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Symbolic Scheduling Techniques

by

Ivan Radivojevic′

ABSTRACT

This thesis describes an exact symbolic formulation of control-depend

resource-constrained scheduling. The technique provides a closed-form so

set in which all satisfying schedules are encapsulated in a compressed B

Decision Diagram (BDD) representation. This solution format greatly increa

the flexibility of the synthesis task by enabling incremental incorporation of ad

tional constraints and by supporting solution space exploration without the n

for rescheduling. The technique provides a systematic treatment of specu

operation execution for arbitrary forward-branching control structures. An itera

construction method is presented along with benchmark results. The experim

demonstrate the ability of the proposed technique to efficiently exploit opera

level parallelism not explicitly specified in the input description.

Keywords: Binary Decision Diagrams; Control Dominated Circuits; Hig

Level Synthesis; Operation Level Parallelism; Scheduling.
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Chapter 1

Introduction

1.1  Operation Scheduling

Two types of dependencies exist between the operations from a prog

specification. Data-flow dependenciesimpose precedence (execution orde

between the operations. For example, operationO2 has to be executed afte

operationO1, if a result computed byO1 is used byO2. Control-flow dependencies

arise when some portions of the specification are executed conditionally.

example of such conditional behavior is illustrated by a code fragment show

Figure 1.1. The code indicates that conditionC is computed and its outcome is

used to determine a flow of control of the program. IfC is “True”, operationA is

executed; otherwise (whenC is “False”) operationB is executed. All data-flow and

control-flow dependencies have to be satisfied to ensure a correct execution

specified behavior.

if ( C )
A;

else
B;

Figure 1.1Control flow dependencies
1
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Additional constraints arise due to finite hardware resources.Resource

constraintsimpose bounds on a number of functional units available for the t

execution. For example, a microprocessor implementation may incorporate

adder circuits and, consequently, not more than two additions can be exe

simultaneously.

Another set of restrictions comes from thetiming constraints. In many time-

critical applications (e.g. aircraft engine control) computer hardware has to rea

a recognition of a specific event within a strictly prescribed time interval.

Now we define theoperation scheduling problem addressed in this thesis:

Definition 1.1 Operation scheduling is the process of determining the ass

ment of operations to time steps of a synchronous system, subject to data/c

flow dependencies and resource/timing constraints.

The goal of operation scheduling is to find an execution order of operat

that optimizes specific objective function. In particular, we are interested

applications of scheduling to computer-aided design (CAD) of digital circuits.

example, given bounds on available hardware resources, a goal of finding

fastest possible execution schedule can be set. Alternatively, we can look

schedule that requires the minimal implementation cost while meeting a

specified bound on number of execution steps. Such goal reflects a trad

between the task’s execution time and circuit complexity of VLSI (very large sc

integration) integrated circuits.

When program includes conditional behavior, some operations may

“mutually exclusive”. OperationsO1 andO2 are mutually exclusive if, during the

program execution, eitherO1 or O2 (but not both) is going to be executed. I
2
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Figure 1.1, once the conditionC is computed, operationsA and B are mutually

exclusive and can use the same hardware resource during the execution.

Very frequently, however, it happens that execution order of the conditioC

and operationsA and B is not pre-specified. In such cases, given sufficie

hardware resources, operationsA andB can be executed at the same time or ev

beforethe computation ofC. This kind of program execution is calledspeculative

operation execution. It has been shown that speculative execution can significa

improve execution time by using otherwise idle hardware resour

[100][105][119][122]. This, however, increases the complexity of the schedu

task in a dramatic fashion since use of hardware resources has to be deter

dynamically during the scheduling process.

Example

Figure 1.2 shows the XMAC example corresponding to ablock-matrix-

multiply-and-accumulatecomputation. Assume that the XMAC is to be execut

on a data-path consisting of a four-cycle pipelined multiplier and a four-cy

pipelined adder. All of the input operands as well as four final output values ar

be stored in a multiport general-purpose register file with a single-cycle ac

* * * * * * * *

+

+

+

+

+

+ +

+

Figure 1.2XMAC example

a11 a12

a21 a22

b11 b12

b21 b22

c11 c12

c21 c22

×+ r11 r12

r21 r22

=

3
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time. However, to avoid such single-cycle performance penalty, two bypass p

(bypass registers) are available for a direct transfer of operands betwee

functional units. Figure 1.3 shows the optimal execution schedule for the XM

in which all of the intermediate results are forwarded using two bypass paths

Although we intentionally modeled the underlying data-path after a floati

point portion of a recent high-performance commercial microprocessor [34],

XMAC example is, admittedly, very simple and somewhat contrived. In particu

the example does not exhibit conditional behavior. A presence of conditio

Figure 1.3XMAC schedule

add

mul
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constructs dramatically increases complexity of the scheduling task. To fur

elaborate on this point, we will introduce several simple but illustrative examp

in Section 1.2, Chapter 2 and Section 6.3.

1.1.1  Complexity of the Scheduling Problem

Throughout this thesis we will assume an input in the form of acontrol/data

flow graph (CDFG) specification that describes both data-flow and control-fl

dependencies between the operations. Acyclic data-flow graphs (DFGs)

straight-line operation sequences without branching control statements (e.if-

then-else, case, goto, exit) and loops constructs (e.g.while, do-while). Cyclic

DFGs include loop statements but no other forms of branching. Branch

statements are present in CDFGs. A CDFG is acyclic if it does not include l

constructs. Otherwise, we say that a CDFG is cyclic.

We discuss a complexity of the scheduling problem using the concept oftime

optimality as defined in [108]:

Definition 1.2 A programP is said to be time optimal if for every instructionI of

P, executed at some cyclec, there exist at least one operationop in I and a depen-

dence chain of lengthc ending atop 1.

Intuitively, this means that every possible execution path runs in the sho

possible time. Time optimal scheduling of both acyclic and cyclic DFGs [2]

achievable in polynomial time assuming unlimited resources. However, even

problem of acyclic DFG scheduling becomes NP-complete for finite resou

[40]. Time-optimal schedule for an acyclic CDFG is always achievable

scheduling all possible execution paths individually and executing them in para

1. For the purpose of a discussion relevant to this thesis, the word “program” can be sub
stituted by “schedule”, and “instruction” corresponds to a set of operations executed at the
same cycle (time step).
5
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Unfortunately, this, in general, requires an exponential number of operation

indicated in [105].

Recently, in particular in the area of parallelizing compilers, there has be

considerable interest in software pipelining techniques for cyclic CDFGs [100

[108], time optimal scheduling of arbitrary loops is investigated. In that work,

authors consider a theoretical parallel machine with finite but unlimited numbe

resources. Notice that such an assumption does have practical implica

although a number of resources may grow arbitrarily large in the future, it mus

finite in any real-life hardware implementation. For such a machine, it can

demonstrated that, in general, time optimal scheduling of arbitrary loop

impossible.

1.2  Previous Work

High-level synthesis(HLS [31][74][121]) is an automated process tha

transforms an algorithmic specification of the behavior of a digital system in

hardware structure that implements the behavior. Resource-constrained ope

scheduling is one of the crucial tasks in HLS. We say that scheduling is con

dependent if some operations from the control/data flow graph (CDFG)

executed conditionally due to the presence of control-flow constructs such aif-

then-else, goto, case, exit etc.

There are two difficult issues in a formal treatment of control-depend

resource-constrained scheduling:

• concise formulation of the conditional behavior

• treatment of resources.
6
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An efficient formulation should not generate an excessive number

constraints and formulation variables. Moreover, a formal evaluation of reso

availability in the face of conditional execution is required. This is particula

difficult when movement of operations across basic code block boundaries i

prohibited. It has been demonstrated that the ability to perform specula

operation execution leads to superior schedules [20][100][105][119].

Current practical methods for solving the scheduling problem involve t

basic approaches:

• heuristics

• integer linear programming (ILP).

Priority-based heuristic scheduling (e.g. [18][30][84][87]) can accommoda

variety of control-dependent behaviors, but may fail to find an optimal solution

tightly constrained problems. The reason for this is that heuristic schedulers ca

recuperate from early suboptimal decisions which typically preserve only

representative from a possibly very large pool of qualified candidates.

Conventional ILP methods [49] can solve scheduling exactly but suffer fr

exponential time complexity and the inability to efficiently formulate contr

constraints. General applicability of these ILP methods has been improved b

mapping the constraints [41][42], a mixed ILP/BDD method [127], and heuri

approaches based on ILP [48][59]. However, with the exception of [26] (discus

below), no ILP-based technique provides support for conditional behav

Similarly, a recent branch-and-bound technique [116] based on execution int

analysis [115] has been applied only to acyclic DFGs.
7
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Finally, we observe that the current scheduling techniques typically produ

single representative solution among those which are feasible within

constraints 2. In subsequent HLS tasks, (e.g. binding and interconnect

synthesis) additional constraints that conflict with a particular scheduling solu

may arise and the scheduling must be redone to accommodate these

constraints. Using heuristic scheduling, additional constraints can be introduc

help avoid these conflicts (e.g. [25]). However, these additional constraints

adversely affect the heuristic scheduling quality and performance.

1.2.1  Control Dominated Circuits

Many HLS systemsprohibit code motion in order to avoid problems related

evaluation of resource availability and causality of the solutions. An alterna

strategy is toexplicitlywrite constraints describing global movement of operatio

but such approaches reduce to exhaustive enumeration of potential exec

scenarios. In the formulation described in this paper, code motion is allo

implicitly -- there is no need to describe freedom already available (altho

implicit) in a CDFG.

As an example, we consider the formal approach based on algebra of co

flow expressions (CFEs) [26]. In that work, the timing and synchronizat

requirements for communicating machines are encapsulated in finite-state ma

(FSM) description. From this, scheduling constraints are derived and subsequ

solved using a BDD-based O/1 ILP solver. The FSM description is constru

from an algebraic CFE specification which implicitly restricts code motio

2. However, it has been shown that certain HLS benchmark instances have literally bil-
lions of optimal solutions ([94], Chapter 6).
8
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Consider, for example, the code segment shown in Figure 1.4. A possible

specification for this fragment is:

(EQ 1.1)

This requires thatp be executed beforec, andc before eitherr or s. An alterna-

tive specification is:

(EQ 1.2)

which allowsc to be executed beforep. If c depends onp only the first statement is

correct. However, ifc andp are independent, thenboth behaviors (described by

Equation (1.1) and Equation (1.2)) are legal. It is possible to create aspecification

which lists all correct execution scenarios, but the number of such scenarios

the size of the specification grow dramatically as the program comple

increases. In contrast, in our approach, only data dependencies are used to i

the execution order ofp andc. In fact, if the data dependencies allow such motio

r and/ors may be executed beforec and potentially beforep as well. These poten-

tial execution scenarios are implicitly supported by the formulation.

Since operation level parallelism may not be explicit in the input descripti

some heuristic schedulers focus on detection of mutual exclusiveness in CD

Tree scheduling (TS) [47] uses a tree-representation of the execution pat

enable movement of operations. In that approach, sub-trees induced by a b

are considered to be mutually exclusive and, consequently, can share reso

p;

if (c) r;

elses;

Figure 1.4Conditional behavior

p c:r c:s+( )

c:pr c:ps+
9
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Conditional vector list scheduling (CVLS) [119] usescondition vectors[120] to

dynamically track mutual exclusiveness of the operations that can be execute

speculative fashion (i.e. pre-executed). Transformation of a CDFG w

conditional branches into one without conditional branches is performed in [

but there is no support for speculative execution. Furthermore, these heuristic

restricted to nested conditional branches (conditional tree control structure).

Multiple conditional trees are addressed by Wakabayashi [119], but the tree

either scheduled sequentially (using a priority scheme) or conditional

duplication is performed.

Some synthesis systems emphasize treatment of behavioral level ti

specifications. However, either a predefined order of operation is enforced b

the scheduling [18] or the treatment of resource constraints is not fully consid

[60]. The PUBSS system [124] forms a product machine of individual beha

FSMs (BFSMs) to statically schedule I/O communication between

components. PUBSS supports a variety of timing constraints. Howe

parallelism increasing techniques [36] are applied in a static fashion (before BF

collapsing and scheduling). The issue of resource constraints is either not form

discussed [114][128] or the formulation of exclusivity constraints requires

excessive number of 0/1 ILP variables [113].

1.2.2  Symbolic Techniques

To our knowledge, the first attempt to address the scheduling problem u

symbolic computations was made by Kam in [54]. There, several C

applications of MDDs (multi-valued decision diagrams) were describ

Scheduling of acyclic DFGs with function unit constraints was formulated us

multi-valued variables, but the approach seemed to be practicable only for tig
10
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constrained problems. Unfortunately, too few experimental results were

documented to make a critical assessment of that approach.

In the mixed ILP/BDD approach [127], data dependencies were captured i

ROBDD (Reduced Ordered Binary Decision Diagram [12], Appendix A) form

simplify the ILP execution. Inclusion of resource constraints and all other s

towards the final solution were applications of standard ILP techniques. As in

case of [54], the question of control-dependent behavior was not addressed.

An exact symbolic formulation of thecontrol-dependent, resource-constrained

scheduling problem was introduced in [92] and represents a foundation for

work presented in this thesis. In that work, all scheduling constraints

formulated in a Boolean equation form. Unlike other approaches in which a si

representative solution is generated, in [92]all feasible schedules are encapsulat

in a compressed ROBDD representation. This is advantageous since the

effect of additional constraints derived during subsequent synthesis step

incrementallycomputable. Also, there is the additional benefit of being able

explore the solution space without the need to reschedule the problem inst

However, the formulation presented in [92] does not support code motion.

An alternative symbolic formulation [125][126] uses finite automata to capt

resource/timing/synchronization constraints. A product automaton is built

satisfies the specified behavior. Its ROBDD representation is then traversed to

minimum-latency schedule. However, similar to [26], the technique lacks sup

for various forms of a operation-level parallelism to be described in Chapter 2

In this thesis, we describe a symbolic technique for exact resource-constra

scheduling of arbitrary forward-branching control structures. Scheduling

performed with the assumption that allocation of resources is known. The techn
11
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supports speculative operation execution and global treatment of parallel co

structures. To allow a systematic treatment of the problem, a flexible con

representation based onguard variables, guard functions, andtracesis introduced.

A novel trace validation algorithm is proposed to enforce causality an

completeness of the set of all feasible solutions.

The scheduling technique presented in this thesis supports arbitrary Boo

constraints as well as conventional timing constraints. Scheduling of multi-

interacting FSMs is not addressed in this work. Similarly, we do not disc

optimizations based on algebraic and retiming transformations [1][64][68][81][

nor do we discuss scheduling of multi-dimensional applications [85].

1.2.3  Relation to Research in Compilers

Steady advances in VLSI manufacturing technology have made it poss

(and economically justifiable) to implement superscalar, superpipelined and V

architectures [45][52]. This has had a large impact on research in compila

techniques for instruction-level parallel processing [100]. To find substan

amounts of instruction-level parallelism, it has been demonstrated in nume

experimental studies that optimizing compilers have to be able to schedule

beyond the basic code block boundaries [105]. For the purpose of this discus

we adopt Fisher’s definition of a basic block [37].

Definition 1.3 A basic block is a sequence of instructions having no jumps i

the code except at the first instruction and no jumps out of the code except a

end.

Very generally, compilers can be classified based on their ability to perf

“linear” or “non-linear” code motions [38]. Typical representatives of the form

group are compilers based on“trace scheduling” ([35][37][70]) and their
12
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“superblock” derivatives ([19][20][50]). A trace is a loop-free linear fragment

code that might include several basic blocks. A profiling information or

programmer’s directives are used to assign probabilities to outcomes of condit

branches. Based on that information, traces are formed and scheduled seque

using a priority based on the likelihood of their execution. Since traces sp

number of basic blocks, global code motions are possible. However, these

motions are essentially limited to a particular trace being scheduled (thus the

referred to as “linear”). When lower-priority traces are scheduled, this restric

leads to very limited (and unlikely to be very useful) code motions that c

potentially “fill the holes” in the machine code already generated for the high

priority traces. Moreover, to preserve a correct program behavior, trace sched

may require very complex book-keeping and introduction of additional co

blocks in the traces that are yet to be scheduled3. Since traces cannot cross bac

edges of the loop, loop optimizations are done by means of an aggre

unrolling. To simplify the book-keeping, superblock scheduling introduces

further restriction of a single entry per trace (superblock). Tail-duplication is u

to provide the compiler with sufficiently large portions of code.

More global compilation techniques allow “non-linear” code motions. F

example, operations from both “then” and “else” branches of an “if-then-el

statement can be simultaneously considered for a speculative execution. T

global motions are performed on clusters of code blocks [38] or whole progr

[3][80].

Ability to perform global code motions is very useful for software pipelinin

techniques [3][9][21][32][33][62][80][101][112][118][123]. To maximize

throughput, such techniques schedule a number of loop iterations to execute

3. For an in-depth analysis of numerous implementation challenges, see Chapter 4 of [35
13
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overlapped fashion. Typically, however, these techniques do not perform e

conditional resource sharing analysis.

Shown in Figure 1.5 is a schedule for a CDFG fragment having a simpleif-

then-elsestructure.Modulo scheduling[32][101] converts control dependencie

into data dependencies using theIF-conversion[5]. Such approach essentially

flattens a CDFG and leads to overestimation of resource requirements in asum-of-

resourcesfashion. This is indicated in Figure 1.5(a), where two adders

allocated for execution of mutually exclusive operations at the second step

hierarchical reduction[62], “then” and “else” branches are individually schedule

and encapsulated into a larger node with composite resource usage indica

Figure 1.5(b). Resource usage is evaluated in aunion-of-resourcesfashion. It has

been reported that such an approach tends to create nodes with comple

irregular resource usage patterns imposing severe restriction on scheduling

remaining nodes [123]. Moreover, resource evaluation is still not exact. Obs

that in Figure 1.5(b) one adder is allocated at the third time step regardless o

path taken. This leaves a “hole” (NO-OP) that could possible be used to sche

other nodes for parallel execution (e.g. operations belonging to different iterat

of a software pipelined loop).

T F

++

+

+

+

+ +

+

Figure 1.5Resource management examples

(a) (b)
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All of the compilation techniques referenced in this section are invaria

heuristic and allow very limited (if any) backtracking during scheduling. Howev

it is unfair to use such an argument as a disqualifying flaw -- in reality, compi

have to deal with programs consisting of thousands of lines of a source code!

consequence, a premise on impracticality of exact compilation technique

unlikely to be challenged any time soon. On the other hand, many user applica

from a hardware synthesis domain are of a relatively moderate size but have to

with the underlying hardware intricacies and/or to guarantee that hard real-

throughput constraints are unconditionally met.

Moreover, to our knowledge, all of the competitive compiler implementatio

do impose significant restrictions on a repertoire of global code motions. Un

such circumstances, a strong argument can be made that practical compi

techniques could see benefit from exact techniques capable of handling pro

fragments under scheduling consideration. In some general-purpose hard

implementations it is undesirable (or even prohibited) to enable specula

transactions potentially resulting in false arithmetic exceptions and memory fa

[20][100]. This makes exact techniques even more attractive because of

potential to maximally expose and extract any residual instruction-le

parallelism.

1.3  Overview of the Thesis

So far, in Section 1.1 and Section 1.2, the scheduling problem was introd

and related research surveyed. It was our intention not only to provide a nece

background for the reader, but to clearly state the motivation for pursuin

particular research avenue. The rest of the thesis is organized as follows:
15



con-

le to

tion

en-

lean

the

trol

u-

d in

ruc-

to

aring

d in

ling

The

imen-

ns to
• In Chapter 2, we describe several approaches to resource-constrained

trol-dependent scheduling, as well as a number of features desirab

improve scheduling quality. In particular, we focus on speculative opera

execution and treatment of parallel/correlated control structures.

