
SHAPE-BASED SEQUENTIAL MACHINE ANALYSIS

Andrew Crews, Forrest Brewer

University of California Santa Barbara
crews@engineering.ucsb.edu

forrest@ece.ucsb.edu

ABSTRACT

In this paper, the problem of determining if a given sequential
specification can be made to fit a predetermined set of shape con-
straints is explored. Shape constraints are constraints not on the
logical makeup of the automata, but on the distribution of infor-
mation required to support correct output behavior. These con-
straints allow the machine to be distributed into partitions with
predefined communication and bit-level encoding complexity.
For example, construction of a machine in the form of a feedback
shift-register is a simple case of a shape constraint. Such con-
straints are based on the notion of a “D-atom” which is somewhat
similar to dichotomy based encoding.

1. INTRODUCTION

The sequential encoding problem is one that has been researched
for many years. Much of the work has involved techniques for
logic minimization, which is often appropriate for isolated finite
state machines (FSM’s) without fixed locality of input and output.
In this paper, we focus on the encoding issues pertinent to con-
structing distributed state machines. In this case, distributed
issues such as wire delay and communication power dissipation
or skew, dominate the design objectives. Such state machines
occur as distributed controllers for VLSI designs in which floor-
planning has been performed so that sensible metrics for commu-
nication cost and delays may be assessed. In such cases, commu-
nication costs between portions of the controller or between the
controller and its inputs and outputs may dominate the design
costs. For example, it is not uncommon for a critical timing path
to pass through the control FSM. Design options including the
potential for pipelining and/or locally regenerating critical signals
can have significant benefits on the overall design. Typically, the
input/output terminals of the controller are fixed temporally and
spatially, while the encoding of the communication between
blocks of the controller (state encoding) and distribution of the
information flow in the machine may have considerable freedom.

In this paper, we identify an atomic piece of symbolic information
within an FSM, called aD-atom (formally defined in section 2),
and describe the dependencies that exist between such atoms,
which are independent of the state encoding and depend only on
the structure of the STG. Sets of D-atoms inherit dependencies
from their element D-atoms. Such sets describe precisely what
information is present or can be created within a block of a FSM
corresponding to that set. Further, D-atom sets provide con-
straints on possible state encodings meeting these information
requirements. Using D-atoms, we propose and implement a
method of evaluating whether particular circuit topologies are
possible for symbolic state machines specified as STG’s. The
topologies are constrained by the allowed communication signals
and bitwidths between portions of the FSM’s in terms of primary
inputs, outputs and internal signals.

This paper is organized as follows: First, previous work is dis-
cussed as well as the relation of this work to that of dichotomy
based encoding. In section 2, we describe the D-atom and related
properties used throughout the paper. In section 3, we describe
derivation of the symbolic dependency network for an FSM.
Section 4 presents algorithms for evaluating properties of the
state machines, independent of state encoding, such as construc-
tion within a given circuit topology, or given input/output place-
ment restrictions. Section 5 describes constraints for encoding the
precise symbolic dependency information desired. Finally,
section 6 provides the results of this analysis for several bench-
mark circuits.

1.1 Previous work

It is impossible to provide a fair rendering of the previous work
on state encoding given the brevity of this paper. Instead, we shall
describe its relation to the most similar approaches, focusing on
the differences. In this work, the minimal information needed to
discriminate two different symbolic states is called a D-atom and
we characterize the properties of sets of such elements. Closely
related to this is the notion of a state dichotomy which originated
with Tracey [11] and has seen recent renewed interest in Yang
[13], Saldanha [9], Coudert [2] and others.

A dichotomy is an unordered pair of disjoint state sets. Any
dichotomy can be encoded as a single bit encoding by choosing a
1 or 0 for each state of the two disjoint state sets respectively. In
[2] Coudert showed a technique to find an encoding that satisfies
many dichotomy constraints, including theface constraints [9], a
necessary subset of the requirements for 2-level logic minimiza-
tion. Dichotomies can be combined into larger dichotomies by
making set unions of each pair as long as the result remains dis-
joint. In our formulation, although we merge multiple D-atoms
into sets, such sets are not necessarily a dichotomy nor need they
be decomposable into dichotomies. Since each D-atom may bring
its own requirements into a set, we must represent each atom
present, not the simpler disjoint dichotomy. This will allow a
more general treatment of encoding and dependency analysis.

