
Abstract
Optimization of hardware resources for conditional

data-flow graph behavior is particularly important when
conditional behavior occurs in cyclic loops and maximiza-
tion of throughput is desired. In this paper, an exact and ef-
ficient conditional resource sharing analysis using a guard-
based control representation is presented. The analysis is
transparent to a scheduler implementation. The proposed
technique systematically handles complex conditional re-
source sharing for cases when folded (software pipelined)
loops include conditional behavior within the loop body.

1. Introduction
Resource constraints play a crucial role in high-level

synthesis of digital systems.Conditional resource sharing
enhances resource usage by enabling simultaneous opera-
tions on different control paths to share physical resources.
For example, operations belonging to “then” and “else”
branches of anif-then-elsestatement are mutually exclusive
when the choice of branch to execute is made prior to the
execution of the branches. However, it has been shown [1]
that superior scheduling results are possible if operations
belonging to branch arcs are executed before the branching
decision is made (speculative execution). In this case, static
exclusivity analysis (performed before scheduling) is not
sufficient for optimal use of resources.

A recent approach [2] successfully detects a static pair-
wise mutual exclusiveness. Intree scheduling [3], a tree
representation allows code motion and sub-trees induced by
a branch can share resources.CVLS [1] usescondition vec-
tors [4] to dynamically track exclusiveness of pre-executed
operations. However, a case was reported wherein condi-
tion vector analysis can lead to an erroneous conclusion on
mutual exclusion between the operations [5]. The represen-
tation from [5] handles nestedif-then-else structures cor-
rectly, but is not applicable to some other forms of
conditional behavior (e.g.goto). These representations are
all restricted toconditional tree structures. Parallel trees are
addressed in [1], but the trees are either scheduled sequen-
tially or tree duplication is performed. Most importantly,

none of these approaches discusses conditional resource
sharing in cyclic control/data flow graphs (CDFGs) with
loop pipelining.

Numerous techniques for cyclic data-flow graph
(DFG) optimizations have been proposed, ranging from
heuristics [6][7][8] to ILP methods [9][10]. However, none
of them discusses cases in which conditional behavior oc-
curs within the loop body. Semantics-preserving techniques
and the BFSM-based approaches are applicable to cyclic
CDFGs, but they either lack a formal treatment of condi-
tional resource sharing [11][12] or introduce an excessive
number of 0/1 variables to model resource and exclusivity
constraints [13]. Recently,rotation scheduling [6] has been
extended to pipelining of CDFGs [14]. This technique is
based on acondition flagrepresentation restricted to cases
where execution conditions can be represented as a Bool-
ean cube. Conditional resource sharing analysis is per-
formed usingusage flags assigned to individual functional
units. Support fornode dividing [1] is not discussed.

Guard-based control representation is a foundation for
exact symbolic techniques for resource-constrained sched-
uling [15][16]. In many aspects, the guard-based model is
similar to execution conditions frompath analysis [17],
where Boolean conditions are used in the hardware alloca-
tion phase (after AFAP scheduling). That research demon-
strated that OBDDs (Ordered Binary Decision Diagrams
[18]) efficiently represent control signals in large scale
problems. Guard-like models are used in several recent ex-
act techniques [19][20]. There, conditional branches are la-
beled by Boolean functions and a proper interpretation of
mutual exclusion is guaranteed by construction. However,
specification-level formalism restricts code motion beyond
the code-block boundaries (e.g. speculative execution).

In this paper, we present an exact technique for condi-
tional resource sharing analysis. We do not discuss a sched-
uler implementation. However, the analysis in this paper is
implementation transparent. In Section 2 we present an
overview of a guard-based control representation. In Sec-
tion 3 this control model is directly linked to evaluation of
resource constraints. First, we describe the simple case of
acyclic CDFGs. The discussion is then extended to the
more general case of pipelining of cyclic CDFGs. Finally,
experimental results are presented in Section 4.