• The formulation is presented in Chapter 3. First, a flexible control repres

tation based onguard variables, guard functions, and tracesis described.

Next, a speculative execution model is introduced and discussed. A Boo

equation formulation of scheduling constraints follows. Then, atrace vali-

dation algorithm is proposed to enforce causality and completeness of

set of all feasible solutions. Finally, we discuss extensions to cyclic con

and clarify the differences between our formulation and related ILP form

lations.

• Aspects related to the ROBDD construction process are considere

Chapter 4. These include: a discussion of the iterative solution const

tion, ROBDD variable ordering strategies, and techniques employed

improve the run-time efficiency.

• Chapter 5 presents an alternative approach to conditional resource sh

analysis. The approach is not explicitly used in the techniques describe

the rest of the thesis. However, it is transparent to a particular schedu

implementation and has relevance to software pipelining techniques.

reader may postpone reading Chapter 5 and the corresponding exper

tal results (Section 6.5) and treat them as an extra Appendix.

• Experimental results are presented and discussed in Chapter 6.

• Finally, in Chapter 7, conclusions are presented, as well as the questio

be addressed in future.
16
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• Although we assume that the reader has a basic understanding of B

Decision Diagrams, some necessary background is provided in Appe

A. Most of the results presented in this thesis are derived using redu

ordered binary decision diagrams (ROBDDs [12]). Abbreviations ROBD

OBDD and BDD will be used interchangeably whenever the correct me

ing can be implied from the context of the presentation. When a clear

tinction has to be made, more specific abbreviations will be used:

example, 0-sup BDDs or ZBDDs (for Zero-suppressed Binary Decis

Diagrams [75]) and MDDs (for Multi-valued Decision Diagrams [54]).
17
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Chapter 2

Control-Dependent Behavior

2.1  High-Performance Scheduling Issues

Our scheduling technique assumes an input in the form of a CD

specification. The CDFG describes both data-flow and control dependen

between the operations and is similar to the one used by Wakabayashi [

Figure 2.1 contains an pseudocode example and its CDFG represent

Operation nodes are atomic actions potentially requiring use of hardware reso

(e.g. arithmetic/logical operations, read/write cycles). Conditional behavio

specified by means of fork and join nodes. An operation node generating a co

signal for a fork/join pair is called aconditional. Directed arcs establish a link

between the conditional and a related fork/join pair. In Figure 2.1, the conditio

labeled op_2 tests the result of the addition (op_1) and determines the flo

control (i.e. whether “True” (T) or “False” (F) branches should provide opera

for op_6).

Figure 2.1 (a), (b), and (c) show three different ways to schedule the exam

assuming that only one resource of each type is available. The schedule in F

2.1(a) uses the knowledge that after a conditional (op_2) is executed, opera
18
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belonging to “T” and “F” branch arcs are mutually exclusive. However, the jo

node is treated as a synchronization point: op_6 cannot be scheduled until bo

“T” and “F” branch are executed. This leads to inefficient schedules, since

execution times for alternative branch arcs may differ widely. Consequently, in

example, it takes 5 cycles to execute the schedule no matter what decision is

by the conditional. This approach corresponds to that used by traditional

schedulers (e.g. [49]).

in x, y;
out z;
if ((x+y)>2) {

x = x + 3;
y = y + 5;

} else
x = x + 4;

z = x * y;

+op_1

>op_2

+op_5

*op_6

T F

+op_4+op_3

T F

X Y

Z

+op_1

>op_2

+op_3 +op_4

+op_5

*op_6

+op_1

>op_2

+op_3 +op_4

+op_5

*op_6

+op_1

>op_2+op_3

+op_4+op_5

*op_6*op_6 *op_6

(a)

[long/average/short]
= [5, 5, 5]

(b)

[long/average/short]
= [5, 4.5, 4]

(c)
[long/average/short]

= [4, 4, 4]

CDFG sink

CDFG source

Figure 2.1Example CDFG and its schedules
19
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The schedule shown in Figure 2.1(b) improves the “average” execution tim

4.5 cycles by scheduling op_6 on the fourth cycle at the “F” branch. Note that

operation execution order is predetermined before scheduling (e.g. op_2 b

op_3, although no data dependency exists between these two operations

CDFG). This approach is supported by a number of heuristic schedulers (e.g.

one recent exact technique [26].

The schedule from Figure 2.1(c) not only further improves the aver

execution time, but reduces the longest execution path to 4 cycles as well. T

done by scheduling op_3 on the second cycle in a speculative fashion (i.e. b

the corresponding conditional, op_2, is resolved). Note that the reso

requirements cannot be predicted in a static fashion. For example, if more ad

are available, op_4 can be executed in a speculative fashion as well. The m

exclusion of op_3 and op_4 must be evaluated dynamically by taking into acc

when the corresponding conditional (op_2) is scheduled. This kind of schedu

is supported by several heuristics ([47][89][104][119]).

Several ways to improve the scheduling quality by exposing and exploiting o

ation-level parallelism implicit in the CDFG representation are discussed in S

tions 2.1.1 through 2.1.4.

2.1.1  Speculative Operation Execution

It is often beneficial to determine the control value simultaneously with bra

execution. Operations from branch arcs that are executed before the correspo

conditional value is evaluated are said to bepre-executed. Such speculative

operation execution allows more flexibility in using given hardware resources

conditional is a scheduled operation that generates a control value. Figure

shows a CDFG where the control dependencies between the conditio
20
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(comparators1 and 2) and the corresponding fork/join pairs are explicitl

indicated. Speculative operation execution is not possible if the control preced

between the conditional and the fork node is enforced. In this case, at least six

steps are necessary to execute the CDFG, since the longest dependency

includes six operations. However, if precedence between the conditional an

fork node is removed, operations from the branch arcs can be pre-executed. F

2.2(b) shows a schedule executing in three cycles using the indicated resourc

general, precedence between a conditional and join node need not be enf

either. In this case, the execution time is bounded only by data dependencies (

sufficient resources).

1
2

Figure 2.2Example of speculative operation execution

1

2

(a)

(b)

T
T T

F

F

F
resources:

- 2 adders (white)

- 1 subtracter (black)

- 1 comparator

execution time:

- 3 cycles (SPECULATIVE)

- 6 cycles (NON_SPECULATIVE)

NOTE: 4 cycles if conditional1 is

scheduled before conditional2
21
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2.1.2  Out-of-Order Execution of Conditionals

It can happen that a faster schedule is obtained if the top-level conditiona

the input specification) is evaluatedafter some other nested conditional. A simpl

example of this behavior is shown in Figure 2.2(b). The schedule executes in

cycles with the conditional1 left unresolved until the end of the very last cycle

The knowledge that conditional2 is resolved during the first cycle is essential

properly interpret resource usage. Since conditional2 is resolved during the first

time step, there are only two distinct execution scenarios for the second time

(corresponding to still unresolved value of conditional1). Thus, at the second time

step, only two adders are needed.

There is still a considerable discussion on how beneficial conditional

ordering option is in general-purpose programs, practical compilers

commercial microprocessor architectures ([35][52][71][80][105][111][123]). W

do not hope to provide a definitive answer. It should be noted, however,

dynamic re-ordering of conditionals is inherent in a guard representation

comes “for free” in our formulation (Chapter 3). BothTS[47] andCVLS[119] rely

on a conditional-tree representation of the control and cannot accommodate

of-order execution of the conditionals without dynamically modifying the tr

structure.

2.1.3  Irredundant Operation Scheduling

Another way to improve scheduling quality is to identify operations that

not redundant in the input description, but are redundant for certain control p

The importance of such information has been observed and the algorithm

detect such operations have been discussed in the literature [47][120]. Sho

Figure 2.3 is an example whereop_1 is redundant on “F” path andop_2 is
22
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redundant on “T” path -- this knowledge can be used to reduce reso

requirements during scheduling.

2.1.4  Parallel and Correlated Control Structures

Control structures that are either fully parallel or have correlated con

introduce additional scheduling challenges. As the number of control p

increases, it becomes difficult to keep track of the mutual exclusiveness amon

operations. Ideally, the scheduler should evaluate and maintain this informatio

all control paths. In Figure 2.4, a CDFG is shown in which two parallel trees h

a correlated control (shaded comparator). The reader can verify that, given

adder (“white” operation), one subtracter (“black” operation) and one compar

(single-cycle units assumed), a 6-cycle schedule can be found only if the co

correlation is properly interpreted (i.e. “false paths” are not scheduled).

indicated in Figure 2.4, speculative execution (and additional or more vers

resources) can further improve the execution time.

Although not typical for conventional structured programs, parallel con

structures are likely to result from program transformations performed

parallelizing compilers (e.g. loop unrolling where a conditional behavior is pres

within the loop body [100]).

T F

1 2

Figure 2.3Operations redundant on certain control paths
23
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2.2  Our Goals

The formulation presented in this thesis supports all of the advan

scheduling features discussed above. In fact, the approach described in the th

the only exact technique for resource-constrained scheduling with specul

operation execution.

Definition 2.1 Minimum latencyof the schedule is the minimum execution dela

of the longest path of a scheduled CDFG.

Our goal is to findall minimum-latency schedules, given a CDFG specificati

and resource constraints. By using BDDs we can implicitly (symbolically) capt

all feasible solutions to a particular problem instance. This solution form

T

F

T

F

T

F

F

F

FTT

T

Figure 2.4CDFG with correlated control

no speculative execution:
- 6 cycles (3ALU or 1add/1sub/1comp)

speculative execution:
- 5 cycles (3ALU or 2add/1sub/1comp)
- 4 cycles (5ALU or 3add/2sub/2comp)
24



ng

tion

for

nce

early
introduces significant flexibility to a circuit design process by enabli

incremental incorporation of additional constraints and by supporting solu

space exploration and incremental engineering change without the need

rescheduling. This is potentially very important for practical CAD systems, si

some of the relevant issues cannot be always predicted accurately during the

stages of a design process.
25
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Chapter 3

Formulation

In this Chapter, a Boolean formulation of scheduling problem is develope

consist of four major parts:

• control representation based onguard variables, guard functions, and

traces,

• speculative execution model,

• Boolean equation formulation of scheduling constraints, and

• a newtrace validationalgorithm that enforces causality and completene

of the set of all feasible solutions.

3.1  Control Representation

In this formulation, all scheduling constraints are represented as Boo

functions and an OBDD corresponding to the intersection is built. Each vari

Csj describes operationj occurring at time steps. Csj is true iff operationj is

scheduled at time steps in a particular solution. We assume a unique mappi

from operation type to function unit type. To represent control-dependent beha

a set ofguard variablesis introduced. Each guardG represents a control-flow
26
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decision by a particular conditional -- the guard is true for one branch and fals

the other. Every control path through an arbitrary combination of fork/join pair

described by a product of the corresponding guard variables. For each operaj,

a Booleanguard functionΓj (defined on the guard variables) encodes all t

control paths on whichj must be scheduled.

Shown in Figure 3.1 is a CDFG fragment of Kim’s example [55] in which tw

guards (G1, G2) encode the conditional behavior. There are three poss

execution paths: . Indicated blocks

correspond to operations that share the same guard functionΓ. Operations which

must be scheduled on all control paths haveΓ=1.

Guards: G1 (corresponding to C1 decisions)

Γ=G1
Γ=G1

Γ=G1G2 Γ=G1G2

Figure 3.1Kim’s example

F
T

C2

C1
Γ=1

FT

T

from C1

from C2

G2 (corresponding to C2 decisions)

source

sink

G1G2 G1G2 G1, ,( ) 1 G, 1 G1G2 G1G2 G1, , ,( )
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Computation of Γ functions -- Assume that operationi hasn successors (j1,

j2, ... , jn) and that none of the successors is a join node. Then a guard functioΓi

can be simply computed as a BooleanOr of the successors’ guard functionsΓjk

(k=1,2, ... , n). This means that operationi has to provide operands to all of its

successors. If a successor ofi is a join node, then its contribution toΓi is equal to

ΓjoinGk or ΓjoinGk (depending whetheri belongs to the “T” or “F” branch). Guard

functions corresponding to all of the nodes can be computed by a one-

traversal of the CDFG that starts from a sink node whose guard functio

initialized to ‘1’ (tautology).

We observe thatΓ’s are not restricted to product terms (thus, they can han

constructs such as:goto, exit, case). In the pseudo-code fragment shown in Figu

3.2, the execution condition for statementc is described as:

. Guard-based representation also applies

parallel or correlated control structures. If two copies of Figure 3.1 are execute

parallel, only two more guard variables are introduced, while the numbe

control combinations (nine) grows much faster. The number of guards is

proportional to the number of control paths, but is determined by the numbe

conditionals. For example, in Figure 2.4 (Section 2.1.4), only five guard varia

encode 18 possible control path.

if ( C1 ) a;

else if( C2 ) b;

else goto d;

c; d;

Figure 3.2Pseudo-code fragment

Γc GC1
= GC1

GC2
+ GC1

GC2
+=
28
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In many aspects, the guard-based model is similar to execution conditions

path analysis[8]. In that approach, however, Boolean conditions are used in

hardware allocation phase (after AFAP scheduling is performed). Neverthe

that research demonstrated that BDDs efficiently represent control signals in

scale problems. Similarly, Boolean functions are used to label conditional

several other recent techniques for control-dependent scheduling [26][126].

In fact, guard representation was used in areas other than HLS -- for exam

to perform “IF-conversion” in experimental vectorizing compilers [5] and simpl

code generation for VLIW and superscalar machines supporting predic

execution [32][71][88][102].

The technique presented in this thesis generates a solution in the form

collection oftraces. A traceis a possible execution instance for a particular cont

path. In BDD form, traces correspond to product terms of the Boolean funct

Each trace includes the guard variables (identifying a control path) and oper

variables (indicating a schedule for the path). For example, in Figure 3.1, e

trace corresponding to the “False” branch of conditionalC1 contains , as well as

0/1 assignment ofCsj variables. Operations withΓ= or Γ=1 must be scheduled

on that trace. If other operations are scheduled on this trace, they are pre-exe

The ensemble scheduleis a set of traces forming a complete determinis

schedule. Conditions for the existence of such a schedule are discussed in S

3.4. The solution BDD includes only traces belonging to at least one ensem

schedule and implicitly incorporates all feasible ensemble schedules. Note tha

number of ensemble schedules can be much larger than the number of trace

G1

G1
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3.2  Speculative Execution Model

In our speculative execution model, only the control precedence between

conditional and join node is enforced. CDFG operations can be schedule

different time steps on distinct control paths, but cannot be scheduled more

once per trace. Each operation from the CDFG is executed at most once rega

of the actual control decisions made when the schedule is executed. For exa

this means that in the current model the following scenario is prohibited:i)

operationj executes in a speculative fashion using operandsA andB and generates

resultR, (ii ) a control decision is made andR is discarded, (iii ) operationj executes

using a different set of input operands (e.g.C andD) and a correct value ofR is re-

computed.

Figure 2.2 (Section 2.1.1) shows an example where precedences betwee

conditionals and forks are removed. The critical path length of 6 in the orig

CDFG is reduced to just 3. All four possible control paths may start execu

simultaneously.

Application of the proposed speculative execution model to theMaha

benchmark [86] is shown in Figure 3.3 (directed arcs represent con

dependencies and undirected lines correspond to data dependencies). Notice

great deal of freedom is added to the schedule: e.g. operations A8 and S8 c

executed during an arbitrary time step subject only to resource constraints. G

sufficient resources, a critical path length of 8 in the original graph can be red

to just 4 (operations: S6, A6, S7, A7). The current formulation does not allow

operations following the join to be executed in a speculative fashion before

corresponding conditional is resolved (e.g. S7 cannot be scheduled in the se

cycle due to a dependency from A2). Notice, however, that there is still a lo
30



cies

ods

lies

n a

the

of
freedom to exploit instruction level parallelism: since there are no dependen

left among the conditionals, all 12 control paths can start executingsimultaneously.

3.2.1  Restrictions of the Proposed Model

The technique we develop in this thesis is exact. Misguidingly, exact meth

are frequently referred to as “optimal” as well. However, the exactness imp

optimality only up to the extent of generality of the underlying model used i

particular exact method. Thus, it is important to clearly state an answer to

following question:

“Is the speculative execution model described in Section 3.2 capable

generating time optimal schedules?”1

A1

S2 S3

A4 S5

A2

A7

A3 S4

F3

A5

F5

J3

F4

S6

A6

J4

S7

J5

J6

F1

S8 A8

S1

J1

F2

J2

F6T F

A1

S2 S3

A4 S5

A2

A7

A3 S4

F3

A5

F5

J3

F4

S6

A6

J4

S7

J5

J6

F1

S8 A8

S1

J1

F2

J2

F6

Figure 3.3CDFG transformation for Maha

dependency
to

fork

dependency
to

join
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Since the proposed model does not provide a full repertoire of code moti

the answer to this question is obviously: “No”. Figure 3.4(a) illustrates such a c

in which our current model cannot achieve time optimality. Although bo

operations1 and2 are scheduled at the first step, execution of operation3 has to be

delayed until the third step (since conditionalC is resolved at the second step).

the precedence betweenC and operation3 is not enforced (Figure 3.4(b)), two

instances of operation3 (3T and3F) can be scheduled at the second step, reduc

the execution time. In fact, both paths execute in two cycles as dictated by

length of the corresponding chains of data-dependent operations. Thus

schedule in Figure 3.4(b) is time optimal.

To summarize, we do not allow code motions that can lead to a creation

execution of multiple instances of the same CDFG operation on a control pat

the rest of this discussion we will informally refer to this as “operation renaming

1. Time optimality is defined in Section 1.1.1.

21

3

C

y

T F

x

21

y

T F

x

3T 3F

(a) Current model (b) Generalized model

Figure 3.4Speculative execution model

C
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Operation renaming may lead to an exponential explosion of operation’s insta

on a control path and poses a difficult implementation problem even in heur

schedulers. Since our goal is to develop the exact technique, operation rena

would likely reduce its practicability. Exact amount of instruction level parallelis

that is lost due to the restrictions of our speculative execution model is, in gen

impossible to be determined. However, the results presented in Section 6.3 ind

that our approach generates schedules that exhibit significant advantage

scheduling without speculative execution. Furthermore, our approach gene

comparable or superior results when compared to the best known solutions

number of HLS benchmarks.

3.3  Derivation of Constraints

For brevity, we assume non-pipelined, unit-time operations. Pipelined

multicycle functional units can be accommodated by incorporating execu

delay in the equations presented in Sections 3.3 and 3.4 [92]. Contrary to s

other approaches where such operations have to be modeled as chains of

cycle operations (e.g. [3][26][125]), only one variable per multicycle/pipelin

operation is used in our formulation. To model operation chaining, a preced

relation can be added between operations that cannot be chained [49].

(ASAP)j (as-soon-as-possible) and(ALAP)j (as-late-as-possible) bounds ar

constructed to limit the time spans over which an operationj can be scheduled.

These bounds are not required for correctness, but improve the efficiency o

construction.Csj denotes operationj’s instance at time steps. Fork (join) nodes are

not explicitly used in the formulation. Precedences to fork (join) nodes

translated in a transitive fashion to the successor nodes of the fork (join). Sym

“Σ” and “+” correspond to BooleanOr function, and “Π” stands for BooleanAnd.

Product “ab” implies “a And b”.
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3.3.1  Uniqueness

Equations (3.1) and (3.2) enforce unique scheduling of operations from

CDFG at time steps. If (ASAP)j ≤ s< (ALAP)j:

(EQ 3.1)

whereRsj is the range [(ASAP)j ... s].