2. DEFINITIONS

First we define the D-atom, then clarify the state encoding
method used within this paper. We also describe how to interpret
the symbolic dependencies of a D-atom.

2.1 Shape Constraints

In the following, we are primarily concerned with construction of
a distributed machine, where communication delays will deter-
mine the critical path, rather than logic complexity. Ashape con-
straint is a constraint on the allowable communication
(directional wires) between partitions of the machine. A shape

constraint is a fixed set of partitions of the machine, along with a
description of the allowed communications between partitions.
Note that the partitions are not forced to contain specific pieces of
the machine, and their contents may range anywhere from the
entire FSM, to empty.

In the worst case, each portion of the machine (for example, each
bit) may be required to support every primary output and next
state function. In fact, standard machine encoding techniques
often produce encodings which exhibit low logic complexity, but
worst case communication cost. We will use shape constraints
and the techniques in this paper to determine whether an encod-
ing exists for a specific set of allowable communications between
partitions.

2.2 D-atoms and D-Sets

Definition: Given a set of state symbols,S, aD-atom is an unor-
dered pair , which implies is distin-
guished from .

Definition: In an encodingE over a set of statesS, two states
and aredistinguished iff .

An arbitrary set of D-atoms shall be called aD-set. In the stan-
dard method of encoding state machines, a unique minterm is
assigned to each state. In that case, each bit represents a conven-
tional dichotomy[2]. If we consider the encoding of a single bit b,
for such an encoding, then b only distinguishes from if

, or vice versa.

In this paper, we are concerned with the encoding of an arbitrary
set of D-atoms. In work done with dichotomies[2], only the ques-
tion of whether these pairs (in our case, D-atoms)could be con-
tained in a single dichotomy was considered (at the expense of
adding additional pairs, and their dependencies to the set). Add-
ing non-essential D-atoms to the set may incur additional depen-
dency costs. Thus, we propose a more general method that
encodes any D-set. Consider the example in figure 1:

The three D-atoms would fit into a dichotomy, but only if a
fourth, were added, whose addition might require
increased communication costs. In order to manage arbitrary D-
sets, we allow encodings to consist of arbitrary functions, rather
than restricting them to minterms. With this method, a D-set may
be implemented in one or more bits in the final design while a D-
set is a dichotomy only if it can be encoded in precisely one bit.
Note that encoding a D-set in such a way that two states and
are distinguished is equivalent to including the D-atom
into the set. So, for instance, in figure 1 since is not in
the set, those states must not be distinguished by the encoding,
and this is achieved by having those states share the code “01”.

2.2.1 Affects of State Encoding

We can view the representation of , now an arbitrary func-
tion of the state bits, as a modification of the STG, where a dupli-
cate copy of states exists for each minterm in the on-set of the
function fs. Every input transition and every output transition are
duplicated for every copy of states. (See figure 2.) This represen-
tation is actually non-deterministic, since each transition to states
is now replicated several times, and the machine is free to decide

si sj,() i j si sj, S∈(),≠, si
sj

si
sj E si() E sj()∩ ∅=

si sj
Eb si() 1 Eb sj(), 0= =

Possible encoding for the set:

{ (S1,S3), (S1,S4), (S2,S4) }

State Code
S1 01
S2 01,10
S3 00,10
S4 00

 Figure 1.Example encoding for a set of D-atoms.

S2 S3,()

si sj
si sj,()

s1 s2,()

s S∈

which of the transitions to choose at any time. This freedom can
be exploited when final encodings for the machine are decided.

Since these new states are functionally redundant, it is easy to see
that the modified STG is equivalent to the original. When there is
a choice of transitions to take, we know that no matter which tran-
sition is selected, the output and the next set of transitions are
equivalent to those we would take in the original STG.