Analysis of Conditional Resource Sharing
using a Guard-based Control Representation *

Ivan P. Radivojevi′c Forrest Brewer
Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA, U.S.A.

* Supported in part by a fellowship donation from Mentor Graphics Corp.

2. Control representation
We assume a CDFG specification describing both data-

flow and control dependencies between operations (similar
to the one used in [4]). Operation nodes are atomic actions
potentially requiring the use of hardware resources (e.g.
arithmetic/logical operations, read/write cycles). Condition-
al behavior is specified by fork and join nodes. An operation
node generating a control signal for a fork/join pair is called
a conditional. Directed arcs establish a link between the
conditional and a related fork/join pair. Conditionals make
decisions on the flow of control (whethertrue (T) or false
(F) branches provide operands for successor operations).

To represent conditional behavior, a set ofguard vari-
ables is introduced. Each guardG represents a control-flow
decision by a particular conditional-- the guard is true for
one branch and false for the other. Every control path
through a combination of fork/join pairs is described by a
product of the corresponding guards. For each operationj, a
Booleanguard functionΓj (defined on the guard variables)
encodes all the control paths on whichj must be scheduled.

Computation ofΓ functions -- Assume that operationi
hasn successors (j1, j2, ... , jn) and that none of the succes-
sors is a join node. Then a guard functionΓi can be simply
computed as a BooleanOr of the successors’ guard func-
tions Γjk

 (k=1,2, ..., n). This means that operationi has to
provide an operand to all of its successors. If a successor of
i is a join node, then its contribution toΓi is equal toΓjoinGk
or ΓjoinGk (depending on whetheri belongs to the ‘T’ or ‘F’
branch). All operation guard functions are computed by a
one-pass traversal of the CDFG that starts from a sink node
whose guard function is initialized to ‘1’ (tautology).

In Fig.1 (Kim’s example [21]), two guards (G1, G2)
corresponding to the conditionals (C1, C2) encode the con-
ditional behavior. There are three possible execution
paths: . Indicated blocks correspond to
operations that share the same guard functionΓ

. We note thatΓ’s are not restricted
to product terms (thus, they can handle constructs such as:

Γ=G1
Γ=G1

Γ=G1G2 Γ=G1G2

F
TC2 C1 Γ=1

FT

T

from C1
from C2

source

sink

Figure 1. Kim’s example

Guards:

G2 (C2 decisions)
G1 (C1 decisions)

if (C1) a;
else if(C2) b;

else goto d;
c; d;

Figure 2. Pseudo-code fragment

G1G2 G1G2 G1, ,()

1 G, 1 G1G2 G1G2 G1, , ,()

goto, exit, case). In the pseudo-code fragment shown in
Fig.2, the execution condition for statementc is described
as: . Guard-based represen-
tation also applies to parallel or correlated control struc-
tures. If two copies of Fig.1 are executed in parallel, only
two more guard variables are introduced, while the number
of control combinations (9) grows much faster. The number
of guards is not proportional to the number of control paths,
but is determined by the number of conditionals.

3. Conditional resource sharing analysis
First we briefly review the OBDD form of theAt-most-

k-of-n constraint [15]. We refer to anAt-most-k-of-n con-
straint asBk,n. The Boolean equation form ofBk,n is:

(1)

where fi are Boolean functions. Fig.3 shows the OBDD
form of Bk,n in whichfi’s are simple Boolean variables. The
number of product terms in theBk,n is (nk). However, the
OBDD form is compact and can be built efficiently using
ite (if-then-else) calls. The vertices in this symmetric tem-
plate need not be restricted to variables -- arbitrary Boolean
functionsfi can be inserted into the template shown in Fig.3
(e.g. bus/register scheduling constraints described in [15]).

