proposed Model 31

	3.3 Derivation of Constraints 33
	3.3.1 Uniqueness 34
	3.3.2 Precedences 34
	3.3.3 Termination 36
	3.3.4 Resource Constraints 37
	3.3.5 Removal of Redundantly Scheduled Operations 40
	3.3.6 Timing Constraints 40
	3.3.7 Additional Remarks 41

	3.4 Trace Validation 42
	3.4.1 Proof of Correctness 47
	3.4.2 Convergence Analysis 48
	3.4.3 Extracting One Ensemble Schedule 50

	3.5 Cyclic Control 52
	3.6 Scheduling Procedure 53
	3.7 Relation to ILP 54

	Chapter 4. Construction 57
	4.1 Iterative Construction Process 57
	4.2 BDD Form of Constraints 60
	4.3 Variable Ordering 63
	4.4 Speed-Up Techniques 65
	4.4.1 Interior Constraints 65
	4.4.2 Implicit Application of Complex Constraints 67
	4.4.3 Symbolic Heuristics 68

	4.5 Alternative Representations 70
	4.5.1 Zero-Suppressed BDDs 70
	4.5.2 Log Compression 74

	Chapter 5. Conditional Resource Sharing Analysis 80
	5.1 Acyclic CDFGs 81
	5.2 Pipelining of cyclic CDFGs 84
	5.3 Probabilistic interpretation 91

	Chapter 6. Experimental Results 93
	6.1 Acyclic DFGs 94
	6.2 Cyclic DFGs 96
	6.3 Acyclic CDFGs 98
	6.3.1 Speculative Execution Model Performance 105

	6.4 Larger DFGs 105
	6.5 Cyclic CDFGs 113

	Chapter 7. Discussion 117
	7.1 Summary 117
	7.2 Future Research Avenues 118
	7.2.1 Complex Operation Mapping 119
	7.2.2 Generalized Speculative Execution Model 120
	7.2.3 General Forms of Cyclic Control 121
	7.2.4 CDFG Scheduling Heuristics 121
	7.2.5 Tightening of Operation Bounds 122
	7.2.6 Lower Level Hardware Implementation Issues 122

	Bibliography 124

	Appendix A. Binary Decision Diagrams A.1

	List of Figures
	List of Tables
	Chapter 1

	Introduction
	1.1 Operation Scheduling
	Figure 1.1 Control flow dependencies
	Definition 1.1 Operation scheduling is the process of determining the assignment of operations to...
	Example

	Figure 1.2 XMAC example
	Figure 1.3 XMAC schedule
	1.1.1 Complexity of the Scheduling Problem
	Definition 1.2 A program P is said to be time optimal if for every instruction I of P, executed a...

	1.2 Previous Work
	1.2.1 Control Dominated Circuits
	Figure 1.4 Conditional behavior
	(EQ 1.1)
	(EQ 1.2)

	1.2.2 Symbolic Techniques
	1.2.3 Relation to Research in Compilers
	Definition 1.3 A basic block is a sequence of instructions having no jumps into the code except a...

	Figure 1.5 Resource management examples

	1.3 Overview of the Thesis
	Chapter 2

	Control-Dependent Behavior
	2.1 High-Performance Scheduling Issues
	Figure 2.1 Example CDFG and its schedules
	2.1.1 Speculative Operation Execution
	Figure 2.2 Example of speculative operation execution
	2.1.2 Out-of-Order Execution of Conditionals
	2.1.3 Irredundant Operation Scheduling
	Figure 2.3 Operations redundant on certain control paths
	2.1.4 Parallel and Correlated Control Structures
	Figure 2.4 CDFG with correlated control

	2.2 Our Goals
	Definition 2.1 Minimum latency of the schedule is the minimum execution delay of the longest path...
	Chapter 3

	Formulation
	3.1 Control Representation
	Figure 3.1 Kim’s example
	Figure 3.2 Pseudo-code fragment

	3.2 Speculative Execution Model
	Figure 3.3 CDFG transformation for Maha example
	3.2.1 Restrictions of the Proposed Model
	Figure 3.4 Speculative execution model