If time step s = (ALAP)j:

(EQ 3.2)

Equation (3.1) states that prior to step (ALAP)j, operationj is not scheduled

more than once. On step (ALAP)j, Equation (3.2) ensures that operationj has been

executed on all paths covered byΓj. On paths not covered byΓj, operationj can be

either uniquely scheduled (pre-executed) or not scheduled at all.

The constraint formulated in Equation (3.1) can be simplified. An iterat

form of the Equation (3.1) that enforces uniqueness implicitly (by construction

formulated in the following equation:

(EQ 3.3)

whereR(s-1)j is the range [(ASAP)j ... (s-1)].

3.3.2  Precedences

If operationi precedes operationj (i.e. there is a dependency arc fromi to j in

the CDFG) andΓi⊇Γj (Γi coversΓj) then for every steps in the range [(ASAP)j ...

(ALAP)i] the following must hold:

Ckj Cij
i k≠ Rsj∈

∏
 
 
 

k Rsj∈
∑ Cij

i Rsj∈
∏+ 1=

Ckj Cij
i k≠ Rsj∈

∏
 
 
 

k Rsj∈
∑ Cij

i Rsj∈
∏

 
 
 

Γ j+ 1=

Csj Cij
i R s 1–( ) j∈

∏ 
 + 1=
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(EQ 3.4)

Equation (3.4) states that either operationi has to be scheduled before steps, or

operationj cannot be scheduled at steps. The case “Γi covers (but is not equal to)

Γj” (Γi⊃Γj) occurs when the dependency fromi to j goes through a fork node

When Γi /⊇ Γj (Γj not contained inΓi -- e.g. the dependency fromi to j goes

through a join node), the precedence relation is enforced only on the paths co

by Γi:

(EQ 3.5)

Effectively, Equation (3.4) ensures that the operation can be pre-executed

if all of its predecessors have already been executed. In our model, an oper

after the join node cannot be pre-executed before the corresponding conditio

resolved. Thus, according to Equation (3.5), the dependencies to its predece

are enforced only conditionally.

Figure 3.5illustrates the meaning of Equations (3.4) and (3.5). As indicate

Equations (3.4), operation2 cannot be scheduled unless operation1 is scheduled at

some earlier time step, since operation1 provides an operand to operation 2. O

the other hand (Equations (3.5)), precedence between operation3 and operation4

has to be enforced only on “True” path -- if a decision has been already been m

so that “False” path is executed, operation4 cannot be allowed to wait for an

operand coming from operation3.

Equation (3.5) requires a special attention. Since operationi can be scheduled

on control paths not covered by its corresponding guard functionΓi, it seems that a

Csj Cli
ASAPi l≤ s<

∑+ 
  1=

Csj Cli
ASAPi l≤ s<

∑+ 
  Γ i+ 1=
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solution set may include some traces where a precedence between operationi and

j is not enforced. However, notice that execution ofi outside ofΓi corresponds to

i’s speculative execution. This means that, at a particular time step, decisions

certain subset of conditionals are yet to be made and that traces for all pos

control paths to be distinguished at some later step have tomatch(be identical)

prior to the moment such decisions are made. Since one of such traces inev

has to be covered byΓi and, consequently, have all of the precedences prop

enforced, a trace not covered byΓi will preserve all of the precedences as well. Th

process enforcing trace matching will be described in Section 3.4 (Trace

Validation).

3.3.3  Termination

A single sink variable is used in the OBDD representation to indicate tha

particular trace has concluded. It is initialized to ‘0’, and is set to ‘1’ when t

terminating condition for the trace is met. Equation (3.6) is used as a termina

2

3

4

C

T F

Figure 3.5Treatment of precedences

1 Γ1

Γ3 = Γ1Gc

Γ4 = Γ1

Γ2 = Γ1Gc
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condition for all traces in parallel. The scheduling process can be terminated w

sink assumes the value ‘1’ on all paths of an ensemble schedule. In t

equations, operations (j1...jn) are immediate predecessors of the sink node in

CDFG.

 , where (EQ 3.6)

Function is true if operationjl is scheduled prior to or at steps. The fact

that execution ofjl is mandatory only on paths covered by is reflected

Equation (3.6).

3.3.4  Resource Constraints

If kl resources of a certain typerl (e.g. multipliers, adders, ALUs, registers

buses) are available, we formulate a“generalized resource bound” Equation (3.7):

(EQ 3.7)

Fsl is a Boolean function stating that resourcerl is needed during time steps.

Equation (3.7) is applied at each steps for each resourcerl. It ensures that at leas

(nsl-kl) resources (amongnsl potential candidates at steps) will not be scheduled.

For functional units,Fsl functions are simply the operation variables. For examp

if at step s operation instancesCsm1, Csm2, Csm3 and Csm4 are candidate

multiplications and there are onlykm = 2 multipliers available, Equation (3.7

becomes:

(EQ 3.8)

Equation (3.7) applies the resource constraint to all traces simultaneo

Trace validation(Section 3.4) ensures that there are no resource violations in

ensemble schedule.

Rs jl
Γ j l

+( )
l 1=

n

∏ 1= Rs jl
ck jl

k ASAP( ) j=

s

∑=

Rs jl

Γ j l

Fsl1
Fsl2

…Fsl nsl kl–( )
1 l p lq≠( ) nsl≤ ≤

∑ 1=

Csm1
Csm2

Csm1
Csm3

Csm1
Csm4

Csm2
Csm3

Csm2
Csm4

Csm3
Csm4

++ ++ + 1=
37
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Next we discuss how bus and register constraints are generated for ac

DFGs by a suitable choice ofFsl.

A bound on the number of available registers can be implemented usi

slightly more complex resource function and then simply plugging this n

function into the constructor for Equation (3.7). Equation (3.9) indicates that i

operationi precedes the operations (j1...jn) at a particular control steps, a register

is required. This register is required to keep the value of the output of operatio

the successor operations cannot use it immediately.

(EQ 3.9)

where

(EQ 3.10)

(EQ 3.11)

Notice that this formulation allows for possible chaining of operations sin

the constraint predicts that no register is required if the operations are all ass

to the same control step. Each Equation (3.9) constraint can be plugged int

typed resource constraint equation Equation (3.7). Note that in this case kr is the

number of registers allowed andnsr is set to the number of candidate Equatio

(3.9) functions at the sth control step2. The construction of the register requireme

2. This approach verifies that the number of variables that are live at a particular time step
does not exceed a pre-specified bound. This is compatible with the classical register allo
cation algorithm based on graph coloring [17].

i j 1… j n( )→( ) Fsi
r⇒ Asi Bsj

j j 1=

jn

∑
 
 
 

=

Asi ali

l ASAPi=

s

∑=

Bsj blj

l ASAPj=

s

∑=
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for an example operation with 2 successors is shown in the Figure 3.6. Fs is true if

a register is required at time steps.

Busses can be treated in a similar fashion. If operationi precedes operations

(j1...jn), Equation (3.12) indicates that at a particular control steps a bus may be

needed to read an operand (upper part of Equation (3.12)) or write a result (l

part of Equation (3.12)). Notice that the formulation allows a rather complica

situation (same operand used as an input to a number of operations) to be mo

in a simple fashion.

(EQ 3.12)

Given the Equation (3.12) constraints, we can again treat them as ge

resources and plug them into Equation (3.7) for each time step, since onlykb out of

thensb functions can be active at each particular phase of the time steps. The bus

constraints apply to for“read” and “write” phases separately, making n

assumption that a number of writes is smaller than the number of read opera

at each control step. However, we do assume that read and write transfer phas

a1

a2

a3

a4

a5

b6

b7

b3

b4

b5

c4

c5

c6

step_1

step_2

step_3

step_4

step_5

step_6

step_7

Bs

0
0
b3

b3 b4+

b3 b4 b5+ +

b3 b4 b5 b6+ + +

1

As

a1

a1 a2+

a1 a2 a3+ +

a1 a2 a3 a4+ + +

1
1
1

Cs

0
0
0
c4

c4 c5+

1
1

Fs = As (Bs + Cs)

Figure 3.6Example register constraint

i j 1… jn( ) Fsi
br⇒→ Cs jl

l 1=

n

∑=

i j 1… jn( )→ Fsi
bw⇒ Csi=
39
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interleaved. Similar constructions can be used to constrain the number of

typed resources. It is important to note that this formulation of these constra

does not require the addition of more implementation variables (as is the cas

ILP formulations of Bus constraints [49]). Implicit constraint application allow

these resource constraints to be efficiently constructed even for very com

constraints functions (to be discussed in Section 4.4.2).

3.3.5  Removal of Redundantly Scheduled Operations

Assume that a conditional has executed and the “True” branch is sele

Operations from the “False” branch may still be scheduled on the tr

corresponding to the “True” branch if there are available resources. Such trace

identified and removed. Assume conditionalck (whose corresponding guard isGk)

is resolved prior to time steps. Then all the variables that correspond to operati

j’s instances scheduled for time steps≥ s have to assume value ‘0’ on traces whe

Gk is true if:

(EQ 3.13)

Similarly, on traces whereGk is false, all the variables that correspond

operationj’s instances scheduled for time steps≥ s have to assume value ‘0’ if:

(EQ 3.14)

3.3.6  Timing Constraints

SinceCsj denotes operationj’s instance at time steps, it is possible to describe

a variety of timing constraints using Boolean functions. For example, assume

operationi precedes operationj and that both of them execute in a single cycl

Furthermore, assume that operationi can be scheduled at steps 1, 2, and

(corresponding variables are:C1i, C2i, andC3i), and thatj can be scheduled at step

Γ jGk 0=

Γ jGk 0=
40
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2, 3, and 4 (C2j, C3j, andC4j). Then, a constraint “j has to be scheduled exactly

cycle afteri” can be written as:

(EQ 3.15)

Minimum/maximum constraints can be represented similarly. For exampl

constraint “j has to be scheduled at least 2 cycles afteri” amounts to a Boolean

function:

(EQ 3.16)

An iterative formulation of the constraints is possible as well. For examp

Equation (3.15) can be applied at steps (s=2,3,4) using:

(EQ 3.17)

Together with the uniqueness constraint (Equations (3.2) and (3.3)), Equ

(3.17) enforces the timing constraint implicitly (by construction). If a timin

constraint has to be conditionally enforced, a modification similar to that

Equation (3.5) is necessary. Since we use Boolean functions to repre

constraints, more complex timing behavior can be conveniently described u

BDD manipulations.

3.3.7  Additional Remarks

The formulation described throughout Section 3.3 is also applicable

scheduling without speculative operation execution. Essentially, a con

dependency between the conditional and fork node in the CDFG should

enforced as a hard precedence relation. However, a slightly modified set o

constraints is used to improve efficiency [94]. In addition, timing constraints

be used to enforce precedence between the operations and prohibit specu

execution on individual basis. This is because, in our formulation, precede

constraints are simply a special case of timing constraints.

C1iC2 j C2iC3 j C3iC4 j++ 1=

C1iC3 j C1iC4 j C2iC4 j++ 1=

C s 1–( )i Csj+ 1=
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3.4  Trace Validation

A trace satisfying all of the constraints introduced in Section 3.2 may still no

valid in the sense that it cannot be a member of any set of traces formin

ensemble schedule. The example CDFG in Figure 3.7 demonstrates that res

constrained scheduling of all individual control paths is not sufficient for a pro

treatment of control-dependent behavior. Both the “True” and “False” con

paths can be scheduled individually in two time steps assuming one single-

resource of each type (“white”, “black”, comparator). However, observe that

execution traces shown in the figure cannot be combined into an execu

schedule meeting the stated resource constraints. Since a decision as to whic

to execute is not known until the end of the first step, the “True” and “False” pa

are indistinguishable during that cycle. This means that bothop_1 and op_5 as

well as op_3 and op_6 must be executed simultaneously, thus violating t

Figure 3.7Ensemble schedule counterexample

T F

True False

CDFG:

TRACES:

1

2

3

4

5 6
C

CC 3

4 5

65

62

1
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resource constraint. (A decision to exclusively executeop_1andop_5or op_3and

op_6depends on knowledge not available until the end of the first cycle!) In f

no 2-cycle schedule is possible, although both control paths can be individu

scheduled in two time steps.

Definition 3.1 A valid ensemble scheduleis a minimal set of traces which is both

causal andcomplete.

Thecausalityrequirement dictates that the schedule cannot use knowledg

the value of a conditional prior to the time when the conditional is execu

(resolved).Completenessrequires that a trace must exist for every possible cont

combination. An ensemble schedule is a minimal set in the sense that if any tra

removed, the set is no longer complete.

Assume that the conditionalck is resolved at stepj. Causality requires that the

traces corresponding to guard valuesGk andGk must be identical (match) for all

time steps prior to and includingj. Completeness ensures that the ensem

schedule includes traces for bothGk andGk.

Observations from the previous paragraphs and Figure 3.7 illustrate tha

exact formulation of control-dependent, resource-constrained scheduling req

more than the ability to: (i) somehow label control paths and operation instanc

belonging to them, and (ii ) enforce precedences and resource bounds on individ

paths. This might be a reason why no such technique existed until very rec

[92], even for scheduling without code motion. In our formulation, the meaning

guards is not only statically linked to conditionals and their decisions, but to

actual moments when the decisions become available. Such a “dynamic” asp

introduced by means of aTrace Validation algorithm.
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Trace Validation ensures that each validated trace is part of some ense

schedule. The validation is efficiently preformed by the iterative algorithm sho

in Figure 3.8. The following notation is used:

• fx (fx) - positive(negative) cofactorof a Boolean functionf with respect to

a variable x

• ∃xf = fx+fx - existential abstraction;

• ∀xf = fxfx - universal abstraction

• S - set of all traces

• S(i) - set of traces at iterationi;

(1) i = 0;

(2) do {

(3) i++;

(4) S(i) = S(i-1);

(5) for each time step j {

(6)

(7) for each conditionalck {

(8)

(9) if  (S’==0) { S(i)=0; exit; }

(10) }

(11) S(i) = S(i)S’;

(12) }

(13) } while (S(i)!=S(i-1));

S' S i( )V V'(j)–( )∃=

S' S'Rk j( ) S'Rk j( )( )Gk∀+=

Figure 3.8Trace Validation algorithm
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• S(0) - initial set of non-validated traces

• V - set of all variables not including guard variables

• V’(j)  - subset ofV corresponding to time steps≤ j

• S’ - set of traces from which all variables (V-V’(j) ) are removed:

(EQ 3.18)

• C = [c1, c2 ... cn] - set of all conditionals

• G = [G1, G2 ... Gn] - set of guards corresponding to the conditionals

• R(j) = [R1(j), R2(j) ... Rn(j)] - resolution vector

The resolution vectorR(j) is a set ofn Boolean functions (one for each

conditional), where each function Rk(j) indicates whether a conditionalck was

scheduled prior to time stepj:

 , for (EQ 3.19)

S’ is partitioned byR(j) into a disjoint set of as many as2n families,

corresponding to the subset of guards that are resolved prior to time stepj (Gres):

(EQ 3.20)

The guards from (G-Gres) (i.e. the unresolved guards) have to bedon’t cares

within the family since at time stepj there is no knowledge about the future value

of the unresolved guards:

(EQ 3.21)

Traces must bothmatchandexistfor all possible combinations from (G-Gres),

to ensure causality and completeness of the ensemble schedule.

S' S i( )V V'(j)–( )∃=

Rk j( ) Clk∑= l j<( )

R j( ) S'k V' j( ) G,( ) 0 k 2
n

1–( )≤ ≤( ),→

S'k V' j( ) G,( ) S'k V' j( ) Gres,( )=
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Definition 3.2 We say that the traces belonging to families satisfying Equat

(3.21) arelocally valid at time step j.

Definition 3.3 A valid trace is locally valid at every time step.

Trace validation algorithm checks for partial matching up to stepj for all traces

in parallel. However, it is possible that a trace which matched up to time stepj is

invalidated in subsequent steps. Thus its set of matching traces may no long

complete. The Trace Validation algorithm iterates until afixed pointis reached.

The number of iterations cannot exceed the number of conditionals (to

discussed in Section 3.4.2). Thus the algorithm generates a polynomial numb

constraints regardless of the number of traces.

The intuition behind the Trace Validation algorithm can be provided by me

of the schedule from Figure 2.2. Assume that the guardsG1 andG2 correspond to

the conditionals 1 and 2. There are four possible control paths

. At the first step resolution vector componen

R1(1) and R2(1) are both zero since neither conditional is scheduled prior to ste

To have a causal ensemble schedule, traces for all four control paths must ma

the first step. At the next step, R1(2) is still zero since conditional1 is not

scheduled prior to step 2. However, R2(2) = c12 = 1 since conditional2 is

scheduled at step 1. Thus, the matching of traces has to be performed only

respect to conditional1 (i.e. traces for paths must match for th

first two steps, as well as the traces for ). The same argument h

for step 3.

Trace Validation implicitly verifies that the ensemble schedules do not vio

resource constraints. We indicated in Section 3.3.4 that Equation (3.7) pre

such violations from occurring on individual traces. Since traces match before

G1G2 G1G2 G1G2 G1G2, , ,( )

G1G2 G1G2,( )

G1G2 G1G2,( )
46



lved,

d no

h to

l (see

e

(i),

t of

hile

a

)):

f

nged

ned
conditional is resolved, resource bounds are met. After the conditional is reso

the traces are mutually exclusive with respect to that particular conditional an

verification is necessary. Chapter 5 discusses the alternative approac

conditional resource sharing analysis using the guard-based control mode

also [97]).

3.4.1  Proof of Correctness

Theorem 3.1 Results of two consecutive iterations of TV algorithm are sam

(S(i)=S(i-1)) iff only valid traces are in S(i).

Proof

It is obvious that TV algorithm is not adding any new traces to the set S

since at every iteration S(i) is being intersected (restricted) with the se

constraints (see line (11)). The similar statement can be made for set S’: w

restricting S’ at a particular step no new traces are added (line (8)).

⇒ part

In iteration i at step j the initial value for S’ (S’initial) is the existential

abstraction of S(i) w.r.t. set of variables (V-V’(j)) (line (6)). Notice that S’ is

minimal superset of S(i) obtained by factoring out all the variables from (V-V’(j

if any product term is removed from S’initial, S(i) would cease to be a subset o

S’initial. Since new traces cannot be added to S(i), S(i) has to remain uncha

after applying a restriction S’ corresponding to the current stepj of iteration. That

means that S(i) is a subset of the derived restriction S’final at the end of stepj as

well. Thus, S’ has to remain unmodified during the processing in stepj. According

to the previously introduced notation and Equation (3.20), S’ can be partitio

into a set of disjoint families:
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(EQ 3.22)

Application of the algorithm (lines (6)-(10)) results in:

(EQ 3.23)

For S’inital and S’final to be same it must hold:

(EQ 3.24)

This is same as Equation (3.21). Thus, all the traces are locally valid at stj.

Since the similar conclusion holds for every step within the iteration, only va

traces exist in set S(i).

⇐ part

The valid traces satisfy Equation (3.21). This constraint can be substitute

Equation (3.22) and Equation (3.23), and (⇐ part) of the proof trivially holds.