3.1 Acyclic CDFGs

Guard functions may be used to perform conditional
resource sharing analysis for anarbitrary number of CDFG
operations. We illustrate the idea using a CDFG fragment
shown in Fig.4. Assume that the scheduling has been com-
pleted forstep_1 and that operations1 and 2 have been
scheduled in thestep_2. We want to analyze scheduling op-
eration3 in step_2 assuming that only one “white” resource
is available. Evaluating anB1,3 using guard functions Γi (i
= 1, 2, 3) as arguments we obtain:

(2)

Since the constraint evaluates to ‘0’, we conclude that
the schedule is infeasible on all paths. If two resources are

Γc GC1
= GC1

GC2
+ GC1

GC2
+=

0 1

A

B B

C C C

D D D

E E

F F

G

E

(n-k)
(k+1)

1

1 1

1 1 1

1 1 1

1 1 1

1 1

1

0

0 0

0 0 0

0 0 0

0 0 0

0 0

0

Figure 3. At-most-k-of-n constraint (k=4, n=7)

Bk n, f1 f2 … fn, , ,() fl1
fl2

…fl n k−()1 lp lq≠() n≤ ≤
∑=

T F
321 Γ3=1Γ1=G Γ2=G

step_1

step_2

Figure 4. Example CDFG fragment

B1 3, Γ1 Γ2 Γ3, ,() Γ1Γ2 Γ1Γ3 Γ2Γ3+ + 0= =

available, the constraintB2,3 evaluates to ‘1’:

(3)

indicating that operation3 can be scheduled on all paths
Let us assume now that operation1 has been scheduled

for execution in a speculative fashion instep_1, and that op-
eration2 is scheduled instep_2. Can operation3 be sched-
uled in step_2 with only one resource? We evaluateB1,2
constraint usingΓi (i = 2, 3) and obtain:

(4)

This result indicates that the resource bound is met only on
path G. In general, the following theorem holds1:

Assume that n operation instances are candidates for
scheduling at a particular time step and that there are only
k resources available. Then the evaluation of Bk,n(Γ1, Γ2, ...
, Γn) returns all paths where the resource constraint is not
violated.

The proof is straightforward since every individual
control path is represented as a product of guard variables.
We can evaluateBk,n(Γ1, Γ2, ... ,Γn) for every possible com-
bination (minterm) of guard variables and obtain ‘1’ (if the
minterm is covered by at mostk Γi functions) or ‘0’ (if the
minterm is covered by more thank functions). Note that al-
though the conceptual complexity of the test is very high, it
can be performed efficiently sinceΓi functions are repre-
sented by OBDDs -- the computation amounts to insertion
of guard functions into the templateBk,n(Fig.3).

We define an operation j’s split-function Sj as a Boolean
intersection:

(5)

Remember thatΓj indicates all control paths where op-
eration j must be scheduled. ThusSj indicates all paths
where operationj can be scheduled at a particular time step
whenBk,n is evaluated. IfSj is equal toΓj, operationj can be
completely scheduled at that time step. IfSj is a proper sub-
set ofΓj (Γj⊃Sj), node splitting (dividing) may be consid-
ered. In the previous example,S3=G and (Γ3⊃S3). Thus,
operation3 can be scheduled on path G instep_2. On paths:

(6)

operation3 has yet to be scheduled in the subsequent steps2.
To support code motion across the basic code blocks,Γi

functions may have to be modified during the scheduling.
For example, if operation1 (Fig.4) is executed speculatively
in step_1, variable G has to be factored out fromΓ1 (i.e.Γ1
becomes ‘1’), since the corresponding conditional (shaded
comparator) is unknown at that time. This reflects the fact
that duringstep_1, paths G andG are indistinguishable.

1. This reduces to a pair-wise mutual exclusion test (ΓiΓj=0) as a previ-
ously observed special case (e.g.[2][15][17]).

2. The scheduler, however, has to ensure that node dividing is done in a
causal manner (e.g. not to allow dividing of nodes with respect to a con-
ditional whose value is still unknown at a particular time step).