	3.3 Derivation of Constraints
	3.3.1 Uniqueness
	(EQ 3.1)
	(EQ 3.2)
	(EQ 3.3)

	3.3.2 Precedences
	(EQ 3.4)
	(EQ 3.5)

	Figure 3.5 Treatment of precedences
	3.3.3 Termination
	, where (EQ 3.6)

	3.3.4 Resource Constraints
	(EQ 3.7)
	(EQ 3.8)
	(EQ 3.9)
	(EQ 3.10)
	(EQ 3.11)

	Figure 3.6 Example register constraint
	(EQ 3.12)

	3.3.5 Removal of Redundantly Scheduled Operations
	(EQ 3.13)
	(EQ 3.14)

	3.3.6 Timing Constraints
	(EQ 3.15)
	(EQ 3.16)
	(EQ 3.17)

	3.3.7 Additional Remarks

	3.4 Trace Validation
	Figure 3.7 Ensemble schedule counterexample
	Definition 3.1 A valid ensemble schedule is a minimal set of traces which is both causal and comp...

	Figure 3.8 Trace Validation algorithm
	(EQ 3.18)
	, for (EQ 3.19)
	(EQ 3.20)
	(EQ 3.21)
	Definition 3.2 We say that the traces belonging to families satisfying Equation (3.21) are locall...
	Definition 3.3 A valid trace is locally valid at every time step.

	3.4.1 Proof of Correctness
	Theorem 3.1 Results of two consecutive iterations of TV algorithm are same (S(i)=S(i-1)) iff only...
	(EQ 3.22)
	(EQ 3.23)
	(EQ 3.24)

	3.4.2 Convergence Analysis
	Figure 3.9 Convergence analysis
	(EQ 3.25)
	(EQ 3.26)

	3.4.3 Extracting One Ensemble Schedule
	Figure 3.10 Ensemble schedule extraction

	3.5 Cyclic Control
	3.6 Scheduling Procedure
	Figure 3.11 Symbolic scheduling procedure

	3.7 Relation to ILP
	Table 3.1: Symbolic vs. ILP formulation
	Chapter 4

	Construction
	4.1 Iterative Construction Process
	Figure 4.1 Solution construction

	4.2 BDD Form of Constraints
	(EQ 4.1)
	Figure 4.2 Uniqueness constraint (4 time steps span)
	Figure 4.3 At-most-k-of-n constraint (k=4, n=7)

	4.3 Variable Ordering
	Figure 4.4 BDD representation of the solution
	Figure 4.5 Effects of BDD variable ordering

	4.4 Speed-Up Techniques
	4.4.1 Interior Constraints
	4.4.2 Implicit Application of Complex Constraints
	(EQ 4.2)
	(EQ 4.3)
	(EQ 4.4)

	4.4.3 Symbolic Heuristics
	Figure 4.6 Utility-based set-heuristic

	4.5 Alternative Representations
	4.5.1 Zero-Suppressed BDDs
	Figure 4.7 BDD reduction rules
	Figure 4.8 Elliptic wave filter (EWF) benchmark
	:. (EQ 4.5)

	4.5.2 Log Compression
	Figure 4.9 Path sharing
	Figure 4.10 More path sharing
	Chapter 5

	Conditional Resource Sharing Analysis
	5.1 Acyclic CDFGs
	Figure 5.1 Example CDFG fragment
	(EQ 5.1)
	(EQ 5.2)
	(EQ 5.3)
	Theorem 5.1 Assume that n operation instances are candidates for scheduling at a particular time ...
	(EQ 5.4)
	(EQ 5.5)

	5.2 Pipelining of cyclic CDFGs
	Figure 5.2 Overlapping of loop iterations
	(EQ 5.6)

	Figure 5.3 Unfolded execution pattern for Kim’s example
	Figure 5.4 Example CDFG to be folded
	Figure 5.5 Folded CDFG from Figure 5.4
	(EQ 5.7)
	(EQ 5.8)
	(EQ 5.9)
	(EQ 5.10)
	(EQ 5.11)
	(EQ 5.12)
	(EQ 5.13)

	5.3 Probabilistic interpretation
	(EQ 5.14)
	(EQ 5.15)
	(EQ 5.16)
	Chapter 6

	Experimental Results
	6.1 Acyclic DFGs
	Table 6.1: EWF experiments
	Figure 6.1 Infeasibility detection