3.4.2  Convergence Analysis

We have shown that Trace Validation algorithm removes all invalid trac

However, to evaluate its practicality, it is important to demonstrate the existenc

the upper bound for the number of iterations necessary for the algorithm

converge to a fixed point. Observe that for the set of all traces obtained from

scheduler it is not possible to establish a temporal order (precedence) fo

execution of conditionals. This also cannot be done for a single ensemble sche

since the same conditional may be resolved at different time steps on diffe

control paths. For a single trace (validity of which we are checking), however,

temporal order for the execution of the conditionals is well-defined. Assume

S'initial S'k V' j( ) G,( )
0 k 2n 1–( )≤ ≤

∑=

S' final S'k V' j( ) G,( )( )
G Gres–( )∀

0 k 2n 1–( )≤ ≤
∑=

S'k V' j( ) G,( )( ) S'k V' j( ) Gres,( )( )=
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for trace T (shown in Figure 3.9) the last two conditionals to be resolved arecm and

cn and that they are resolved at time stepsi andj (i≤j), respectively. During the first

iteration of TV algorithm the local validity of traces at time stepi is enforced

before the same thing is done at time stepj. Assume that trace T’ (shown in Figure

3.9) is a matching trace for T at stepj. This means that the following condition

must hold:

(EQ 3.25)

It is possible that some traces that were locally valid at time stepi may have to

be invalidated during the second iteration. However, notice that trace T an

must match up to stepi 3:

(EQ 3.26)

Thus, during the second iteration, trace matching at stepi will either preserve

both T and T’ or remove both T and T’. In either case, no further matching

necessary at stepj at the second iteration. If removal of both traces cause

solution to become incomplete, this will be identified in further iterations.

Consequently, the number of iterations cannot exceed the number conditi

in a temporal chain of conditionals within the trace. In the worst case the num

3. In fact, as indicated in Equation (3.25), they match up to stepj.

cm

cncn

cm

T T’

Figure 3.9Convergence analysis

step_i

step_j

TV V'(j)–( )∃ T'V V'(j)–( )∃=

TV V' i( )–( )∃ T'V V' i( )–( )∃=
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of iterations is bounded by the number of conditionals (same as the numb

guards), since it can happen that all of the conditionals are resolved w

speculative execution is allowed. However, our experiments showed that

algorithm typically converged after only one or two iterations, even on rat

complex control structures discussed in Section 6.3. Obviously, a simple wa

speed up TV algorithm is to perform the inner loop of the algorithm for only fi

(k-i+1) time steps at every iterationi, where k is the number of time steps of th

minimum latency schedule. If the number of time stepsk is smaller than the

number of conditionals (possible in case of multiple conditional trees executin

parallel),k is the upper bound on the number of iterations. The efficiency of t

algorithm is quite surprising considering that the number of potential control p

can grow very quickly even for relatively small problem instances. Tra

validation proceeds in parallel across all potential control paths using

polynomially bounded number (O((#steps)(#conditionals)2)) of BDD algorithmic

steps.

3.4.3  Extracting One Ensemble Schedule

The technique presented in this thesis generates a solution in the form

collection of traces. As indicated before, a trace is a possible execution instanc

a particular control path. In BDD form, traces correspond to product terms of

Boolean function. Each trace includes the guard variables (identifying a con

path) and operation variables (indicating a schedule for the path). Essentially

solution incorporates all possible execution instances (for all control paths)

that they belong to at least one minimum-latency ensemble schedule.

The question that naturally arises is: “How can we extractone ensemble

schedule from the solution?”. This is performed using the algorithm shown
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Figure 3.10. First a Boolean functionP is formed that corresponds to a set of a

possible paths in the solution setS. Then one trace (T) belonging toSand from a

control pathC (C⊆P) is selected.C is then removed fromP, indicating the

remaining paths from which single traces are yet to be extracted. A new solutiS

is formed as a union of the selected traceT and the set of all traces covered byP.

This set is further trace validated to preserve only the traces that match the se

traceT. The process is iterated until setP becomes empty.

Individual trace selection is performed heuristically in a greedy fashion (i.e.

do not allow backtracking and do not guarantee a minimal average execution

for all paths). One possibility is to select the shortest possible trace form the s

traces covered byP 4. Since such short traces belong to control paths with a v

large number of solutions, the size ofS is reduced very quickly. This is importan

since the number of iterations of the algorithm in Figure 3.10 can be as large a

number of distinct control paths in the ensemble schedule. It is possible, how

4. Whole sets of short traces can be selected as done in some of the experiments in Sectio
6.3.

P =SetOfAllPaths(S);

while ( P !=Zero() ) {

T = SelectOneTrace(S,P);

C = Control(T);

P = P - C;

S =TraceValidation(T+SP);

}

Figure 3.10Ensemble schedule extraction
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to guide the selection heuristic using some other criteria: for example, short tr

for the paths with the highest likelihood of execution can receive a favora

treatment.

3.5  Cyclic Control

In a pipelined hardware implementation of a data-path, multiple loop iterati

can be executed concurrently. Thelatency is the period of timel between

initiations of two consecutive iterations. Loop pipelining optimizations have

goal of increasing the throughput by overlapping the execution of loop iterati

In the case offunctional pipelining, the assumption is that no inter-iteration da

dependencies exist. Given sufficient hardware resources, the latenc

functionally pipelined data-paths can be made arbitrarily small. Inloop winding

[43], this cannot be done since inter-iteration data dependencies do exist.

delayis the number of cyclesd required to complete one iteration. The number

overlapping iterations is usually referred to as the number ofpipeline stages.

If a loop body does not contain conditional behavior, our formulation can

extended (similar to the ILP technique described in [49]) to incorporate l

optimization techniques such as loop winding and functional pipelining. T

resource constraint procedure has to be modified to capture the fact that oper

at time stepss, s+l, s+2l... share resources5. Additional care has to be taken to

preserve inter-iteration data dependencies in case of loop winding..

Our technique can also accommodate the approach to cyclic control adopt

path-based scheduling [18]. In that approach, loop cycles are broken, execut

trapped in the last operation of a loop body and, after the scheduling is compl

5. This approach, also known as “modulo scheduling”, was first described in [101].
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transitions are added in the control finite state machine. However, the system

treatment of speculative execution for parallel branching control with cycles is

open research problem.

In Chapter 5, we presents an alternative approach to conditional reso

sharing. The approach is not explicitly used in the techniques described in the

of the thesis. However, it is transparent to a particular scheduling implementa

and has relevance to software pipelining techniques.

3.6  Scheduling Procedure

Pseudocode in Figure 3.11 summarizes our symbolic scheduling procedu

• First, resource constraints (their type and number) are specified by the u

• Next, a CDFG is analyzed to determine ASAP and ALAP bounds for in

vidual operations and the length of the critical CDFG path.

• The final pre-processing step determines variable ordering and initial

guard variables.

• Solution construction is performed in iterative fashion (“for” loop in Fig-

ure 3.11). At every time step (cycle)s only scheduling constraints relevan

to stepsare generated. BDDs corresponding to these constraints are pl

on a sorted list in decreasing order of their BDD size. Next, a partial so

tion corresponding to previous (s-1) steps is intersected with the constrai

BDDs6. For efficiency reasons, it is usually beneficial to combine seve

6. In reality, we actually build several lists corresponding to different constraint types. Our
experiments suggest that, for the variable ordering discussed in Chapter 4, the following
order of constraint application typically results in the most efficient construction: 1. func-
tional unit and bus constraints, 2. precedences, 3. uniqueness, 4. removal of redundantly
scheduled operations, 5. register constraints.
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items from the constraint list into a medium-sized BDD before intersect

it with the partial solution. Trace validation step has to be performed o

as a part of the termination test to verify that the set of terminated tra

indeed forms an executable schedule

Construction process is discussed in more detail in Chapter 4.

3.7  Relation to ILP

Table 3.1 illustrates some differences between our technique and

formulations of resource-constrained control-dependent scheduling. In

symbolic approach,any Boolean functioncan be used as a constraint. Unlike IL

techniques, we can efficiently generate and storeall feasible solutions to a

particular problem instance. More importantly, this requires a very little overhea

terms of formulation variables when compared to the formulation of non-branc

scheduling. In the worst case, the number of variables in our formulation

proportional to the product of the number of time steps and the numbe

operations in the CDFG. In contrast, an identical problem instance formul

using ILP [26] requires, in the worst case, an exponentially larger numbe

variables. We observe that conventional ILP techniques [41][49] essentially do

provide support for control-dependent scheduling. In such approaches, a C

operation has to be scheduled on thesame cycle on all appropriate control paths.
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BDDnode*

SymbolicScheduling ( int MAX_STEPS , directed_graph* CDFG ) {

SpecifyResourceTypesAndBounds ( ) ;

AnaylizeCDFG ( CDFG ) ;

InitializeVariables ( ) ;

BDDnode* SOLUTION = TRUE ;

BDDnode* TEMP ;

for  ( int step=1 ; step<=MAX_STEPS ; step++ ) {

BDD_List ConstraintList =BuildConstraints ( step ) ;

SOLUTION =And ( SOLUTION , ConstraintList ) ;

SOLUTION =TraceValidation( SOLUTION , step ) ; // optional

if  ( SOLUTION == bdd->Zero() )

break ;

if  ( step >= critical_path_length ) {

TEMP =Trace Validatation ( TerminationTest ( SOLUTION ) , step ) ;

if  ( ( TEMP != bdd->Zero() ) || ( step == MAX_STEP ) ) {

SOLUTION = TEMP ;

break ; // solution (possibly empty) found at thisstep

}

}

}

return  SOLUTION ;

}

Figure 3.11Symbolic scheduling procedure
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Table 3.1: Symbolic vs. ILP formulation

constraint
type #solutions #variables

Symbolic
any

Boolean
function

all O[(#cycles)* (#ops)] + (#cond)

ILP linear 1 O[(#cycles)* (#ops) * 2
(#cond)]

#cycles - number of time steps, #ops - number of operations,#cond - number of conditionals.
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Chapter 4

Construction

Formulation of scheduling constraints presented in Chapter 3 is just a part

challenge to develop a practicable scheduling alternative. CPU run-times and m

ory requirements are critical to applicability of any technique (BDD-based, in p

ticular) to “real-life” problems. In this chapter, aspects related to the BD

construction process are considered. These include a discussion of the ite

construction of a solution, BDD variable ordering strategies, as well as techni

employed to improve the run-time efficiency.

4.1  Iterative Construction Process

First we note that it is not necessary to generate uniqueness (Section 3.3.1

precedence (Section 3.3.2) constraints on a time-step-by-time-step basis. In fa

our initial formulation [92][93] all of the constraints were generated during p

processing before forming their intersection. In [93], a procedure to combine a

the scheduling constraints was described. Essentially, the construction first

bined constraints for which “good” orderings were known and then sequent

applied the other constraints. Using this technique, the final BDD typically has

atively small size. However, the size of BDDs at intermediate stages can be
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tively large, resulting in slow construction and/or large memory requirements

particular, these problems were emphasized when the upper bound on exe

time used to generate equations was larger than the actual optimal execution

To improve the robustness of the algorithm, a new iterative construction is

posed in [94]. The solution is built on a time-step-by-time-step basis: only th

constraints relevant to a particular time stepj are generated and applied to the BD

representing a valid partial solution for the previous (j-1) steps. In this way, only

partial time sequences of constraints need to be added at each step.

The iterative approach has several advantages:

• It prevents the construction of large set of spurious intermediate solutio

• Iterative construction generates a larger number of smaller constraints

the non-iterative version and can be slower for small examples. Howe

for larger cases, it offers far more robust behavior in terms of memory m

agement and allows tighter control over the computation. We observe

the sizes of intermediate BDDs are typically smaller and that generatio

“garbage” decreases significantly.

• Using iterative construction one can detect when schedules have comp

obviating the need to accurately pre-specify the number of control step

• Furthermore, since the valid partial schedules are available after every

ative step, it is possible to devise run-time efficient symbolic heuristic

be discussed in Section 4.4.3).

Iterative construction process is illustrated in Figure 4.1. During the const

tion process, some traces (e.g. trace labeledt2) present after (k-1) steps may get
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eliminated when constraints relevant to stepk are applied. At the same time, som

partial solutions after (j-1) steps can generate several new partial solutions (

traces labeledt3 andt4 are extensions of tracet1).

To verify the existence of an ensemble schedule, trace validationmustbe done

when a termination test is performed on a set of traces that have concluded e

tion. Note that this set is typically significantly smaller than the set of all trace

the intermediate solution. To reduce the number of traces (and thus, poten

reduce the intermediate BDD size), it is possible to perform trace validation a

end of every iteration. This can, however, lead to somewhat increased CPU

and more intensive garbage collection. We enforced trace validation only whe

intermediate BDD size exceeded a pre-specified threshold. Similarly, the uni

ness constraint for operationj can be applied just at step(ALAP)j (i.e. application

of only Equation (3.2), Section 3.3.1, is sufficient). This diminishes the numbe

Figure 4.1Solution construction

1 0

1 0

1 0 1 0

1 0

1 0

1 0

partial schedules
after (k-1) steps

partial schedules
afterk steps

termination test
constraints for stepk

(data/control flow dependencies,
resource/timing constraints)

trace validation

t1
t2

t3 t4
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constraints that have to be applied and typically increases the speed of con

tion. However, note that the speed-up techniques described in this paragraph

produce intermediate solutions that temporarily contain invalid traces.

4.2  BDD Form of Constraints

It is of the utmost importance that the individual scheduling constraints h

small size and are amenable to an efficient construction. Assume that a part

operation can be scheduled over a time span of four cycles and that the vari

corresponding to instances at individual time steps are labeled A, B, C and D.

a requirement that the operation has to be uniquely scheduled (i.e. at one tim

only) can be written as:

(EQ 4.1)

A BDD corresponding to Equation (4.1) is shown in Figure 4.2. Since

equation is symmetric, BDD size is independent of a selected variable orde

and the BDD size is guaranteed not to exceedn2 (wheren is the number of vari-

ables) [12]. In fact, for the particular type of equation discussed above it ca

easily seen that the number of variables is exactly (2n-1) 1.

ABCD ABCD ABCD ABCD+ + + 1=

B

1 00

A A

B

CC

D
1

1 1

1 1

1 1

0

0 0

0 0

0 0

Figure 4.2Uniqueness constraint (4 time steps span)
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However, since the CDFG to be scheduled contains more than one opera

the variable ordering issue plays an important role. Assume that all of the varia

corresponding to each individual operation have consecutive BDD indices. In

case, all BDDs corresponding to individual uniqueness constraints would have

junctive variable support and the resulting overall constraint would be a sim

concatenation of individual constraints. On the other hand, if BDD indices co

sponding to each individual operation are not consecutive, the overall const

(intersection of individual constraints) tends to grow rapidly in terms of its BD

size. In the extreme case, when variables corresponding to different operation

completely interleaved, it may even become impossible to build the intersectio

the constraints. In one relatively small benchmark problem reported in [93],

size of such constraint varied between 158 and 4,956 nodes.

The generalized resource bound constraint BDD shown in Figure 4.3 (in

duced in Equation (3.7), Section 3.3.4) is frequently used as aconstruction tem-

plate in symbolic scheduling. Some applications include:

• selection of solutions that satisfy a particular resource constraint at a pa

ular time step,

• interior constraints (to be described in Section 4.4.1),

• scheduling heuristics (to be discussed in Section 4.4.3), and

• post-processing (after the scheduling is completed, the bounds can be

tively tightened/identified).

1. For simplicity, we assume that there is no control-dependent behavior (i.e. the problem
can be described as a DFG and all guard functionsΓi are tautologies).
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Vertices in thisif-then-elsetemplate are not restricted to Boolean variables

complex Boolean functions (f1, f2,... fn) can be inserted into the template. Note th

the number of product terms in a sum-of-products representation of Equation (

Section 3.3.4 is (nk ). However, its BDD form is compact (O(nk) nodes) and can be

built efficiently usingite [10][12] (if-then-else) calls. This is very important since

due to its regularity, the constraint satisfies both desirable properties state a

beginning of this section (i.e. it is both small and easy to construct)2.

Assume that all of the CDFG operations execute using single-cycle functi

units. In such case, functional unit resource constraints similar to the one show

Figure 4.3 have to be generated for each time step. This means that the order

which variables corresponding to different CDFG operations are interleaved i

2. This property of the template shown in Figure 4.3 can be utilized in developing efficient
“pseudo-polynomial” BDD algorithms for some hard combinatorial problems. For exam-
ple, in an unrelated set of experiments, we were able to find maximal clique(s) in undi-
rected random graphs with 100 nodes and edge-probability of 0.5. Such instances ma
pose problems for heuristic algorithms, since for each node the expected number of inc
dent edges is 50, while the expected size of the maximal clique is close to 10.

0 1

A

B B

C C C

D D D

E E

F F

G

E

(n-k)

(k+1)
1

1 1

1 1 1

1 1 1

1 1 1

1 1

1

0

0 0

0 0 0

0 0 0

0 0 0

0 0

0

Figure 4.3At-most-k-of-n constraint (k=4, n=7)
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most desirable ordering as far as the construction and intersection of indivi

resource constraints is concerned. Unfortunately, this is likely to be the worst

ordering for the uniqueness constraint discussed previously. Several example

cussed in [93] provide experimental support for this intuitive observation.

4.3  Variable Ordering

As indicated in Section 4.2., although individual equations have efficient or

ings, optimal orderings for different equations frequently contradict. In fact,

optimal BDD variable ordering problem is known to be NP-complete [12][39][65

Early in this research, numerous strategies were investigated and used to

non-iterative solution construction [92][93]. In this thesis, however, all of the p

sented results are generated using the variable ordering shown in Figure 4.4,

non-guard variables are ordered by increasing time step and guard variable

placed on top (i.e. closest to the root of BDD). Essentially, CDFG operations

sorted based on theiras-soon-as-possibletime and operation variables correspon

ing to the same time step are interleaved3. This ordering typically results in smal

3. This is similar to heuristic ordering strategies discussed in [72].

1 0

guard variables

operation variables
time step

‘sharing’ between
the solution sets
for different control
paths increasing

+

Figure 4.4BDD representation of the solution
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BDDs, enables fast manipulations and accommodates iterative construction

intuitive explanation can be offered: using the implemented ordering, applicatio

constraints and BDD manipulations are usually localized to a relatively narrow

izontal slices close to the root node of a partial BDD solution.

The effect of the implemented variable ordering using dynamic variable

ordering option from our BDD software package was investigated in numer

experiments. Re-ordering algorithm is based on a “sifting” procedure describe

[106]. Although time-consuming, the algorithm is still not exact. However, t

algorithm’s effectiveness has been demonstrated in numerous large prob

One-pass re-ordering was applied to the final solution only. The results are

lated in Figure 4.5 for three types of benchmarks studied in Chapter 6. The ex

ments show that for, particular problem instances, BDD size can be improve

much as three times. Thus, devising more complex heuristics (capable of ta

into account both the CDFG structure of the problem under consideration as

as the hardware/timing constraints) can be beneficial. However, this leads to

75

improvement [%]

50

25

min

avg

max

EWF FCDT control-dependent
benchmarks

100

Figure 4.5Effects of BDD variable ordering
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sort of a “circular” argument, since such ordering heuristics would likely have

be able to resolve many very hard scheduling issues. Additionally, our experim

tal results from Chapter 6 reveal the solution sizes of the order O(n2), wheren is

the number of formulation variables. This is very encouraging since the theore

results from [65] demonstrate that the vast majority of general Boolean func

have exponentially expensive optimal ordering.

4.4  Speed-Up Techniques

In this section, several techniques improving the run-time efficiency of sy

bolic scheduling techniques are discussed. Accompanying experimental resu

be presented in Chapter 6.

• To prevent partial solutions from becoming prohibitively large during t

iterative construction process a set of auxiliary scheduling constraints (inte-

rior constraints) is derived (Section 4.4.1).

• In Section 4.4.2, it is demonstrated how certain complex constraints ca

appliedimplicitly (i.e. without explicitly building a constraint BDD).