B2 3, Γ1 Γ2 Γ3, ,() Γ1 Γ2 Γ3+ + 1= =

B1 2, Γ2 Γ3,() Γ2 Γ3+ G= =

Sj ΓjBk n, Γ1 Γ2 … Γj … Γn, , , , ,()=

Γ3\ S3 Γ3S3 G= =

The proposed approach is computationally efficient.
We observe that the number of operations in a typical
CDFG is much larger than the number of potentially dis-
tinct guard functions. Only one pointer to a guard function
need be stored for each operation instance during the sched-
uling process. Furthermore, memory overhead for storing
guard functions is expected to be very low due to the shar-
ing property of the OBDD data structure [18]. Compared to
the method proposed here, condition vectors [1] are less ef-
ficient and have smaller expressive power since in that ap-
proach: (i) control paths are “one-hot” encoded, (ii) no
sharing is possible between the vectors, and (iii) execution
order of conditionals is pre-specified.

Guard-based analysis is not restricted to physical hard-
ware resources, but can be applied to modelling more gen-
eral constraints. For example,mutual exclusion of n signals
is tested by usingB1,n(Γ1, Γ2, ... ,Γn). A condition forsyn-
chronization of n signals is evaluated using the complement
of B(n-1),n(Γ1, Γ2, ... ,Γn) -- this identifies all control paths
where all signals occur simultaneously.

3.2 Pipelining of cyclic CDFGs

In a pipelined hardware implementation of a datapath,
multiple loop iterations can be executed concurrently. The
latency is the period of timel between initiations of two
consecutive iterations. Loop pipelining optimizations have
the goal of increasing the throughput by overlapping the ex-
ecution of loop iterations. In the case offunctional pipelin-
ing, the assumption is that no inter-iteration data
dependencies exist. Given sufficient hardware resources,
the latency of functionally pipelined data-paths can be
made arbitrarily small. Inloop winding, this cannot be done
since inter-iteration data dependencies do exist. Thedelay
is the number of cyclesd required to complete one iteration.
The number of overlapping iterations is usually referred to
as the number ofpipeline stages.

Fig.5 shows an example of overlapped execution of a
loop usingns pipeline stages. Assume that the loop body
exhibits np distinct control paths. In Fig.5, the number of
paths may grow as (np)

((step-1) / l+1). For example, for time
steps , the number of paths is potentially (np)

2,

stage 1

stage ns l - latency (iteration interval)
d - delay (iteration time)

123k
l

d

Figure 5. Overlapping of loop iterations

ns - number of pipeline stages

LOOP
ITERATION:

...

stage 1

stage ns

stage 1

stage ns

stage 1

stage ns

l step 2l≤<

since two iterations co-execute. Clearly, to have a finite
state controller, the number of execution paths must be
bounded. This implies limiting state information available
to the controller implementing the schedule. At minimum,
the state depends on allns loop iterations in the pipeline3.

The unfolded execution of a functionally pipelined ver-
sion of Kim (Fig.1) is shown in Fig.6. We assume two
adders (“white” operation), one subtracter (“black” opera-
tion) and one comparator (single-cycle units assumed). The
example requires 8 cycles on these resources if loop pipelin-
ing is not performed4. With loop pipelining, a schedule us-
ing 2 stages and having latency of 4 (using the same
resources) can be found as indicated in the Fig.6 (delay re-
mains 8 cycles). One operation is divided as indicated by
the values of the guards corresponding to conditionals (C1,
C2). The indicated block in the middle of the figure shows a
pipelined loop pattern. Although there are nine control
paths, the control is simple since the schedules for the two
iterations are independent. In general, this need not be the
case: superior schedules may be achieved when a control
correlation is introduced among the overlapping iterations.