3. D-ATOM DEPENDENCIES

Any encoding containing a given D-atom has a certain set of
dependencies associated with it. Once all the D-atoms have been
encoded, these dependencies represent the possible logic support
for the state functions (communication costs). For the determina-
tion of these dependencies, STG’s with non-symbolic (encoded)
inputs and outputs are considered, although it is easy to general-
ize the algorithms for symbolic inputs and outputs. (Essentially,
D-atoms could be used to distinguish any two symbolic inputs or
any two symbolic outputs in the same way that they distinguish
two states.) Non-symbolic inputs and outputs are used here
because they are common, and because algorithms dealing with
them also apply to the problem of analyzing an FSM given a par-
tial encoding of the states.

First, dependencies required by a single transition are examined.
Next, this is expanded to find dependencies for a D-atom or pri-
mary output. Finally, the Symbolic Dependency Network (SDN)
is formalized. Each transition in the FSM specification is a four-
tuple, (I,PS,NS,O) which defines the next state and output of the
machine for a given input and present state.

To realize each primary output of the FSM, we need to distin-
guish every transition for which the output is a logic ‘0’ from
every transition for which the output is a logic ‘1’. This creates a
set of transition pairs for each output which must be distin-
guished.

Consider two transitions t1 and t2 taken from an STG:

t1: i1, s1 -> s1’, o1

t2: i2,s2 -> s2’, o2

If , then there exists a set of primary inputs that can
be used to distinguish t1 from t2. [7] presented an algorithm for
finding the set of all possible support sets required to distinguish
any two arbitrary logic functions. We denote the function repre-
senting the set of possible support sets for distinguishing i1 and i2
as .

The Boolean variable which distinguishes state from is
simply the D-atom .

To distinguish t1 and t2, we need to be able to distinguish either i1
from i2 or s1 from s2. The required support to distinguish t1 and t2
is represented by the following function:

D(i1,i2) + (s1,s2) (EQ 1)

s

a

b

c

d

i1/o1

i2/o2

i3/o3

i4/o4

Original STG Modified STG

sa

b

c

d

i1/o1

i2/o2

i3/o3

i4/o4s

 Figure 2.A modified STG. State s is duplicated.

i1 i2∩ ∅=

D i1 i2,()

s1 s2
s1 s2,()

If s1 and s2 are the same, then we can only distinguish the transi-
tions by the inputs. If the input functions i1 and i2 intersect, then
we can only distinguish the transitions using the present state
information. If the present states are the same and the input func-
tions intersect, then we don’t (and can’t) distinguish t1 and t2,
either because t1 and t2 are equivalent (if the output and next state
are the same), or the transitions are non-deterministic. All depen-
dencies will be in terms of a set or sets of primary inputs (which
can distinguish inputs of the transitions) and D-atoms (which dis-
tinguish the present states of the transitions).

To determine dependencies of D-atom it is necessary to
distinguish every transition to state from every transition to
state . The required support for a D-atom is given by the Bool-
ean function in EQ 2:

(EQ 2)

where is the set of transitions to state s, and ii and si are
the input cube and present state of transition ti.

Furthermore, the dependencies for each output o, are found as the
union of the dependencies required to distinguish transitions in
the on-set of o, from transitions in the off-set, as shown in EQ 3:

(EQ 3)

where is the set of transitions in the on-set of o, and
 is the set of transitions in the off-set of o.

3.1 Symbolic Dependency Network

In a symbolic dependency network (SDN), each node represents
either a D-atom, an input, or an output. Input nodes have no
dependencies, output nodes have no dependents. Edges represent
possible dependencies, where an edge from node n1 to n2 indi-
cates D-set encoding of n1 may require input from the D-set
encoding of n2. For each node, a set of cubes whose domain is the
possible dependencies is used to represent all possible sets of
dependencies. The set of dependency cubes is found for each
node using EQ 2 and EQ 3 above.

Initially we find the dependency cubes for each of the outputs.
During the next iteration, the dependency for any D-atoms used
by those outputs is found. This cycle continues until no new D-
atoms are introduced. In this way, unused D-atoms (which may
occur in non-state minimal machines or incompletely specified
machines) are never introduced or evaluated.

The resulting dependency network contains all possible support
sets forany encoding, and can be therefore very valuable. If the
dependency function indicates that D-atom necessarily
depends on , then any function which distinguishes
states and must necessarily have a wire from a piece of the
encoding which contains . Similarly, it is possible to
determine which D-atoms require wires directly from particular
primary inputs.