• Finally, for very large problems consisting of thousands of representa

variables,set-heuristicsare described that preserve whole sets of par

solutions exhibiting desirable properties (Section 4.4.3).

4.4.1  Interior Constraints

In the current implementation, the solution is built iteratively and a terminat

test is performed after all of the constraints relevant to a particular time step

applied. Although the BDD size of the final solution is typically very moderate,

intermediate solutions can become prohibitively large, resulting in a slower c

struction and larger memory requirements. Ideally, the intermediate size sh
65
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never exceed the size of the final solution. In such a scenario, as long as the

solution fits the memory limits of the run-time environment, the software t

should be able to complete a scheduling task.

To alleviate the problems arising from the uncontrolled growth of the interm

diate solution, we identify and discard a set of partial schedules that “hopele

lag behind” during the construction process and cannot contribute to the s

optimal solutions. This means that at a particular time step such partial sche

cannot terminate for given resources and a pre-specified upper bound on exe

time. This consideration leads to a set ofinterior constraintswhich is dynamically

generated during the scheduling in order to prune the BDD.

The main strategy is illustrated by the following example: Assume that at

beginning of steps there aren addition operations that have ALAP (as-late-as-po

sible) bounds in the range [s... (s+k-1)] and that there are onlym single-cycle

adders available. At least (n - km) of these addition operations must be complet

prior to steps in a feasible solution. Selection of a subset satisfying this propert

done efficiently using the constraint template shown in Figure 4.3. Such c

straints can be derived for each functional unit type (including multicycle a

pipelined units). Interior constraints withlookahead kenable an early detection o

many (not necessarily all) partial schedules that are destined to be discarded w

the nextk steps. Since the completeness of the solution set is preserved, this

not impact optimality. Experimental results illustrating the benefits from inter

constraints application are presented in Section 6.1 and Section 6.4.

A further improvement in run-time efficiency can be expected if execut

interval analysis [115] is used for search space reduction. Interior constraints

be viewed as a subset of such analysis.
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4.4.2  Implicit Application of Complex Constraints

The generalized resource bound constraint BDD shown in Figure 4.3 is

quently used as aconstruction templatein symbolic scheduling. Vertices in this if-

then-else template are not restricted to Boolean variables -- complex Boolean

tions (f1, f2,... fn) can be inserted into the template.

However, even when (f1, f2, ... fn) are rather simple, the overall constraint ma

become extremely large. Consequently, it can happen that the partial sched

solution is of a very moderate size, but the constraint to be applied cannot be

However, the scheduling constraint need not be explicitly built. The following c

be done instead:

• Introduce a new set of auxiliary variables (y1, y2, ... yn) corresponding to

the set of functions (f1, f2, ... fn).

• Build the template functionT (shown in Figure 4.3) using only (y1, y2, ...

yn).

• Compute:

(EQ 4.2)

whereP’ is a partial solution to which the constraint is applied.

• Clearly, a new partial solutionP” can be obtained using the recursive fo

mula:

(EQ 4.3)

where∃xf = fx + fx . This amounts to the standard BDD substitution operatio

(EQ 4.4)

P
0

And P' T,( )=

P
i( )

yi And P
i 1–( )

Xnor yi f i,( ),( )( )∃=

P
i( )

P
i 1–( )

yi f i≡=
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Using this approach, in all of the benchmarks discussed in Section 6.4

were able to apply register constraints that could not be built explicitly.

4.4.3  Symbolic Heuristics

The main challenge for symbolic techniques can be summarized by Brya

observation from [13]:

“... In many combinatorial optimization problems, symbolic methods us

OBDDs have not performed as well as more traditional methods. In these p

lems we are typically interested in finding only one solution that satisfies so

optimality criterion. Most approaches using OBDDs, on the other hand, deriv

possible solutions and then select the best from among these. Unfortunately,

problems have too many solutions to encode symbolically...”.

It has been shown that some standard benchmark instances have billio

optimal solutions ([94], Chapter 6). In such cases, the BDD representation

become too large to be practical since both its size and CPU run-time increas

nificantly.

Heuristic scheduling techniques [18][84][87] are applicable to large proble

but may fail to find an optimal solution in tightly constrained problems. This is p

marily because the heuristics cannot recuperate from early suboptimal deci

which typically preserve only one representative from a possibly very large poo

candidates.

Since valid partial schedules are available after each time step of our sym

construction, it is possible to devise heuristic scheduling techniques.The sim

utility-basedheuristic [94] propagates only the subset of schedules with maxim
68
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utilization of resources (see Figure 4.6). Utilization is measured by the numbe

operations active in each time step. The utility-based heuristic is implemente

iterative application of the generalized resource bound. We enforce maximum

lization of functional units, and then iteratively relax this constraint until satisfy

partial solutions are found. Sinceall such schedules are propagated, this sim

heuristic has good behavior. An additional (second-level) pruning strategy (util-

ity+CP) based on the AFAP (as-fast-as-possible) scheduling of the opera

belonging to the critical path(s) is possible as well. Essentially, the sched

favors the partial solutions where the largest number of operations belonging t

critical path(s) have been scheduled. This strategy is effective when the numb

operations that can be scheduled simultaneously is very small or when the s

BDDnode*

SetUtilize(BDDnode*  partial, BDDnode*  sink, int step, int utility) {

BDDnode*subset;

if (step>=minimum_execution_time) { /* check for end */

subset =And(partial, sink);

if (subset!=0) return (subset);

}

do {

subset =And(partial,ChooseExactly(utility));

if (subset==0) utility--;

else return(subset);

} while(utility>=0);

return (0);

}

Figure 4.6Utility-based set-heuristic
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ule is expected to take very large number of steps (some of the problems in Se

6.4 execute in more than 100 cycles).

The algorithm can be made less greedy by applying it over a sliding window

several time steps or over a range of utilizations. Finally, the BDD pruning can

delayed behind the current scheduling step to create “look-ahead”. These ma

lations are surprisingly efficient and consist of repeated use of the constru

template shown in Figure 4.3.

An accurate estimate of the upper bound on scheduling latency may no

available before scheduling. Unfortunately, the search space increases enorm

fast with relaxation of this bound. We show in Section 6.4 that set-heuristic sc

uling is very robust: the construction pace shows very weak sensitivity to the u

bound used to initialize the scheduler. It is very important that the heuristics

robust, since they can be used to derive accurate bounds for the exact sche

whose run-time efficiency is more sensitive to the bound estimates.

4.5  Alternative Representations

This section describes alternative symbolic representations that were co

ered during this project: Zero-Suppressed BDDs [75] and “log encoding”.

believe that our experience with these approaches may prove valuable fo

future implementations and extensions of our work.

4.5.1  Zero-Suppressed BDDs

Zero-Suppressed Binary Decision Diagrams (0-sup-BDDs or ZBDDs) are

structure optimized for an implicit set representation in combinatorial proble

[75]. The major difference between 0-sup-BDDs and ROBDDs is the reduc

rule shown in Figure 4.7. In ROBDDs, reduction is performed through “do
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care” elimination -- a graph node is eliminated if its both sons are isomorphic

left-hand side of Figure 4.7). In 0-sup-BDDs, a graph node is eliminated if

“True” son points to a “0” terminal (empty set). Since solutions of many combi

torial problems are rather sparse, this reduction rule allows an implicit represe

tion of the majority of variables that correspond to the elements not present in

final solution. Recently, a 0-sup-BDD were applied to representation/manipula

of polynomials [76][98].

The advantage of using ZBDDs in exact symbolic schedulers is effectiv

illustrated by the example of theElliptic Wave Filter(EWF) benchmark shown in

Figure 4.8. The 28-cycle EWF instance (using one adder and one 2-cycle

pipelined multiplier) has only 34 operations but 437 variables are used to f

describe the problem. Every solution (a path to “True” node in ROBDD repres

tation) consists of 437 variables out of which only 34 are “1”4. A vast majority of

variables are equal to “0” (i.e. a particular operation is not scheduled at a partic

time step), but are explicitly represented in the ROBDD. Consequently, the s

tion representation has more than 130,000 ROBDD nodes. Since the 0-vari

4. Actually, 35, including the “sink” node used solely for termination testing.

0

x

f

0 1

f

x

f

0 1

ROBDDs
(don’t care elimination)

0-sup-BDDs
(zero suppression)

Figure 4.7BDD reduction rules
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that belong to the solution are implicit (suppressed) in 0-sup-BDDs (ZBDD

much larger compression of the solution set is possible. In fact, our experim

showed that for a 28-cycle EWF, a nearly ten-fold reduction in size is achieve

15-fold reduction is observed when a 2-cycle adder is used (967 variables

add

multiply

t2in

outt2

t13

t13 t26

t26

t18

t18

t38

t38 t33

t33

t39

t39

Figure 4.8Elliptic wave filter (EWF) benchmark
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cycle optimal solutions). This marked compression of the representation size o

a potential for analysis of much larger problems than is possible using ROBD

In fact, for some examples discussed in Chapter 6, the number of nodes in the

mal solution sets is occasionally smaller than the number of variables descr

the problem.

We observed that, when applied to the scheduling problem, 0-sup-BDD ma

ulations are slower than similar ROBDD manipulations. This seems to be ca

by the frequently simpler ROBDD form of constraints. The constraint equa

may involve only a few formulation variables and the corresponding ROBDD r

resentation is typically small. However, such constraint may become more c

plex when converted to a 0-sup-BDD becausedon’t-carevariables are not implicit

in the 0-sup-BDD representation. Another reason for a relatively lower efficie

of 0-sup-BDDs may be due to the implementation specifics of the basic a

rithms. In ROBDDs, all of the basic Boolean operations (e.g.And, Or, Not) are

implemented using a singleite (if-then-else) call [10]. For example

: . (EQ 4.5)

This allows a very efficient hashing and cashing implementation policies

drastically improve computation time [10]. In 0-sup-BDDs, there is no equival

to ite. In fact, separate algorithms are developed for different set operations

Intersection, Union, Difference). Consequently, computational efficiency of a 0

sup-BDD package can be expected to be reduced compared to the ROBDD

Additionally, in the current scheduler implementation, all of the individual co

straints are generated as ROBDDs and then converted to 0-sup-BDDs prior to

intersection. This introduces a very small overhead for large problems, and is

eficial since:

And F G,( ) ite F G 0, ,( )=
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• the ROBDD form of constraints is well-understood and they can be b

efficiently,

• RO-to-0-sup BDD conversion is a simple one-pass algorithm, and

• a significant software infrastructure for ROBDD-based symbolic sched

ing was already available.

All of the larger DFG instances presented in Chapter 6 were solved using

ROBDDs and 0-sup-BDDs. Not surprisingly, ROBDD implementation requir

more run-time memory (although the requirements were not excessive). Neve

less, CPU times for ROBDD version were still typically better. In addition to a d

cussion from the previous paragraph, it should be acknowledged tha

significantly larger amount of programming hours and experience was investe

the ROBDD package implemented by our CAD group.

4.5.2  Log Compression

The formulation presented in Chapter 3 assumes that a variable is assign

particular instance of a particular operation (i.e. Csj) stands for: instance of opera

tion j at time steps. This effectively corresponds to a “one-hot” encoding of tim

and is an inherently redundant representation. In case of schedules where a n

of operations in CDFG is large, decreasing bounds on available resources le

large operation mobilities and, consequently, to large number of BDD variab

For example, 28-cycle EWF benchmark requires 436 variables (on average,

variables per operation). The question that arises naturally is whether the sch

ing formulation can be modified to reduce the number of variables. One possib

is to impose a logarithmic compression of time in the following fashion:
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• specify the upper bound on execution time for a problem instance to

scheduled (tub), and

• createlog(tub) variables for each operation from CDFG5.

For example, all benchmark instances with the upper bound less than 32

steps can be scheduled using at most 5 variables per operation. Potential a

totic benefits are obvious: if the number of operations in a CDFG is nops, than a

total number of variables is O(nops* tub) for the “one-hot” representation and

O(nops*log(tub)) for the “log” representation. No general claim can be made t

“log” compression leads to smaller BDD sizes, but it can be observed that m

than one solution to the scheduling problem can be represented in a single

path. Figure 4.9 demonstrates this attractive property.

5. This resembles the formulation proposed in [54] and implemented using multi-valued
decision diagrams. At the time when we considered “log encoding” representation, we
were unaware of that work. Consequently, the approach presented in Section 4.5.2 ha
unique construction and constraint generation aspects. We thank T. Kam and R. Brayto
for referring us to [54] during our visit to Berkeley in February, 1995.

1

2

3

5

4

6

op1 X01X11( )→

op2 X02X12( )→

op3 X03X13( )→

op4 X04X14( )→

op5 X05-( )→

op6 --( )→

Figure 4.9Path sharing
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Assume that the CDFG has to be scheduled in four time steps using infi

resources. Thus 12 variables are needed in the formulation (two for each o

tion) 6. Xij stands forith variable of operationj (0 ≤ i < log(tub)). There are eight

possible solutions (operation5 can be scheduled at steps 0 and 1, operation6 can

be scheduled at any step), but only asingleproduct term is needed to represent

Encoding that was used in the previous example was a simple binary one -- i

be observed, however, that Gray’s encoding would lead to a similar compressi

the result.

Similarly, assume that four time steps are allowed to schedule operations1 and

2 in Figure 4.10. In this case, there are six solutions represented by only three

intersecting cubes (paths in BDD). The first term ( ) corresponds to f

solutions: operation_1 scheduled at the first two steps (0 or 1) and operati

scheduled at the last two steps (2 or 3).

We decided to perform a simple translation from the “one-hot” formulati

using the notion of “minterm templates” that are pre-constructed before the a

scheduling is performed. When a particular constraint has to be generated w

use the necessary templates and shift them accordingly. The following exa

6. In this simple example without resource constraints, a number of variables using the
“one-hot” representation is actually smaller (10).

2

1
X11X12 X01X11X02X12 X01X11X02X12+ +

Figure 4.10More path sharing

X11X12
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illustrates the basic idea. Assume that operationi precedes operationj and that

both operations execute in one cycle. Then, at time, stepk a precedence constrain

has to be satisfied:

• (operationi was scheduled before stepk) or (operationj is not scheduled at

stepk).

To implement precedence constraint between arbitrary two operation

CDFG, two kinds of templates can be generated for every time stepk ≤ tub:

• at[k]  is an encoding (minterm) of a time step value k,

• before[k] is a Boolean function that is equal to the sum ofat[l] for 0 ≤ l < k.

Storing all of the templates causes very small memory overhead to the sy

since there is a very large amount of sharing between the BDD representatio

the templates7.

There are two obvious extreme cases we inspected for implementing var

ordering:

• interleave the corresponding variables belonging to all operations (“in

leaved” ordering [54]) -- most significant bits closest to the BDD root

• assign consecutive BDD indices to all the variables corresponding to a

ticular operation (“natural” ordering [54])

When “one-hot” encoding of time is used, the iterative construction proc

(Section 4.1) and the corresponding variable ordering (Section 4.3) are effi

7. We used very simple and unique encodings for each time step (standard binary o
Gray’s encoding). Arguably better results might be expected if some redundancy is
allowed.
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because BDD variables are gradually introduced on time-step-by-time-step

and manipulations are frequently localized close to the root of the BDD. W

“log”’ encoding is used, a similar idea can be applied (i.e. variables are introdu

on bit-per-bit basis). Effectively, the scheduling problem is solved inlog(tub)

steps by dividing the time dimension into the “bins” of equal size and apply

gradually more restrictive constraints. We describe the basic principle very in

mally, using the following example. Assume that a solution is sought for EW

with one 2-cycle non-pipelined multiplier and two single-cycle adders and th

conservative upper bound of 22 time steps is specified (tub). Five variables per

operation are needed (24 < tub < 25).

STEP_0:

• Divide the problem in two bins (bin_0 andbin_1) of size 16

• Preserve the precedence constraint for every pair of operations (i.e. ifop_i

precedesop_j, it is not legal to putop_j in bin_0 andop_i in bin_1)

• Analyze the CDFG and detect operations that cannot be placed (“chain

in the same bin (e.g. a critical path fromop_i to op_j is larger that the bin

size). Generate and apply the corresponding constraints.

• Apply ASAP/ALAP and resource bounds on both bins. The constraints

only MSB variables: there are just two bins and the bits of lower sign

cance should obviously remain “don’t cares”.

STEP_1:

• Same as STEP_0, just 4 bins of size 8 are used.

...
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STEP_4:

• There are 32 bins of size 1. Stop at the earliest time step when termina

(schedule completion) is detected.

Notice that only a portion of variables (one bit per operation) is introduced

each step.

We performed experiments using the “log” encoding and both extreme vari

ordering (natural and interleaved) introduced earlier in this section. Only fu

tional unit resource constraints were applied. Once the solution was gener

variable re-ordering was used to investigate potential improvements in the B

size. Somewhat surprisingly, the solutions were typically larger than th

obtained using the “one-hot” encoding. We observed that the number of B

paths decreases (typically, 2-3 times) in the “log encoding” representation du

the ability to encode several solution in a single path. This, however, occurs a

expense of a reduced sharing in a BDD data structure.

Section 4.5.2 illustrates an intriguing idea we considered in the early stage

this project. Although experimental results did not live up to our expectatio

some caution should be exercised in labelling this previously undocumented

as definitely impractical. More elaborate encodings and variable ordering sch

may improve applicability of the described approach.
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Chapter 5

Conditional Resource Sharing Analysis

Hardware resource optimization of control/data flow graphs (CDFGs)

particularly important when conditional behavior occurs in cyclic loops a

maximization of throughput is desired. In this section, an exact and effic

conditional resource sharing analysis using a guard-based control represen

(Section 3.1) is presented.

Typical deficiencies observed with previously proposed HLS approache

conditional resource sharing in acyclic CDFGs include:

• no support for code motion,

• restriction to a fixed order of execution of conditionals,

• restriction to nested if-then-else control structures, and

• no support for parallel and correlated control structures.

Moreover, it has been reported [103] that some representations

occasionally lead to incorrect conclusion on mutual exclusion between

operations [120].
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Numerous techniques for cyclic data-flow graph (DFG) optimizations h

been proposed, ranging from heuristics [22][63][90][107] to ILP metho

[42][49]. However, none of them discusses cases in which conditional beha

occurs within the loop body. The BFSM-based approaches are applicable to c

CDFGs, but they either lack a formal treatment of conditional resource sha

[128] or introduce an excessive number of 0/1 variables to model resource

exclusivity constraints [113]. Recently,rotation scheduling[22] has been extended

to pipelining of CDFGs [110]. This technique is based on acondition flagrepre-

sentation restricted to cases where execution conditions can be represente

Boolean cube. Conditional resource sharing analysis is performed usingusage

flagsassigned to individual functional units. Support fornode dividing[119] is not

discussed.

The guard-based analysis presented in this chapter is transparent to a sch

implementation. The proposed technique systematically handles com

conditional resource sharing for cases when software pipelined loops inc

conditional behavior within the loop body. Additionally, the analysis is exact, th

avoiding over-estimation of resource requirements (for example, see Figure

Chapter 1). Throughout this section,At-most-k-of-n constraint(a.k.a. “generalized

resource bound”) described elsewhere in this thesis (Equation (3.7), Figure

will be referred to asBk,n.