We now extend conditional resource sharing analysis to
the more general case of pipelining of cyclic CDFGs. Con-
sider the CDFG shown in Fig.7. Assuming that only one
single-cycle resource of each type (comparator, “white”,
“black”) is available, the CDFG from Fig.7 can be sched-
uled in 4 time steps without loop pipelining. However, la-
tency can be reduced to 2 time steps using three pipeline
stages. For simplicity, we assume that the CDFG has to be
executed an infinite number of times and that no inter-itera-
tion data dependencies exist. These assumptions do not af-
fect the generality of the approach5.

Assume that the schedule is to be found usingns pipe-
line stages. We specify a bound on the information available
to the controllerni (ni≥ns), indicating that the state of the

3. Increasing the amount of state available for control generation may
improve a schedule, but is likely to lead to more complex controllers.

4. Assuming no speculative execution, 8-cycle schedule can be found even
using only one single-cycle adder.

5. In the general case, a loop test must be explicit in the CDFG specifica-
tion and the scheduler has to enforce inter-iteration precedences.

loop_iterations_(2k-1)loop_iterations_(2k)
la

te
nc

y
de

la
y

stage_1 stage_2

[TT, F-]
[TF]

T

T

F

F

T

T

F

F

[TT, F-]
[TF]

T

T

F

F

Figure 6. Unfolded execution pattern for Kim

last ni iterations is preserved and used in decision making.
Assume that the CDFG to be scheduled hasnp control
paths. Clearly, the bound on the number of distinct control
paths grows as O[(np)

ni]. To accommodate all possible sce-
narios, guard variables are doubly-indexed.Gk,i stands for
“guard corresponding to conditionalk in pipeline stagei”,
where (1≤ i ≤ ni). Index i is called the “pipe index”. Values
of i larger thanns correspond to loop iterations that left the
pipeline. Operations at different pipeline stages correspond
to distinct loop iterations. Thus, Gk,i corresponds toany
loop iteration currently present at stagei. Additionally, op-
erationj is guarded byΓj,i (the guard function for operation
j at pipeline stagei). The complexity of control representa-
tion grows asninc (nc is the number of conditionals).

The overlapping iterations are treated as parallel
threads of computation, leading to the following resource
analysis procedure6:

1. For the original CDFG, assign guard variables Gk to
the corresponding conditionals and for each operation j
compute its guard functionΓj.

2. ComputeΓj,1 by substituting Gk,1 for each Gk in Γj.
Resource constraints are evaluated as described for a
CDFG without loop folding (Section 3.1).

3.a. If, during scheduling, operationj is moved from
pipeline stage i to pipeline stage (i+1), computeΓj,(i+1) by
incrementing the pipe indices by 1 for all guard variables in
Γj,i. Movement of operations that increase the pipe index
beyondni is not allowed, since this would violate the pre-
defined boundni.

3.b. If, during scheduling, operationj is moved from
pipeline stage i to stage (i-1), computeΓj,(i-1) by decre-
menting the pipe indices by 1 for all guard variables inΓj,i.
Operation movement decreasing the pipe index below 1 is
illegal, since it would imply non-causal solutions (i.e. con-
trol depends on iterations yet to be initiated).

4. Repeat steps 3.a and 3.b for each time step and each
pipeline stage. Conditional resource availability is comput-
ed as described in Section 3.1.

Steps 3.a and 3.b preserve all inter-iteration and intra-
iteration control dependencies. They reflect the fact that
6. Some schedulers first generate a feasible pipelined schedule (in terms of

dataflow dependencies) and subsequently resolve resource violations by
incremental partial rescheduling [7][11]. Alternatively, the initial non-
pipelined schedule can be free of resource violations and the latency is
then reduced through incremental operation rotation [6][14].

T FΓ=1

Γ=G1G2

1

2

4

3

65 7

Γ=G1

Γ=G1

Γ=G1G2

T F

Figure 7. Example CDFG to be folded

overlapping loop iterations flow through the pipeline stages
in a synchronous fashion.