	6.2 Cyclic DFGs
	Table 6.2: EWF with loop winding

	6.3 Acyclic CDFGs
	Table 6.3: Benchmarks with branching
	Table 6.4: Comparison with others: average (longest) path
	Figure 6.2 ROTOR example
	Figure 6.3 ROTOR experiments
	Figure 6.4 8-cycle ROTOR schedule
	Figure 6.5 S2R example
	Table 6.5: S2R experiments

	6.3.1 Speculative Execution Model Performance
	Table 6.6: Speculative execution model performance

	6.4 Larger DFGs
	Figure 6.6 28-cycle EWF: exact and heuristic constructions
	Figure 6.7 54-cycle EWF: exact and heuristic constructions
	Table 6.7: Robustness analysis of the heuristic scheduler

	EWF-2
	Table 6.8: EWF-2 experiments

	EWF-3
	Table 6.9: EWF-3 experiments

	FDCT
	Table 6.10: FDCT experiments
	Figure 6.8 19-cycle FDCT with pipelined multiplier

	6.5 Cyclic CDFGs
	Figure 6.9 SC example and its schedule
	Table 6.11: Throughput comparisons
	Chapter 7

	Discussion
	7.1 Summary
	7.2 Future Research Avenues
	7.2.1 Complex Operation Mapping
	7.2.2 Generalized Speculative Execution Model
	7.2.3 General Forms of Cyclic Control
	7.2.4 CDFG Scheduling Heuristics
	7.2.5 Tightening of Operation Bounds
	7.2.6 Lower Level Hardware Implementation Issues