5.1  Acyclic CDFGs

Guard functions may be used to perform conditional resource sharing ana

for anarbitrary number of CDFG operations. We illustrate the idea using a CD

fragment shown in Figure 5.1. Assume that the scheduling has been complete

step_1and that operations1 and2 have been scheduled in thestep_2. We want to
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analyze scheduling operation3 in step_2assuming that only one “white” resourc

is available. Evaluating anB1,3 using guard functionsΓi (i = 1, 2, 3) as arguments

we obtain:

(EQ 5.1)

Since the constraint evaluates to “0”, we conclude that the schedul

infeasible on all paths. If two resources are available, the constraintB2,3 evaluates

to “1”:

(EQ 5.2)

indicating that operation3 can be scheduled on all paths

Let us assume now that operation1 has been scheduled for execution in

speculative fashion instep_1, and that operation2 is scheduled instep_2. Can

operation3 be scheduled in step_2 with only one resource? We evaluateB1,2

constraint usingΓi (i = 2, 3) and obtain:

(EQ 5.3)

This result indicates that the resource bound is met only on path G. In genera

following theorem holds1:

1. This reduces to a pair-wise mutual exclusion test (ΓiΓj=0) as a previously observed spe-
cial case (e.g. [8][53][92]).

T F
321 Γ3=1Γ1=G Γ2=G

step_1

step_2

Figure 5.1Example CDFG fragment

B1 3, Γ1 Γ2 Γ3, ,( ) Γ1Γ2 Γ1Γ3 Γ2Γ3+ + 0= =

B2 3, Γ1 Γ2 Γ3, ,( ) Γ1 Γ2 Γ3+ + 1= =

B1 2, Γ2 Γ3,( ) Γ2 Γ3+ G= =
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Theorem 5.1 Assume that n operation instances are candidates for schedu

at a particular time step and that there are only k resources available. Then

evaluation of Bk,n(Γ1, Γ2, ... ,Γn) returns all paths where the resource constraint

not violated.

The proof is straightforward since every individual control path is represen

as a product of guard variables. We can evaluateBk,n(Γ1, Γ2, ... , Γn) for every

possible combination (minterm) of guard variables and obtain “1” (if the minte

is covered by at mostk Γi functions) or “0” (if the minterm is covered by more tha

k functions). Note that although the conceptual complexity of the test is very h

it can be performed efficiently sinceΓi functions are represented by BDDs -- th

computation amounts to insertion of guard functions into the templateBk,n.

We define an operation j’s split-function Sj as a Boolean intersection:

(EQ 5.4)

Remember thatΓj indicates all control paths where operationj must be

scheduled. ThusSj indicates all paths where operationj can be scheduled at a

particular time step whenBk,n is evaluated. IfSj is equal toΓj, operationj can be

completely scheduled at that time step. IfSj is a proper subset ofΓj (Γj⊃Sj), node

splitting (dividing) may be considered. In the previous example,S3=G and

(Γ3⊃S3). Thus, operation3 can be scheduled on path G instep_2. On paths:

(EQ 5.5)

operation3 has yet to be scheduled in the subsequent steps2.

To support code motion across the basic code blocks,Γi functions may have to

be modified during the scheduling. For example, if operation1 (Figure Fig.5.1) is

2. The scheduler, however, has to ensure that node dividing is done in a causal manner
(e.g. not to allow dividing of nodes with respect to a conditional whose value is still
unknown at a particular time step).

Sj Γ jBk n, Γ1 Γ2 … Γ j … Γn, , , , ,( )=

Γ3\S3 Γ3S3 G= =
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executed speculatively instep_1, variable G has to be factored out fromΓ1 (i.e. Γ1

becomes “1”), since the corresponding conditional (shaded comparato

unknown at that time. This reflects the fact that duringstep_1, paths G andG are

indistinguishable.

The proposed approach is memory efficient. We observe that the numb

operations in a typical CDFG is significantly larger than the number of potenti

distinct guard functions. Only one pointer to a guard function need be stored

each operation instance during the scheduling process. Furthermore, me

overhead for storing guard functions is expected to be very low due to the sha

property of the BDD data structure. Compared to the method proposed h

condition vectors [119] are less efficient and have smaller expressive power

in that approach:

• control paths are “one-hot” encoded,

• no sharing is possible between the vectors, and

• execution order of conditionals is pre-specified.

Guard-based analysis is not restricted to physical hardware resources, bu

be applied to modelling more general constraints. As indicated in [69],

property is very important for industrial HLS tools. For example,mutual exclusion

of n signalsis tested by usingB1,n(Γ1, Γ2, ... ,Γn). A condition forsynchronization

of n signalsis evaluated using the complement ofB(n-1),n(Γ1, Γ2, ... , Γn) -- this

identifies all control paths where all signals occur simultaneously.

5.2  Pipelining of cyclic CDFGs

In a pipelined hardware implementation of a data-path, multiple loop iterati

can be executed concurrently. Thelatency is the period of timel between
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initiations of two consecutive iterations. Loop pipelining optimizations have

goal of increasing the throughput by overlapping the execution of loop iterati

In the case offunctional pipelining, the assumption is that no inter-iteration da

dependencies exist. Given sufficient hardware resources, the latenc

functionally pipelined data-paths can be made arbitrarily small. Inloop winding,

this cannot be done since inter-iteration data dependencies do exist. Thedelay is

the number of cyclesd required to complete one iteration. The number

overlapping iterations is usually referred to as the number ofpipeline stages.

Figure 5.2 shows an example of overlapped execution of a loop usinns

pipeline stages. Assume that the loop body exhibitsnp distinct control paths. In

Figure 5.2, the number of paths may grow as:

(EQ 5.6)

stage 1

stage ns

l - latency (iteration interval)

d - delay (iteration time)

123k

l

d

Figure 5.2Overlapping of loop iterations

ns - number of pipeline stages

LOOP

ITERATION:

...

stage 1

stage ns

stage 1

stage ns

stage 1

stage ns

np( )
step 1–( )

l
------------------------ 1+ 
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For example, for time steps , the number of paths is potentia

(np)
2, since two iterations co-execute.

Clearly, to have a finite state controller, the number of execution paths mu

bounded3. This implies limiting state information available to the controlle

implementing the schedule. At minimum, the state depends on allns loop

iterations in the pipeline4.

The unfolded execution of a functionally pipelined version ofKim (Figure 3.1,

Chapter 3) is shown in Figure 5.3. We assume two adders (“white” operation),

subtracter (“black” operation) and one comparator (single-cycle units assum

3. Some compilers use similar constraints to guarantee termination of the scheduling algo
rithm [3].
4. Increasing the amount of state available for control generation may improve a schedule
but is likely to lead to more complex controllers.

l step 2l≤<

loop_iterations_(2k-1)loop_iterations_(2k)

la
te

nc
y

de
la

y

stage_1 stage_2

[TT, F-]

[TF]

T

T

F

F

T

T

F

F

[TT, F-]

[TF]

T

T

F

F

Figure 5.3Unfolded execution pattern for Kim’s example
86



not

y of

delay

uards

, the

t. In

hen a

case

.4.

ite”,

, the

ing.

s. For

e

The example requires 8 cycles on these resources if loop pipelining is

performed5. With loop pipelining, a schedule using 2 stages and having latenc

4 (using the same resources) can be found as indicated in the Figure 5.3 (

remains 8 cycles). One operation is divided as indicated by the values of the g

corresponding to conditionals (C1, C2). The indicated block in the middle of the

figure shows a pipelined loop pattern. Although there are nine control paths

control is simple since the schedules for the two iterations are independen

general, this need not be the case: superior schedules may be achieved w

control correlation is introduced among the overlapping iterations.

We now extend conditional resource sharing analysis to the more general

of pipelining of cyclic CDFGs. Consider the CDFG shown in Figure 5

Assuming that only one single-cycle resource of each type (comparator, “wh

“black”) is available and that speculative operation execution is not enabled

CDFG from Figure 5.4 can be scheduled in 4 time steps without loop pipelin

However, latency can be reduced to 2 time steps using three pipeline stage

5. Assuming no speculative execution, 8-cycle schedule can be found even using only on
single-cycle adder.

T FΓ=1

Γ=G1G2

1

2

4

3

65 7

Γ=G1

Γ=G1

Γ=G1G2

T F

Figure 5.4Example CDFG to be folded
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simplicity, we assume that the CDFG has to be executed an infinite numbe

times and that no inter-iteration data dependencies exist. These assumptions

affect the generality of the approach6.

Assume that the schedule is to be found usingns pipeline stages. We specify a

bound on the information available to the controllerni (ni≥ns), indicating that the

state of the lastni iterations is preserved and used in decision making. Assume

the CDFG to be scheduled hasnp control paths. Clearly, the bound on the numb

of distinct control paths grows as O[(np)
ni]. To accommodate all possible

scenarios, guard variables are doubly-indexed.Gk,i stands for “guard

corresponding to conditionalk in pipeline stagei”, where (1 ≤ i ≤ ni). Index i is

called the “pipe index”. Values ofi larger thanns correspond to loop iterations tha

left the pipeline. Operations at different pipeline stages correspond to distinct

iterations. Thus, Gk,i corresponds toany loop iteration currently present at stagei.

Additionally, operationj is guarded byΓj,i (the guard function for operationj at

pipeline stagei). The complexity of control representation grows asninc (nc is the

number of conditionals).

The overlapping iterations are treated as parallel threads of computa

leading to the following resource analysis procedure7:

1. For the original CDFG, assign guard variables Gk to the corresponding

conditionals and for each operation j compute its guard functionΓj.

6. In the general case, a loop test must be explicit in the CDFG specification and the
scheduler has to enforce inter-iteration precedences.
7. Some schedulers first generate a feasible pipelined schedule (in terms of dataflo
dependencies) and subsequently resolve resource violations by incremental partia
rescheduling [63][89]. Alternatively, the initial non-pipelined schedule can be free of
resource violations and the latency is then reduced through incremental operation rotatio
[22][110].
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2. ComputeΓj,1 by substituting Gk,1 for each Gk in Γj. Resource constraints ar

evaluated as described for a CDFG without loop folding (Section 5.1).

3.a.If, during scheduling, operationj is moved from pipeline stagei to pipeline

stage (i+1), computeΓj,(i+1) by incrementing the pipe indices by 1 for all guar

variables inΓj,i. Movement of operations that increase the pipe index beyondni is

not allowed, since this would violate the pre-defined boundni.

3.b. If, during scheduling, operationj is moved from pipeline stagei to stage (i-

1), computeΓj,(i-1) by decrementing the pipe indices by 1 for all guard variables

Γj,i. Operation movement decreasing the pipe index below 1 is illegal, sinc

would imply non-causal solutions (i.e. control depends on iterations yet to

initiated).

4. Repeat steps 3.a and 3.b for each time step and each pipeline s

Conditional resource availability is computed as described in Section 5.1.

Steps 3.a and 3.b preserve all inter-iteration and intra-iteration con

dependencies. They reflect the fact that overlapping loop iterations flow thro

the pipeline stages in a synchronous fashion.

We now apply the procedure to the CDFG in Figure 5.4. A feasible sched

using three pipeline stages, achieving latency of 2 is shown in Figure 5.5. Ass

ni = ns = 3 and that stage 1 has been scheduled as shown in Figure 5.5.

operation 4 is pushed from the first pipeline stage into the second pipeline stag

new guard function becomes: . If theB1,2 constraint at step 1 is

evaluated usingΓ1,1 andΓ4,2we obtain:

(EQ 5.7)

Γ4 2, G1 2,=

B1 2, Γ1 1, Γ4 2,,( ) 1 G1 2,+ G1 2,==
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indicating the paths where the resource constraint is not violated. However

intersection ofB1,2 andΓ4,2 is empty (i.e.S4=0), indicating that operation 4 canno

be scheduled instep_1. It is possible to schedule operation 4 instep_2, however,

since no other comparison is scheduled in that step in pipeline stage 1.

Similarly, operation 7 is guarded by when pushed into stage

Although sufficient resources are available, it is clear that operation 7 canno

scheduled at step 1 if an overall latency of 2 is to be achieved. (Since comput

in the first and second pipeline stage are subject to uncorrelated decisions,

happen that no “white” resources are available for pipeline stage 3 wh

additional “white” operations have to be scheduled). At step 2:

(EQ 5.8)

indicating the paths free of resource violations. Since:

(EQ 5.9)

operation 7 cannot be scheduled at step 2 if the ‘T’ path is simultaneously tak

the CDFG being executed in the first pipeline stage .

However, operation 7 can be split (see Figure 5.5). The guard function o

can be set to:

(EQ 5.10)

4

step_1

step_2

pipeline_stage_1 pipeline_stage_2 pipeline_stage_3

2

G1,1

3

G1,1

1

Γ1,1=1

G1,2

7’
G1,1G1,2

5 6 7’’
G1,3G2,3 G1,3G2,3 G1,2G1,3

Figure 5.5Folded CDFG from Figure 5.4

Γ7 2, G1 2,=

B1 2, Γ2 1, Γ7 2,,( ) G1 1, G1 2,( )+ G1 1, G1 2,+==

S7 Γ7 2, B1 2, Γ2 1, Γ7 2,,( ) G1 1, G1 2,= =

G1 1, G1 2,( )

Γ7′ 2, S7 G1 1, G1 2,= =
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Operation 7 has yet to be scheduled on paths:

(EQ 5.11)

Since this part of operation 7 (7”) has to be pushed into pipeline stage 3

guard function is modified to:

(EQ 5.12)

During the first step of stage 3, three candidate operations exist: 5, 6 and 7

theBk,n constraint is evaluated at step 1 usingΓ5,3, Γ6,3 andΓ7’’,3, we obtain:

(EQ 5.13)

indicating that the resource constraint is satisfied on all paths. ComputationSj

for j=(5, 6, 7”) indicates that all operations (5, 6, and 7”) can be schedule

step_1 (stage 3) and that a feasible schedule has been found.

5.3  Probabilistic interpretation

In a CDFG withnc conditionals, up to2nc control scenarios may occur. Each o

these distinct control paths can be represented using a minterm of guard vari

Since the number of minterms covering a Boolean functionf is typically referred

to ason-set size of f, we define:

(EQ 5.14)

Assuming that all True/False decisions are equally likely, we offer

probabilistic interpretation ofΓ functions:

(EQ 5.15)

whereP(j) indicates the probability that operationj will be conditionally executed.

Probability P(j) or its variations are frequently used in resource-constrain

schedulers to define heuristic priority functions (e.g. [120]). We observe that

Γ7″ 2, Γ7 2, \Γ7′ 2, G1 1, G1 2,= =

Γ7″ 3, G1 2, G1 3,=

B1 3, Γ5 3, Γ6 3, Γ7″ 3,, ,( ) 1=

OnSetSize1( ) 2
nc

=

OnSetSizeΓ j( )
OnSetSize1( )
-------------------------------------- P j( )=
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computation ofOnSetSize(f)amounts to a simple one-pass traversal of an BD

representation off. When the probability of a conditional’s outcome is not un

form, behavioral description analysis/simulation can be performed to determ

probability values. In such cases, the BDD traversal algorithm forOnSetSize(f) can

be easily modified to take into account individual probabilitiesP(Gc)
8.

It is also possible to assess the global effects of resource violations usin

complement ofBk,n(Γ1,...,Γn):

(EQ 5.16)

This ratio indicates the probability of a violation occurrence. Such informat

is useful for schedulers that resolve resource violations through pa

rescheduling.

In Section 6.5 we will present preliminary experiments investigating bene

from applying the proposed conditional resource sharing analysis to softw

pipelining of cyclic CDGFs.

8. We still assume these probabilities correspond to independent events.

OnSetSize Bk n,( )
OnSetSize1( )

------------------------------------------
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Chapter 6

Experimental Results

The technique described in this thesis was implemented in C++ and exec

on a Sun SPARCstation10 with 128 Mbytes of memory. ROBDD package

custom designed. The package implementation follows the approach introduc

[10]1. Reported CPU times correspond to the complete procedure: CDFG ana

constraint construction, and all OBDD manipulations leading to the repo

results. First, we apply the technique to three typical problem types:

• Section 6.1 presents experimental results of scheduling of acyclic DFG

• Section 6.2 demonstrates the ability of our technique to perform loop w

ing on cyclic DFGs.

• Section 6.3 discuss the scheduling of acyclic CDFGs.

The results are compared to the optimal or best known results. No other w

reports competitive results for all three problem types. Subsequently, we per

two additional sets of experiments:

1. “Inverted edges” option was not implemented, however. “Dynamic re-ordering” option
was provided, but not used in experiments discussed in Chapter 6.
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• In Section 6.4, we discuss application of symbolic techniques (both e

and heuristic) to larger DFGs.

• Finally, Section 6.5 presents preliminary experiments investigating ben

from applying conditional resource sharing analysis approach (Chapte

to software pipelining of cyclic CDGFs.

6.1  Acyclic DFGs

Table 6.1 summarizes theelliptic wave filter(EWF) benchmark experiments

(See Figure 4.7, Section 4.5.1, for EWF data-flow graph). We foundall optimal

solutions of each instance using BDDs whose size was significantly smaller

(#variables)2. To reduce the size of partial solutions, an auxiliary set of inter

constraints was generated (described in Section 4.4.1). The CPU times are

moderate for the exact technique generating all optimal solutions. In Section

we discuss some larger problems (EWF unfolded two and three times, Finite

crete Cosine Transform,FDCT [73]) and demonstrate that efficient symbolic he

ristic techniques can treat problems requiring thousands of formulation variab

Table 6.1: EWF experiments

#cycles 17 17 18 18 19 20 20 21 28 28

#adders 3 3 3 2 2 2 2 2 1 1

#multipliers 2(*) 3 1(*) 2 1(*) 2 1(*) 1 1(*) 1

#buses 6 6 6 6 6 4 4 4 4 4

#registers 10 10 10 10 10 10 10 10 10 10

#variables 63 63 97 97 131 165 165 199 437 43

#nodes 82 82 194 209 2,237 2,760 1,905 704 4.9e4 3.2

#schedules 18 18 336 18 1.1e4 5.3e4 5,142 2,355 4.3e9 2.

CPU time [s] 0.2 0.2 0.5 0.6 3.4 14.0 12.5 3.5 624.7 391
2-cycle multiplier and single-cycle adder except: (*) 2-cycle pipelined multiplier.
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Important property ofexactscheduling techniques is that they are capable

either generating optimal solution(s) or indicating thatno feasible solutionexist

for a particular problem instance. On the downside, this requires that an exhau

search of a complete solution space has to be performed.Branch-and-boundtech-

niques are typically employed to speed up the solution space exploration. Unf

nately, problems exist in which it is not possible to derive sufficiently tight boun

One such example (10-cycleFDCT instance with 5 two-cycle non-pipelined multi

pliers and 3 ALUs) was investigated recently [116]. Due to its very large symm

ric search space, thisFDCT instance is reported to be an extremely hard problem

- both ILP and branch-and-bound techniques take more than 2 CPU hours to

the infeasibility conclusion. However, we were able to prove its infeasibility

only 100 CPU seconds. This can be explained by the fact that in our techniq

very large number of potential solutions are explored in parallel on a time-step

time-step basis.