We now apply the procedure to the CDFG in Fig.7. A
feasible schedule using three pipeline stages, achieving la-
tency of 2 is shown in Fig.8. Assumeni = ns = 3 and that
stage 1 has been scheduled as shown in Fig.8. Since opera-
tion 4 is pushed from the first pipeline stage into the second
pipeline stage, its new guard function becomes:

. If theB1,2 constraint at step 1 is evaluated us-
ing Γ1,1 andΓ4,2we obtain:

(7)

indicating the paths where the resource constraint is not vio-
lated. However, the intersection ofB1,2 andΓ4,2 is empty
(i.e. S4=0), indicating that operation 4 cannot be scheduled
in step_1. It is possible to schedule operation 4 instep_2,
however, since no other comparison is scheduled in that
step in pipeline stage 1.

Similarly, operation 7 is guarded by when
pushed into stage 2. Although sufficient resources are avail-
able, it is clear that operation 7 cannot be scheduled at step
1 if an overall latency of 2 is to be achieved. (Since compu-
tation in the first and second pipeline stage are subject to un-
correlated decisions, it can happen that no “white”
resources are available for pipeline stage 3 where additional
“white” operations have to be scheduled). At step 2:

(8)

indicating the paths free of resource violations. Since:

(9)

operation 7 cannot be scheduled at step 2 if the ‘T’ path is
simultaneously taken in the CDFG being executed in the
first pipeline stage . However, operation 7 can
be split (see Fig.8). The guard function of 7’ can be set to:

(10)

Operation 7 has yet to be scheduled on paths:

(11)

Since this part of operation 7 (7”) has to be pushed into
pipeline stage 3, its guard function is modified to:

(12)

During the first step of pipeline stage 3, three candidate
operations exist: 5, 6 and 7’’. If theBk,n constraint is evalu-
ated at step 1 usingΓ5,3, Γ6,3 andΓ7’’,3, we obtain:

(13)

Γ4 2, G1 2,=

B1 2, Γ1 1, Γ4 2,,() 1 G1 2,+ G1 2,==

4

step_1

step_2

pipeline_stage_1 pipeline_stage_2 pipeline_stage_3

2

G1,1

3

G1,1

1

Γ1,1=1

G1,2

7’

G1,1G1,2

5 6 7’’
G1,3G2,3 G1,3G2,3 G1,2G1,3

Figure 8. Folded CDFG from Fig.7

Γ7 2, G1 2,=

B1 2, Γ2 1, Γ7 2,,() G1 1, G1 2,()+ G1 1, G1 2,+==

S7 Γ7 2, B1 2, Γ2 1, Γ7 2,,() G1 1, G1 2,= =

G1 1, G1 2,()

Γ7′ 2, S7 G1 1, G1 2,= =

Γ7″ 2, Γ7 2, \ Γ7′ 2, G1 1, G1 2,= =

Γ7″ 3, G1 2, G1 3,=

B1 3, Γ5 3, Γ6 3, Γ7″ 3,, ,() 1=

indicating that the resource constraint is satisfied on all
paths. Computation ofSj for j=(5, 6, 7”) indicates that all
operations (5, 6, and 7”) can be scheduled atstep_1 (stage
3) and that a feasible schedule has been found.

3.3 Probabilistic interpretation

In a CDFG withnc conditionals, up to2nc control sce-
narios may occur. Each of these distinct control paths can
be represented using a minterm of guard variables. Since
the number of minterms covering a Boolean functionf is
typically referred to ason-set size of f, we define:

OnSetSize(1) = 2nc (14)
Assuming that all True/False decisions are equally

likely, we offer a probabilistic interpretation ofΓ functions:

(15)

whereP(j) indicates the probability that operationj will be
conditionally executed. ProbabilityP(j) or its variations are
frequently used in resource-constrained schedulers to de-
fine heuristic priority functions (e.g. [4]). We observe that
the computation ofOnSetSize(f)amounts to a simple one-
pass traversal of an OBDD representation off. When the
probability of a conditional’s outcome is not uniform, be-
havioral description analysis/simulation can be performed
to determine probability values. In such cases, the OBDD
traversal algorithm forOnSetSize(f) can be easily modified
to take into account individual probabilitiesP(Gc)

7.
It is also possible to assess the global effects of re-

source violations using the complement ofBk,n(Γ1,...,Γn):

(16)

This ratio indicates the probability of a violation occur-
rence. Such information is useful for schedulers that re-
solve resource violations through partial rescheduling.