	Bibliography
	1. A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley,...
	2. A. Aiken and A. Nikolau, “Optimal Loop Parallelization”, Proc. ACM SIGPLAN’88 Conf. Programmin...
	3. A. Aiken, A. Nikolau, and S. Novack, “Resource-Constrained Software Pipelining”, IEEE Trans. D...
	4. S. B. Akers, “Binary Decision Diagrams”, IEEE Trans. Computers, vol. C- 27, no. 6, pp. 509-516...
	5. J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of Control Dependence to D...
	6. P. Ashar and M. Cheong, “Efficient Breadth-First Manipulation of Binary Decision Diagrams”, Pr...
	7. R. I. Bahar et al., “Algebraic Decision Diagrams and their Applications”, Proc. IEEE Int. Conf...
	8. R. A. Bergamaschi, R. Camposano, and M. Payer, “Allocation Algorithms Based on Path Analysis”,...
	9. J. W. Bockhaus, “An Implementation of GURPR*: A Software Pipelining Algorithm”, Master’s thesi...
	10. K. S. Brace, R. L. Rudell, R. E. Bryant, “Efficient Implementation of a BDD package”, Proc. 2...
	11. F. Brewer and D. Gajski, “Chippe: A System for Constraint Driven Behavioral Synthesis”, IEEE ...
	12. R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation”, IEEE Trans. Compute...
	13. R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams”, ACM Comp...
	14. R. E. Bryant and Y.-A. Chen, “Verification of Arithmetic Circuits with Binary Moment Diagrams...
	15. R. E. Bryant, “Binary Decision Diagrams and Beyond: Enabling Technologies for Formal Verifica...
	16. J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill, “Symbolic Model Checki...
	17. G. A. Chaitin, M. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W. Markstein, “Re...
	18. R. Camposano, “Path-Based Scheduling for Synthesis”, IEEE Trans. CAD/ ICAS, vol. 10, no. 1, p...
	19. P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “The Importance of Prepas...
	20. P. P. Chang, N. J. Warter, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “Three Architectural Mode...
	21. A.E. Charlesworth, “An Approach to Scientific Array Processing: The Architectural Design of t...
	22. L.-F. Chao, A. LaPaugh, and E. H.-M. Sha, “Rotation Scheduling: A Loop Pipelining Algorithm”,...
	23. H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi, “Algorithms for Approximate FSM...
	24. E. M. Clarke, M. Fujita, P. C. McGeer, K. McMillan, J. C.-Y. Yang, and X. Zhao, “Multi-Termin...
	25. R.J. Cloutier, and D.E. Thomas, “The Combination of Scheduling, Allocation, and Mapping in a ...
	26. C. N. Coelho Jr. and G. De Micheli, “Dynamic Scheduling and Synchronization Synthesis of Conc...
	27. O. Coudert, C. Berthet, and J. C. Madre, “Verification of Synchronous Sequential Machines Bas...
	28. O. Coudert, and J. C. Madre. “A Unified Framework for the Formal Verification of Sequential C...
	29. O. Coudert, “Two-level Logic Minimization: An Overview”, Integration, the VLSI journal, 17-2,...
	30. S. Davidson et al., “Some Experiments in Local Microcode Compaction for Horizontal Machines”,...
	31. G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, Inc., 1994.
	32. J. C. Denhert and R. A. Towle, “Compiling for the Cydra 5”, J. Supercomputing, vol. 7, no. 1,...
	33. K. Ebcioglu and T. Nakatani, “A New Compilation Technique for Parallelizing Loops with Unpred...
	34. J. H. Edmondson, P. Rubenfeld, R. Preston, and V. Rajagopalan, “Superscalar Instruction Execu...
	35. J. R. Ellis, Bulldog: A Compiler for VLIW Architectures, The MIT Press, 1986.
	36. J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program Dependence Graph and Its Use in...
	37. J. A. Fisher, “Trace Scheduling: A Technique for Global Microcode Compaction”, IEEE Trans. Co...
	38. J. A. Fisher, Global Code Generation for Instruction-Level Parallelism: Trace scheduling-2, H...
	39. S. J. Friedman and K. J. Supowit, “Finding the Optimal Variable Ordering for Binary Decision ...
	40. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Comp...
	41. C. H. Gebotys and M. I. Elmasry, “Global Optimization Approach for Architectural Synthesis”, ...
	42. C. H. Gebotys, “Throughput Optimized Architectural Synthesis”, IEEE Trans. VLSI Systems, vol....
	43. E. Girczyc, “Loop Winding -- A Data Flow Approach to Functional Pipelining”, Proc. ISCAS, pp....
	44. K. Hamaguchi, A. Morita, and S. Yajima, “Efficient Construction of Binary Moment Diagrams for...