Interior constraints (described in Section 4.4.1) are helpful not only to spee

convergence to a solution set (when one exists), but to improve infeasibility an

sis as well. We demonstrate this in Figure 6.1. 54-cycle EWF instance (2-c

adder, 2-cycle multiplier) introduced in [115] is used as an example. The e

scheduler was initialized with an infeasible execution time of 53 cycles. A lo

rithm of CPU time elapsed before the infeasibility is detected is indicated

(log)_CPU_TIME[s]. A step of iterative construction when the infeasibility con

clusion is reached is labeledINFEASIBLE[cycle#]. It can be seen that the infeas

bility analysis is very fast (less than 0.6 CPU seconds) when interior constra

are applied aggressively (LOOKAHEAD≥40). Almost no penalty is paid for being

extremely aggressive (LOOKAHEAD≥50).
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6.2  Cyclic DFGs

Loop windingresults forEWF are indicated in Table 6.2. All optimal sched

ules, both in terms of latency (iteration interval) and delay (iteration time), are c

structed using very moderate computing resources. Several ILP techniques

[42][49]) report results equivalent to those presented in Table 6.1 and Table

LOOKAHEAD [#cycles]

INFEASIBLE[cycle#]

25 30 35 40 45 50

10

20

30

40

0.0

1.0

2.0

3.0

(log)_CPU_TIME[s]

- INFEASIBLE

- CPU_TIME

Figure 6.1Infeasibility detection

Table 6.2: EWF with loop winding

non-pipelined multiplier pipelined multiplier

#multipliers 3 2 2 1 3 2 2 1 1

#adders 3 3 2 2 3 3 2 3 2

latency 16 16 17 19 16 16 17 16 17

delay 18 18 19 21 18 18 19 18 19

#variables 97 97 131 199 97 97 131 97 131

#nodes 776 465 689 1,788 799 776 878 258 18

#schedules 2,055 674 108 19,498 2,160 2,055 144 77

CPU [s] 4.0 1.2 9.2 7.1 4.4 4.0 9.4 0.5 3.5
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with the difference that we provide all optimal schedules. Direct comparison

CPU times is misleading due to machine differences and to the fact that only

execution times without preprocessing are typically reported. Similarly, the

cient branch-and-bound technique [116] does not report the time for execu

interval analysis.
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6.3  Acyclic CDFGs

Table 6.3 and Table 6.4 show experimental results for benchmarks exhib

conditional behavior. The rows#cycles(spec)and#cycles(non_spec)correspond to

scheduling with and without speculative execution using the same set of reso

and demonstrate the benefits of performing such code motion. The schedule

minates when all minimum-latency ensemble schedules are found. The numb

cycles for the longest control path is indicated as“longest”. To compare our results

Table 6.3: Benchmarks with branching

Table 6.4: Comparison with others: average (longest) path

Maha Parker Kim Waka MulT

#cycles(spec)
longest 5 4 4 6 7 3

average 3.31 2.25 2.13 5.75 5.0 3.0

#cycles(non_spec) 8 8 8 8 7 4

#adders 1 2 2 2 1 2

#subtracters 1 3 3 1 1 1

#comparators - - - 1 2 1

#variables 65 49 49 71 55 26

#nodes 428 325 220 543 271 116

#traces 15 43 12 124 21 15

CPU time [s] 5.9 3.6 4.7 4.1 2.0 3.3
single-cycle adders, subtracters and comparators assumed

Maha Parker Kim Waka MulT

Symbolic 3.31 (5) 2.25 (4) 2.13 (4) 5.75 (6) 5 (7) 3 (3)

TS [47] 3.31 (5) - - - 4.75 (7) -

CVLS [119] 3.31 (5) 2.38 (4) 2.38 (4) 5.75 (6) - 2.88 (4)

Kim et al [55] 4.62 (8) - - 6.25 (7) 4.75 (7) -
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with schedulers which minimize average path length, a subset of solutions

small average path length is generated in a greedy fashion. BenchmarksMaha

[86], Kim [55] andWaka[120] are conditional trees, andMulT [119] has two paral-

lel trees.Parker is Mahawith additionA6converted into a subtraction (Figure 3.3

Section 3.2).

Our results (“Symbolic”) are compared to the best published results. TheMaha

solution with one adder and one subtracter is the same as in [47][119]. Allow

more resources (2 adders, 3 subtracters) an improvement of 0.125 (averag

length) is made over the best previous result. InParker, this improvement was

0.25. In most previous work, it is assumed that the comparators incur a small d

within a clock cycle and that the operations following the branch on “True” a

“False” paths are mutually exclusive during thesamecycle. This treatment of the

conditionals requires increased cycle time, additional multiplexing, and rest

pipelining of the control. Our results reflect this model inMahaandParker only,

but this assumption completely eliminates the need for speculative execution i

Kim andWakabenchmarks. By default, we assume that a single-cycle compar

is used and that its output becomes available for control only in the succe

cycle. Even with this assumption, our technique still derives the same resul

Kim as in [119]. InWakaone path is a cycle longer than that reported in [47].

MulT a one cycleshorter minimum-latency solution was found by exploiting

dynamic scheduling of operations belonging to parallel trees. There is no info

tion on execution times for the results reported in [47][55][119]2.

The ROTORexample (Figure 6.2) performs a rotation of coordinate axes

angleθ. This transformation is used in many applications (e.g. graphics app

2. More recent implementation of [55] reports CPU times comparable to those listed in
Table 6.3 [56].
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tions and positional control systems). The example requires computation of t

nometric functions (sinθ and cosθ). In high-performance applications, a typica

approach is to pre-compute the value of sine and cosine functions and stor

sampled values in corresponding tables. However, if high numerical accura

required, the size of the storage tends to become rather large. A compro

Figure 6.2ROTOR example

X = x*cosθ + y*sinθ

Y = -x*sinθ + y*cosθ

X’

Y’

X’’

Y’’
x

y

X

Y θ

a = 180-θ;
if (a>=0) {

b = 90-θ;
if (b>=0) {

sinθ = T(θ);
cosθ = T(b);

} else {
sinθ = T(a);
cosθ = -T(-b);

}
} else {

c = 270-θ;
if (c>=0) {

sinθ = -T(-a);
cosθ = -T(c);

} else {
sinθ = -T(360-θ);
cosθ = T(-c);

}
}
X = x*cosθ + y*sinθ;
Y = -x*sinθ + y*cosθ;
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approach amounts to storing values for only a quadrant of one trigonometric f

tion (e.g. sine values for arguments 0° ≤ Θ ≤ 90°). It is straightforward to use such

a look-up table for obtaining values for both sine and cosine for all possible in

arguments (0° ≤ Θ ≤ 360°).

A pseudocode description of the coordinate rotation using only the first qu

rant of the sine function is presented in Figure 6.2. “T(angle)” corresponds

table read at a location ‘angle’. Similarly, “-T(angle)” corresponds to a table r

followed by a negation. We assume that only one single-port look-up table is a

able and that every ‘read table’ takes one cycle to complete. Although it is pos

to simultaneously perform subtraction and comparison of two operands, In

example, we assumepipelined controlwhich introduces a two-cycle delay. Fo

example, if operation (a = 180-θ) is executed at step s, resulta is available at the

beginning of step (s+1), but control flow is affected by the comparison at th

beginning of step (s+2) 3.

To simplify interpretation of the results, in Figure 6.3(a) we assume that

available ALUs can perform all arithmetic/logical operations (add, subtract/neg

multiply) in a single cycle. The minimum number of cycles to execute the sche

is presented for cases with and without speculative execution. We observe

given the same resource constraints, speculative execution enables much

schedules. In Figure 6.3(b) a more realistic assumption is made. Single-c

ALUs perform addition and subtraction. Multiplication is performed by two

cycle pipelined multipliers. In this case, adding more ALUs cannot improve

performance unless speculative execution is allowed. In Figure 6.3, CPU run-t

3. This corresponds to a “parallel control model” as described in [91]. Data-path operation
updates a condition code register at steps. The condition code register is inspected at step
(s+1) and the next state and a new control word are generated. Subsequently, that contr
word governs data-path activities at step (s+2).
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are indicated in brackets. By allowing speculative execution, an average impr

ment in minimum latency of 25% is achieved using the same resources.

Figure 6.4 shows an 8-cycle ensemble schedule (2 ALUs, Figure 6.3(b)). O

ations executed in a speculative fashion are represented using thick lines.

input angleΘ belongs to the first quadrant, the computation is performed in se

cycles. However, since all ensemble schedules are implicitly encapsulated

OBDD, the user can search for solutions having other properties. It is relati

straightforward to look for similarities among the traces in order to simplify t

control. For example, if the first-quadrant computation takes 8 cycles as well,

possible to have the same schedule for operations X’, X”, Y’, Y’, X and Y for

control paths during the fifth, sixth, seventh and eighth cycles. This sort of de

space exploration can be performed without rescheduling the problem instan

1 2 3 4

13

12

11

10

9

8

7

6
#ALUs

#cycles

1 2 3 4

11

10

9

8

7

6
#ALUs

#cycles

non_speculative
speculative

(a) (b)

- memory constraint: 1 single-port look-up table
- pipelined control delay = 2 cycles
- resource constraints:
(a) single-cycle ALU (+, -,* )
(b) single-cycle ALU (+, -), 2 two-cycle pipelined multipliers

Figure 6.3ROTOR experiments

[18.6 s]

[2.6 s] [2.8 s]

[0.6 s]

[103.8 s]

[12.3 s] [22.8 s]

[1.3 s]

[1.9 s] [2.3 s] [2.3 s] [2.3 s]

[78.3 s]

[13.7 s] [19.5 s] [18.5 s]
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In Figure 6.5 we introduce theS2Rexample that translates spherical coord

nates [R,Θ, Φ] into the Cartesian (rectangular) coordinate values [X, Y, Z]. T

problem includes computation of trigonometric functions (as described in

Figure 6.48-cycle ROTOR schedule

Y’’

T(c)

-T( )

270-θ

90-θ

180-θ

360-θ

T( )

T(-c)T(-b)

T(b)

T(a)

T(-a)

T F

-T(-b)

-T(c)

-T(-a)

-b -c

X’X’’

YX

Y’X’’

YX

YX

Y’’Y’

Y’X’’

YX

Y’’X’

0 ≤ Θ ≤ 90 90 < Θ ≤ 180 270 < Θ < 360180 < Θ ≤ 270

c

-a

Y’

X’

Y’’X’

X’’

T F
a

T F
b

T(θ)

Φ

sinΦcosΦ

R Θ

sinΘcosΘ

X YZ

Figure 6.5S2R example
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ROTORexample) for two input angles (Θ, Φ). There are 42 operations in th

CDFG representation and, if executed in a speculative fashion, as many as 64

cution paths. If a single-port look-up table is used, the scheduling of parallel t

(corresponding to computations forΘ andΦ) has to be donesimultaneously. This

means that the scheduleguaranteessynchronization of the memory accesses wit

out busy/waiting hardware handshaking.

Shown in Table 6.5 (#cycles) areS2Rlatencies using one single-port look-u

table, 3 ALUs and 2 two-cycle pipelined multipliers. All solutions are exact a

correspond to execution with and without speculative execution. In each case

values are included. An unconstrained version (“parallel ”) allows both trees to be

scheduled and executed in parallel. For comparison, we provide the latencies

“serial” version of the problem which imposes an execution order (Φ-tree executed

beforeΘ-tree). The results clearly indicate the benefit from being able to sche

parallel computations in a speculative fashion. Note that none of the results ca

further improved by increasing hardware resources.

Table 6.5: S2R experiments

execution_type #cycles
CPU_time

[s]

speculative
parallel 8 108.8

serial 10 177.9

non_speculative
parallel 11a

a. can be achieved with 2 single-cycle ALUs as well (55.2 s)

56.2

serial 16b

b. can be achieved with 1 single-cycle ALU as well (12.4 s)

13.5

- memory constraint: 1 single-port look-up table
- pipelined control delay = 2 cycles
- resource constraints: 3 single-cycle ALUs (+,-), 2 two-cycle
pipelined multipliers
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6.3.1  Speculative Execution Model Performance

As indicated in Section 3.2.1, the speculative execution model used in the

rent formulation cannot, in general, guarantee time optimality. In Table 6.6, fo

of the benchmarks discussed in Section 6.3, experimental results are show

both the longest chain of data-flow dependencies and latencies of the sche

benchmarks. The results are encouraging, since they demonstrate that the r

tion in our current speculative execution model did not prohibit, given suffici

resources, achieving theoretically minimum benchmark latencies.

6.4  Larger DFGs

In this section we discuss application of symbolic heuristics (Section 4.4.3

larger DFGs and perform a performance comparison to the exact approach.

First, in Figure 6.6 and Figure 6.7, we analyze two large instances of E

benchmark. Both exact and heuristic construction were performed. Two BDD

resentations were used to generate results: reduced ordered BDDs (ROBDDs

see Appendix A) and zero-suppressed BDDs (ZBDDs [75], see Section 4.

Exact results are derived using interior constraints that were applied as ag

sively as possible (i.e. all possible lookaheads were allowed at each sched

step).

Table 6.6: Speculative execution model performance

#cycles Maha Parker Kima

a. previously unreported case -- requires 2 adders, 2 subtracters, 1 comparato

Waka MulT Rotor S2R

longest chain 4 4 5 7 3 6 8

scheduled 4 4 5 7 3 6 8
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Figure 6.6 and Figure 6.7 indicate that utility-based set-heuristics (cu

labeled_heu_robddand_heu_zbdd, Section 4.4.3) are far superior to exact sche

ulers both in terms of CPU time and memory requirements, while still finding r

resentative minimum-latency schedules.

When interior constraints are allowed (curves labeled with a prefix_ic), the

figures indicate controlled growth of the solution in which the intermediate siz

never greater than the final size. Although such ideal behavior is not alw

achievable, our experiments indicate that the use of interior constraints has a

Figure 6.628-cycle EWF: exact and heuristic constructions

- resources: 1 single-cycle adder, 1 two-cycle multiplier ( > 10e+9 solutions)

- #variables: 437

_zbdd: exact solution (ZBDD), no interior constraints: ~ 18.5 min

_ic_zbdd: exact solution (ZBDD) built using interior constraints: ~ 9.5 min1

_heu_robdd: utility-based set-heuristic solution (OBDD): ~ 17 s2

_heu_zbdd: utility-based set-heuristic solution (ZBDD): ~ 102 s

_ic_robdd: exact solution (OBDD) built using interior constraints: ~ 23 min

1. For optimal number of registers (10), the size of exact ZBDD solution decreases from ~14.5 to
~3.5 Knodes.

2. ~ 5 s if both utilization and critical path are used as heuristic criteria

0
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15000
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35000

40000

45000

0 4 8 12 16 20 24 28
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_ic_zbdd

_heu_robdd
_heu_zbdd

STEP

#N
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NOTE:size(ic_robdd) > 130,000.
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matic effect on scheduler efficiency. Without interior constraints, the schedul

Figure 6.7 (labeled _zbdd) failed to terminate in several CPU hours.

It is to be expected that heuristics based solely on utilization of the functio

unit resources will occasionally produce sub-optimal results in terms of reg

requirements. For example, if the 28-cycle EWF (Figure 6.6) is scheduled heu

cally with no pre-specified register bound, the solution requires at least 13 re

ters. However, if a register bound of 10 is enforced during the construction,

utility-based heuristic still produces the fastest possible solutions (28 cycles).

- resources: 1 two-cycle adder, 1 two-cycle multiplier ( > 10e+13 solutions)

- #variables: 967

_zbdd: exact solution (ZBDD), no interior constraints: could not be constructed

_ic_zbdd: exact solution (ZBDD) built using interior constraints: ~ 1 h1

_heu_robdd: utility-based set-heuristic solution (OBDD): ~ 51 s2

_heu_zbdd: utility-based set-heuristic solution (ZBDD): ~  12 min

_ic_robdd: exact solution (OBDD), not constructed (converted from_ic_zbdd)

1. For optimal number of registers (10), the size of exact ZBDD solution decreases from ~18.5 to
~6.5 Knodes.

2. ~15 s if both utilization and critical path are used as heuristic criteria.

0
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15000

20000

25000

30000

35000

40000

45000

50000

0 6 12 18 24 30 36 42 48 54

_zbdd
_ic_zbdd

_heu_robdd
_heu_zbdd

NOTE:size(ic_robdd) > 285,000. STEP

#N
O

D
E

S

Figure 6.754-cycle EWF: exact and heuristic constructions
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same behavior was observed in the 54-cycle case (Figure 6.7) and further e

ments described in Section 6.4.

An accurate estimate of the upper bound on scheduling latency may no

available before scheduling. Unfortunately, the search space increases enorm

fast with relaxation of this bound. Set-heuristic scheduling is very robust: the c

struction pace shows very weak sensitivity to the upper bound used to initialize

scheduler. Although additional constraints are generated (due to an increa

ALAP-ASAP spans for individual operations), the intermediate solution s

increases very mildly (Table 6.7). Furthermore, it is very important that the heu

tics be robust, since they can be used to derive accurate bounds for the exact

ulers whose run-time efficiency is more sensitive to the bound estimates.

In the rest of this section three larger data-flow graphs are used to investig

• EWF-2 (EWF unfolded two times, 68 operations, Table 6.8),

• EWF-3 (EWF unfolded three times, 102 operations, Table 6.9), and

Table 6.7: Robustness analysis of the heuristic scheduler

cycles upper
bound #vars

utility-based utility + CP

max
# nodes

CPU
[s]

max
# nodes

CPU
[s]

54 54 967 14,328 51 2,210 15

55 1,001 14,839 52 2,292 16

56 1,035 15,559 58 2,392 17

59 1,137 17,151 65 2,616 18

64 1,307 19,378 81 2,914 20

2-cycle adder, 2-cycle multiplier
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• FDCT (Fast Discrete Cosine Transform, 42 operations, Table 6.10).

For uniformity and the reasons described in Section 4.5.1, all experiments

presented were run using solely ROBDDs. The results are compared to theZone

Scheduling(ZS) [48]. This method subdivides a large problem in zones and so

the subproblems using ILP (integer linear programming) techniques.

EWF-2

To compare our results, the scheduler was run with the same constraints o

number of functional units and buses as in [48]. Register bounds (inputs and

puts included) were identified during the post-processing phase for both heu

and exact scheduler (column “reg[h/e]”). Maximum size of the partial ROBD

Table 6.8: EWF-2 experiments

add mul bus cycles optimal reg
[h/e] #vars max

#nodes
CPU
[s]

CPU
rel

3 3 6 33 yes 11/11 135 178 0.3 0.938

3 2(*) 6 33 yes 11/11 203 178 0.4 0.930

3 1(*) 6 34 yes 11/11 203 203 0.8 0.435

3 2 6 35 no(34) 11/11 271 291 1.7 0.580

2 2(*) 6 35 yes 11/11 271 661 2.4 0.171

2 2 6 35 yes 11/11 271 639 2.2 0.171

4 39 yes 12/11 543 1,770 10.9 0.004

2 1(*) 6 36 yes 11/11 339 686 2.2 0.040

4 39 yes 11/11 543 2,064 11.6 0.005

2 1 4 40 yes 11/11 611 1,232 9.6 0.005

1 1(*) 4 56 ? 14/ - 1,699 2,603 29.0 -

2 68 ? 14/ - 2,515 4,128 69.6 -

1 1 4 56 ? 14/ - 1,699 2,636 28.8 -

2 70 ? 14/ - 2,651 4,403 73.9 -
1-cycle adder, 2-cycle multiplier except: (*) 2-cycle pipelined multiplier
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solution at the end of each iteration step is reported (“max #nodes”), as well a

CPU times (“CPU[s]”) of the heuristic ROBDD scheduler. Column “optimal” ind

cates whether the result of the heuristic scheduler could be verified by the e

scheduler. A question mark in that column means that we were not able to

struct all minimum-latency schedules before exceeding the time limit (one C

hour). Column “CPU rel” indicates the ratio of the execution time for the heuris

and exact constructions. The CPU times for the exact constructions were gene

using interior constraints as aggressively as possible (i.e. all possible lookah

were allowed at each scheduling step).
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EWF-3

Benchmark instances with up to 615 variables were solved exactly, and u

5,919 variables (105-cycle case) heuristically. The heuristic failed in one cas

find the optimal execution time (however, as in the case ofEWF-2, that problem

instance was solved exactly).EWF-3 results were not provided by [48]4.