4. Experimental results
Two types of experiments are performed. First, we

wish to investigate the benefits of exploiting conditional re-
source sharing. Table 1 we summarizes results for three ex-
amples: theVerySmall (Fig.7),Kim (Fig.1), andSC (Fig.9,
[14]). As assumed in the previous sections,VerySmall uses
1 resource of each type (add, subtract, compare) andKim
uses 2 adders, 1 subtracter and 1 comparator.SC schedule
(using 1 multiplier and 2 ALUs) is shown in Fig.9. Cycles 3
through 8 form a repetitive pattern that can be pipelined8.

For all examples, we present three results for the same
resource bounds.Original corresponds to CDFGs without
unrolling and pipelining.Unrolled corresponds to the un-
rolled versions of a CDFG (no pipelining), while loop pipe-

7. We still assume these probabilities correspond to independent events.
8. Solution in [14] has latency of 6 as well, but uses 4 pipeline stages.

OnSetSizeΓj()
OnSetSize1()

P j()=

OnSetSize Bk n,()
OnSetSize1()

lining is allowed inpipelined. The original and unrolled
results are obtained using exact symbolic techniques
[15][16]. Thepipelined results were generated in a semi-au-
tomated fashion9. Table 1 shows that systematic treatment
of resource sharing can increase throughput even in cases
when the loop body exhibits conditional behavior.

To investigate the computational and storage overhead
of the approach,“pipelined” results were verified for poten-
tial resource constraint violations. The overhead due to
guard variables and functions is very small: 14 OBDD
nodes (Kim, Fig.6), 18 nodes (VerySmall, Fig.8), and 24
nodes (SC, Fig.9). In all examples, verification of the re-
source bounds took less than 0.03 CPU seconds.

5. Summary
An approach to conditional resource sharing analysis

using a guard-based control representation was described.
To our knowledge, this is the first method to systematically
handle conditional resource sharing for pipelined loops that
exhibit conditional behavior within the loop body. In the fu-
ture, we plan to implement a scheduler based on the pre-
sented concepts. This requires that several additional issues
be addressed (e.g. node unification, incremental recalcula-
tion of Γ functions when conditionals are rescheduled, tim-
ing model for operation chaining, etc.).

 References:
1. K. Wakabayashi and H. Tanaka, “Global Scheduling Indepen-

dent of Control Dependencies Based on Condition Vectors”,
Proc. 29th DAC,1992.

2. H.-P. Juan, V. Chaiyakul, and D.D. Gajski, “Condition Graphs
for High-Quality Behavioral Synthesis”,Proc. ICCAD, 1994.

9. Symbolic techniques can be extended to solve a relaxed version of the
conditional pipelining by adding some necessary conditions for exist-
ence of a repetitive pattern in a schedule of the unrolled loop. All of the
presented results were generated using such an approach, but they were
manually verified for potential inter-iteration dependency violations.

cycle: pipeline stage:0 1

1 1
2 2, 14
3 3, 15 3, 17
4 11 4, 16 11, 18 4, 18, 19
5 12, 16 8, 9 5 12, 19 8, 9 5
6 13 10 6 20 10, 20 6, 20
7 21 21 7 13 21 7 1
8 21 21 21 2, 14

path [3,4,14]: [F,-,F] [T,F,F] [T,T,F] [F,-,T] [T,F,T] [T,T,T] [-,-,-]

Figure 9. SC example and its schedule

16*

14

1 +
2 *

3

T F
4
T F

T F

5 +

6 +

7 *

8 * 9+

10+

11 *
12+

13 *

17 *
18 + 19*

20*

21+

15+

in

out

3. S.H. Huanget al. “A Tree-Based Scheduling Algorithm for
Control Dominated Circuits”,Proc. 30th DAC, 1993.

4. K. Wakabayashi and T. Yoshimura, “A Resource Sharing and
Control Synthesis Method for Conditional Branches”,Proc.
26th DAC, 1989.