4. SHAPE-BASED ANALYSIS

The SDN provides an exact symbolic dependency map for an
FSM--symbolic in the sense that the information is encoding-
independent. This information is a powerful tool for analysis of
the machine. In this section, we describe how to determine the
existence of an encoding in the presence of shape constraints such
as routing and input/output placement requirements.

The analysis, based on topology of the circuit implementation,
will consist of applying three types of constraints: 1) Fixing the

s1 s2,()
s1

s2

D ii i j,() si sj,()+
ti TNS s1()∈ tj TNS s2()∈,

∏

TNS s()

D ii i j,() si sj,()+
ti Ton o()∈ tj Toff o()∈,

∏

Ton o()
Toff o()

s1 s2,()
s3 s4,()

s1 s2
s3 s4,()

number of D-sets (sets of D-atoms) that are allowed. 2) Selecting
the allowed directed interconnect between D-sets (including self
communication) 3) Determining which primary inputs are
allowed as input to each D-set.

The algorithm for applying the constraints proceeds as follows.
Once a particular topology has been chosen, every D-atom and
every primary output are placed into each D-set in the circuit. Ini-
tially, the only restrictions are the primary inputs. Next, for each
D-set, we determine the entire set of primary inputs and D-atoms
that are available for the support of D-atoms and outputs in the D-
set given the shape constraints. This set is determined by the user
defined constraints on the primary inputs, and by determining
which D-atoms exist in D-sets that are allowed to send communi-
cation to the given D-set. The available support set is compared to
the set of possible supports (taken from the SDN) for each node
(D-atom and output) in the D-set. When the available support set
does not intersect the any possible support of a node, that node is
removed from the D-set (it cannot be maintained if the inputs to
the D-set do not include its required dependencies). Removal of a
node from one D-set may reduce the available support set for
another D-set, so the process must be iterated until contents of the
D-sets become stable.

Note that if all inputs are provided to each D-set, then the circuit
will remain in its initial condition. This states simply that the
entire machine may exist in a single D-set. In such cases where
the shape constraints are very loose, we can apply additional con-
straints by removing D-atoms from particular D-sets and then
iterating the algorithm above. The decision of which D-atoms to
remove could be based on the required placement of outputs and
the symbolic dependencies of those outputs. It could also be
based on a pre-specified partial encoding of the machine provided
by the designer. (Now we can view a partial encoding as simply a
placement of D-atoms into D-sets.)

4.1 Analyzing the D-set Content

After iteration of the shape constraints, each D-set contains the
maximal set of D-atoms and outputs that are allowed. The exist-
ence of an encoding is easy to determine from the D-set content.
If each output exists in some D-set (or more specifically, exists in
a D-set allowed for that output), then the machine is encodable.
We will discuss the actual encoding in section 5.

Even when some outputs no longer appear in any of the D-sets,
we may gain some valuable information about the machine:
namely any output thatdoes occur is realizable for the chosen
topology. This information is useful in the redesign of the FSM,
or in the determination of a new topology. Section 6 contains
more information on the analysis of the D-set content.

5. D-SET ENCODING

Consider the problem of encoding a given D-set. Each D-set rep-
resents a partial encoding of the machine. Let represent the
partial encoding of state s in D-set B. For an arbitrary set B, we
must ensure that:

(EQ 4)

EQ 4 implies two things which we will enumerate very carefully.
1. If then must intersect (which
implies it is not distinguishable), and 2. If then

 must not intersect . If the first is violated, then
 is not actually in the D-set, and so it is not provided as

support to D-sets which receive communication from D-set B. If
the second is violated, then we have included an additional D-
atom in the D-set, which may require additional undesired com-
munication. In the encoding of B, we must ensure the validity of
EQ 4.

EB s()

s1 s2,() B∈ EB s1() EB s2()∩ ∅=()⇔

s1 s2,() B∉ EB s1() EB s2()
s1 s2,() B∈

EB s1() EB s2()
s1 s2,()

There is a trivial (but expensive) encoding which always guaran-
tees EQ 4. Essentially, we could allocate one bit for every D-
atom. This encoding results in a enormous amount of don’t care
information, since we may use as many as bits to
encoden states. With each bit containing exactly one D-atom, we
have no trouble verifying that EQ 4 is true. (Note that this is the
initial “seed” encoding specified in [4].)