Pre-specified register bounds can be used during the construction to mini

the number of registers needed in the heuristically scheduled results. We ra

heuristics with fixed register bounds of 11 (allEWF-2instances) and 12 (allEWF-

4. To our knowledge, the only reference to this problem is in [41], where a result for the
instance with 1 pipelined multiplier and 3 adders is presented. There is no information on
the number of registers and buses.

Table 6.9: EWF-3 experiments

add mul bus cycles optimal reg
[h/e] #vars max

#nodes
CPU
[s]

CPU
rel

3 3 6 49 yes 12/12 207 293 0.6 0.800

3 2 (*) 6 49 yes 12/12 207 293 0.6 0.923

3 1 (*) 6 50 yes 12/12 309 309 1.3 0.398

3 2 6 52 no(50) 12/12 513 549 4.4 0.913

2 2 (*) 6 52 yes 12/12 513 1,263 5.9 0.041

2 2 6 52 yes 12/12 513 1,289 5.7 0.042

4 58 ? 13/ - 1,125 3,450 30.1 -

2 1(*) 6 53 yes 12/12 615 1,176 4.7 0.010

4 58 ? 12/ - 1,125 4,065 31.5 -

2 1 4 59 ? 12/ - 1,227 2,249 25.1 -

1 1 (*) 4 84 ? 15/ - 3,777 5,408 86.0 -

2 102 ? 15/ - 5,613 7,762 216.2 -

1 1 4 84 ? 15/ - 3,777 5,408 82.3 -

2 105 ? 15/ - 5,919 8,010 233.2 -
1-cycle adder, 2-cycle multiplier except: (*) 2-cycle pipelined multiplier
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3 instances) and in all cases the solutions that required the same number of c

as those presented in Table 6.8 and Table 6.9 were found. However, makin

accurate estimate on the register bound is a difficult problem, and a further wo

directly incorporate a register cost (not just a bound on the number) is needed

is important for exact scheduling as well, since register constraints can dram

cally reduce the solution space. For example, using ROBDDs, all schedules fo

28-cycle EWF with 10 registers can be found in 391.5 CPU seconds (app

mately 3.5 times faster than the unconstrained version, Figure 6.6).

FDCT

AlthoughFDCT has a relatively moderate number of operations, we includ

in this report for two reasons:(i) it comes from a practical application, and(ii) due

to its highly symmetric nature (which should lead to huge solution sets), it is lik

to be rather challenging task for exact schedulers. Table 6.10 presents the r

for some larger FDCT instances. As before, the scheduler was run with the s

constraints on the number of functional units and buses as in [48]. Register bo

Table 6.10: FDCT experiments

add sub mul bus
cycles
[our/
ZS]

opt. reg
[h/e] #vars max

#nodes
CPU
[s]

CPU
rel

2 2 2 10 10/10 yes 11/10 251 1,490 32.9 0.332

2 2 2(*) 10 11/ - yes 9/9 229 2,252 26.2 0.117

1 1 2 8 13/14 yes 12/11 377 3,988 26.1 0.018

1 1 2(*) 8 14/ - ? 11/ - 355 4,451 22.7 -

1 1 1 6 18/20 yes 11/10 587 12,340 76.0 0.061

1 1 1 4 18/ - yes 11/10 587 5,486 40.3 0.054

1 1 1(*) 6 19/ - yes 10/9 565 15,346 107.4 0.128

1 1 1(*) 4 19/ - yes 10/9 565 7,216 60.5 0.114
single-cycle units assumed except: (*) 2-cycle pipelined multiplier
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were determined during the post-processing phase for the approach which

both utilization and critical path heuristic. To constrain the solution space,

exact scheduler was run using a pre-specified register bound. The heuristic

the fastest schedules in all cases and performed quite well in terms of the nu

of registers (typically, off by 1). As can be seen in rows 3 and 5, our heuri

scheduler outperformsZS. This can be explained by the fact that we preserve

complete set of solutions satisfying the heuristic criteria. Even for 2-cycle p

lined multipliers our results are equal (row 4) or better (row 7) that those repo

for single-cycle units inZS. Moreover, in rows 6 and 8, we indicate that the pro

lem can be solved with the reduced number of buses (4 instead of 6). TheFDCT

instance with 1 adder, 1 subtracter, 1 pipelined 2-cycle multiplier and 4 buses

8) is frequently used to evaluate scheduling results for functional pipelining. H

ever, to our knowledge, the best reported results so far required latency (iter

interval) of 20 cycles [63]. One randomly selected optimal 19-cycle schedul

shown in Figure 6.8.

6.5  Cyclic CDFGs

Two types of experiments are performed. First, we wish to investigate

benefits of exploiting conditional resource sharing. Table 6.11 summarizes re

for three examples: theVerySmall(Figure 5.4),Kim (Figure 3.1, Chapter 3), and

SC (Figure 6.9, [110]). As assumed in the previous sections,VerySmalluses 1

resource of each type (add, subtract, compare) andKim uses 2 adders, 1 subtracte

and 1 comparator.SCschedule (using 1 multiplier and 2 ALUs) is shown in Figu

6.9. Cycles 3 through 8 form a repetitive pattern that can be pipelined5.

5. Solution in [110] has latency of 6 as well, but uses 4 pipeline stages.
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For all examples, we present three results for the same resource bo

Original corresponds to CDFGs without unrolling and pipelining.Unrolled

corresponds to the unrolled versions of a CDFG (no pipelining), while lo

pipelining is allowed inpipelined. Theoriginal andunrolled results are obtained

using exact symbolic techniques [92][94]. Thepipelinedresults were generated in

a semi-automated fashion. Essentially, symbolic techniques can be extend

solve a relaxed version of the conditional pipelining by adding some neces

conditions for existence of a repetitive pattern in a schedule of the unrolled loo6.

A7

A6

A5

A4 A3

A2

A1

A0

F0F2 F4F6

A7 A6 A5 A4 A3A2A1A0

F1F3 F5F7

add

subtract

multiply

Figure 6.819-cycle FDCT with pipelined multiplier
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All of the presented results were generated using such an approach, but they

manually verified for potential inter-iteration dependency violations. Howev

although no claim on optimality of thepipelinedresults can be made, Table 6.1

shows that systematic treatment of resource sharing can expose addi

operation-level parallelism even in cases when the loop body exhibits conditi

behavior.

To investigate the computational and storage overhead of the appro

“pipelined” results were verified for potential resource constraint violations. T

6. The basic idea is similar to the GURPR* compiler [9][112].

cycle: pipeline stage:0 1

1 1
2 2, 14
3 3, 15 3, 17
4 11 4, 16 11, 18 4, 18, 19
5 12, 16 8, 9 5 12, 19 8, 9 5
6 13 10 6 20 10, 20 6, 20
7 21 21 7 13 21 7 1
8 21 21 21 2, 14

path
[3,4,14]:

[F,-,F] [T,F,F] [T,T,F] [F,-,T] [T,F,T] [T,T,T] [-,-,-]

Figure 6.9SC example and its schedule

16*

14

1 +
2 *

3

T F
4

T F

T F

5 +

6 +

7 *

8 * 9+

10+

11*
12+

13 *

17 *
18 + 19*

20*

21+

15+

in

out
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overhead due to guard variables and functions is very small: 14 OBDD no

(Kim), 18 nodes (VerySmall), and 24 nodes (SC). In all examples, verification of

the resource bounds took less than 0.03 CPU seconds.

Preliminary experimental results form Section 6.5 are encouraging. In

future, a scheduler based on the presented concepts should be implemented

requires that several additional issues be addressed (e.g. node unific

incremental recalculation ofΓ functions when conditionals are rescheduled, timi

model for operation chaining, etc.).

Table 6.11: Throughput comparisons

example
#overlapped

iterations
latency
[cycles]

delay
[cycles]

throughput
[1/cycles]

VerySmall
original 1 4 4 0.250

unrolled 3 7 7 0.429

pipelined 3 2 5 0.500

Kim
original 1 8 8 0.125

unrolled 2 11 11 0.182

pipelined 2 4 8 0.250

SC
original 1 8 8 0.125

unrolled 2 14 14 0.143

pipelined 2 6 8 0.167
116



tion

ard-

orted

f the

the

ined

a

d on

ation

t. An

The

ion-

all

tation.

by
Chapter 7

Discussion

7.1  Summary

We described a symbolic formulation that allows speculative opera

execution and exact resource-constrained scheduling of arbitrary forw

branching control/data paths. To our knowledge, no other work has been rep

on exact techniques supporting speculative execution. An advantage o

formulation is that there is no need to explicitly describe freedom present in

input CDFG description. The execution order of conditionals is not pre-determ

and is dynamically resolved allowing gains in scheduling quality. To allow

systematic treatment of the problem, a flexible control representation base

guard variables, guard functions, and traces is introduced. The trace valid

algorithm is proposed to enforce causality and completeness of the solution se

iterative construction method is presented along with benchmark results.

results demonstrate the ability of the technique to efficiently exploit operat

level parallelism implicit in the input description.

The presented techniques provide a closed-form solution set in which

satisfying schedules are encapsulated in a compressed BDD-based represen

This solution format greatly increases the flexibility of the synthesis task
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enabling incremental incorporation of additional constraints and by suppor

solution space exploration without the need for rescheduling. Assume th

behaviorB has to be synthesized to satisfy some desired throughputT and that a

designer uses a pre-designed and tested data-pathD as a starting point for

implementing a hardware solution. Scheduling B usingD’s resources (e.g. 2

adders, 1 multiplier, 32-entry register file) producesS, a solution set encapsulating

all schedules meeting throughputT. Once this is done, the designer ca

incrementally inspectS to determine whetherD can be further simplified (e.g

whether the number of adders or registers can be reduced). Similarly, the des

can look for the schedules with some other specific properties. Assume thB

prescribes a data-flow precedence between two operationsa andb. Designer can

then ask the following question: “Is it possible to find a schedule meeting

performance constraintT such thatb is scheduled at least 2 cycles aftera?”. (Such

a property can be useful, for example, to simplify design of some interf

circuitry, relax clock cycle requirement imposed by layout/interconnect, or allo

use of a slower unit on whicha is to be performed.) Instead of re-running th

complete scheduling procedure, all of the issues raised above can be ex

resolved by incrementally applying additional constraints to the initial solutionS.

7.2  Future Research Avenues

Despite the advantages summarized in Section 7.1, to make our novel app

more applicable to a wider variety of HLS applications, numerous open rese

problems deserve further attention. In the following sections, we analyze som

these problems and make an attempt to assess their complexity and po

suggest some answers.
118



) to

For

fast

are

n be

f

that

the

ables

is

has a

ration

traints

data-

If the

uch

ward

r of

such

re to
7.2.1  Complex Operation Mapping

In practice, a designer frequently has an opportunity (and a difficult task

evaluate trade-offs related to a selection of a functional unit type(s) to use.

example, given a target clock cycle, addition operations can be mapped to a

single-cycle adder or to a slower (and typically smaller) 2-cycle hardw

implementation. In such cases, the formulation presented in this thesis ca

extended by triple-indexing operation variables:Cs,j,t corresponds to an instance o

operationj executing on a functional unitt at time steps. Formulation constraints

discussed in Section 3.3 (Chapter 3) have to be modified to exhibit the fact

operation j can be scheduled using different resource types. For example,

uniqueness constraint (Section 3.3.1, Chapter 3) has to include all of the vari

corresponding to operation j regardless of a function unit typet.

However, this problem becomes extremely difficult if operation chaining

allowed. For example, assume that a clock period is 40 ns, that a fast adder

delay of 10 ns and a slow adder has a delay of 25 ns. Remember that ope

chaining can be accommodated in our technique by adding precedence cons

between the operations that cannot be chained. (In the example above, two

dependent additions cannot both use fast adders during the same cycle.)

mapping from an operation type to a functional unit type is unique, s

precedence constraint can be derived by a CDFG traversal in a straightfor

fashion. However, if operation mapping is more complex, both the numbe

constraints as well as the time complexity of the procedure used to derive

constraints increases drastically. Currently, we are not aware of a procedu

perform this task in both a systematic as well as efficient fashion.
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7.2.2  Generalized Speculative Execution Model

As indicated in Section 3.2 (Chapter 3), the current speculative execu

model imposes a restriction that operations following the join node canno

scheduled before the corresponding conditional is resolved. This essentially m

that at most one instance of a particular operation can exist on any trace

indicated, in general, this model cannot guarantee time optimal scheduling.

To allow multiple operation instances per trace, two approaches could

considered. A seemingly straightforward extension would introduce a new in

for each operations: instead ofCs,j we could useCs,j,p corresponding to operation

j’s instance on pathp at time steps. Unfortunately, aside form re-formulation

issues, this approach can result in the exponential increase of the numb

formulation variables (O[(#cycles)(#ops)(2(#cond))], see Section 3.7, Chapter 3

compared to the current model and is unlikely to be efficient even using the B

based manipulations.

Another possibility is to first perform a resource-constrained scheduling o

individual control paths with all control dependencies removed and ev

operation j scheduled only on control paths covered by the correspondingΓj

function 1. Obviously, selecting the shortest execution instances for all poss

control paths produces a time optimal ensemble schedule. Unfortunately, as s

in Figure 3.7 (Chapter 3), resource constraints met on individual control paths

likely to be violated in the ensemble schedule. To properly interpret reso

usage, a more powerful version of Trace Validation algorithm has to be develo

This, however, may be a very difficult task, since in the approach discussed in

paragraph, original notion of trace as an execution instance for a particular co

1. As in the current implementation, this can be done simultaneously using the implicit
BDD representation.
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path is modified. For example, on a trace corresponding to pathp, pre-executed

operations from paths other thanp may not be seen (again, see Figure 3.7

Moreover, it can happen that the same operation is redundantly schedul

different time steps on two different control paths, even if these two paths

indistinguishable in the ensemble schedule at the corresponding time s

Efficient solution for the above mentioned issues is an open research problem

7.2.3  General Forms of Cyclic Control

In the current formulation, cyclic CDFGs are handled by loop breaking or lo

unrolling. For cyclic DFGs, additional optimizations (functional pipelining, loo

winding) are available. However, the most general case of multi-rate parallel lo

is not dealt with in the current formulation. Such behavior can result fr

parallelism exposing transformations or the need to schedule a behavio

interacting FSMs.

It is not clear how the techniques presented in this thesis can be expand

include such cases. The primary difficulty is that a notion of time is “linear” (i

not related to FSM states) in our current formulation. On the other hand, we ar

aware of any FSM-based model capable of formally incorporating specula

execution.

7.2.4  CDFG Scheduling Heuristics

In Section 6.4, we demonstrated that efficient, near-optimal symb

heuristics can be developed for larger DFGs. Development of symbolic set-b

heuristics for CDFGs is more challenging task, however. In particular, specula

operation execution affects both efficiency and quality of such heurist

Efficiency is affected by the fact that a very large number of operations might h

to be considered for speculative execution at every scheduling step. Thus, in
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exhibiting complex conditional behavior, partial solutions may grow prohibitive

large. Additionally, quality of some global iterative heuristic can be affected

operations belonging to all control paths are treated uniformly at each sched

step. More promising approach to dealing with larger CDFGs is to apply heuris

(similar to those described in Section 6.4) to individual traces. Similar to w

known compilation techniques ([35][37][70]), the priorities of individual trac

can be derived using a profiling information, and the trace validation procedure

be used to maintain the ensemble schedule consistency without the need

complex book-keeping.

7.2.5  Tightening of Operation Bounds

To further improve the efficiency, additional work is needed to identify tigh

operation bounds for the control-dominated case. In the current formulation,

conservativeas-soon-as-possibleandas-late-as-possiblebounds assuming infinite

resources are used. Such bounds are rather loose when speculative ope

execution is allowed. Interior constraints (Section 4.4.1, Chapter 4) can be ap

to individual control paths, but aside of the critical path(s), they have a ra

limited effect.

7.2.6  Lower Level Hardware Implementation Issues

Although the techniques presented in this thesis can cope with certain

difficult issues in control-dependent resource-constrained scheduling, they h

rather global view of a data-path. The current implementation does not deal

detailed layout models, but could possibly be incorporated in feedback-dr

closed-loop systems such as [11][58]. In a recent work [78][79], it w

demonstrated that symbolic techniques can efficiently and systematically ha

numerous hardware issues in existing data-paths (e.g. detailed interco
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modeling, latches providing a temporary storage within a data-path, tim

evaluation etc.).

Furthermore, in this thesis, the cost of controller implementing a particu

schedule was not considered (e.g. FSM cycle time, implementation area, s

parallel/pipelined controller implementation [11][46][91]). Production-bas

Clairvoyantsystem [109] generates very fast and area-efficient controllers u

non-minimal state encodings. However, other than preserving a prescribed i

output behavior, Clairvoyant does not perform operation scheduling. It would

very useful to investigate application of techniques described in this thesi

optimization of cycle time and resource usage in the Clairvoyant system.
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Appendix A

Binary Decision Diagrams

Binary Decision Diagrams(BDDs) are one of the biggest breakthroughs

CAD in the last decade. BDDs are acanonicalandefficientway to represent and

manipulate Boolean functions and have been successfully used in numerous

applications. Although the basic idea has been around for more than 30 years

[4]), it was Bryant who described a canonical BDD representation [12] a

efficient implementation algorithms [10]. References [13][15][77] are ve

readable introductions to BDD representations and applications.

Ordered Binary Decision Diagram of a Boolean functionf can be obtained by

iterative application of the Shannon decomposition with respect to a spec

variable ordering:

(EQ A.1)

A decision tree obtained in such a manner is reduced using two rulesi)

eliminate all nodes that have isomorphic sons (“don’t care” elimination), andii )

identify and share all isomorphic subgraphs. This process results in a Red

Ordered BDD which is a canonical representation of a Boolean function fo

specific variable ordering.

Using theite (if-the-else) terminology, the Equation (A.1) can be re-written a

f x f x x f+=
A.1
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(EQ A.2)

All basic Boolean function manipulations can be described usingite templates.

For example:

(EQ A.3)

and:

(EQ A.4)

The property that all Boolean manipulations can be treated in a unique ma

(usingite calls) enables efficient implementations using computer hashing/ cas

techniques [10].

Figure A.1 illustrates ROBDD forms of for two different variabl

orderings. An edge labeled by “1” (“0”) corresponds to a variable’s phasex (x) in

the decomposition formula above. The problem of finding the ordering that res

in the smallest ROBDD (in terms of the number of nodes in the graph) is N

complete. An exact variable ordering algorithm was developed in [39], but foun

f ite x fx f x, ,( )=
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Figure A.1 ROBDD forms of f=AB+C using different orderings
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very limited application due to its computational complexity. Moreover, theoret

analysis of general Boolean functions [65] indicates that, for the majority

functions, “good” orderings do not exist (i.e. the best ordering still leads

exponentially complex graphs). However, ROBDDs have performed extrem

well in many practical CAD applications. Typically, the underlying structure of t

problem solved using ROBDDs allows development of efficient heuristic orde

strategies (e.g. [72]).

Decision diagrams and their applications are a very active research area.

interesting, more recent developments include:

• algebraic decision diagrams [7],

• asynchronous circuit synthesis [67],

• binate covering problem (BCP) solver [51],

• BDDs for implicit set representation in combinatorial problems [75] a

applications to polynomial algebra [76],

• efficiency improvements through dynamic variable reorderi

[82][83][106] and breadth-first manipulations [6],

• exact and approximate FSM traversal techniques [23][27][28][117],

• formal verification of arithmetic circuits [14][44][57],

• integer linear programming (ILP) solver based on edge-valued BDDs [

• implicit prime generation and two-level minimization [29],

• matrix representation and manipulations using multi-terminal BDDs [24

• multi-valued decision diagrams [54],
A.3



• symbolic model checking [16],

• symbolic synthesis techniques [66].

This list isby no means complete!
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