	45. J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Ka...
	46. S. C.-Y. Huang and W. Wolf, “Performance-Driven Synthesis in Controller- Datapath Systems”, I...
	47. S. H. Huang, Y. L. Jeang, C. T. Hwang, Y. C. Hsu, and J. F. Wang. “A Tree- Based Scheduling A...
	48. C.-T. Hwang and Y.-C. Hsu, “Zone Scheduling”, IEEE Trans. CAD/ICAS, vol.12, no.7, pp. 926-934...
	49. C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A Formal Approach to the Scheduling Problem in High L...
	50. W.-M. Hwu et al., “The Superblock: An Effective Technique for VLIW and Superscalar Compilatio...
	51. S.-W. Jeong and F. Somenzi, “A New Algorithms for the Binate Covering Problem and its Applica...
	52. M. Johnson, Superscalar Microprocessor Design, Prentice Hall, 1991.
	53. H.-P. Juan, V. Chaiyakul, and D.D. Gajski, “Condition Graphs for High- Quality Behavioral Syn...
	54. T. Y. K. Kam and R. K. Brayton, Multi-valued Decision Diagrams, Memo. no. UCB/ERL M90/125, UC...
	55. T. Kim, J. W. S. Liu, and C. L. Liu, “A Scheduling Algorithm for Conditional Resource Sharing...
	56. T. Kim, N. Yonezava, J. W. S. Liu, and C. L. Liu, “A Scheduling Algorithm for Conditional Res...
	57. S. Kimura, “Residue BDD and Its Application to the Verification of Arithmetic Circuits”, Proc...
	58. D. W. Knapp, “Fasolt: A Program for Feedback-Driven Data-Path Optimization”, IEEE Trans. CAD,...
	59. H. Komi, S. Yamada, and K. Fukunaga, “A Scheduling Method by Stepwise Expansion in High-Level...
	60. D. Ku, G. De Micheli, “Relative Scheduling under Timing Constraints”, Proc. 27th ACM/IEEE Des...
	61. Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula, “EVBDD-Based Algorithms for Integer Linear Progr...
	62. M. Lam, A Systolic Array Optimizing Compiler, Kluwer Academic Publishers, 1989.
	63. T-.F. Lee, A. C.-H. Wu, Y.-L. Lin, and D. D. Gajski, “An Effective Methodology for Functional...
	64. C.E. Leiserson, F.M. Rose, J.B. Saxe, “Optimizing Synchronous Circuits by Retiming”, Proc. Th...
	65. H.-T. Liaw and C.-S, Lin, “On OBDD-Representation of General Boolean Functions”, IEEE Trans. ...
	66. B. Lin, Synthesis of VLSI Designs with Symbolic Techniques, PhD thesis, memo. no. UCB/ERL M91...
	67. B. Lin and S. Devadas, “Synthesis of Hazard-Free Multi-level Logic under Multiple-Input Chang...
	68. D. Lobo and B. M. Pangrle, “Redundant Operation Creation: A Scheduling Optimization Technique...
	69. T. Ly, D. Knapp, R. Miller, and D. MacMillen, “Scheduling using Behavioral Templates”, Proc. ...
	70. P. G. Lowney et al., “The Multiflow Trace Scheduling Compiler”, J. Supercomputing, vol. 7, no...
	71. S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W. W. Hwu, “A Comparison of Full...
	72. S. Malik, A. R. Wang, R. K. Brayton, A. Sangiovanni-Vincentelli, “Logic Verification using Bi...
	73. D. J. Mallon and P. B. Denyer, “A New Approach To Pipeline Optimisation”, Proc. European Desi...
	74. M. C. McFarland, A. C. Parker, and R. Camposano, “The High-Level Synthesis of Digital Systems...
	75. S.-I. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems”, Proc. 30...
	76. S.-I. Minato, “BDD-Based Manipulation of Polynomials and Its Applications”, Proc. Intl. Works...
	77. S.-I. Minato, Binary Decision Diagrams and Applications for VLSI CAD, Kluwer Academic Publish...
	78. C. Monahan and F. Brewer, “Symbolic Modeling and Evaluation of Data Paths”, Proc. 32th ACM/IE...
	79. C. Monahan and F. Brewer, “STEM: Concurrent Analysis Tool for Data Path Timing Optimization”,...
	80. S.-M. Moon and K. Ebcioglu, “An Efficient Resource-Constrained Global Scheduling Technique fo...
	81. A. Nikolau and R. Potasman, “Incremental Tree Height Reduction For High Level Synthesis”, Pro...
	82. S. Panda, F. Somenzi, and B. F. Plessier, “Symmetry Detection and Dynamic Variable Ordering o...
	83. S. Panda and F. Somenzi, “Who Are the Variables in Your Neighborhood”, Proc. Int. Conf. Compu...
	84. B. M. Pangrle and D. D. Gajski, “Design Tools for Intelligent Silicon Compilation”, IEEE Tran...
	85. N. L. Passos and E. H.-M. Sha, “Push-Up Scheduling: Optimal Polynomial- Time Resource-Constra...
	86. A. C. Parker, J. T. Pizarro, and M. Mliner, “MAHA: A Program for Datapath Synthesis”, Proc. 2...
	87. P. G. Paulin and J. P. Knight, “Force-Directed Scheduling for the Behavioral Synthesis of ASI...