It is also possible to determine an encoding which uses the mini-
mal number of bits as follows: Create a graph with one node for
every state, and an edge between every two states, s1 and s2 for
which . An edge in the graph indicates that the
encoding for the two states must not intersect, and the absence of
an edge indicates that the encoding must share at least one min-
term. It is by assigning sets of minterms to states according to
these rules that we can encode D-sets in a small number of bits.
At this point, the utility of encoding states as arbitrary functions
becomes evident.

The following is offered without proof: if we consider the com-
plement of the graph described above, then the minimum number
of minterms can be assigned to the states in a legal encoding by
assigning one minterm to each clique in the graph. The base two
log of the number of minterms is the minimum number of bits
required by the D-set. Any assignment of minterms to these
cliques is a valid encoding.

This algorithm is given in figure 3.

Note that the clique covering problem is, in general, NP com-
plete, but solvable in polynomial type for k=2 (2 cliques, imply-
ing a single bit of encoding for the set) [3]. Additionally, there are
many heuristic algorithms for clique covering with low time com-
plexity.

6. RESULTS

In this section, a detailed analysis is done for three interesting
machines. Following that is a table of more general analysis for a
set of benchmarks from the 1993 Logic Synthesis Workshop.

The first example comes from the specification for machine “A”
examined in [10] (see figure 4). In the specification the states are

labeled 1, 2, 3, 4, and I1, I2, I3, and I4 denote symbolic inputs. In
the paper, the authors note that this particular machine has a good
two bit encoding which allows each bit to be a function of only

n n 1–() 2⁄

s1 s2,() B∈

Given:
• A set of states S
• A set of D-atoms, A

1. Create an empty graph G
2. Add 1 vertex to G for every state
3. Add 1 edge s1-s2 for each D-atom d =
4. Obtain a minimal set of cliques C, which cover G
5. Assign a minterm to each clique
6. Encode each state as the union of the minterms correspondin
the cliques which contain the state

 Figure 3.D-set encoding algorithm

s S∈
s1 s2,{ } A∉

PS I1 I2 I3 I4 out

1 1 2 3 4 1

2 3 4 1 2 1

3 2 1 4 3 0

4 4 3 2 1 0

 Figure 4.Hartmanis and Stearns’ machine “A”

the other bit and a single primary input. This example is labeled
“A” in table 1. After applying these communication constraints to
the FSM, the contents of each D-set is shown in figure 5. Two D-
atoms (4,2) and (3,2) are allowed in both D-sets, but reapplying
the constraints after removal of any single D-atom in either D-set
results in removal of the output. Note that both D-sets can be rep-
resented by dichotomies, and hence bits. Thus, ignoring bit inver-
sion, the analysis reveals that there isexactly one two-bit
encoding of the machine under the above communication con-
straints.

The next interesting example is “shiftreg” from the benchmark
suite. Of all the benchmark files, shiftreg was the only file that fit
entirely into a shift register construction. The shift register con-
straints assert that the only logic gates that will appear in the cir-
cuit will be inverters, and perhaps a single arbitrary function of
the inputs at the first D-set. The “fit” of the FSM to the constraints
is determined by the presence of all outputs in some D-set of the
machine. Additionally, once the constraints were applied, it was
evident that there exists only a single encoding, again ignoring
inversions of the bits, that met the shape constraints.

This structure was further examined by removing some subsets of
transitions from the graph, effectively replacing them with “don’t
care” transitions. This created a machine with only four states,
but the three bit shift register implementation is still the smallest
(in gates) of all logic implementation. Such an encoding is typi-
cally very hard to derive using standard logic minimizing encod-
ing algorithms. Indeed for this four state machine, JEDI and
NOVA state assignment tools could not find this smallest encod-
ing even when forced to use a three bit encoding. However, by
constraining the machine to the shape of a shift register, two
things are obvious. First, the machine can be implemented as a
shift register, and second, there exists exactly one encoding which
fits the shift register shape constraint. The encoding is easy to
derive from the D-set content, just as it was in the previous exam-
ple.