5. M. Rim and R. Jain, “Representing Conditional Branches for
High-Level Synthesis Applications”,Proc. 29th DAC, 1992.

6. L.-F. Chao, A. LaPaugh, and E.H.-M. Sha, “Rotation Schedul-
ing: A Loop Pipelining Algorithm”,Proc. 30th DAC, 1993.

7. T.-F. Leeet al., “An Effective Methodology for Functional
Pipelining”, IEEE Trans. CAD/ICAS, vol.13, no.34, Apr.
1994.

8. M. Potkonjak and J. Rabaey, “Optimizing Resource Utiliza-
tion Using Transformations”,IEEE Trans. CAD/ICAS, vol.13,
no.3, March 1994.

9. C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A Formal Approach
to the Scheduling Problem in High Level Synthesis”,IEEE
Trans. CAD/ICAS, vol.10, no.4, Apr. 1991.

10. C.H. Gebotys, “Throughput Optimized Architectural Synthe-
sis”, IEEE Trans. VLSI Systems, vol.1, no.3, Sep. 1993.

11. R. Potasman, J. Lis, A. Nicolau, and D. Gajski, “Percolation
Based Synthesis”,Proc. 27th DAC, 1990.

12. T.-Y. Yen and W. Wolf, “Optimal Scheduling of Finite-State
Machines”,Proc. ICCD, 1993.

13. A. Takach and W. Wolf, “Scheduling Constraint Generation
for Communicating Processes”,IEEE Trans. VLSI Systems,
vol.3, no.2, June 1995.

14. J. Siddhiwala and L.-F. Chao, “Scheduling Conditional Data-
Flow Graphs with Resource Sharing”,Proc. 5th Great Lakes
Symp. VLSI, 1995.

15. I. Radivojevi′c and F. Brewer, “Symbolic Techniques for Opti-
mal Scheduling”, Proc. 4th SASIMI Workshop,1993.

16. I. Radivojevi′c and F. Brewer, “Incorporating Speculative Exe-
cution in Exact Control-Dependent Scheduling”,Proc. 31st
DAC, 1994.

17. R.A. Bergamaschi, R. Camposano, and M. Payer, “Allocation
Algorithms Based on Path Analysis”,Integration, the VLSI
Journal, vol.13, no.3, Sept. 1992.

18. R.E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation”,IEEE Trans. Computers, vol.C-35, no.8, Aug.
1986.

19. J. Yang, G. De Micheli, and M. Damiani, “Scheduling with
Environmental Constraints based on Automata Representa-
tions”, Proc. EDAC, 1994.

20. C.N. Coelho Jr. and G. De Micheli, “Dynamic Scheduling and
Synchronization Synthesis of Concurrent Digital Systems un-
der System-Level Constraints”,Proc. ICCAD, 1994.

21. T. Kim, J.W.S. Liu, and C. L. Liu, “A Scheduling Algorithm
for Conditional Resource Sharing”,Proc. ICCAD, 1991.

 Table 1. Throughput comparisons

example
#overlapped

iterations
latency
[cycles]

delay
[cycles]

throughput
[1/cycles]

VerySmall

original 1 4 4 0.250
unrolled 3 7 7 0.429
pipelined 3 2 5 0.500

Kim

original 1 8 8 0.125
unrolled 2 11 11 0.182
pipelined 2 4 8 0.250

SC

original 1 8 8 0.125
unrolled 2 14 14 0.143
pipelined 2 6 8 0.167