	88. D. N. Pnevmatikatos and G. S. Sohi, “Guarded Execution and Branch Prediction in Dynamic ILP P...
	89. R. Potasman, J. Lis, A. Nicolau, and D. Gajski, “Percolation Based Synthesis”, Proc. 27th ACM...
	90. M. Potkonjak and J. Rabaey, “Optimizing Resource Utilization Using Transformations”, IEEE Tra...
	91. U. Prabu and B. Pangrle, “Superpipelined Control and Data Path Synthesis”, Proc. 29th ACM/IEE...
	92. I. Radivojevi¢c and F. Brewer, “Symbolic Techniques for Optimal Scheduling”, Proc. 4th SASIMI...
	93. I. Radivojevi¢c and F. Brewer, A New Symbolic Technique for Control-Dependent Scheduling, ECE...
	94. I. Radivojevi¢c and F. Brewer, “Ensemble Representation and Techniques for Exact Control-Depe...
	95. I. Radivojevi¢c and F. Brewer, “Incorporating Speculative Execution In Exact Control-Dependen...
	96. I. Radivojevi¢c and F. Brewer, “On Applicability of Symbolic Techniques to Larger Scheduling ...
	97. I. Radivojevi¢c and F. Brewer, “Analysis of Conditional Resource Sharing using a Guard-based ...
	98. I. Radivojevi¢c, “Experiments in BDD Aplications to Algebra of Galois Fields”, seminar talk, ...
	99. I. Radivojevi¢c and F. Brewer, “A New Symbolic Technique for Control- Dependent Scheduling”, ...
	100. B. R. Rau and J. A. Fisher, “Instruction-Level Parallel Processing: History, Overview and Pe...
	101. B. R. Rau and C. D. Glaeser, “Some Scheduling Techniques and an Easily Schedulable Horizonta...
	102. B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, “The Cydra 5 Departmental Computer: Design...
	103. M. Rim and R. Jain, “Representing Conditional Branches for High-Level Synthesis Applications...
	104. M. Rim, Y. Fan, and and R. Jain, “Global Scheduling with Code Motions for High-Level Synthes...
	105. E. Riseman and C. C. Foster, “The Inhibition of Potential Parallelism by Conditional Jumps”,...
	106. R. Rudell, “Dynamic Variable Ordering for Binary Decision Diagrams”, Proc. IEEE Int. Conf. C...
	107. F. Sanchez and J. Cortadella, “Time-Constrained Loop Pipelining”, Proc. IEEE Int. Conf. Comp...
	108. U. Schwiegelshohn, F. Gasperoni, and K. Ebciouglu, “On Optimal Parallelization of Arbitrary ...
	109. A. Seawright and F. Brewer, “Clairvoyant: A Synthesis System for Production-Based Specificat...
	110. J. Siddhiwala and L.-F. Chao, “Scheduling Conditional Data-Flow Graphs with Resource Sharing...
	111. M. D. Smith, M. S. Lam, and M. Horowitz, “Boosting Beyond Static Scheduling in a Superscalar...
	112. B. Su and J. Wang, “GURPR*: A New Global Software Pipelining Algorithms”, Proc. 24th Ann. In...
	113. A. Takach and W. Wolf, “Scheduling Constraint Generation for Communicating Processes”, IEEE ...
	114. A. Takach, W. Wolf, and M. Leeser, “An Automaton Model for Scheduling Constraints in Synchro...
	115. A. H. Timmer and J. A. G. Jess, “Execution Interval Analysis under Resource Constraints”, Pr...
	116. A. H. Timmer and J. A. G. Jess, “Exact Scheduling Strategies based on Bipartite Graph Matchi...
	117. H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. “Implicit Sta...
	118. R. F. Touzeau, “A Fortran Compiler for the FPS-164 Scientific Computer”, Proc. ACM SIGPLAN’8...
	119. K. Wakabayashi and H. Tanaka, “Global Scheduling Independent of Control Dependencies Based o...
	120. K. Wakabayashi and T. Yoshimura, “A Resource Sharing and Control Synthesis Method for Condit...
	121. R. A. Walker and R. Camposano, A Survey of High-Level Synthesis Systems, Kluwer Academic Pub...
	122. D. W. Wall, “Limits of Instruction-Level Parallelism”, RR-93/6, DEC/WRL, Nov. 1993.
	123. N. J. Warter, G. E. Haab, J. Bockhaus, and K. Subramanian, “Enhanced Modulo Scheduling for L...
	124. W. Wolf, A. Takach, C.-Y. Huang, R. Manno, and E. Wu, “The Princeton University Behavioral S...
	125. J. Yang, G. De Micheli, and M. Damiani, “Scheduling with Environmental Constraints based on ...
	126. J. C.-Y. Yang, G. De Micheli, and M. Damiani, “Scheduling and Control Generation with Enviro...
	127. L. Yang and J. Gu, “A BDD Model for Scheduling”, Proc. CCVLSI, 1991.
	128. T.-Y. Yen and W. Wolf, “Optimal Scheduling of Finite-State Machines”, Proc. IEEE Int. Conf. ...
	Appendix A

	Binary Decision Diagrams
	(EQ A.1)
	(EQ A.2)
	(EQ A.3)
	(EQ A.4)
	Figure A.1 ROBDD forms of f=AB+C using different orderings