The last example is count11, invented to exhibit some interesting
properties. The FSM continually counts to eleven, and outputs a
‘1’ on the eleventh cycle only if the input is a ‘1’ during that
cycle. Every node in the SDN depends only on other D-atoms,
except for the output node which depends on both D-atoms and
the primary input. The set of D-atoms that is recursively never
dependent on primary inputs could be said to have purely sequen-
tial dependencies. The size of this set in each machine is labeled
in the column “node clock” of table 1. The D-atoms which are
purely sequential represent clocks that exist inside the machine,
in some cases. However, in all the other FSM’s non-zero values in
the “node clock” column are actually the result of D-atoms that
require no support because the STG specification is not strongly
connected. Essentially they contain states which are unreachable
except after resetting the machine to one of the weakly connected
states. Note that these states are not redundant states, and the
purely sequential D-atoms which appear are not the result of non-
state minimal machine specifications. The D-atoms that represent
distinguishing redundant states never appear in the SDN.

Table 1 contains some general analysis results for benchmarks
FSM’s, and three additional FSM’s. The FSM “pipectl” at the
bottom of table 1 is simple five stage pipeline controller. “PI” is
number of primary inputs. “PO” is number of primary outputs.
“S” is number of states. “node total” is the number of D-atoms
and outputs. “node comb” is the number of D-atoms which can be

 Figure 5.D-set contents for machine “A”

D-set 1
(3,1), (3,2),
(4,1), (4,2)

D-set 2
(2,1), (4,3),

(3,2), (4,2), out

derived entirely from primary inputs (no other D-atoms required).
“node clock” is the number of D-atoms that can be derived
entirely from other D-atoms, and have no dependency on inputs,
at any level. “max FSR” is the maximum depth linear feedback
shift register (FSR) construction, in terms of D-sets, that could
exist in the circuit and provide useful information. “max SR” is
the maximum depth shift register, in terms of D-sets, that could
exist in the circuit and provide useful information. “SDN sec” is
the time required to construct the graph. “shape sec” is the time
required to apply both the “max SR” and the “max FSR” con-
straints to the FSM.

The FSR constraint allows inputs only in the first D-set, and
allows each D-set communication only from the D-set immedi-
ately preceding it and any D-set following it. The SR constraint
allows primary inputs to only of the first D-set, and each succes-
sive D-set is allowed only input from its immediate predecessor.
The topology for these shape constraints is shown in figure 6. For
an FSM, a maximum FSR depth of one indicates the topology is
totally useless, while a maximum shift register depth of zero indi-
cates that the shift register topology is useless. Other values imply
that some portion of the circuit may fit into the constraints. As
stated above, only one example (shiftreg) fit entirely into the SR
constraint.

The FSR and SR models were used because they are highly
restrictive shape constraints which are, in general, useful and

TABLE 1. FSM Topological Characteristics

FSM PI PO S node
total

node
comb.

node
clock

max
FSR

max
SR

SDN
sec

shape
 sec

bbara 4 2 10 47 0 0 3 0 0.4 0.3
bbsse 7 7 16 124 21 39 3 2 0.4 0.7
bbtas 2 2 6 17 2 0 3 1 0.1 0.1

beecount 3 4 7 25 14 0 3 1 0.1 0.1
cse 7 7 16 127 33 0 3 1 1.3 3.8

dk15 3 5 7 26 10 0 2 1 0.7 0.0
dk16 2 3 27 154 143 0 3 2 6.7 30.4
dk17 2 3 8 31 10 0 3 2 0.3 0.3
dk27 1 2 7 23 8 0 4 2 0.1 0.2
dk512 1 3 15 108 32 14 5 3 0.4 2.6
ex1 9 19 20 209 16 0 5 1 6.1 10.6
ex4 6 9 14 100 0 13 7 0 0.4 0.5
ex6 5 8 8 36 3 7 2 1 0.5 0.3
keyb 7 2 19 173 16 0 5 4 2.1 9.1
mc 3 5 4 11 0 0 2 0 <0.1 <0.1

opus 5 6 10 51 9 0 2 1 0.4 0.5
s1 8 6 20 196 33 0 2 1 5.3 11.9

s1488 8 19 48 n/a n/a n/a n/a n/a 153 >1000
s208 11 2 18 155 0 18 16 0 3.2 7.7
s27 4 1 6 16 6 0 2 1 0.2 0.1
s386 7 7 13 85 31 0 3 2 1.2 1.9
s510 19 7 47 1088 0 0 19 0 15 1163
s820 18 19 25 319 15 0 4 1 26 35
sand 11 9 32 505 1 0 3 1 57 151
scf 27 56 121 n/a n/a n/a n/a n/a >1000 NA

shiftreg 1 1 8 29 16 0 4 4 0.1 0.4
sse 7 7 16 70 21 31 3 2 0.8 1.8
styr 9 10 30 445 38 0 6 1 51 158
tav 4 4 4 10 0 6 1 0 0.4 0.0
tbk 6 3 32 n/a n/a n/a n/a n/a >1000 NA
A 2 1 4 7 0 0 2 0 <0.1 <0.1

count11 1 1 11 56 0 55 1 0 <0.1 0.1
pipectl 1 5 47 1086 589 0 6 4 24 746

interesting. Other such useful, highly restrictive constraints could
have been created specifically for each benchmark, had we had
more information about the benchmarks, such as the placement of
its primary inputs and primary outputs.

7. CONCLUSIONS

For the small FSM cases, this technique enables a fine grain con-
trollability that is missing from conventional tools, especially
when timing and physical constraints need to be met. Further,
shape constraints could be used to ensure that the controller syn-
thesis meet timing and integrity constraints for sub-micron
designs. However, the complexity of the described global analy-
sis techniques definitely limit the general applicability of the cur-
rent implementation. In future work, these limitations must be
directly addressed and well as generalizations of shape con-
straints which could be used to limit the complexity growth.

8. REFERENCES

[1] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient Im-
plementation of a BDD Package,”27th DAC, pp 40-45, June
1990.

[2] O. Coudert, C.-J. Shi, “Exact Dichotomy-based Constrained
Encoding,”Proc. ICCD, pp 426-431. Oct., 1996.

[3] M. Garey, D. Johnson,Computers and Intractability, New
York, Freeman and Co., 1979.

[4] W. Grass, I. Lemberski. “Support Based State Encoding Tar-
geting FSM Optimal LUT FPGA Implementation.”Proc.
IWLAS, pp 97-104, 1997.

[5] E. Goldberg, T. Villa, R. Brayton. “A Fast and Robust Exact
Algorithm for Face Embedding,”ICCAD, pp 296-303. Nov.,
1997.

[6] Z. Kohavi, Switching and Finite Automata Theory, 2nd Ed.
McGraw-Hill, New York, 1978.

[7] B. Lin, “Efficient Symbolic Support Manipulation,”Proc.
ICCD, pp 513-516. Oct., 1993.

[8] B. Lin, Synthesis of VLSI Designs with Symbolic Techniques,
Ph.D. Thesis, UC Berkeley, UCB/ERL M91/105, Nov. 1991.

[9] A. Saldanha, T. Villa, R.K. Brayton, A Sangiovanni-Vincen-
telli, “Satisfaction of Input and Output Encoding Con-
straints,”IEEE Trans. CAD, pp 589-602, May 1994.

[10] R. Stearns, J. Hartmanis, “On the State Assignment Problem
for Sequential Machines II,”IRE Trans. on Elec. Comp., pp
593-603. Dec. 1961.

[11] J. Tracey, “Internal State Assignment for Asynchronous Se-
quential Machines,”IEEE Trans on Elec. Comp., pp 551-
560. Aug. 1996.

[12] T. Villa, T. Kam, R. Brayton A Sangiovanii-Vincentelli,Syn-
thesis of Finite State Machines: Logic Optimization. Boston,
MA. Kluwer Academic, 1997.

[13] S.Yang M. Ciesielski, “Optimum and Suboptimum algo-
rithms for input encoding and its relationship to logic mini-
mization,” IEEE Trans. on CAD, pp 4-12, Jan. 1991.

...
PI’s

...
PI’s

... ...

 Figure 6.FSR shape constraints (top), SR (bottom)

D-set 0 D-set 1 D-set n

D-set 0 D-set 1 D-set n

